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Compensation 8
 

Note: All references to Figures and Equations whose numbers are 
not preceded by an "S"refer to the textbook. 

As suggested in Lecture 8, to perform a Nyquist analysis, we first Solution 8.1 (P4.13) 
sketch the Bode plot. The transfer function of interest is the af 
product given by 

106(0.01s + 1)2
a(s)f(s) = (S + 1)2 4 (S8.1)

(s + 1)~ 

Using the methods of Section 3.4 of the textbook, the Bode plot is 
sketched in Figure S8.1. From this Bode plot, a gain-phase Nyquist 
plot is generated in Figure S8.2. From this figure, it is apparent that 
for some range of intermediate values off, the - 1 points will be 
enclosed within the contour, and the system will be unstable. How­
ever, for small enough or large enough values off, the system will 
be stable. For instance, from Figure S8.2, the system is stable iff 
= 1, and it is certainly stable for any f > 1. 

This same result can be obtained from a root-locus construc­
tion as shown in Figure S8.3. Because the two zeros are a factor of 
100 farther from the origin than the three poles, the root-locus 
branches will initially follow asymptotes of ± 60* and 180* from 
the real axis, by Rules 7 and 5. The two branches that leave the 
real axis at ± 60' will enter the right half of the s plane at about W 
= 1.7 for large enough values of fA. However, these two branches 
must rejoin the negative real axis at a point to the left of the two 
poles at s = -100, by Rules 2 and 3. Thus the branches cross back 
into the left half of the s plane and the system is stable for suffi­
ciently large f. (Because only a qualitative analysis is required, the 
exact point at which the branches reenter the negative real axis will 
not be solved for.) Thus, both the Nyquist and root-locus analyses 
indicate that the system is stable for small values off, unstable for 
intermediate values off, and stable for large f. 

Now, we can use a Routh analysis to determine the values of 
f4 that separate these regions of stability and instability. The char­
acteristic equation is 

1+ a(s)f = 1 + 1 0 6f (0.S 0 (S8.2)
(s + 1) 0 

After clearing fractions and collecting terms, we have 
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Figure S8.1 Bode plot for 
Problem 8.1 (P4.13). 
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Figure S8.2 Nyquist plot for 
Problem 8.1 (P4.13). 
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Figure S8.3 Root locus for 
Problem 8.1 (P4.13). 
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s' + (3 + 102fo)s	 2+ (3 + 2 X 104fo)s + 1 + 106fo = 0 (S8.3) 

From the polynomial, the Routh array is constructed as 

1 3 + 2 X 104fo 

3 + 102fo1 + 106 

2X 106f 2- 0.94 X 106fo + 8 0 (S8.4) 

3 + 102fo 

1 + 10 6f0 0 

The third row becomes zero (indicating poles on the imaginary 
axis) when 

2x 106f2 - 0.94 x 106fo + 8 = 0 (S8.5) 

which is solved by 

0.94 	X 106 ± \/(0.94 X 106)2 - 64 x 106 

4 X 106 

= 0.2350000 0.2349915 	 (S8.6) 

= 8.5 X 106, 0.47 	 (S8.7) 

Note that high numerical precision is required to extract the root 
at fo = 8.5 X 10-6. This problem could be avoided by framing the 
Routh calculation in terms of a0fo. However, a scientific calculator 
can carry out this calculation with sufficient accuracy. We carry 
this precision only where necessary, and round the answers of 
Equation S8.7 to two significant figures. The third row is negative 
for 

8.5 X 10-6 < fo < 0.47 (S8.8) 

Thus, the system is stable for 

fo < 8.5 X 10-6 

and 

fo > 0.47 (S8.9) 

which are the two borderline values the problem statement asks 
for. 
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Solution 8.2 (P5.1) 

Figure S8.4 Connection with gain 
of -10, which allows lowering of the 
loop-transmission magnitude. 

R 

Vi aR 

Figure S8.5 Block diagram for 
circuit of Figure S8.4. 

The circuit of Figure S8.4 provides an ideal gain of -10, and 
allows lowering of the loop-transmission magnitude. 

The block diagram for this connection is as in Figure S8.5. 

1OR 

a(s) y-.o 

+ 

The value of R cancels out of both blocks in which it appears. After 
algebraically reducing the expressions in these blocks, we have the 
diagram of Figure S8.6. 
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Figure S8.6 Reduced block 
diagram for Problem 8.2 (P5.1). 

This can be further reduced as shown in Figure S8.7. 

Figure S8.7 Reduced block 
diagram for Problem 8.2 (P5.1). 

From the form of the block diagram, this system has an ideal 
gain of - 10 as stated earlier. The negative of the loop transmission 
is 

-L.T. = a(s) a 
10 + Ila (S8.10) 

2 X 10' a 

(0.ls + 1)(10- 5s + 1)2 10 + Ila 

From Figure 4.26b, the required damping ratio for P = 1.1 is 
approximately 0.6. From Figure 4.26a, this implies a phase margin 
of about 580. That is, the loop-transmission phase must be - 1220 
at the crossover frequency we. The form of a(s) allows us to readily 
solve for this frequency, because at frequencies where the two poles 
at s = - 10' are contributing any significant phase shift, the pole 
at s = - 10 is contributing -90* of phase. Thus, at w,, the phase 
due to the two poles must be - 32*. Applying Equation 3.47 from 
the textbook, we can write 

-32* = -2 tan-' 10-5We (S8.11) 
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Solution 8.3 (P5.2) 

Figure S8.8 Block diagram for 
circuit of Figure 5.23a. 

which is solved for oc as 

OC = 105 tan 160 = 2.87 X 104 rad/sec (S8.12) 

Now, we need to pick a to set the loop-transmission magnitude 
equal to unity at this frequency. Applying Equation 3.46 to the 
three poles gives 

0.01 
2 X 10 
+ 1 (100o2 + 1) 

a 
10 + Ila 

(S8.13) 

Substituting in oc = 2.87 X 104 gives 

1 = 64.4 a 
10 + Ila 

(S8.14) 

which is solved by 

a ~ 0.19 (S8.15) 

Thus, the value of the attenuation resistor is 0.19R. 

This is the same topology as in Problem 8.2 (P5.1). The only dif­
ference is that the noise voltage E, adds directly to the error signal,
and the ideal gain is -1 rather than -10. The appropriate modi­
fications to the block diagram of Figure S8.5 give the block dia­
gram of Figure S8.8, which represents the connection of Figure 
5.23a. 

E, 

Vi y, 
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By a block-diagram manipulation, Figure S8.8 reduces to Figure 
S8.9. 

En 

Vi V 

From Figure S8.9, at frequencies where Ia(s) a 
I + 2a 

V I(s)1 + 2 a 
(S8.16)

E(s) a 

V0(s)
For a >> 1,this ratio is about 2. For a < 1, the ratio becomes 

Es(s) 
very large, verifying the assertion at the end of Section 5.2.1 that 
this type of attenuation increases voltage noise at the amplifier 
output. 

Figure S8.9 Reduced block 
diagram. 
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