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• Introduction 
– Graph500 

– Kronecker Graphs 

• BK Graphs 

• (B+I)K Graphs 

• Performance 

• Summary 

Outline 



D4M-3 

Graph500 Benchmark Performance 

Table Entries 
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Serial D4M + Accumulo DB 
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• Graph500 generates power law data 
• D4M (in memory) + Accumulo (storage) 

provides scalable high performance 

© Graph 500. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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Power Law Modeling of 
 Kronecker Graphs 

Adjacency Matrix Vertex In Degree Distribution 

Power Law 

• Real world data (internet, social networks, …) has connections on all 
scales (i.e power law) 

• Can be modeled with Kronecker Graphs: Gk = Gk-1  G 
– Where “”denotes the Kronecker product of two matrices 
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• Introduction 

• BK Graphs 
– Definitions 

– Bipartite Graphs 

– Degree Distribution 

• (B+I)K Graphs 

• Performance 

• Summary 

Outline 
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Kronecker Products and Graph 
Kronecker Product 
• Let B be a NBxNB matrix 

• Let C be a NCxNC matrix 

• Then the Kronecker product of B and C will produce a NBNCxNBNC 
matrix A: 

 

Kronecker Graph (Leskovec 2005 & Chakrabati 2004) 
• Let G be a NxN adjacency matrix 

• Kronecker exponent to the power k is: 
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Types of Kronecker Graphs 

Explicit 
• G only 1 and 0s 

 
Stochastic 
• G contains 

probabilities 
 

Instance 
• A set of M points 

(edges) drawn from a 
stochastic 

Explicit Stochastic Instance 

G1 

G2 

G3 
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Kronecker Product of a Bipartite Graph 

• Fundamental result [Weischel 1962] is that the Kronecker product of two 
complete bipartite graphs is two complete bipartite graphs 

• More generally 

 = 
P 

 = 
P 

B(5,1)  = 
P 

B(3,1) B(15,1)   B(3,5) 

 
 
 

Equal with 
the right 

permutation 
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Degree Distribution of Bipartite Kronecker 
Graphs 

• Kronecker exponent of a bipartite graph produces many 
independent bipartite graphs 
 
 
 
 
 

• Only k+1 different kinds of nodes in this graph, with degree 
distribution 
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Explicit Degree Distribution 

• Kronecker exponent 
of bipartite graph 
naturally produces 
exponential 
distribution 

B(n=5,1)k=10 

B(n=10,1)k=5 
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Instance Degree Distribution 

• An instance graph drawn from a stochastic bipartite graph is just 
the sum of Poisson distributions taken from the explicit bipartite 
graph  

1M Edges  B(4,1)6 
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• Introduction 

• BK Graphs 

• (B+I)K Graphs 
– Bipartite + Identity Graphs 

– Permutations and substructure 

– Degree Distribution 

– Iso Parametric Ratio 

• Performance 

• Summary 

Outline 
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Theory 
• Bipartite Kronecker graphs highlight the fundamental structures in 

a Kronecker graph, but 
– Are not connected (i.e. many independent bipartite graphs) 
 

• Adding identity matrix creates connections on all scales 
– Resulting explicit graph has diameter = 2 
– Sub-structures in the graph are given by 

 
 
 
 
 
 
 

– Where “” indicates permutations are required to add the 
matrices 
 

• Sub-structure can be revealed by applying permutation that 
“groups” vertices by their bipartite sub-graph 
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Bipartite Permutation 

• Left: unpermuted (B+I)4 kronecker graph 
• Right: permuted (B+I)4 kronecker graph 

P4((B(4,1)+I)4) (B(4,1)+I)4 
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Identifying Substructure 

• Permuting specific terms shows their contributions to the graph 

(B+I)3 1st+2nd Order Higher Order 

- = 

P3(B
3) - P3(B

3+BBI) - P3(B
3+BIB) - P3(B

3+ IBB) - 
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Quantifying Substructure 

• Connections between bipartite subgraphs are the Kronecker product of 
corresponding 2x2 matrices, e.g. B(1,1)4I(2) 

P5(B
5) P5(B

5+B4IB0) P5(B
5+B3IB1) 

P5(B
5+B2IB2) P5(B

5+B1IB3) P5(B
5+B0IB4) 
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Substructure Degree Distribution 

• Only k+1 different kinds of nodes in this graph, with same degree 
distribution, only differing values of vertex degree 

• (B+I)k is steeper than Bk 
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Example Result: Iso-Parametric Ratio 
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Sub-graph size = nr 

IsoPar(nr) 

“half” of bipartite sub-graph 

IsoPar(nr  nk-r) 

“all” of bipartite sub-graph 

• Iso-parametric ratios measure the  “surface” to “volume” of a sub-graph 
• Can analytically compute for a Kronecker graph: (B+I)k 
• Shows large effect of including “half” or “all” of bipartite sub-graph 
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Kronecker Graph Theory 
-Summary of Current Results- 

Quantity Graph: B(n,m)k Graph: (B+I)k 

Degree 
Distribution 

Betweenness 
Centrality 

Diameter 

Eigenvalues 

Iso-parametric 
Ratio “half” 

Iso-parametric 
Ratio “all” 
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• Introduction 

• BK Graphs 

• (B+I)K Graphs 

• Performance 
– Insert 

– Query 

– Matrix multiply 

• Summary 

Outline 
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Accumulo Data Ingestion Scalability 
pMATLAB Application Using D4M 
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Effect of Pre-Split 

Accumulo with 8 tablet servers 
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Effect of Ingestion Block Size 

Accumulo with 8 tablet servers 
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Accumulo Ingestion Scalability Study 
LLGrid MapReduce With A Python Application 

Data #1:  
5 GB of 200 files Data #2:  

30 GB of 1000 
files 

4 Mil e/s 

Accumulo Database: 1 Master + 7 Tablet servers (24 cores/each) 
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Accumulo Row Query Time 
 pMATLAB Application Using D4M 
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Accumulo Column Query Time 
 pMATLAB Application Using D4M 
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Matrix Multiply Performance 

Dense Linear Algebra 
~100% Efficient. 
What COTS is designed to do. 

Sparse Linear Algebra 
~0.1% Efficient. 
What network analysis requires. 

Sparse String Correlation 
~0.001% Efficient. 
What semantic analysis requires. 

Fraction of Memory Used 

• Sparse correlation (matrix multiply) is at the heart of graph algorithms 
• Huge efficiency gap between what COTS processors are designed to do 

and what we need them to do  
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• Data volume and data request size determine best approach 
• Always want to start with the simplest and move to the most complex 

Data Use Cases 

Total Data Volume 
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serial 
memory 

serial 
storage 

parallel 
memory 

parallel 
storage / 

Serial Program Serial or Parallel Program 
+ Database 

Parallel Program 
+ Parallel Database 

Serial Program Serial or Parallel Program 
+ Files 

Parallel Program 
+ Parallel Files 
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• Power law graphs are the dominant type of data 
– Graph500 relies on Kronecker graphs 

 
• Kronecker graphs have a rich theoretical structure that can be 

exploited for theory 
 
• Parallel computations are implemented in D4M via pMatlab 

 
• Complex graph algorithms are ultimately limited by hardware sparse 

matrix multiply performance 

Summary 
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• Example Code 
– D4Muser_share/Examples/3Scaling/1KroneckerGraph 
– D4Muser_share/Examples/3Scaling/2ParallelDatabase 
– D4Muser_share/Examples/3Scaling/3MatrixPerformance 

 
 

• Assignment 
– None 

Example Code & Assignment 
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