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Compensation I 
Example 1U 

Note: All references to Figures and Equations whose numbers are 
not preceded by an "S"refer to the textbook. 

(a) The solution of this problem is outlined in the discussion on Solution 10.1 (P5.8) 
p. 183 of the textbook. Associated with this discussion are the
 
circuit and block diagrams of Figure 5.13, which are appli­
cable to this problem. In the textbook, the block diagram of
 
Figure 5.13b is presented without derivation. Here, we fill in
 
the details of this derivation.
 

When faced with deriving a block diagram for the circuit
 
of Figure 5.13a, one may proceed by writing network equa­
tions in terms of V and V. Then, after some algebraic manip­
ulation, these equations are used to draw the block diagram.
 
The disadvantage ofthis approach is that it is algebra intensive
 
and tends to obscure physical insight. What is perhaps a more
 
illuminating approach is detailed below.
 

We start by constructing the Thevenin equivalent circuit
 
for the R-9R feedback network as shown in Figure S10.1 a and
 
b. 

Figure S10.1 Analysis of ProblemV0 10.1 (P5.8) through the use of a+ Thevenin equivalent circuit. (a)R-9R 
feedback network. (b) Thevenin 
equivalent as seen at terminal pair 
aa'.
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Figure S10.2 Modified circuit 
diagram for Problem 10.1 (P5.8). 

With this manipulation, the circuit diagram is as shown in Fig­
ure S10.2, 

a(s) o V. 

0.9R 10 

at 

where Va is the differential input voltage. That is, V(s) = 
a(s)Va(s). Then, by superposition and the voltage divider 
relationship, 

-
R , + 

Cs V(s)
V(s) = LV(s) ­

+ + 0.9R
Cs (S10.1) 

rs + 1 0(s)-VV(s)ars + 1 10[
R1 + 0.9R

wherea R and r = RI C as defined on p. 181 of the 

textbook. The block diagram of Figure 5.13c follows directly 
from Equation S10. 1 and our definition of Va. 

The negative of the loop transmission for this system is 
then as given by Equation 5.14. 

a"(s)f"(s) = 0.1 - + a(s) (S10.2)
ars + 1 

If we short out the capacitor (i.e., let C - oc, and thus 
r-~ oo), 

a"'(sYf'(s) 0.1 a(s) (S10.3)
a 
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To lower the loop transmission by 6.2 at all frequencies then 
requires that 

R1 + 0.9R 
a = 6.2 = R (S10.4)

R, 

This is solved by R, = 0.173R, as suggested in the textbook. 
Thus the circuit with afo reduced by a factor of 6.2 is as shown 
in Figure S 10.3. 

Vi 0. 173R a(s) Yo C 

-9R 

R 

To lower the lowest-frequency loop-transmission pole by 
a factor of 6.2, we use the lag-network zero to cancel the pole 
of a(s) at s = - 1. Then, the lag network a is set at 6.2, so that 

-1 
the lag-network pole is at s = 6 . That is, given that the neg­

6.2 
ative of the loop transmission for Figure 5.13c is 

5 X 10 
=a"(s)f"(s) 0.1 T5+ 1 

ars + 1 (s + 1)(10- 4s + 1)(10-s + 1) 

(S10.5a) 

if we let r = 1and a = 6.2 this becomes 

a"(s)f"(s) = 0.1 ( Xx05 (S10.5b)
(6.2s + 1)(10-4s + 1)(10-s + 1) 

and the lowest-frequency pole has been effectively moved 
down by a factor of 6.2. From earlier results, for a = 6.2, R1 

= 0.173R. Then because r = R C, for r = 1 we have RC = 
5.78 

1, which is solved by C R . Thus, the circuit that imple-
R 

ments this pole lowering is as shown in Figure S10.4 

Figure S1O.3 Circuit with af, 
reduced by a factor of 6.2. 
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Figure S10.4 Circuit with lowest-
frequency pole moved down by a 
factor of 6.2. 
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(b) 	The loop-transmission magnitude Bode plots for the two com­
pensation schemes are shown in the textbook in Figure 5.16. 
The corresponding angle curves are not difficult to sketch, and 
thus are not included here. 

(c) 	 The phase curves for reduced aof0, and the lowered first pole 
differ only for frequencies below about 10 rad/sec, due to the 
difference in the low-frequency pole location. They are identi­
cal in the vicinity of crossover. At the crossover frequency of 
6.7 X 10' rad/sec, the phase for both compensation schemes is 
- 128*. Thus, the phase margin is 520, which is better than the 
lag compensation by about 5*. This improvement is due to the 
fact that the lag network has a residual phase of -5' at 
the crossover frequency. By moving the lag network to a lower 
frequency, the phase margin may be slightly improved (up to 
50) at the expense of midband desensitivity. 

Solution 10.2 (P5.12) As a matter of cultural interest, the factor 

(s2/12) - (s/2) + 1
 
(s2/12) + (s/2) + 1 (S1O.6)
 

is the second-order Pade approximation to a 1-second time delay. 
See p. 530 of the textbook for further discussion of this topic. This 
factor has a pole-zero pattern as shown in Figure 12.26 and a phase 
characteristic as shown in Figure 12.27. 
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To compensate this system, a lead network alone is not useful, 
because its transfer function magnitude increases with frequency, 
and the Pade approximation magnitude is constant. This is dis­
cussed in greater detail in Section 5.2.6 of the textbook. To force 
the loop to crossover, we must introduce a compensating element 
that provides attenuation with increasing frequency. At the same 
time, the compensating element should introduce a minimum of 
negative phase shift. A single pole satisfies these criteria, so we will 
compensate the loop by using a dominant pole. 

Let's design the loop compensation for 450 of phase margin. 
Near crossover, the dominant pole will contribute a phase of -90' 
because it is to be located well below crossover. Thus, to have 45* 
of phase margin, crossover should be set at the frequency where 
the Pade approximation has a phase of -45*. From Figure 12.27, 
then, crossover must occur at a frequency somewhat below 1 rad/ 
sec. The exact expression for the phase of the Pade approximation 
is given in Equation 12.65. However, as explained on p. 531 of the 
textbook, for w less than 2 rad/sec, the phase is well approximated 
by an angle of - 57.30 w. Using this approximation, the frequency 

45 
at which the phase is -45* is w, = =5 0.79 rad/sec. Because 

57.3 
the Pade approximation has unity magnitude, then, the compen­
sating transfer function must pass through unity magnitude at 
oC = 0.79 rad/sec. For a dominant pole located at w,, where 

CO, and with a d-c gain of a,, the compensating transfer func­< w, 
tion is 

H(jo) = a0 (S10.7) 

CP 

Wo 0.79
To have unity magnitude at wc then requires that ao = - =0.79 

( P P 

Any compensation satisfying the above conditions will yield a 
phase margin of 450. 

To achieve maximum desensitivity, ao should be made as 
large as possible. In the limit, let w - 0 and ao - oo, while main­, 

taining the relationship ao = 0.79* The result is 
COP 

H(jo) = 0.79 (S10.8)
jo 
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That is, the compensation is an integrator, which has infinite gain 
at d-c, and thus infinite desensitivity at d-c. As expected, this has 
unity magnitude at we = 0.79 rad/sec, and an angle of -90* at all 
frequencies, thus the loop has 450 of phase margin. 

More complex schemes, such as using a double integration 
(1/s2) with lead compensation, are also possible. This would offer 
higher desensitivity at midband frequencies. However, when 
implemented with real hardware, such a scheme is more sensitive 
to component variations than the single-pole compensation, which 
is quite robust. Therefore, except under special circumstances, the 
single-pole compensation is the most reasonable solution. 

Solution 10.3 (P5.13) For the lag-compensated system described by Equation 5.15, the 
root locus is as shown in Figure 5.15c. For the given compensation, 
and value of af, the closed-loop singularities are located approx­
imately as shown in Figure S10.5. 

Figure S10.5 Closed-loop 
singularities for Problem 10.3 (P5.13). 

X f 
s plane 

-670 ON 

X 

The pole-zero doublet near s = -670 sec-' is responsible for the 
long-time constant tail associated with the lag-compensated 
system. 
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As the lag-compensated system is fourth order, an exact solu­
tion of the closed-loop pole locations will require solving for the 
roots of the fourth-order equation 1 + a"(s)f"(s) = 0. This is fea­
sible with machine computation. However, as suggested in the 
problem assignment, a simplifying approximation is possible. That 
is, we ignore the poles at s = -104 and s = -10', and assume that 
a(s) is given by 

= 5 X 105(l.5 X 10~3s + 1)a(s) (S10.9)
(s + 1)(9.3 X 10- 3s + 1) 

The root locus for this simplified system is sketched in Figure 
S1O.6. 

It 
1W 

-1 

Note that this locus is very similar to a section of the root locus of 
Figure 5.15c in the textbook. Further, since the closed-loop com­
plex pair of the full fourth-order representation is located a decade 
up in frequency from the zero at s = -670, it is reasonable to 
expect that the complex pair has only a slight influence on the locus 
in the vicinity of the zero. 

For the above reasons, we expect that the second-order 
approximation of Equation S10.9 will be acceptably accurate. 
Using this approximation, the closed-loop transfer function is 

Figure S10.6 Root locus of 
approximating second-order system. 

S plane 
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Figure S10.7 Closed-loop 
singularities for the approximate 
system. 

A(s)= a(s)
1 + a(s)f(s) 

5 X 105(1.5 X 10-3s + 1) 
(s + 1)(9.3 X 10-3s + 1) + 5 X 104(1.5 X 10-s + 1) 

1.5 X 10- 3s + 1 
= 10 1.86 X 10'7s2 + 1.52 X 10- 3 s + 1 (S10.10) 

The poles of A(s) are at s = -722 and s = -7.45 X 103. That is, 
the closed-loop pole configuration is as sketched in Figure S10.7. 

jw s plane-722 

-7.45 X 101 -670 o 

An exact analysis of the fourth-order case indicates that the pole 
of the pole-zero doublet is actually at s = -717. The close agree­
ment with the approximate value of s = -722 verifies the approx­
imation. The settling time will be dominated by the pole-zero 
doublet. The step response of the doublet alone is given by 

0.08e-7 22t  v(t) = 1 + (S10.11) 

This will settle to within 1%when 

v(t.) = 1.01 = 1 + 0.08e- 72 2 o (S10.12) 

or 

0.01 = 0.08e- 722to (S10.13) 

which is solved by t, = 2.9 msec. The solution is arrived at by 
recognizing that the initial value theorem requires that the step 

722 
response at t - 0+ is =7- 1.08. Further, as t -- oo the final value

670 
theorem requires the step response to approach unity. The time 

constant of the exponential connecting these two values is 7 
722 

1.39 msec. 
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For the first-order system, with a crossover at co = 6.7 X 10' 
rad/sec, the step response will be given by 

v(t) = 1 - e-6.7x103t (S10.14) 

This will settle to 1%when e-6.7
x1

03t, = 0.01. This is solved by t, = 
0.69 msec. That is, the first-order system is about a factor of 4 
faster than the lag-compensated system. In many instances, such 
as analog-to-digital conversion, settling time is quite important. 
The lesson of this problem is that a pole-zero doublet can have a 
very significant effect on an amplifier settling time. 

The principal objective of this problem is to provide the student 
with the experience of applying analytical results in the laboratory. 
As the laboratory portion of the problem is essential, and the 
hands-on experience more important than the actual answers, 
extensive solutions are not provided here. Furthermore, as with 
most design problems, there is no one correct answer, so it is 
expected that each student's solution will differ in some respects 
from other students' solutions. 

Included here are some general guidelines and suggestions for 
approaching the problem, as well as answers to some of the ques­
tions posed in the problem statement. Appropriate topologies for 
each of the three compensation techniques are also given. If the 
analytical and experimental portions of the problem are properly 
solved, the student should gain confidence that the analytical 
approaches we have studied thus far are useful design techniques 
and can be applied with accuracy to real circuit problems. 

The problem statement suggests the use of a resistive atten­
uation at the amplifier input. A possible topology is shown in Fig­
ure S10.8. 

1 kQ2 

V 
(from signal generator) 

0 100t2RI
A 

Solution 10.4 (P5.15) 

Figure S10.8 Attenuator. 

39 Q 

+ 

(to rest of circuit)
Vout 
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This attenuator provides a 100:1 attenuation ratio, with 500 input 
and output resistances. Thus, it is also useful for high-frequency 
applications, where a 50U impedance must be maintained. For the 
purposes of this lab, because only low frequencies are of interest, 
both the 502 and 390 resistor may be omitted. 

The capacitor C adjusts the location of the low-frequency pole 
associated with the LM301A. Therefore, because this pole is at a 
frequency much lower than 103 rad/sec, C may be used to adjust 
the loop-transmission crossover frequency without significantly 
affecting the phase at crossover. By adjusting C to bring the config­
uration to the verge of instability, the crossover frequency is set 
near the point where the negative phase shift of the loop transmis­
sion is slightly less than 1800. Stability can easily be ascertained by 
examining the amplifier step response. Adjust C to create a lightly 
damped step response. The longer the step response rings, the 
closer the poles are to the jw axis. A ring time of 200 to 500 msec 
is sufficient. Note that smaller values of C will result in longer ring 
times. Also make certain that the circuit is stable, that is, the ring­
ing step response must decay with time. 

In order to achieve good numerical agreement between theo­
retical and experimental results, use resistors that match the values 
indicated in Figures 5.28, 5.29, and 5.30 within ± 1%, and capaci­
tors that match the indicated values within ± 5%. This capacitor 
tolerance does not apply to the two 0.01 yF decoupling capacitors. 
Do make sure to include these decoupling capacitors located close 
to the LM301 A in order to avoid instabilities caused by power-
supply lead inductance. In general, a bit of care in circuit construc­
tion will pay off in reliable circuit operation. 

For the purposes of analysis, use the approximate transfer 
function for a(s) as given in the problem statement. Because the 
pole at s = - 1 is providing -90* of phase shift in the vicinity of 
crossover, standardization by adjusting C places crossover near the 
point where the poles at 103 and 104 rad/sec are providing an addi­
tional -90* of phase shift. This occurs at w = 3.16 X 103 rad/sec. 

The Bode plot for the inverting gain-of-ten configuration of 
Figure 5.30 should indicate a crossover frequency of 2 X 103 rad/ 
sec, with a phase margin of 15.30, and a gain margin of 2.4. With 

this phase margin, we expect M, = sin 1530 =3.8. 
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220 kQ Figure S10.9 Suggested 
topologies for the three compensation 
schemes. (a) Reduced aj. (b) Lag. (c) 

22 kQ Lead with reduced ajo. 
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The three types of compensation have been covered in detail 
in this chapter, and thus are not solved for explicitly here. During 
the design and analysis of each compensation scheme, it is useful 
to have some form of computation that can provide results of 
transfer-function magnitude and phase versus frequency. A short 
program written on a computer or hand-held calculator will suffice. 
Appropriate topologies for the three forms of compensation are 
shown in Figure S10.9. Others are certainly possible. 
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