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Graph500 Benchmark Performance

Top 10 (une 2011)

Rank Machine
Intrepid (BG/P,
32768 nodes/
131072 cores)

Jugene (IBM, 32k
nodes)
Lomonosov (MPP,
4096 nodes/ 8192
cores)

Home Complete Results

The Graph 500 List

Brief Introduction

Data intensive supercomputer applications are increasingly
impertant for HPC werkloads, but are ill-suited for platforms
designed for 3D physics simulations. Current benchmarks and
performance metrics do not provide useful information on the
suitability of supercomputing systems for data intensive
applications. A new set of benchmarks is needed in order to
guide the design of hardware architectures and software
systems intended to support such applications and to help
procurements. Graph algorithms are a core part of many
analtire warklnad

© Graph 500. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.
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* Graph500 generates power law data

°* D4M (in memory) + Accumulo (storage)
provides scalable high performance

D4M-3

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY


http://ocw.mit.edu/help/faq-fair-use/

@ Power Law Modeling of
Kronecker Graphs
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* Real world data (internet, social networks, ...) has connections on all
scales (i.e power law)

* Can be modeled with Kronecker Graphs: G® = G®-1 ® G
— Where “®”denotes the Kronecker product of two matrices
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@ Kronecker Products and Graph

Kronecker Product
* Let B be a NgxNg matrix
* Let C be a NcXN matrix

« Then the Kronecker product of B and C will produce a NgN-XNgNx
matrix A:

( blle 1)1720 bleBC \
bgle bgng bngBC
A=BC= , . :

\bNB',lc bny ol o bNB,}V[Bc)

Kronecker Graph (Leskovec 2005 & Chakrabati 2004)
* Let G be a NxN adjacency matrix
* Kronecker exponent to the power K Is:

G =G*"""'o G
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@ Types of Kronecker Graphs

Explicit Instance
Explicit

 Gonly1andO0s G®1

Stochastic

G contains
probabilities

Instance G®2

* A set of M points

(edges) drawn from a R o
stochastic e SR
Ges TR
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@ Kronecker Product of a Bipartite Graph

1o
[ ]
[ ]

7 Bt the

Equal with L - g
the right . :
permutation : ®

1o

B(5.1) & B(3,1) B(15,1) U B(3,5)

* Fundamental result [Weischel 1962] is that the Kronecker product of two
complete bipartite graphs is two complete bipartite graphs

* More generally

P
B(nl,ml) ®B(n2,m2) = B(nlng,mlmg) UB(ngml,mmg)
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@ Degree Distribution of Bipartite Kronecker
Graphs

» Kronecker exponent of a bipartite graph produces many
independent bipartite graphs

r

b1 (k—l)
B(n, m)®" £ U U B(n " "m", n"mF")
r=0

* Only k+1 different kinds of nodes in this graph, with degree
distribution

k _
— nf"m
?"‘

r

Count[Deg = n"m"™"]
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Explicit Degree Distribution

12 . . . -
 Kronecker exponent
of bipartite graph 10 -
naturally produces
exponential B(n=5,1)®k=10
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@ Instance Degree Distribution

1M Edges « B(4,1)%°

Number of Vertices

4

10

10° 10' 10

« An instance graph drawn from a stochastic bipartite graph is just
the sum of Poisson distributions taken from the explicit bipartite

graph
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@ Outline

* [Introduction
* B®K Graphs

mm) - (B+|)®K Graphs
— Bipartite + Identity Graphs
— Permutations and substructure
— Degree Distribution

— Iso Parametric Ratio
* Performance

e Summary
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@ Theory

» Bipartite Kronecker graphs highlight the fundamental structures in
a Kronecker graph, but
— Are not connected (i.e. many independent bipartite graphs)

« Adding identity matrix creates connections on all scales
— Resulting explicit graph has diameter = 2
— Sub-structures in the graph are given by

k Nk~
P
(B—I—I)®k: Ef UB®ks
r=1
— Where “” indicates permutations are required to add the

matrices

« Sub-structure can be revealed by applying permutation that
“groups” vertices by their bipartite sub-graph
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]@[ Bipartite Permutation

(B(4,2)+1)*

« Left: unpermuted (B+I)®4 kronecker graph
- Right: permuted (B+1)®* kronecker graph
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@ Identifying Substructure

(B+I)®3 1st+2nd Order Higher Order
P5(B®3) P;(B®3+B®B®I) P;(B®3+B®I®B) P3(B%3+ I9BOB

T T T

« Permuting specific terms shows their contributions to the graph
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@ Quantifying Substructure

P<(B®5) P:(B®5+B®*®I®B%0) P:s(B®5+B®3®I®B®?)

o Xo~ . X

P£(B®5+B52QIQB%52) P:(B®5+Be1RI®B®3) P£(B®5+B2QIQB%4)

A .. X4

« Connections between bipartite subgraphs are the Kronecker product of
corresponding 2x2 matrices, e.g. B(1,1)®®I(2)
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@ Substructure Degree Distribution

10" ——————————————

[ B@k +
B &k 2nd Order

Number of Vertices

10° 10’ 10° 10° 10
Vertex Degree

« Only k+1 different kinds of nodes in this graph, with same degree
distribution, only differing values of vertex degree

. (B+)®Kis steeper than B®K
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]@[ Example Result: Iso-Parametric Ratio

107
o [ IsoPar(n")
5:5 3' “half” of bipartite sub-graph
o
= _
© |
@
O 10% 3
? | IsoPar(n" u nkT)
“all” of bipartite sub-graph
- *— ¢ o— *— °*
10! L,
10° 10 10° 10° 10°

Sub-graph size = n’

* Iso-parametric ratios measure the “surface” to “volume” of a sub-graph
* Can analytically compute for a Kronecker graph: (B+1)®k
* Shows large effect of including “half” or “all” of bipartite sub-graph
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@ Kronecker Graph Theory
-Summary of Current Results-

Quantity Graph: B(n,m)&®k Graph: (B+l)®k
Degree Count|Deg = n"m" "] = (k> n*"m" o
Distribution ' Count[Deg = (n +1)"(m+ 1)*"] = ( ) n*=rm"

r

Betweenness :
. Count[Cy = (n/m)* *(nF"m" = 1)] = n*"m"

Centrality o= =(;)
Diameter Diam(B®") = o0 Diam((B + I)®*) = 2
Eigenvalues [ LS N

9 eig(B(n,m)®*) = {(nm)*/2, .., (nm)*/2, —(nm)*/2, .., —(nm)"/?}

eig((B+1)%*) = {((nm) 2 +1)%, (nm) V2 +1)*=L, ((nm) 2 =1)2((nm) /2 +1)F 72, .}

Iso-parametric | |
Ratio “half” IsoPar(ny (1)) = oo IsoPar(ng(i)) = 2(n+1)F"(m 4+ 1)" -2

Iso-parametric | IsoPar(n(i) Umg(i)) =0

" “ ” k—r k—r r k—r, 17 T k—r
" 1 1 1 1
Ratio "all IsoPar(my(i) U (i) = 2™ (O DY m 4 17 T (o D7 4 )P
2nFmb +nrmbF-r + nk—rm” + [y terms]
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@ Outline

* Introduction

* B®K Graphs

* (B+I)®X Graphs
# * Performance

— Insert
— Query
— Matrix multiply

* Summary
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Accumulo Data Ingestion Scalability
[E]
PMATLAB Application Using D4M

T TTTI
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10° 101
Number of Concurrent Processes

D4M-21 LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



5]

Effect of Pre-Split

Accumulo with 8 tablet servers

10°

Ingestion Rate (Entries/Seconds)

+— No Splits

e—e With 35 Splits

Number of Concurrent Processes
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@ Effect of Ingestion Block Size

Accumulo with 8 tablet servers

90000 [ R B T T TTT T T T T

80000 -

70000 |- -

60000 -

50000 - -

Ingestion Rate (Entries/Seconds)

+—¢ No Splits
40000 + e—e® With 35 Splits _

30000 AEIE IS &8 L L 11111 T I B
10* 10° 10° 10’
Insert Block Size (Bytes)

D4M-23 LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



@ Accumulo Ingestion Scalability Study
LLGrid MapReduce With A Python Application

Accumulo Database: 1 Master + 7 Tablet servers (24 cores/each)
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@ Accumulo Row Query Time
PMATLAB Application Using D4M

10° T T T 71 -
B +—4 1 Tablet Server ]
B &—@® 6 Tablet Server |
11y | ]
ge;
L
o
o
» 1071 — —
© — a
£ B .
= B _
1072 L1 I N

10° 10*
Number of Concurrent Processes

D4M-25 LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



@ Accumulo Column Query Time
PMATLAB Application Using D4M
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IE] Matrix Multiply Performance

Fraction of Peak Performance

107

107

10

10

Dense Linear Algebra
~100% Efficient.
What COTS is designed to do.

Sparse Linear Algebra
~0.1% Efficient.
What network analysis requires.

Sparse String Correlation
~0.001% Efficient.
-1 0 What semantic analysis requires.

107° 107

Fraction of Memory Used

* Sparse correlation (matrix multiply) is at the heart of graph algorithms

* Huge efficiency gap between what COTS processors are designed to do
and what we need them to do ®
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Data Use Cases

Serial Program

Q
IE
(/p)
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Serial Program
42
% serial

memory

Serial or Parallel Program
+ Files

Serial or Parallel Program

+ Database
parallel serial
memory storage

Total Data Volume

Parallel Program
+ Parallel Files

Parallel Program
+ Parallel Database

parallel
storage

* Data volume and data request size determine best approach
* Always want to start with the simplest and move to the most complex
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@ Summary

Power law graphs are the dominant type of data
— Graph500 relies on Kronecker graphs

* Kronecker graphs have a rich theoretical structure that can be
exploited for theory

« Parallel computations are implemented in D4M via pMatlab

« Complex graph algorithms are ultimately limited by hardware sparse
matrix multiply performance
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@ Example Code & Assignment

« Example Code
— D4Muser_share/Examples/3Scaling/1KroneckerGraph
— D4Muser_share/Examples/3Scaling/2ParallelIDatabase
— D4Muser_share/Examples/3Scaling/3MatrixPerformance

« Assignment
— None
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