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What are Spreadsheets and Big Tables? 

Spreadsheets  

Big Tables 

• Spreadsheets are the most commonly used analytical structure on Earth 
(100M users/day?) 

• Big Tables (Google, Amazon, Facebook, …) store most of the analyzed data in 
the world (Exabytes?) 

• Simultaneous diverse data: strings, dates, integers, reals, … 
• Simultaneous diverse uses: matrices, functions, hash tables, databases, … 
• No formal mathematical basis; Zero papers in AMA or SIAM 
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• Create a formal basis for working with these data structures based on 
an Algebra of Associative Arrays 

• Better Algorithms 
– Can create algorithms by applying standard mathematical tools (linear 

algebra and detection theory) 

• Faster Implementation 
– Associative array software libraries allow these algorithms to be 

implemented with ~50x less effort 

• Good for managers, too 
– Much simpler than Microsoft Excel; formally correct 

Goal: Signal Processing on 
Graphs/Strings/Spreadsheets/Tables/ … 
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Multi-Dimensional Associative Arrays 

• Extends associative arrays to 2D and mixed data types 
A('alice ','bob ') = 'cited '   

      or  A('alice ','bob ') = 47.0 

• Key innovation: 2D is 1-to-1 with triple store 

 ('alice ','bob ','cited ') 

 or ('alice ','bob ',47.0) 

alice 

b
o

b
 

cited 

alice bob 
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• Key innovation: mathematical closure 
– All associative array operations return associative arrays 

• Enables composable mathematical operations 

  A + B      A - B      A & B      A|B      A*B 

• Enables composable query operations via array indexing 

 A('alice bob ',:)    A('alice ',:)   A('al* ',:) 

 A('alice : bob ',:)   A(1:2,:)        A == 47.0 

• Simple to implement in a library (~2000 lines) in programming 
environments with: 1st class support of 2D arrays, operator 
overloading, sparse linear algebra 

Composable Associative Arrays 

• Complex queries with ~50x less effort than Java/SQL 
• Naturally leads to high performance parallel implementation 
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Universal “Exploded” Schema 

Time src_ip domain dest_ip 
2001-01-01 a a 
2001-01-02 b b 
2001-01-03 c c 

src_ip/a src_ip/b domain/b domain/c dest_ip/a dest_ip/c 
2001-01-01 1 1 
2001-01-02 1 1 
2001-01-03 1 1 

Input Data 

Triple Store Table: T 

2001-
01-01 

2001-
01-02 

2001-
01-03 

src_ip/a 1 
src_ip/b 1 
domain/b 1 
domain/c 1 
dest_ip/a 1 
dest_ip/c 1 

Triple Store Table: Ttranspose 

Key Innovations 
• Handles all data into a single table representation 
• Transpose pairs allows quick look up of either row or column 
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• Introduction 

• Definitions 
– Values 

– Keys 

– Functions 

– Matrix multiply 

• Group Theory 

• Vector Space 

• Linear Algebra 

• Summary 

UNCLASSIFIED 

Outline 
UNCLASSIFIED 
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Associative Array Definitions 

• Keys and values are from the infinite strict totally ordered set  
 

• Associative array A(k) : d  , k=(k1,…,kd), is a partial function from d 
keys (typically 2) to 1 value, where 

  A(ki) = vi  and       otherwise 
  
• Binary operations on associative arrays A3 = A1  A2, 
     where  = f() or f(), have the properties 

– If A1(ki) = v1 and A2(ki) = v2, then A3(ki) is 

   v1 f() v2 = f(v1,v2)      or          v1 f() v2 = f(v1,v2)  
 

– If A1(ki) = v or  and A2(ki) =  or v, then A3(ki) is 

   v f()  = v                or          v f()  =  
 
• High level usage dictated by these definitions 
• Deeper algebraic properties set by the collision function f() 
• Frequent switching between “algebras” (how spreadsheets are used) 



D4M-10 

Associative Array Values 
• Value requirements 

– Diverse types: integers, reals, strings, … 

– Sortable 

– Set 

• Let  be an infinite strict totally ordered set 
– Total order is an implementation (not theoretical) requirement 
– All values (and keys) will be drawn from this set 

 

• Allowable operations for v1,v2   
v1 < v2                  v1 = v2                       v1 > v2  

 

• Special symbols:  Ø, -, + 

 v ≤ + is always true (+  ) 

 v ≥ - is always true (-  ) 

 Ø  is the empty set (Ø  ) 

• Above properties are consistent with strict totally ordered sets 
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Collision Function f() 
• Collision function f(v1,v2) can have 

– two contexts ( ) 

– three conditions (< = >) 

– d + 5 possible outcomes (k v1 v2 Ø - +) [or sets of these] 

• Combinations result in an enormous number of functions (~1030) and an 
even greater number of associative array algebras (function pairs) 

– Impressive level of functionality given minimal assumptions 

• Focus on “nice” collision functions 

– Keys are not used inside the function; results are single valued 

– No tests on special symbols 

 f(v1,v2) 

      v1 < v2 : v1 v2 Ø - + 

      v1 = v2 : v      Ø - + 

      v1 > v2 : v1 v2 Ø - + 

• Above properties are consistent with strict totally ordered sets 
• Note: Ø is handled by  ; not passed into f() 
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• Concatenation of values (or keys) can be represented by using  or  as 

collision function 

– Requires generalizing values to sets v1,v2   

• Allowable operations for v1,v2   
     v1  v2   v1  v2 

• Special symbols: Ø,  
  v  Ø = Ø  annihilator (but never reached, so identify) 

  v   =   annihilator 

  v   = v   identity 

 v  Ø = v identity 

• Possible operators:   ,  ,  ,  

 

What About Concatenation? 

• Concatenating collision functions are very useful 
• Can be handled by extending values to be sets 
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Matrix Multiply Framework 

• Graphs can be represented as a sparse matrices 

– Multiply by adjacency matrix  step to neighbor vertices 

– Work-efficient implementation from sparse data structures 

• Graph algorithms reduce to products on semi-rings:  A3 = A1 . A2 

–  : associative, distributes over  

–  : associative, commutative 

– Examples:    +.*         min.+           or.and 

x ATx 

1 2 

3 

4 7 

6 

5 

AT 

 
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• Associative arrays can be constructed from a few definitions 

• Similar to linear algebra, but applicable to a wider range of data 

• Key questions 
– Which linear algebra properties do apply to associative arrays (intuitive) 

– Which linear algebra properties do not apply to associative arrays 
(watch out) 

– Which associative array properties do not apply to linear algebra (new) 

Theory Questions 

 
Linear 

Algebra 

watch out 

 
Associative 
Arrays 

intuitive new 
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• Introduction 

• Definitions 

• Group Theory 
– Binary operators 

– Commutative monoids 

– Semirings 

– Feld 

• Vector Space 

• Linear Algebra 

• Summary 

Outline 
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Operators Roadmap 

• Begin with a few definitions 
• Expand into many operators; reduce to well behaved 
• Expand into many operator pairs; reduce to well behaved 
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Including Concatenation 

1 

4 

4 4 

16 

16 

0 0 
0

50

100

150

200

250
D

e
fi
n
it
io

n
s

O
p
e

ra
to

rs
 o

f
In

te
re

s
t

A
s
s
o
c
ia

ti
v
e

(S
e
m

ig
ro

u
p
)

C
o
m

m
u
ta

ti
v
e

(A
b
e
lia

n
S

e
m

ig
ro

u
p
)

O
p
e

ra
to

r
P

a
ir

s

D
is

tr
ib

u
ti
v
e

(S
e
m

ir
in

g
)

Id
e

n
ti
ty

 &
A

n
n

ih
ila

to
r

"F
e
ld

"

V
e
c
to

r
S

e
m

i-
S

p
a

c
e

• Including concatenation operators expands semirings 
• Doesn’t expand vector semi-space 
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Associative and Commutative Operators 

• Associative 

(v1  v2)  v3 = v1  (v2  v3) 

 

• 18 associative operators 

– Semigroups 

– Groups w/o inverses 

 

• Commutative 

v1  v2 = v2  v1 

 

• 14 associative & commutative 
operators 

– Removes left and right 

– Abelian Semigroups 

– Abelian Groups w/o inverses 

 

ID Operator  v1 < v2 v1 = v2 v1 > v2 

1 left v1 v v1 

2 left v1 v v1 

3 max v2 v v1 

4 max v2 v v1 

41 min v1 v v2 

42 min v1 v v2 

43 right v2 v v2 

44 right v2 v v2 

86 d Ø v Ø 

96 Ø Ø Ø Ø 

127 -,d  - v  - 

128 -,d  - v  - 

147 -  -  -  - 

148 -  -  -  - 

169 +,d  + v  + 

170 +,d  + v  + 

199 +  +  +  + 

200 +  +  +  + 
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• 14 x 14 = 196 Pairs of Abelian Semigroup operators 

• Distributive 

   v1  (v2  v3) = (v1  v2)  (v1  v3) 

• 74 distributive operator pairs 

– Semirings 

– Rings without inverses and without identity elements 

Distributive Operator Pairs 

• 1/3 of possible operator pairs are semirings 
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Distributive Operator Pairs with 
Annihilators (0) and Identities (1) 

•   identity:  v1  0 = v1 0 = Ø, -, + 

•   identity:  v1  1 = v1 1 = Ø, -, + 

•   annihilator: v1  0 = 0 0 = Ø, -, + 

 

•  12 Semirings with appropriate 0 1 set (4 with two) 

•  16 total over six operators: max, max, min, min, -, +  

– Felds?  (Fields w/o inverses) 

 

•   = f()  in 10/16 ( feels more like plus) 

•   = f()  in 10/16 ( feels more like multiply) 

•   = f() and  = f() in 8/16  

•  0 = Ø in 6/8 (Ø feels more like zero, 0 > 1 might be a problem) 

• 1/5 of semirings are Felds (Fields w/o inverses) 
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Operator Pairs 

0 1 max max min min d Ø -

,d 

-,d - - +,

d 

+,d + + 

max 
D Ø - 

- + 

Ø + 
D D D D 

max 
D 

- + 

- Ø 
- + D - Ø D D 

min 
+ - 

+ Ø 

+ - 

Ø - 
D Ø + D D D D 

min + - D D D + Ø D 

d 
D D 

Ø 
D D D D D D D D 

-,d D D D D D D 

-,d D D D D 

- Ø + D D D 

- D D D D 

+,d D D D D D D 

+,d D D D D 

+ Ø - D D D 

+ D D D D 

D=distributes; 0=Plus Identity/Multiply Annihilator; 1=Multiply Identity 

 

 
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Concatenate Operators 

• Recall v1 and v2 are sets 

 

• All operators are associative 
and commutative 

– 4 Abelian Semigroups 

 

 

 

• All operator pairs distribute 

– 16 Semirings 

 

ID Operator  f(v1,v2) 

201   v1  v2 

202   v1  v2 

203   v1  v2 

204   v1  v2 

0 1     

 
D Ø - D 

- + 

Ø + 

 D D 
- + 

- Ø 
- + 

 
+ - 

+ Ø 

+ - 

Ø - 
D Ø + 

 D + - D D 

 

 
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• Introduction 

• Definitions 

• Group Theory 

• Vector Space 
– Vector Semispace 

– Uniqueness 

• Linear Algebra 

• Summary 

Outline 
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Vector Space over a Feld 

• Associative Array Vector  

– All associative arrays are conformant (unlike matrices) 

• Associative Array Scalar  

– Scalar is a value applied directly to values; similar to constant 
function; or a function that takes on keys of non-scalar 
argument 

 

• Vector Space  requirements 

– Commutes [Yes]; Associative [Yes]; 0 Identity element [Yes] 

– Inverse [No] 

• Vector Space scalar  requirements 

– Commutes [Yes]; Associative [Yes]; Distributes over addition 
[Yes]; 1 Identity element [Yes] 

 

 

 

• All associative array operator pairs that yield Felds also result in 
Vector Spaces wo/inverses (Vector Semispace?) 
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Vector Semispace Properties 
• Scalar  identity annihilates under  [Yes] 

• Subspace [Yes] 

– Any linear combination of vectors taken from the subspace is in the subspace and 

obeys the properties of a vector space 

– Theorem: Intersection of any subspaces is a subspace? 

• Span [Yes+] 

– Given a set of vectors Aj, their span is all linear combinations of those vectors 

(includes vectors of different lengths) 

j (aj  Aj) 

• Span = Subspace [Yes?] 

– Given an arbitrary set of vectors, their span is a vector space? 

• Linear dependence [No] 

– There is a non-trivial linear combination of vectors equal to the  identity; can’t do this 

without additive inverse 

– Need to redefine linear independence or all vectors are linearly independent; use 

minimum vectors in a subspace definition? 

– Likewise need to redefine basis as it depends upon linear dependence 

• Key question: under what conditions does the result of a linear 
combination of associative arrays uniquely determine the coefficients 
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Unique Coefficient Conditions 
• Consider a linear combinations of two associative array vectors 

A3 = (a1  A1)    (a2  A2) 

 

• Let  = min,  = max, 0 = Ø, and 1 = - 

 

• When are a1 and a2 uniquely determined by A1, A2 and A3 ? 

• Consider specific cases to show existence of uniqueness 

Canonical Vectors Single valued Multi-valued 

A1(k1) = - 

A2(k2) = -  

  A1(k1 k2) = (v1 v2) 

A2 = A1 

v1 < v2 

A1(k1) = + 

A2(k2) = +  

A1(k1 k2) = (v v) 

A2 = A1 

A1(k1 k2) = (v1 v2) 

A2(k1 k2) = (v2 v1) 

v1 < v2 
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Canonical Vectors 
A1(k1) = -      A2(k2) = -  A1(k1) = +         A2(k2) = +  

a1 

a
2

 

a1 

a
2

 

    a1, a2 unique     a1, a2 not unique     a1 unique     a2 unique 

• Canonical vectors exist that span or omit entire space 
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Single Valued Vectors 
A1(k1) = v          A2(k2) = v  A1(k1 k2) = (v v)          A2 = A1 

a1 

a
2

 

a1 

a
2

 

    a1, a2 unique     a1, a2 not unique     a1 unique     a2 unique 

v v 

• Single valued vectors exist that partially cover or omit entire space 
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Multi-Valued Vectors 
A1(k1 k2) = (v1 v2),     A2 = A1,     v1 < v2    

a1 

a
2

 

a1 

a
2

 

    a1, a2 unique     a1, a2 not unique     a1 unique     a2 unique 

v1 v1 

A1(k1 k2) = (v1 v2), A1(k1 k2) = (v2 v1), v1 < v2    

v2 v2 

• Multi-valued vectors exist that partially cover or omit entire space 
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• Introduction 

• Definitions 

• Group Theory 

• Vector Space 

• Linear Algebra 
– Transpose 

– Special Matrices 

– Matrix Multiply 

– Identity 

– Inverses 

– Eigenvectors 

• Summary 

Outline 
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Matrix Transpose 

• Swap keys (rows and columns) 

 A(r,c)T = A(c,r) 

 

• No change with even number of transposes 

 

• Transpose distributes across  and scalar  

 

((a1  A1)    (a2  A1))
T = (a1  A1

T)    (a2  A1
T) 

• Similar to linear algebra 
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Special Matrices 

• Submatrices [Yes] 

• Zero matrix [Yes?] (empty set) 

• Square matrix [Yes] 

• Diagonal matrix [Yes] 

• Upper/lower triangular [Yes] 

• Skew symmetric [No] (no  inverse) 

• Hermitian [No] (no  inverse) 

• Elementary row/column operations [Yes?] 

– Swap both keys or values? No  inverse. 

– If both key and value swap, then equivalent to matrix multiply 

• Row/column equivalence [Yes?] 

– If limit to swaps 

• Similar and different from linear algebra 
• Possible to construct these forms, but may not be applicable to 

associative arrays that have fixed keys (i.e., functions over a keys) 
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Matrix Multiply 

• Matrix multiply 

A3 = A1 A2 = A1 . A2 

 

• Always conformant (can multiply any sizes) 

 

• Inner product formulation (computation) 

 

A3(ri,cj) = k ( A1(ri,k)  A2(k,cj) ) 
 

• Outer product formulation (theory) 

Ak(ri,cj) = A1(ri,k)  A2(k,cj) 
A3 = k Ak 

 

 
• Different from linear algebra 
• Associative arrays have no conformance requirements 
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Matrix Multiply Examples  
• 1x2 Row matrix:  A1(r,k1 k2) = v1 

• 2x1 Column matrix:  A1(k2 k3,c) = v2 

 

• Example 1: 1x1 Matrix: A3(r,c) = A1 A2 =  [See Table] 
• Example 2: 2x2 Matrix (rc): A3(k1 k2, k2 k3) = A2 A1 =  [See Table] 
• Example 3: 2x2 Matrix (r=c): A3(k1 k2, k2 k3) = A2 A1 = f(v1,v2) 

 

• Value of A3 depends upon specifics of  and  

• Wide range of behaviors possible given specific operator choices 

Example 1  = f()   = f()  

 = g() g(g(v1,f(v1,v2),v2

) 

f(v1,v2) 

 = g() g(g(v1,f(v1,v2),v2

) 

Ø 

Example 2  = f()   = f()  

 = g() g(v1,v2) Ø 

 = g() g(v1,v2) Ø 
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Identity 

• Left Identity:  Ileft = diag(Row(A)) = 1 

• When does?  Ileft A = A 

 

• Right Identity: Iright = diag(Col(A)) = 1 

• When does?  A Iright = A 

 

• Generally possible when 

  = g()                = f() 

 

• In some circumstances 

I = Ileft  Iright         and   A I = A = I A 

 

 

 

 

• Similar to linear algebra for a limited set of  and     
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Inverses 

• Left Inverse:  A A-1 = Ileft 

 

• Right Inverse: A-1 A = Iright 

 

• Is it possible to construct matrix inverses with no  inverse and 
no  inverse 

 

• Generally, no. Exception 

– A is a column/row vector 
–  = g(),  = f() 

– Iright/left is 1x1 equal to “local” 1 (i.e., 1 wrt to A) 
 

 

 
• Different from linear algebra 
• Inverses generally do not appear in associative arrays 
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Eigenvectors (simple case) 

• Let  = g,  = f 

 
• Let A, Ae, A be NxN and have 1 element per row and column 

 

A(ri,ri) = vi  Ae(ri,ci) = ei A(ci,ci) = vi 

 

• Eigenvector equation 

A Ae  =  Ae A               = Ae 

 

• where:  Ae(ri,ci) = f(vi,ei) 

• Eigenvector equation satisfied in a simple case 
• Row and column keys must match 
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Pseudoinverse (simple case) 
• Let  = g,  = f 

 
• Let A, A+ be NxN (or NrxNc?) and have 1 element per row and column 

 

A(ri,ci) = vi  A+(ci,ri) = vi
+ 

 

• Pseudoinverse requires 

 A  =  A A+ A 

 A  =  A+ A  A+ 

 (A A+)T  =  A A+ 

 (A A+)T  =  A A+ 

• where:  f(vi,vi
+) = vi 

 
• Pseudoinverse equation satisfied in a simple case 
• Row and column keys can be different 



D4M-39 

Future Work: Got Theorems? 

• Spanning theorems: when is a span a vector space? 
• Linear dependence: adding a vector doesn’t change span? 
• Identity Array: when do left/right identity exist? 
• Inverse: why doesn’t it exist? 
• Determinant: existance? 
• Pseudoinverse: existence? How to compute? 
• Linear transforms: existance? 
• Norms or inner product space 
• Compressive sensing requirements 
• Eigenvectors 
• Convolution (with next operator) 
• Complementary matrices 

• For which , , 0/1 do these apply 
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Summary 

• Algebra of Associative Arrays provides the mathematics for 
representing and operating on Spreadsheets and Big Tables 
 

• Small number of assumptions yields a rich mathematical 
environment 
 

• Much of linear algebra is available without  inverse and  
inverse 
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Example Code & Assignment 

• Example Code 
– d4m_api/examples/1Intro/3GroupTheory 

 
 

• Assignment 2 
– Define, in words, a list of operations that make “sense” 

for your associative arrays in Assignment 1 
– Explain your reasoning 
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Relational Model High Level Comparison 

• Relational algebra (Codd 1970) is the de facto theory of databases 
• The design goal of relational algebra and associative arrays algebra 

are fundamentally different 
• Result in a fundamental differences in the theory 

Relational Database Associative Arrays 
Fill Dense Sparse 
Columns Static Dynamic 
Data Typed Untyped 
#Rows Unlimited Unlimited 
#Columns Small Unlimited 
Dimensions 2 different N same 
Main Operation Join Linear Algebra 
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