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Stability via 
Frequency Response / 

Note: All references to Figures and Equations whose numbers are 
not preceded by an "S" refer to the textbook. 

The time-delay term has a constant magnitude of 1, and a phase Solution 7.1 (P4.9) 
of -0.01w radians. (It is a common mistake to use units ofdegrees 
here.) Thus a pure delay is equivalent to a negative phase shift that 
varies linearly with w. Applying Equations 3.46 and 3.47 from the 
textbook gives 

2L(IW)I / + 1 (S7.1a) 

and 

<CL(jw) = -tan-lw - 0.01o radians (S7.1b) 

These two expressions are used to sketch a Nyquist diagram as 
shown in Figure S7.1. 

Figure S7.1 Nyquist diagram for 

L(s) = - ae-. 
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Because we use degrees as the units for the phase axis, it is helpful 
to remember that there are 57.3 degrees per radian. As w -+ oo, the 
phase is unbounded. Thus, for a sufficiently large value of ao, the 
+ 180* points will be enclosed in the contour, and the system will 
be unstable. The maximum value of ao for stability is such that the 
+ 180' points are intersected by the af contour. Inspection of the 
Nyquist diagram indicates that this point will occur for o > 100. 
In this region, the magnitude and phase are well approximated by 

IL(jo)I- w >> 1 (S7.2a) 

and 

<L(jo) - - 0.0 L >> 1 (S7.2b) 

Applying Equation S7.2b, the frequency at which the phase is 
-1800 is: 

- = 0.0lo 

or 

= 157 rad/sec (S7.3) 

Then, to intersect the - 1800 point, we must have IL(jo) |.=157 = 

1. Then, by Equation S7.2a, a, = 157 is the maximum value that 
results in a stable system. 

Because the feedback path is frequency independent, we may 
apply Equation 4.88 from the textbook to solve for the value of ao, 
which results in M, = 1.4. 

1.4 ~ (S7.4)sin $ 

Thus 

$ - sin-~ 45* (S7.5) 

For a 45* phase margin, Equation S7.2b requires crossover at a fre­
quency such that 

37r 7r 
=- - - 0.01W

4 2 

or 

W ~ 79 rad/sec (S7.6) 

To have crossover at w = 79 rad/sec, Equation S7.2a requires that 
ao = 79. 
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Before drawing the Nyquist plot, it is helpful to draw a Bode plot Solution 7.2 (P4.10) 
for this system. Then, the Nyquist plot may be sketched directly 
from the Bode plot. Figure S7.2 is a Bode plot for the transfer func­
tion of interest 

L(s) = Os3 (7.7) 
(S + 1)(0.1s + 1)2 

Figure S7.2 Bode plot for 
Problem 7.2 (P4.10). 
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Figure S7.3 Nyquist analysis for 
Problem 7.2 (P4.10). (a) Nyquist 
contour for Problem 7.2 (P4.10). 

_in 

Because there are singularities at the origin, we choose the contour 
shown in Figure S7.3a. The resulting Nyquist plot is as shown in 
Figure S7.3b. The points labeled A through L in the s plane map 
to the points equivalently labeled in the afplane. There are several 
important features to notice. For points near the origin in the s 
plane, the magnitude of L(s) is very small. Thus, the point A in the 
s plane maps to the negative imaginary axis in the af plane as 
shown. For Is >> 10 (i.e., for points in the s plane far from the 
origin) 

L(s) - 100a, (S7.8) 
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Figure S7.3 (b) Nyquist plot for 
Problem 7.2 (P4.10). 
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This is true all the way around the semicircle in the right half of 
the s plane. Thus, the points E, F, G, H, and I map to the point af 
= 100aO in the afplane. Finally, the test excursion shows that the 
interior of the contour in the s plane maps to the interior of the 
contour in the afplane. Clearly, for a large enough ao, the points at 
± 180" will be enclosed, and the system will be unstable. 

The value of ao required to reach the edge of instability can be 
solved for by finding the frequency at which 4L(jo) = 180*. 
Either directly from the Bode plot of Figure S7.2, or by iterating 
numerically on the expression for 4L(jw) 
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-t L(jo) = -x - tan-'w - 2 tan' O.lw (S7.9) 

we find that <2L(jo) = 180 when o = 2.2 rad/sec. Then, the max­
imum ao for which the system is stable is such that 

IL(jw)I = 1 (S7.10)
w=2.2 

Substituting in the expression for IL(jo) I gives 

aow3 = 1 (S7.11) 
(W2 + 1)1/2 x ((0.1W) 2 + 1) w=2.2 

or 

((2.2)2 + 1)1/2((0.22)2 + 1)
ao = 2.23 0.24 (S7.12) 

Thus, the system is stable for ao < 0.24. 

Figure S7.4 Root locus for 
Problem 7.2 (P4.10). fa 
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A root-locus construction also supports the conclusion that 
the system is unstable for large enough values of ao, as shown in 
Figure S7.4. As previously calculated, the poles cross the imaginary 
axis at w = 2.2 and enter the right-half plane for ao > 0.24. For 
large a,, the two right-half-plane poles must approach the origin 
along asymptotes of ± 600, while the third pole approaches along 
the real axis. This must be so, because as the closed-loop poles 
approach the origin, the angle contribution from the pole at s = 
- 1, and the two poles at s = -10, is essentially zero. Thus, the 
total angle from the three zeros to the closed-loop poles must be an 
odd multiple of 1800, which is satisfied by the asymptotes at ± 60. 

Poles that have a damping ratio of less than 0.707 lie to the right 
of a pair of lines at ± 450 from the negative real axis, because from 
Figure 3.7 of the textbook, 0 = cos-' = cos-' O.707 = 45*. A con­
tour that follows these lines, and encloses all poles with damping 
ratios less than 0.707 is shown in Figure S7.5. 
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Figure S7.5 Modified Nyquist 
contour. 
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To make the modified Nyquist test we are interested in whether 
there are any poles within the contour of Figure S7.5, that is, 
whether there are any solutions of the characteristic equation 1 + 
a(s)f(s) = 0 that occur for s within the contour of Figure S7.5. If 
there are such solutions, then the system has closed-loop poles with 
damping ratios less than 0.707. Thus the test in the af plane is 
unmodified. We look for points such that a(s)f(s) = -1 in exactly 
the same manner as the Nyquist test. Only the contour in the s 
plane needs to be changed to that shown in Figure S7.5. As in the 
Nyquist test, a test detour is used to determine where the interior 
of the contour in the s plane maps to in the afplane. The poles 
indicated at s = -1 are the poles of the transfer function 

a(s)f(s) = a (S7.13)
(S + 1)2 

which we wish to evaluate using the modified Nyquist test. This 
test, then, is made by picking points in the s plane along the con­
tour ABC, then plotting the value of a(s)f(s) in the afplane for each 
of these points. 

Applying this to the transfer function of Equation S7.13, at s 
= 0, |a(s)f(s) I = ao, and < a(s)f(s) = 00. As Is1 -4 oo along con­

tour A, Ia(s)f(s) I- 0 and <a(s)f(s) - -270. Along the contour 
B, the magnitude of a(s)f(s) remains small, and the angle changes 
from -270' to + 270*. The values of a(s)f(s) resulting as the con­
tour C is traversed are identical in magnitude and opposite in 
phase from the values generated along contour A. This preliminary 
analysis gives a general indication of the characteristics of the plot 
in the afplane. A more detailed analysis requires solving numeri­
cally. Along the contour A, s = -w + jo, thus 

Ia(s)f(s) = ao 
= w+jw _(W + j + 1)21 (S7.14) 

ao 
22W - 2w + 1 

and 

<a(s)f(s) =< ao 
s= -w+j (-o + jW + 1)2 (S7.15) 

= -2 tan-' 
1 -co 
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The magnitude and angle of a(s)f(s) can then be solved numeri­
cally as s takes on the values s = -w + jo, and w is allowed to 
vary. (A programmable calculator is quite helpful here, as it is 
throughout the subject.) When solving for the angle, be careful 
because the arc tangent is not a single-valued function. The earlier 
preliminary analysis serves as a check on the numerical results. 
Some values are summarized in Table S7. 1. 

W 

0 
0.01 

I a(-w + jw)f(-w + Iw)I 

1.00a, 
1.02a, 

<a(-o + jw)f(-w 

00 
-1.1* 

+ jw) 
Table S7.1 Magnitude and angle 

of a,, evaluated along the 
(s + 1)2 

contour s = -w + jw. 

0.05 1.10a, -6.0* 
0.10 1.22a, -12.70 
0.25 1.60a, -36.9* 
0.50 2.00a -90.0* 
0.75 1.60a, -1430 
1.00 1.00a, -1800 
1.25 0.62a, -2030 
1.50 0.40a, -217* 
1.75 0.28a, -2260 
2.50 0.12a, -242* 
5.00 0.02a -257* 

10.00 0.006a, -264* 
-­ + 0 - -2700 

Using these values, the contour of Figure S7.6 is then drawn in the 
afplane. The test detour indicates that the interior of the contour 
in the s plane maps to the interior of the contour in the afplane. 
Then, there are closed-loop poles with a damping ratio of less than 
0.707 when the af plot of Figure S7.6 encloses the points at unity 
magnitude and an angle of ± 180*. There is a pair of poles with a 
damping ratio of exactly 0.707 when the afcontour intersects the 
-1 point. From the numerical values of Table S7.1, or by exam­
ining Figure S7.6, this occurs for a, = 1. 
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Figure S7.6 Modified Nyquist 
diagram for Problem 7.3 (P4.11). 
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We check this result by factoring the characteristic equation 
for ao = 1. With ao = 1, the characteristic equation is 

1 ­1 + I = 0 (S7.16)
(s + 1)2 

After clearing fractions, we have 

s2 + 2s + 2 = 0 (S7.17) 

which has roots at 

2 i /4 -- -1 (S7.18)
2 

These roots lie on lines at ± 450 from the negative real axis. Thus, 
as predicted, they have a damping ratio of 0.707. 



MIT OpenCourseWare
http://ocw.mit.edu

RES.6-010 Electronic Feedback Systems
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

