
D4M-1

Jeremy Kepner

Lecture 2: Group Theory

Spreadsheets, Big Tables, and the
Algebra of Associative Arrays

Signal Processing on Databases

This work is sponsored by the Department of the Air Force under Air Force Contract

#FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are

those of the authors and are not necessarily endorsed by the United States Government.

D4M-2

• Introduction
– What are Spreadsheets?

– Theoretical Goals

– Associative Arrays

• Definitions

• Group Theory

• Vector Space

• Linear Algebra

• Summary

Outline

D4M-3

What are Spreadsheets and Big Tables?

Spreadsheets

Big Tables

• Spreadsheets are the most commonly used analytical structure on Earth
(100M users/day?)

• Big Tables (Google, Amazon, Facebook, …) store most of the analyzed data in
the world (Exabytes?)

• Simultaneous diverse data: strings, dates, integers, reals, …
• Simultaneous diverse uses: matrices, functions, hash tables, databases, …
• No formal mathematical basis; Zero papers in AMA or SIAM

D4M-4

• Create a formal basis for working with these data structures based on
an Algebra of Associative Arrays

• Better Algorithms
– Can create algorithms by applying standard mathematical tools (linear

algebra and detection theory)

• Faster Implementation
– Associative array software libraries allow these algorithms to be

implemented with ~50x less effort

• Good for managers, too
– Much simpler than Microsoft Excel; formally correct

Goal: Signal Processing on
Graphs/Strings/Spreadsheets/Tables/ …

D4M-5

Multi-Dimensional Associative Arrays

• Extends associative arrays to 2D and mixed data types
A('alice ','bob ') = 'cited '

 or A('alice ','bob ') = 47.0

• Key innovation: 2D is 1-to-1 with triple store

 ('alice ','bob ','cited ')

 or ('alice ','bob ',47.0)

alice

b
o

b

cited

alice bob

D4M-6

• Key innovation: mathematical closure
– All associative array operations return associative arrays

• Enables composable mathematical operations

 A + B A - B A & B A|B A*B

• Enables composable query operations via array indexing

 A('alice bob ',:) A('alice ',:) A('al* ',:)

 A('alice : bob ',:) A(1:2,:) A == 47.0

• Simple to implement in a library (~2000 lines) in programming
environments with: 1st class support of 2D arrays, operator
overloading, sparse linear algebra

Composable Associative Arrays

• Complex queries with ~50x less effort than Java/SQL
• Naturally leads to high performance parallel implementation

D4M-7

Universal “Exploded” Schema

Time src_ip domain dest_ip
2001-01-01 a a
2001-01-02 b b
2001-01-03 c c

src_ip/a src_ip/b domain/b domain/c dest_ip/a dest_ip/c
2001-01-01 1 1
2001-01-02 1 1
2001-01-03 1 1

Input Data

Triple Store Table: T

2001-
01-01

2001-
01-02

2001-
01-03

src_ip/a 1
src_ip/b 1
domain/b 1
domain/c 1
dest_ip/a 1
dest_ip/c 1

Triple Store Table: Ttranspose

Key Innovations
• Handles all data into a single table representation
• Transpose pairs allows quick look up of either row or column

D4M-8

• Introduction

• Definitions
– Values

– Keys

– Functions

– Matrix multiply

• Group Theory

• Vector Space

• Linear Algebra

• Summary

UNCLASSIFIED

Outline
UNCLASSIFIED

D4M-9

Associative Array Definitions

• Keys and values are from the infinite strict totally ordered set

• Associative array A(k) : d  , k=(k1,…,kd), is a partial function from d
keys (typically 2) to 1 value, where

 A(ki) = vi and  otherwise

• Binary operations on associative arrays A3 = A1  A2,
 where  = f() or f(), have the properties

– If A1(ki) = v1 and A2(ki) = v2, then A3(ki) is

 v1 f() v2 = f(v1,v2) or v1 f() v2 = f(v1,v2)

– If A1(ki) = v or  and A2(ki) =  or v, then A3(ki) is

 v f()  = v or v f()  = 

• High level usage dictated by these definitions
• Deeper algebraic properties set by the collision function f()
• Frequent switching between “algebras” (how spreadsheets are used)

D4M-10

Associative Array Values
• Value requirements

– Diverse types: integers, reals, strings, …

– Sortable

– Set

• Let be an infinite strict totally ordered set
– Total order is an implementation (not theoretical) requirement
– All values (and keys) will be drawn from this set

• Allowable operations for v1,v2 
v1 < v2 v1 = v2 v1 > v2

• Special symbols: Ø, -, +

 v ≤ + is always true (+ )

 v ≥ - is always true (- )

 Ø is the empty set (Ø )

• Above properties are consistent with strict totally ordered sets

D4M-11

Collision Function f()
• Collision function f(v1,v2) can have

– two contexts ( )

– three conditions (< = >)

– d + 5 possible outcomes (k v1 v2 Ø - +) [or sets of these]

• Combinations result in an enormous number of functions (~1030) and an
even greater number of associative array algebras (function pairs)

– Impressive level of functionality given minimal assumptions

• Focus on “nice” collision functions

– Keys are not used inside the function; results are single valued

– No tests on special symbols

 f(v1,v2)

 v1 < v2 : v1 v2 Ø - +

 v1 = v2 : v Ø - +

 v1 > v2 : v1 v2 Ø - +

• Above properties are consistent with strict totally ordered sets
• Note: Ø is handled by  ; not passed into f()

D4M-12

• Concatenation of values (or keys) can be represented by using  or  as

collision function

– Requires generalizing values to sets v1,v2 

• Allowable operations for v1,v2 
 v1  v2 v1  v2

• Special symbols: Ø,
 v  Ø = Ø annihilator (but never reached, so identify)

 v  = annihilator

 v  = v identity

 v  Ø = v identity

• Possible operators:  ,  ,  , 

What About Concatenation?

• Concatenating collision functions are very useful
• Can be handled by extending values to be sets

D4M-13

Matrix Multiply Framework

• Graphs can be represented as a sparse matrices

– Multiply by adjacency matrix  step to neighbor vertices

– Work-efficient implementation from sparse data structures

• Graph algorithms reduce to products on semi-rings: A3 = A1 . A2

–  : associative, distributes over 

–  : associative, commutative

– Examples: +.* min.+ or.and

x ATx

1 2

3

4 7

6

5

AT



D4M-14

• Associative arrays can be constructed from a few definitions

• Similar to linear algebra, but applicable to a wider range of data

• Key questions
– Which linear algebra properties do apply to associative arrays (intuitive)

– Which linear algebra properties do not apply to associative arrays
(watch out)

– Which associative array properties do not apply to linear algebra (new)

Theory Questions

Linear

Algebra

watch out

Associative
Arrays

intuitive new

D4M-15

• Introduction

• Definitions

• Group Theory
– Binary operators

– Commutative monoids

– Semirings

– Feld

• Vector Space

• Linear Algebra

• Summary

Outline

D4M-16

Operators Roadmap

• Begin with a few definitions
• Expand into many operators; reduce to well behaved
• Expand into many operator pairs; reduce to well behaved

3

200

18 14

196

74

18 18

0

50

100

150

200

250
D

e
fi
n
it
io

n
s

O
p
e

ra
to

rs
 o

f
In

te
re

s
t

A
s
s
o
c
ia

ti
v
e

(S
e
m

ig
ro

u
p
)

C
o
m

m
u
ta

ti
v
e

(A
b
e
lia

n
S

e
m

ig
ro

u
p
)

O
p
e

ra
to

r
P

a
ir

s

D
is

tr
ib

u
ti
v
e

(S
e
m

ir
in

g
)

Id
e

n
ti
ty

 &
A

n
n

ih
ila

to
r

"F
e
ld

"

V
e
c
to

r
S

e
m

i-
S

p
a

c
e

D4M-17

Including Concatenation

1

4

4 4

16

16

0 0
0

50

100

150

200

250
D

e
fi
n
it
io

n
s

O
p
e

ra
to

rs
 o

f
In

te
re

s
t

A
s
s
o
c
ia

ti
v
e

(S
e
m

ig
ro

u
p
)

C
o
m

m
u
ta

ti
v
e

(A
b
e
lia

n
S

e
m

ig
ro

u
p
)

O
p
e

ra
to

r
P

a
ir

s

D
is

tr
ib

u
ti
v
e

(S
e
m

ir
in

g
)

Id
e

n
ti
ty

 &
A

n
n

ih
ila

to
r

"F
e
ld

"

V
e
c
to

r
S

e
m

i-
S

p
a

c
e

• Including concatenation operators expands semirings
• Doesn’t expand vector semi-space

D4M-18

Associative and Commutative Operators

• Associative

(v1  v2)  v3 = v1  (v2  v3)

• 18 associative operators

– Semigroups

– Groups w/o inverses

• Commutative

v1  v2 = v2  v1

• 14 associative & commutative
operators

– Removes left and right

– Abelian Semigroups

– Abelian Groups w/o inverses

ID Operator  v1 < v2 v1 = v2 v1 > v2

1 left v1 v v1

2 left v1 v v1

3 max v2 v v1

4 max v2 v v1

41 min v1 v v2

42 min v1 v v2

43 right v2 v v2

44 right v2 v v2

86 d Ø v Ø

96 Ø Ø Ø Ø

127 -,d - v -

128 -,d - v -

147 - - - -

148 - - - -

169 +,d + v +

170 +,d + v +

199 + + + +

200 + + + +

D4M-19

• 14 x 14 = 196 Pairs of Abelian Semigroup operators

• Distributive

 v1  (v2  v3) = (v1  v2)  (v1  v3)

• 74 distributive operator pairs

– Semirings

– Rings without inverses and without identity elements

Distributive Operator Pairs

• 1/3 of possible operator pairs are semirings

D4M-20

Distributive Operator Pairs with
Annihilators (0) and Identities (1)

•  identity: v1  0 = v1 0 = Ø, -, +

•  identity: v1  1 = v1 1 = Ø, -, +

•  annihilator: v1  0 = 0 0 = Ø, -, +

• 12 Semirings with appropriate 0 1 set (4 with two)

• 16 total over six operators: max, max, min, min, -, +

– Felds? (Fields w/o inverses)

•  = f() in 10/16 ( feels more like plus)

•  = f() in 10/16 ( feels more like multiply)

•  = f() and  = f() in 8/16

• 0 = Ø in 6/8 (Ø feels more like zero, 0 > 1 might be a problem)

• 1/5 of semirings are Felds (Fields w/o inverses)

D4M-21

Operator Pairs

0 1 max max min min d Ø -

,d

-,d - - +,

d

+,d + +

max
D Ø -

- +

Ø +
D D D D

max
D

- +

- Ø
- + D - Ø D D

min
+ -

+ Ø

+ -

Ø -
D Ø + D D D D

min + - D D D + Ø D

d
D D

Ø
D D D D D D D D

-,d D D D D D D

-,d D D D D

- Ø + D D D

- D D D D

+,d D D D D D D

+,d D D D D

+ Ø - D D D

+ D D D D

D=distributes; 0=Plus Identity/Multiply Annihilator; 1=Multiply Identity





D4M-22

Concatenate Operators

• Recall v1 and v2 are sets

• All operators are associative
and commutative

– 4 Abelian Semigroups

• All operator pairs distribute

– 16 Semirings

ID Operator  f(v1,v2)

201  v1  v2

202  v1  v2

203  v1  v2

204  v1  v2

0 1    


D Ø - D

- +

Ø +

 D D
- +

- Ø
- +


+ -

+ Ø

+ -

Ø -
D Ø +

 D + - D D





D4M-23

• Introduction

• Definitions

• Group Theory

• Vector Space
– Vector Semispace

– Uniqueness

• Linear Algebra

• Summary

Outline

D4M-24

Vector Space over a Feld

• Associative Array Vector 

– All associative arrays are conformant (unlike matrices)

• Associative Array Scalar 

– Scalar is a value applied directly to values; similar to constant
function; or a function that takes on keys of non-scalar
argument

• Vector Space  requirements

– Commutes [Yes]; Associative [Yes]; 0 Identity element [Yes]

– Inverse [No]

• Vector Space scalar  requirements

– Commutes [Yes]; Associative [Yes]; Distributes over addition
[Yes]; 1 Identity element [Yes]

• All associative array operator pairs that yield Felds also result in
Vector Spaces wo/inverses (Vector Semispace?)

D4M-25

Vector Semispace Properties
• Scalar  identity annihilates under  [Yes]

• Subspace [Yes]

– Any linear combination of vectors taken from the subspace is in the subspace and

obeys the properties of a vector space

– Theorem: Intersection of any subspaces is a subspace?

• Span [Yes+]

– Given a set of vectors Aj, their span is all linear combinations of those vectors

(includes vectors of different lengths)

j (aj  Aj)

• Span = Subspace [Yes?]

– Given an arbitrary set of vectors, their span is a vector space?

• Linear dependence [No]

– There is a non-trivial linear combination of vectors equal to the  identity; can’t do this

without additive inverse

– Need to redefine linear independence or all vectors are linearly independent; use

minimum vectors in a subspace definition?

– Likewise need to redefine basis as it depends upon linear dependence

• Key question: under what conditions does the result of a linear
combination of associative arrays uniquely determine the coefficients

D4M-26

Unique Coefficient Conditions
• Consider a linear combinations of two associative array vectors

A3 = (a1  A1)  (a2  A2)

• Let  = min,  = max, 0 = Ø, and 1 = -

• When are a1 and a2 uniquely determined by A1, A2 and A3 ?

• Consider specific cases to show existence of uniqueness

Canonical Vectors Single valued Multi-valued

A1(k1) = -

A2(k2) = -

 A1(k1 k2) = (v1 v2)

A2 = A1

v1 < v2

A1(k1) = +

A2(k2) = +

A1(k1 k2) = (v v)

A2 = A1

A1(k1 k2) = (v1 v2)

A2(k1 k2) = (v2 v1)

v1 < v2

D4M-27

Canonical Vectors
A1(k1) = - A2(k2) = - A1(k1) = + A2(k2) = +

a1

a
2

a1

a
2

 a1, a2 unique a1, a2 not unique a1 unique a2 unique

• Canonical vectors exist that span or omit entire space

D4M-28

Single Valued Vectors
A1(k1) = v A2(k2) = v A1(k1 k2) = (v v) A2 = A1

a1

a
2

a1

a
2

 a1, a2 unique a1, a2 not unique a1 unique a2 unique

v v

• Single valued vectors exist that partially cover or omit entire space

D4M-29

Multi-Valued Vectors
A1(k1 k2) = (v1 v2), A2 = A1, v1 < v2

a1

a
2

a1

a
2

 a1, a2 unique a1, a2 not unique a1 unique a2 unique

v1 v1

A1(k1 k2) = (v1 v2), A1(k1 k2) = (v2 v1), v1 < v2

v2 v2

• Multi-valued vectors exist that partially cover or omit entire space

D4M-30

• Introduction

• Definitions

• Group Theory

• Vector Space

• Linear Algebra
– Transpose

– Special Matrices

– Matrix Multiply

– Identity

– Inverses

– Eigenvectors

• Summary

Outline

D4M-31

Matrix Transpose

• Swap keys (rows and columns)

 A(r,c)T = A(c,r)

• No change with even number of transposes

• Transpose distributes across  and scalar 

((a1  A1)  (a2  A1))
T = (a1  A1

T)  (a2  A1
T)

• Similar to linear algebra

D4M-32

Special Matrices

• Submatrices [Yes]

• Zero matrix [Yes?] (empty set)

• Square matrix [Yes]

• Diagonal matrix [Yes]

• Upper/lower triangular [Yes]

• Skew symmetric [No] (no  inverse)

• Hermitian [No] (no  inverse)

• Elementary row/column operations [Yes?]

– Swap both keys or values? No  inverse.

– If both key and value swap, then equivalent to matrix multiply

• Row/column equivalence [Yes?]

– If limit to swaps

• Similar and different from linear algebra
• Possible to construct these forms, but may not be applicable to

associative arrays that have fixed keys (i.e., functions over a keys)

D4M-33

Matrix Multiply

• Matrix multiply

A3 = A1 A2 = A1 . A2

• Always conformant (can multiply any sizes)

• Inner product formulation (computation)

A3(ri,cj) = k (A1(ri,k)  A2(k,cj))

• Outer product formulation (theory)

Ak(ri,cj) = A1(ri,k)  A2(k,cj)
A3 = k Ak

• Different from linear algebra
• Associative arrays have no conformance requirements

D4M-34

Matrix Multiply Examples
• 1x2 Row matrix: A1(r,k1 k2) = v1

• 2x1 Column matrix: A1(k2 k3,c) = v2

• Example 1: 1x1 Matrix: A3(r,c) = A1 A2 = [See Table]
• Example 2: 2x2 Matrix (rc): A3(k1 k2, k2 k3) = A2 A1 = [See Table]
• Example 3: 2x2 Matrix (r=c): A3(k1 k2, k2 k3) = A2 A1 = f(v1,v2)

• Value of A3 depends upon specifics of  and 

• Wide range of behaviors possible given specific operator choices

Example 1  = f()  = f()

 = g() g(g(v1,f(v1,v2),v2

)

f(v1,v2)

 = g() g(g(v1,f(v1,v2),v2

)

Ø

Example 2  = f()  = f()

 = g() g(v1,v2) Ø

 = g() g(v1,v2) Ø

D4M-35

Identity

• Left Identity: Ileft = diag(Row(A)) = 1

• When does? Ileft A = A

• Right Identity: Iright = diag(Col(A)) = 1

• When does? A Iright = A

• Generally possible when

  = g()  = f()

• In some circumstances

I = Ileft  Iright and A I = A = I A

• Similar to linear algebra for a limited set of  and 

D4M-36

Inverses

• Left Inverse: A A-1 = Ileft

• Right Inverse: A-1 A = Iright

• Is it possible to construct matrix inverses with no  inverse and
no  inverse

• Generally, no. Exception

– A is a column/row vector
–  = g(),  = f()

– Iright/left is 1x1 equal to “local” 1 (i.e., 1 wrt to A)

• Different from linear algebra
• Inverses generally do not appear in associative arrays

D4M-37

Eigenvectors (simple case)

• Let  = g,  = f

• Let A, Ae, A be NxN and have 1 element per row and column

A(ri,ri) = vi Ae(ri,ci) = ei A(ci,ci) = vi

• Eigenvector equation

A Ae = Ae A = Ae

• where: Ae(ri,ci) = f(vi,ei)

• Eigenvector equation satisfied in a simple case
• Row and column keys must match

D4M-38

Pseudoinverse (simple case)
• Let  = g,  = f

• Let A, A+ be NxN (or NrxNc?) and have 1 element per row and column

A(ri,ci) = vi A+(ci,ri) = vi
+

• Pseudoinverse requires

 A = A A+ A

 A = A+ A A+

 (A A+)T = A A+

 (A A+)T = A A+

• where: f(vi,vi
+) = vi

• Pseudoinverse equation satisfied in a simple case
• Row and column keys can be different

D4M-39

Future Work: Got Theorems?

• Spanning theorems: when is a span a vector space?
• Linear dependence: adding a vector doesn’t change span?
• Identity Array: when do left/right identity exist?
• Inverse: why doesn’t it exist?
• Determinant: existance?
• Pseudoinverse: existence? How to compute?
• Linear transforms: existance?
• Norms or inner product space
• Compressive sensing requirements
• Eigenvectors
• Convolution (with next operator)
• Complementary matrices

• For which , , 0/1 do these apply

D4M-40

Summary

• Algebra of Associative Arrays provides the mathematics for
representing and operating on Spreadsheets and Big Tables

• Small number of assumptions yields a rich mathematical
environment

• Much of linear algebra is available without  inverse and 
inverse

D4M-41

Example Code & Assignment

• Example Code
– d4m_api/examples/1Intro/3GroupTheory

• Assignment 2
– Define, in words, a list of operations that make “sense”

for your associative arrays in Assignment 1
– Explain your reasoning

D4M-42

Relational Model High Level Comparison

• Relational algebra (Codd 1970) is the de facto theory of databases
• The design goal of relational algebra and associative arrays algebra

are fundamentally different
• Result in a fundamental differences in the theory

Relational Database Associative Arrays
Fill Dense Sparse
Columns Static Dynamic
Data Typed Untyped
#Rows Unlimited Unlimited
#Columns Small Unlimited
Dimensions 2 different N same
Main Operation Join Linear Algebra

MIT OpenCourseWare
http://ocw.mit.edu

RES-LL.005 D4M: Signal Processing on Databases
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

