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Introduction 
When to Use this Video 

R5 In Math 201, in lecture or recitation, after Unit 
Key Information 
Duration: 13:293: Vector Calculus on the Plane, Lecture 5: Narrators: Prof. Raul Radovitsky Green’s Theorem and Michelle Nyein, Ph.D.R5 In Math 201, in class, during or after Unit candidate  4: Vector Calculus in Space, Lecture 9: The Materials Needed: Divergence Theorem R5��*�,


R5 Prior knowledge: definition of divergence and R5��(�#&
 how to compute divergence
 

Learning Objectives 
After watching this video students will be able to determine points at which a vector field is divergent. 

Motivation 
R5	 Divergence is connected to flux, but because it is easy to compute, this notion is often 

forgotten within the context of a calculus class. 
R5	 Students have a difficult time connecting multivariable calculus concepts to physical 

examples. This video draws from familiar and unfamiliar examples of physical vector fields,
and develops a framework for understand the divergence of these vector fields. 

R5	 Physical concepts that are directly connected to divergence, such as incompressibility,
sources, and sinks are developed through analysis of the divergence of physical examples. 

Student Experience 
It is highly recommended that the video is paused when prompted so that students are able to attempt the 
activities on their own and then check their solutions against the video. 
During the video, students will: 

R5 Derive the formula for divergence.
 
R5 Predict whether different example vector fields have positive, negative, or zero divergence.
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Video Highlights 
This table outlines a collection of activities and important ideas from the video. 

Time Feature Comments 
1:37 Chapter 1: Detonation Prof. Raul Radovitsky describes his work designing 

materials to protect people from detonation blasts,
and explains how the divergence is a fundamental 
component of a complex modeling problem. 

4:02 Chapter 2: Divergence defined Divergence is defined as a measurement of the net 
flux per area as the area shrinks to zero. 

4:44 Activity: students derive formula for 
divergence 

6:38 Intuition for divergence in terms 
of preservation of area or volume 
introduced. 

7:43 Chapter 3: Examples Several examples are explored.  Students are given 
the opportunity to predict whether each vector 
field has positive, negative, or zero divergence. 

7:50 Incompressible fluid flow Simple fluid flow regime from Shapiro Fluid Flow 
video. 

9:07 Student Activity Students think about what it means for a fluid to 
be compressible. 

9:50 Electric field 
11:13 Rotational field 

Video Summary 
This video describes how divergence is a fundamental component of a complex modeling problem 
involving detonation blasts. The divergence of a vector field is defined physically, and the physical 
description is connected to the mathematical formula.  Students analyze a collection of vector fields 
to determine whether or not they have positive, negative, or zero divergence by analyzing the change 
in area or volume of a region of tracer particles. 
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Math 201 Materials 
Pre-Video Materials 
When appropriate, this guide is accompanied by additional materials to aid in the delivery of some of the 
following activities and discussions. 
While the divergence theorem is not necessary to understand the main topic of the video, it is needed 
to understand the continuity equation, which is fundamental to detonations.  Because the divergence 
theorem in some sense defines the divergence operator, we assume it as prior knowledge in 2-dimensions 
only, and recommend teaching it before watching the video. The problems below both require an ability 
to apply the divergence theorem to physical situations. 

� 

� 

� 1. The continuity equation is a fundamental partial differential equation that can describe all 
conservation properties.  Break students into small groups.  Let the following process to guide 
students through a derivation the continuity equation in the special case of conservation of 
mass. � 

(a) Let W be the density or concentration of material in a control volume V. Write an equation 
for the mass in terms of W and V. 

(b) If the density depends on time, then within the control volume, the mass also must depend 
on time.  Differentiate this equation to find the rate of change of mass with respect to time 
as a function of W and V. 

(c) Let u be the velocity field of the material. Write an integral equation that describes the rate 
of change in mass as the flux of material through the boundary of the control volume. 

(d) Apply the Divergence theorem to rewrite the integral in (c) as the volume integral of the 
divergence integrand. 

(e) Now, set the equation from part (d) equal to the equation found for the change in volume in 
part (b).  Because the control volume was arbitrary, this equation must hold for any control 
volume.  In particular, it holds for infinitesimally small volumes. This can only be true if the 
two integrands are equal!  

This partial differential equation is the continuity equation in the special case of 
conservation of mass. 

� 

� 

� 

� 2. The diffusion equation describes diffusion in a wide range of contexts, such as material 
mixing and heat transfer.   Combine the continuity equation describing conservation of mass 
and Fick’s first law (see Gradient video) to obtain the diffusion equation. 

Return to examples from Gradient video, and discuss whether or not the examples of Fick’s first 
law were also examples of diffusion.  (They are all in fact diffusion examples, because mass is 
conserved.) 
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Post-Video Materials

1. Magnetic Field (Appendix A1) 
 
 
 
 
 
 
 
 
 
   
&e image above is a 2-dimensional rendering of a magnetic 'eld.  Maxwell’s equations tell us 
that magnetic 'elds are always divergence free.  Lead a class discussion about how to consider  
what would happen to a small region of particles whose velocity 'eld is assumed to be given by 
the magnetic 'eld vectors.   
 
Once students have discussed for a while, ask students to select all statements that best describe  20

1

what would happen.  H
AT

(a) A small square region of charged particles would move according to the magnetic 'eld in a M

way so that the area never changes.
(b) A small cubic region of uncharged particles, whose velocity 'eld is assumed to be given by 

the magnetic 'eld, would move in such a way that the volume never changes.
(c) A small square region of uncharged particles, whose velocity 'eld is assumed to be given by 

the magnetic 'eld, would move in such a way that the area never changes.
&e key idea in this problem is to make sure that students do not confuse being divergence free in 
3-dimensions with being divergence free in 2-dimensions.  A magnetic 'eld is divergent free in 
3-dimensions, which means that option (b) is the correct item.  A student may think that this means that 
in any projection onto a 2-dimensional plane, the vector 'eld must also be divergence free.  But this is not 
true.

2.  Break students into small groups.  Have each group 'nd examples of incompressible and 
compressible materials and (uids.  Have them describe how they know they are compressible or 
incompressible, and how this e*ects properties of the material or (uid.  Have each group share 
their examples with the full class.

3.  Divide students into small groups, and have each student draw vector 'elds that have 
positive divergence, negative divergence, and/or zero divergence.  Pass vector 'elds to another 
member of the group, and have them determine type of divergence.  Compare answers, and 
discuss any ambiguities with the entire class.  
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4.  While deriving and solving the equations for detonation in 3-dimensions is beyond the 
scope of this class, it may be interesting to derive the equations and some solutions to the 
equations that would describe 1-dimensional detonation.   
 
It is important to point out to students that this is a fairly common method of problem  
solving––to 'rst model a problem in 1-dimension––even though this solution will not 
generalize to higher dimensions, it still helps build intuition.

 20
1
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Additional Resources
Going Further
An understanding of divergence is fundamental to describing physical systems using partial di*erential 
equations.  By understanding how to use the divergence theorem to obtain such partial di*erential 
equations, students will build intuition for the development of arguments involving di*erential area and 
volume elements. Such an ability is very important for understanding material properties and statistical 
thermodynamics.  
Two fundamental partial di*erential equations are the continuity equation and the di*usion equation; 
these were introduced and derived in the pre and post video activities.  However, solutions to these 
equations were not explored, and is a rich area of study well suited for a numerical methods course.
In the video, the method used to gain an intuition for divergence was adapted from the Reynold’s 
Transport &eorem.  &e Reynold’s Transport &eorem in full generality describes the rate of change 
of the volume integral of a function or vector 'eld.  As a special case, where the boundary of the region 
moves according to the velocity 'eld, the rate of change of the volume of the region is determined by the 
divergence of the velocity 'eld.   An interesting activity for students in a Fluid Dynamics course would be 
to explore how the Reynold’s Transport &eorem leads to this perspective.  

References
&e following books give further information about Reynold’s Transport &eorem, di*usion, detonations, 
and divergence in electromagnetism in that order.

Acheson, D. (1990).  Elementary Fluid Dynamics. Oxford: Clarendon Press S
CE

Acheson, D. (1997).  From Calculus to Chaos. Oxford: Oxford University Press. UR
SOFickett, W. and Davis, W. C. (2000). Detonation Experiment and !eory. Mineola, NY: E

Dover Publications Inc. R

Schey, H. M. (2005). Div, Grad, Curl and all that: an informal text on vector calculus. New 
York, NY: W. W. Norton & Company, Ltd.

&e following articles contain information regarding student di)culties with divergence (as well as other 
vector 'eld operations) as well as some suggested problems and activities around helping students gain a 
deeper understanding of the operations on vector 'elds, and how these operations interact.

Chorlton, F. (1981).  Scalar and Vector Functions Considered Fundamentally.  Int. J. of 
Math. Ed. in Sci. Technol., 12(1), 175–191.
Curjel, C.R. (1990). Understanding Vector Fields. !e American Mathematical Monthly, 
97(6), 524–527.
Markvorsen, S. (2008). &e classical version of Stoke’s &eorem Revisited.  Int. J. Math. Ed. 
Sci. Tech., 39(7), 879–888.
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Video references involving divergence on MIT Open CourseWare:
Auroux, D., 18.02 Multivariable Calculus, Fall 2007. (Massachusetts Institute of 
Technology: MIT OpenCouseWare), http://ocw.mit.edu (Accessed March 12, 2012). 
License: Creative Commons BY-NC-SA  
  -Lecture 23: Flux 
  -Lectures 28 & 29: &e Divergence &eorem
Open University, (2009).  Div-Grad, Div, and Curl.  (&e Open University), http://www.
open.edu/openlearn/science-maths-technology/mathematics-and-statistics/grad-div-
and-curl?track=d06705765a (Accessed March 13, 2012).  License: Creative Commons 
Attribution-NonCommercial-ShareAlike 2.0 Licence
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http://www.open.edu/openlearn/science-maths-technology/mathematics-and-statistics/grad-div-and-curl?track=d06705765a


!"
 

$*+/
!/

&
!$$/-$+7.

&$3').
6$%+'15

!*4$3+,
!*21$0.$/.-,+*$+

!*)(%$'
!'

&%$#
$*+7+/

!$+
!*$+

82
!8
$

82$21)%$3'+9$15+/
!,

&$+
82$0.$+1*.0$+

82$+
82$,/-3*.1

!1 12
!/
,+
%:
$$$

 
;"

$3+
&)%

!%$%-$
8=-1.'+7$+%.2

6$<%+'15
!*4$3+,

!*21/)$0.$/.-,+*$1-;)1$'
!'

&%$#
!=
$

6
!$$21)%$/-$+7.

&$3').
6$<%*

8.1+7$3'+9$15+/
!,

&$+
82$=;$/+7-,$+;$

8. 82
!8
$82

+$
7.
')
&
+$
/+

7+
*$1
2!
/,
+%
:$$
$

 
1"

$%-$
8=-1.'+7$+%.2

6$<%+'15
!*4$3+,

!*21/)$0.$/.-,+*$+
!*)(%$'

!'
&%$#

$21)%$/-$+7.
&$3').

6$<%*
8.1+7$3'+9$15+/

!,
&$+

82$=;$/+7-,$+;$
8.$3+

&)%
!%

$:%+,
!/21$*+7+/$+

!*$+
82

!8
$

82
!=
$

6
!$

Page A1 Magnetic Field 



MIT OpenCourseWare
http://ocw.mit.edu

RES.TLL.004 STEM Concept Videos
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



