
CHAPTER XII 

ADVANCED APPLICATIONS
 

12.1 SINUSOIDAL OSCILLATORS 

One of the major hazards involved in the application of operational 

amplifiers is that the user often finds that they oscillate in connections he 

wishes were stable. An objective of this book is to provide guidance to help 
circumvent this common pitfall. There are, however, many applications 
that require a periodic waveform with a controlled frequency, waveshape, 
and amplitude, and operational amplifiers are frequently used to generate 

these signals. 
If a sinusoidal output is required, the conditions that must be satisfied to 

generate this waveform can be determined from the linear feedback theory 
presented in earlier chapters. 

12.1.1 The Wien-Bridge Oscillator 

The Wien-bridge corifiguration (Fig. 12.1) is one way to implement a 

sinusoidal oscillator. The transfer function of the network that connects 

the output of the amplifier to its noninverting input is (in the absence of 

loading) 

V.(s) _ RCs 
V0(s) ~ R2Cess + 3RCs + 1 

The operational amplifier is connected for a noninverting gain of 3. Com­

bining this gain with Eqn. 12.1 yields for a loop transmission in this 

positive-feedback system 

3RCs 
C2 2L(s) = s 3RCs (12.2)

R2Cs + 3RCs + 1 

The characteristic equation 

R2C2 23RCs s + 1 
I - L(s) = 1 -

2 
3RsR222+1 2 

(12.3)
R2C2s + 3RCs + 1 R2 C2s + 3RCs + 1 

has imaginary zeros at s = ±(j/RC), and thus the system can sustain 

constant-amplitude sinusoidal oscillations at a frequency w = 1/RC. 
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Figure 12.1 Wien-bridge oscillator. 

12.1.2 Quadrature Oscillators 

The quadrature oscillator (Fig. 12.2) combines an inverting and a non-
inverting integrator to provide two sinusoids time phase shifted by 90* 
with respect to each other. The loop transmission for this connection is 

[+ 1)R3Cas 
L(s) = L Is] L(R3C3S + 1 (12.4)

R1Cis (R2C2s + 1)RaCas 

In this expression, the first bracketed term is the closed-loop transfer 
function of the left-hand operational amplifier (the inverting integrator), 
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Figure 12.2 Quadrature oscillator. 
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while the second bracketed expression is the closed-loop transfer function 
of the right-hand operational amplifier. By proper selection of component 
values, the right-hand amplifier functions as a noninverting integrator. In 
fact, the discussion of this general connection in Section 11.4.1 shows that 
only the noninverting input of a differential connection is used as a signal 
input in this application. 

If all three times constants are made equal so that R1C1 = R2 C2 = R3C3 = 

RC, Eqn. 12.4 reduces to 

1 
2L(s) R2 C2s (12.5) 

The corresponding characteristic equation for this negative-feedback sys­
tem is 

2C21 s 1_R 
2 +

21 - L(s) = 1 + = R 2C2s (12.6)
R2C2s2 R2C2 s2 

Again, the imaginary zeros of Eqn. 12.6 indicate the potential for constant-
amplitude sinusoidal oscillation. Note that, since there is an integration 
between Va and Vb, these two signals will be phase shifted in time by 90* 
with respect to each other. 

A similar type of oscillator (without an available quadrature output) can 
be constructed using a single amplifier configured as a double integrator 
(Fig. 11.12) with its output connected back to its input. 

12.1.3 Amplitude Stabilization by Means of Limiting 

There is a fundamental paradox that complicates the design of sinusoidal 
oscillators. A necessary and sufficient condition for the generation of con­
stant-amplitude sinusoidal signals is that a pair of closed-loop poles of a 
feedback system lie on the imaginary axis and that no closed-loop poles 
are in the right half of the s plane. However, with this condition exactly 
satisfied (an impossibility in any but a purely mathematical system), the 
amplitude of the system output is determined by initial conditions. In any 
physical system, minor departure from ideal pole location results in an 
oscillation with an exponentially growing or decaying amplitude. 

It is necessary to include some mechanism in the oscillator to stabilize 
its output amplitude at the desired level. One possibility is to design the 
oscillator so that its dominant pole pair lies slightly to the right of the 
imaginary axis for small signal levels, and then use a nonlinearity to limit 
amplitude to a controlled level. This approach was illustrated in Section 
6.3.3 as an example of describing-function analysis and is reviewed briefly 
here. 
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Consider the Wien-bridge oscillator shown in Fig. 12.1. If the ratio of 
the resistors connecting the output of the amplifier to its inverting input is 
changed, it is possible to change the gain of the amplifier from 3 to 3(1 + A). 
As a result, Eqn. 12.3 becomes 

23(1 + A) R2 C 2s 2 - 3ARCs + IILs) =I R2C2s 2 + 3RCs + I R 2C2s + 3RCs + 1 (12.7) 

The zeros of the characteristic equation (which are identically the closed-
loop pole locations) become second order with w,, = 1/RC and r = 
- (3/2)A. In practice, A is chosen to be large enough so that the closed-loop 
poles remain in the right-half plane for all anticipated parameter variations. 
For example, component-value tolerances or dielectric absorption asso­
ciated with the capacitors alter the closed-loop pole locations. 

Limiting can then be used to lower the value of A (in a describing-func­
tion sense) so that the output amplitude is controlled. Figure 12.3 shows 
one possible circuit where a value of A = 0.01 is used. The oscillation fre­
quency is 104 rad/sec or approximately 1.6 kHz. Output amplitude is 
(allowing for the diode forward voltage) approximately 20 V peak-to-peak. 
The symmetrical limiting is used since it does not add a d-c component or 
even harmonics to the output signal if the diodes are matched. 

12.1.4 Amplitude Control by Parameter Variation 

The use of a limiter to change a loop parameter in a describing-function 
sense after a signal amplitude has reached a specified value is one way to 
stabilize the output amplitude of an oscillator. This approach can result in 
significant harmonic distortion of the output signal, particularly when the 
oscillator is designed to function in spite of relatively large variations in ele­
ment values. An alternative approach, which often results in significantly 
lower harmonic distortion, is to use an auxillary feedback loop to adjust 
some parameter value in such a way as to place the closed-loop poles pre­
cisely on the imaginary axis, precluding further changes in the amplitude 
of the oscillation, once the desired level has been reached. This technique is 
frequently referred to as automatic gain control, although in practice some 
quantity other than gain may be varied. 

As an example of this type of amplitude stabilization, let us consider the 
effect on performance of varying resistor R3 in the quadrature oscillator 
(Fig. 12.2). We assume that C1 = C2 = C3, and that R1 = R2 = R, while 
R3= (1 + A)R. In this case the loop transmission of the system (see Eqn. 
12.4) is 

(1 + A)RCs + 1L(s) - R2 C2s2(l + A) (RCs + 1) (12.8) 



489 Sinusoidal Oscillators 

with a corresponding characteristic equation 

R3 Ca(1 + A)s 3 + R2C2(1 + A)s 2 + RC(1 + A)s + 1 
(12.9)

R 2C 2s2 (l + A) (RCs + 1) 

If we assume a small value for A, the zeros of the characteristic equation 
can be readily determined, since 

R3 C3(1 + A)s + R2 C2(1 + A)s2 + RC(l + A)s + 1 

C + + 1 R2C2 1 + -)s + RC s + 1] 

JAI << 1 (12.10) 

The performance of the oscillator is, of course, dominated by the complex-
conjugate root pair indicated in Eqn. 12.10, and this pair has a natural 
frequency w,, 1/RC and a damping ratio ~ A/4. The important feature 
is that the closed-loop poles can be made to lie in either the left half or the 

right half of the s plane according to the sign of A. 

Output 

10 

Figure 12.3 Wien-bridge oscillator with limiting. 
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The design of the amplitude-control loop for a quadrature oscillator 
provides an interesting and instructive example of the way that the feedback 
techniques developed in Chapters 2 to 6 can be applied to a moderately 
complex circuit, and for this reason we shall investigate the problem in 
some detail. The difficulties are concentrated primarily in the modeling 
phase of the analytical effort. 

Our intent is to focus on amplitude control, and this control is to be 
accomplished by moving the closed-loop poles of the oscillator to the left-
or the right-half plane according to whether the actual output amplitude 
is too large or too small, respectively. We assume that the signal VA(t) (see 
Fig. 12.2) has the form 

VA(t) = eA(t) sin cot (12.11) 

This representation, which models the signal as a constant-frequency 
sinusoid with a variable envelope eA(t), is not exact, because the instan­
taneous frequency of the sinusoidal component of VA is a function of A. 
However, if the amplitude-control loop has a very low crossover frequency 
compared to the frequency of oscillation so that magnitude changes are 
relatively slow, we can consider the amplitude eA alone and ignore the 
sinusoidal portion of the expression. In this case the exact frequency of the 
sinusoid is unimportant. 

In order to find the dependence of VA on the control parameter A, assume 
that the circuit is oscillating with A = 0 so that the closed-loop poles of the 
oscillator are precisely on the imaginary axis. With this constraint the 
envelope is constant with some operating point value EA so that 

VA(t) = EA sin wt (12.12) 

where o = 1/RC. If A undergoes an incremental step change to a new 
value A1 at time t = 0, the oscillator poles move into the left-half plane (for 
positive Ai), and 

VA(t) - EA e--r-' sin cot (12.13) 

Inserting values for and co,, from Eqn. 12.10 into Eqn. 12.13 yields 

t 
VA(t) - EA e-(At/4RC) sin - (12.14)

RC 

The envelope for this signal is 

eA(t) = EAe-CAlt/4Rc> = E( +At -2- (12.15)
4RC 2 4RC 
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If Ait/4RC is small (a condition insured by a sufficiently small value of A1), 
we can separate eA(t) into operating-point and incremental components as 

EAi 
eA(t) = EA + e.(t) EA - 4RC (12.16)

4RC 

Thus a positive incremental step change in A leads to an incremental 
envelope change that is a linearly decreasing function of time. This condi­
tion implies that the linearized transfer function that relates envelope 
amplitude to A is 

Ea(s) __EA=(s)-- (12.17)
A(s) 4RCs 

This linearized analysis confirms the feeling that control of the value of A 
is in fact a reasonable way to stabilize the amplitude of the oscillation, since 
the incremental change in the envelope of the oscillation is proportional to 
the timc integral of A. 

Further design of the amplitude-control loop depends on the actual 

topology of the system. Figure 12.4 shows one possible implementation in 

mixed circuit and functional block-diagram form. The envelope of the 

signal to be controlled is determined by an amplitude-measuring circuit. 
This circuit may be a simple diode-resistor-capacitor peak detector in 
cases where high precision is not required, or it may be an active "super­
diode" type of connection (an example is given in Section 12.5.1) in more 
demanding applications. In either case, the design of this circuit is not 
particularly difficult and will not be discussed here. The envelope of the 
signal is compared with a reference value, and the resulting error signal 
passes through a linear controller with a transfer function a(s). The output 
of the controller is used to drive a field-effect transistor that functions as a 
variable resistor whose value determines A. 

The FET connection incorporates local compensation to linearize its 
characteristics as shown in the following development. If a junction FET is 
biased into conduction with a small voltage applied across its channel, and 
its gate reverse biased with respect to its channel, the drain current is approx­
imately related to terminal voltages as 

iD = K (VGS + VP)vDs - (12.18) 

where K is a constant dependent on transistor construction, and Vp is the 
magnitude of the gate-to-source pinch-off voltage. 

The dependence of iD on the square of the drain-to-source voltage is 

undesirable, since this term represents a nonlinearity in the channel resist­



-1h, 

0.01 yF 

VA C>-1 

Figure 12.4 Quadrature oscillator with amplitude stabilization. 
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ance of the device, and this nonlinearity will introduce harmonic distortion 
into the oscillator output. The nonlinearity can be eliminated by adding 
half of the drain-to-source voltage to the gate-to-source voltage via resistors 
as shown in Fig. 12.4. The resistors are large enough so that they do not 
significantly shunt the drain-to-source resistance of the FET under normal 
operating conditions. With the topology shown, 

VGS = 1 (VC + VDs) (12.19) 

Substituting Eqn. 12.19 into Eqn. 12.18 shows that 

iD = K [( + ++V+ N -v ]P)+V)K -DS (12.20)
2 2 2 2 

or 

RDS- (12.21)
OD K[(vc/2) + Vp] 

This equation indicates that the incremental resistance of the FET is inde­
pendent of drain-to-source voltage when the network is included. 

For purposes of design, we assume that the FET is characterized by 
VP = 4 volts and K = 10-1 mho per volt. Recall that stable-amplitude 
oscillations require that all three R-C time constants be identical; thus the 
operating point value of RDS is 500 ohms. Equation 12.21 combined with 
FET parameters indicates that this value results with an operating-point 
value for the control voltage of -4 volts. The incremental change in RDS 
as a function of the control voltage at this operating point, obtained by 
differentiating Eqn. 12.21 with respect to Vc, 

aR v - =- 125 /V (12.22)ovcl vc = -4 V= 

Earlier modeling was done in terms of A, the fractional deviation of the 
resistance R3 in Fig. 12.2 from its nominal value. This resistor consists of 
the FET plus a 9.5 kQ resistor in the actual implementation. The incremental 
dependence of A on the control voltage is determined by dividing Eqn. 
12.22 by the anticipated operating-point value of the total resistance, 10 ki. 
Thus 

V-1 (12.23)-4 V -0.0125t c c = 

The relationships summarized in Eqns. 12.17 and 12.23 combined with 
the system topology and an assumed operating-point value for the en­
velope EA = 10 volts lead to the linearized block diagram for the amplitude­



E,. : a (s) = 0.0125 V-


Controller FET network 

Figure 12.5 Linearized block diagram for amplitude-control loop. 
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control loop shown in Fig. 12.5. The negative of the loop transmission for 
this system is 

Ea(s) 312.5 
____ - a(s) X (12.24)
E,(s) S 

A number of factors govern the choice of a(s) for this application including: 

(a) The actual FET gate-to-source voltage required under quiescent con­
ditions is strongly dependent on FET parameters and the exact values of the 
other components used in the circuit. The easiest way to insure that the 
difference between the envelope and the reference is constant in spite of 
these variable parameters is to include an integration in a(s) since this 
integration forces the operating-point value of the error to zero. 

(b) The analysis is predicated on a much lower crossover frequency for 
the amplitude-control loop than the frequency of oscillation, 104 radians 
per second. However, a very low frequency control loop accentuates the 
effect on amplitude of rapid changes in quantities like the supply voltages. 
A somewhat arbitrary compromise is to choose a crossover frequency of 
100 radians per second. 

(c) Since the analysis is based on a hierarchy of approximations, the 
system should be designed to have a very conservative phase margin. 

(d) The controller transfer function should include low-pass filtering. 
The detector signal that indicates the envelope amplitude invariably in­
cludes components at the oscillation frequency or its harmonics. If these 
components are not filtered so that they are at an insignificant level when 
applied to the FET gate, the resultant channel-resistance modulation intro­
duces distortion into the oscillator output signal. 

A controller transfer function that incorporates these features is 

3.2(0.1s + 1) 
a(s) = s(10-3ss(0s+12(12.25)+ 1)2 

The negative of the loop transmission with this value for a(s) is 

E(s) _10 3(0.1s + 1) (12.26) 
Ee(s) s2(10- 3s + 1)2 

The system crossover frequency is 100 radians per second, and phase margin 
exceeds 70' with this value for a(s). 

A possible circuit that provides the negative of the desired a(s) is shown 
in Fig. 12.6. In many cases of practical interest, this inversion can be can­
celled by some rearrangement of the amplitude-measuring circuit. The 
second required filter pole is obtained with a passive network. The filter 

http:s(0s+12(12.25
http:3.2(0.1s
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Figure 12.6 Controller circuit. 

network impedance level is low enough so that the network is not disturbed 
by the 2-M12 load connected to it. 

The reference level required to establish oscillator amplitude can be 
applied to the controller by adding another input resistor to the operational 
amplifier. It may also be possible to realize part of the amplitude-measuring 
circuitry with this amplifier. An example of this type of function combination 
is given in Section 12.5.1. 

Two practical considerations involved in the design of this oscillator 
deserve special mention. First, the signal vB normally has lower harmonic 
distortion than does VA since the integration of the first amplifier filters any 
harmonics that may be introduced by the FET. Second, it is possible to vary 
the reference amplitude for this circuit and thus modulate the amplitude 
of the oscillator output. However, the control bandwidth in this mode will 
be relatively small, and performance will change as a function of quiescent 
envelope amplitude since the loop-transmission magnitude is dependent on 
operating levels. 

The performance of an oscillator of this type can be quite impressive. 
Amplitude control to within 1mV peak-to-peak is possible if "superdiodes" 
are used in the envelope detector. Harmonic distortion of the output signal 
can be kept a factor of 104 or more below the fundamental component. 

12.2 NONLINEAR OSCILLATORS 

The discussion of oscillators up to this point has focused on the design of 
circuits that provide sinusoidal output signals. The basic approach is to 
use a linear, second-order feedback loop to generate the sinusoid, and then 
incorporate some mechanism to control amplitude. 
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Operational amplifiers are also frequently used in nonlinear oscillator 
circuits that intentionally produce nonsinusoidal output signals. The analy­
sis of these types of oscillators is complicated by the fact that transform 
methods normally cannot be used. One frequently used technique for 
evaluating the performance of these types of oscillators is to determine the 
output and internal signals directly via time-domain calculations. 

12.2.1 A Square- and Triangle-Wave Generator 

A function generator that produces square and triangle waves as its 

outputs was used as an example of describing-function analysis in Section 
6.3.3. This topology combines an integrator with a Schmitt-trigger circuit. 
The Schmitt trigger can be realized by applying positive feedback around an 
operational amplifier, as shown in Fig. 12.7.1 Consider operation with vr a 
large positive voltage. In this case the amplifier will be saturated with a 
positive output voltage. 

It is assumed that the output-voltage magnitude is limited to a maximum 
value of VM. This limiting can be accomplished in several ways. If relatively 
crude level control is sufficient, the saturation levels may be determined 
simply by power-supply voltages and internal amplifier voltage drops. 
Somewhat better control is possible if an amplifier such as the LM101A 
(see Section 10.4.1) is used. The output level of this circuit can be limited 
by connecting diode clamps to a compensation terminal. A third possibility 
is to follow the operational amplifier shown with a precision limiter similar 
to those described in Section 11.5.3, and to apply positive feedback around 
the entire connection. This approach has the further advantage that the 
output element is operating with local negative feedback and thus has very 
low output resistance. 

In order to force the circuit to change state, the input voltage is lowered. 
When the input level reaches approximately - (R1/R 2) VM, the noninverting 
input of the amplifier is close to ground potential and the device enters its 
linear operating region. The massive positive feedback that results with 
the amplifier active sweeps its output negative until a level of - VM is 

reached. Further negative changes in input voltage do not affect the output. 
If the input voltage is raised, the amplifier enters its active region at an 

1In many practical circuits, a comparator rather than an operational amplifier is used to 
implement a Schmitt trigger. A comparator, like an operational amplifier, is a high-gain, 
direct-coupled amplifier. However, since it is riot intended for use in negative-feedback 
connections, the frequency-response compromises that must be made to insure the stability 
of an operational amplifier need not be included in the comparator design. Consequently, 
the response time of a Schmitt trigger realized via a comparator can be significantly faster 
than that obtained using an operational amplifier. 
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Figure 12.7 Schmitt trigger. (a) Circuit. (b) Characteristics. 

input level of +(R1/R 2)VM, and is then driven to positive saturation. These 
transition points combine to give the characteristics shown in Fig. 12.7b. 

A possible oscillator connection using this type of Schmitt trigger is 
shown in Fig. 12.8. With the modulating voltage Vc = 0, signal waveforms 
are as shown in part b of this figure. The period of oscillation is determined 
by noting that the magnitude of the slope of the triangle wave is always 
10/RC, and that the total change in the voltate level of VA is 40 volts for 
one complete cycle. Therefore 

40 
r =- = 4RC (12.27)

10/RC 

The corresponding frequency of oscillation is 

1 1 
(12.28) 

= 4RC 
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Figure 12.8 Nonlinear oscillator. (a) Circuit. (b) Waveforms with Vc = 0. (c) Wave­

forms with IvcI < 10 volts. 
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Figure 12.8-Continued 

In commercial versions of this circuit, decade frequency switching is fre­
quently accomplished by changing capacitors, while variation of the value 
of resistor R provides vernier control in any one decade. 

12.2.2 Duty-Cycle Modulation 

The current that charges the capacitor can be modulated by means of an 
applied voltage vc, with this current given by 

.VC + VB 
1A = V + (12.29)

R 

A positive value for Vc increases capacitor charging current when VB is 
positive and decreases this current when VB is negative. The net result is to 

duty-cycle modulate the signal VB as shown in Fig. 12.8c. The fraction of 
the time this signal stays positive is 

T+ __ =_20RC/(lO + vc) I (I Vc(
 

7*+ + 7- 20RC/(1O + vc) + 20RC/(1O - vc) 2 10
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This duty-cycle modulator has a number of interesting features that make 
it useful in a variety of applications. Equation 12.30 shows that the duty 
cycle is linearly proportional to vc and changes from one to zero as Vc 
changes from - 10 volts to +10 volts. However, maximum capacitor 
charging current is limited to twice its value with zero vc, so that the time 
spent in the shorter of the two periods is never less than half its quiescent 
value. The frequency of operation is a nonlinear function of Vc and is given 
by 

21 100 -Oc 
f =0=R= (12.31) 

r+ + T_ 20RC/(10 + vc) + 20RC/(10 - Vc) 400RC 

This equation shows that the frequency is lowered by any nonzero value 
of Vc. 

Applications include the control of switching power amplifiers and the 
realization of the type of analog multiplier shown in Fig. 12.9. In this 
circuit, the duty-cycle modulator controls the state of a switch that is fre­
quently realized with field-effect transistors. The circuit is arranged so that 
the switch arm is connected to a voltage +vy for a fraction of the time 

I[1 + (vx/VR)], and to a voltage - vy for the remainder of the time, a 
fraction equal to 1[1 - (vx/ VR)]. (Alternative implementations use current 
rather than voltage switching to increase switching speed.) The output filter 
(usually a multiple-order active filter rather than the simple network shown) 
averages the switch voltage vs, so that 

vo= s = +Vy [ + -X,y - (12.32) 

where the over bar indicates time averaging. Note that the voltage VR 

(which is equal to the maximum magnitude of the signal out of the Schmitt 

+Vy 

Fraction of time switch arm is high 

is- (1 + )
2 VR 

Duty -cycle +Vmodulator 

Duty cycle Vs_(1+!LX 
T, +T_ 2 VR 

_VY 

Figure 12.9 Time-division multiplier. 
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trigger) can be varied to mechanize division. A technique for varying the 
signal from the Schmitt trigger is described below. 

Versions of this type of multiplier that limit errors to 0.05 % of maximum 
output have been designed. 

12.2.3 Frequency Modulation 

Another variation of the basic nonlinear oscillator shown in Fig. 12.10 
results in an oscillator with a voltage-controlled operating frequency. Here 
the Schmitt trigger determines the state of a switch that allows a variable-
level voltage to be applied to the integrator. If the Schmitt trigger switches 
at input-signal levels of d VT the total excursion of the signal VA will be 
4 VT volts per cycle. The slope of signal VA has a magnitude of VF/RC volts 
per second, and thus the frequency of oscillation is 

VF/RC _VF 

=FR Vf = - (12.33)4VT 4VTRC 

12.2.4 A Single-Amplifier Nonlinear Oscillator 

The operational amplifier used as an integrator in the nonlinear oscillator 
described above can be replaced with a passive resistor-capacitor network 
a shown in Fig. 12.11, resulting in a configuration first reported by Bose.2 

The Schmitt trigger functions in an inverting mode in this connection so 
that a sufficiently positive level for vA saturates the amplifier output at 
- VM. Switching points occur at VA = -[- VM R1/(R 1 + R 2). If the dotted 
modulating resistor is omitted, the waveforms are as shown in Fig. 12.1 lc. 
The capacitor voltage is a sequence of exponential segments rather than 
a true triangular wave. The duty cycle of the signal can be modulated by 
including the dotted resistor shown in Fig. 12.1la. If the width of the 
hysterisis region is made very small by choosing R1 << R2, the current 
into the capacitor becomes nearly constant in each state, since the circuit 
keeps the capacitor voltage close to zero. In this case, the duty cycle of the 
voltage vo is linearly related to control voltage vC. 

12.3 ANALOG COMPUTATION 

It was mentioned in Chapter 1 that operational amplifiers were initially 
used primarily for analog computation. The objective in analog computa­
tion is to build an electrical network, using operational amplifiers and 

2 A. G. Bose, "A Two-State Modulation System," 1963 Wescon Convention Record, 
Part 6, Paper 7.1. 
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Figure 12.10 Voltage-controlled oscillator. (a) Circuit. (b) Waveforms. 
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Figure 12.11 One amplifier nonlinear oscillator. (a) Circuit. (b) Inverting Schmitt­
trigger characteristics. (c) Waveforms. 

associated components, that obeys the same differential equation as does 
the system under study. The answers obtained consist of the responses of 
the electrical analog to particular inputs and initial conditions. 

Analog computers are available from several manufacturers. These 
machines incorporate, in addition to the necessary hardware, a considerable 
human-engineering effort. Summing amplifiers and integrators included in 
these machines are normally constructed with fixed scale factors so that 
external components need not be used. For example, several inputs with 
gains of - 1 and - 10 are typically provided for each summing amplifier. 
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Figure 12.11-Continued 

Potentiometers are also included, and these devices are combined with 

fixed-gain amplifiers to provide arbitrary gain levels. Thus a gain of -3.12 

might be realized by preceding a gain of - 10 amplifier with a potentiometer 

set for an attenuation of 0.312. Nonlinear elements such as function gen­

erators and multipliers are frequently included. The inputs and outputs of 

the various elements are usually connected to jacks of some type. The inter­

connections necessary to simulate a particular system are then made with 

patchcords that connect the various jacks. In many cases, the programming 

(inserting the patchcords to establish the proper connection pattern) is 

done on a board physically removed from the computer while other users, 

with their own boards, solve their problems. The board makes the required 

connections when it is inserted into a mating plate located on the machine. 

While the accuracy of solutions obtained via analog computation is limited 
by component tolerances, it normally far exceeds the accuracy required 

for the simulation of physical systems, which are themselves constructed 

with imprecise components. A further consideration is that it is frequently 
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possible to get a good physical feeling for a system via analog computation, 
since many variables are available for observation, and since the effects of 
parameter variations can be quickly investigated. 

Our treatment here can only cover the barest essentials and highlight a 
few of the ancillary circuits that were evolved for analog computation. The 
reader interested in a detailed treatment of this fascinating and powerful 
technique is referred to Korn and Korn.' 

12.3.1 The Approach 

Our objective here is to show how electronic-analog techniques are used 
to simulate differential equations that describe the systems to be studied. 
We initially assume that the differential equation under investigation is 
linear and has the general form 

d~x -x dx 
an dtx + a.-1 dt-x + - + ai - + aox = f(t) (12.34)dtn r- dt 

It is certainly not necessary that the independent variable of the system 
under study be time as implied by Eqn. 12.34. For example, if we were 
investigating the deflection of a bridge under static load, we might be 
interested in vertical displacements from equilibrium as a function of dis­
tance from one end of the bridge. However, since our analog will use time 
as its independent variable, we substitute time for the independent variable 
if necessary in the original equation. Similarly, we realize that any dependent 
variables in our analog will have to be voltages, regardless of the variables 
they actually represent in the system under study. 

Equation 12.34 is rewritten so that the highest derivative of x is expressed 
in terms of the other variables in the form 

dx an_ 1 d"- 1 x a1 dx aox 1
 
dtn andt~ dt-~ 1 

- a~ d a~ + - f(t) (12.35)
dt--1 an dt an an 

Equation 12.35 can be represented as the block diagram shown in Fig. 
12.12. In this representation, the variable dnx/dtn appears as the output of 
a summation point. Inputs to the summation point are scaled multiples of 
the driving function and the lower-order derivatives of x. The lower-order 
derivatives are obtained by successive integrations of dnx/dtn, with a total 
of n integrations required to complete the block diagram. 

Note that the only elements included in the block diagram are a multiple-
input summation point, inverters to precede some inputs on the summer, 

I G. A. Korn and T. M. Korn, Electronic Analog and Hybrid Computers, 2nd Edition, 
McGraw-Hill, New York, 1972. 
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Figure 12.12 Block diagram of Eqn. 12.35. 
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gain blocks, and integrators. Since each of these elements can be readily 
constructed using operational amplifiers and passive components, the block 
diagram can be implemented using these devices. When the analog realiza­
tion is excited with a voltage equal tof(t), voltages equal in value to x and 
its derivatives will be available as the outputs of the integrators. 

As an example of this process, consider the differential equation 

dex d3x d2x dx
 
- + 2.61 d + 3.42 d2 + 2.61 + x = f(t) (12.36)

dt4 dt' dts dt 

(We recall from Section 3.3.2 that this equation represents a fourth-order 
Butterworth filter.) Solving for d 4x/dt yields 

dex d3x d2x dx 
-= -2.61 - 3.42 - - 2.61 - x + f(t) (12.37)

dt4 dt3 dt2 dt 

One possible simulation of this equation is shown in Fig. 12.13. The 
voltages expected at the output of various amplifiers are indicated by 
writing the value of the variable the voltage represents at appropriate nodes. 
Note that in contrast to traditional analog-computer methods, gains are 
established by selecting impedances 4 used around operational amplifiers 
rather than by combining potentiometers with fixed-gain amplifiers and 
integrators. Also, functions have been combined in order to reduce the 
number of amplifiers required. The use of inverting connections only is 
traditional in analog computation, and reflects that fact that an opera­
tional-amplifier design technique frequently used to improve d-c perform­
ance results in an amplifier that can only be used in inverting connections. 
(See Section 12.3.3.) It may, of course, be possible to use noninverting 
integrators or summing amplifiers (realized with resistive summing at the 
input to a noninverting-amplifier connection) if general-purpose opera­
tional amplifiers are used for this simulation. 

The four integrators appear along the top of the diagram. Since it is 
assumed that there is no need to have a voltage representing d 4x/dt4 avail­
able, the summing operation is included in the first integrator connection. 
The output of this integrator is - (dlx/dt) when the indicated current is 
equal to (10-6 A) d 4x/dt4. Since inverting integrators are used, the signs 
associated with successive derivatives alternate. The scaling and inversions 
required by the coefficients of x and its second derivative are obtained with 
the bottom amplifier. 

4The relative impedance levels shown in Fig. 12.13 are high if general-purpose opera­
tional amplifiers such as the LM101A are used. Since only ratios are important in estab­
lishing the transfer function, all impedance levels can be scaled to reduce errors that result 
from amplifier input currents. 
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The number of amplifiers required in Fig. 12.13 indicates the general 
rule. If this topology is used, simulating an nth-order linear differential 
equation requires n integrators and one amplifier that inverts appropriate 
signals as necessary to complete feedback paths. 

Analog-computing techniques can also be used to solve a variety of non­
linear differential equations by including hardware that implements the 
nonlinearity in the simulation. As an example, consider Van der Pol's 
differential equation 

dsx dx 
+ y(x 2 - 1) + x = 0 (12.38)

dt2 dt 

where y is a positive constant. 
For small values of x, the coefficient of the first derivative term is nega­

tive, and increasing-amplitude oscillations result. When the amplitude of 
the oscillation becomes large enough, the coefficient of the first derivative 
will be positive over part of the cycle, and a limit cycle can result. Equation 
12.38 is rewritten in a form convenient for simulation as 

d 2 x dx dx 
= - - x (12.39)

dtz dt dt 

2Multipliers are required to generate x and form the x 2(dx/dt) product 
necessary for the simulation of Eqn. 12.39. Two techniques for analog 
multiplication were described in Sections 11.5.5 and 12.2.2. Practical multi­
pliers based on these methods are often designed to have an output voltage 
equal to the product of the two input voltages divided by 10 volts for com­
patibility with the dynamic range of most solid-state operational amplifiers. 
Figure 12.14 shows a possible simulation of Eqn. 12.39 assuming that 
multipliers with this scale factor are used. 

Van der Pol's equation is an example of an undriven differential equa­
tion, and excitation is by initial conditions only. While initial conditions 
were not mentioned in our earlier discussion of the simulation of linear 
differential equations, we recognize that we must specify n initial conditions 
in order to determine the complete (homogeneous plus driven) solution of 
an nth-order differential equation. These initial conditions can be set 
simply by establishing the voltages on the integrating capacitors at time 
t = 0, since these voltages are proportional to the values of x and its first 
n - I derivatives. A circuit for setting initial conditions is described in 
Section 12.3.3. 

The value of x as a function of time for Van der Pol's equation with 
y = 0.25 is shown in Fig. 12.15. The initial conditions used for parts a and b 
of this figure are x(0) = 0.5, (dx/dt)(0) = 0 and x(0) = 3, (dx/dt)(0) = 0, 
respectively. We see that in both cases the amplitude of the limit cycle con­
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Figure 12.14 Simulation of Van der Pol's equation. 

verges to a peak-to-peak value of approximately 4. Part c of this figure is a 
plot of dx/dt versus x(t). This representation, in which time is a parameter 

along the curve, is called a phase-plane plot. The responses for both values 

of initial conditions are included. The convergence to equal-amplitude 

limit-cycles for both sets of initial conditions is evident in this figure. 

The formal procedure described here is certainly not the only one which 

results in a correct analog representation of a problem. While it does lead 

to a compact realization, other realizations may maintain better corre­

spondence with the physical system that is being modeled. One popular 

alternative technique involves simply drawing a block diagram for the 

system under study, and then implementing the block diagram on a block­

by-block basis without ever writing down the complete system differential 

equation. While this approach often requires more hardware to complete 

the simulation, it is convenient in that voltages proportional to the actual 

variables of interest in the problem under study are avaliable. Furthermore, 
it is generally possible using this alternative to associate scale factors with 

the parameters of physical elements in the simulated systems on a one-to­

one basis. 
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Figure 12.15-Continued 

12.3.2 Amplitude and Time Scaling 

Practical considerations constrain the amplitude and frequency range 
of the signals that arise in analog computation. We normally prefer maxi­
mum signal levels that are comfortably below amplifier saturation levels, 
but well above noise and offset uncertainties. Similarly, very low-frequency 
signals are difficult to integrate accurately, while the limited gain of an 
operational amplifier at high frequencies compromises accuracy in this 
frequency range. Amplitude scaling and time scaling are used to standardize 
signals to convenient amplitude levels and spectral content. 

Amplitude scaling involves little more than some additional bookkeeping 
effort. Since we are using voltages for all of the dependent variables in our 
simulation, there must be a dimensioned scale factor that relates the ma­
chine variables to the problem variables when the problem variables are 
quantities other than voltages. For example, if x is a displacement in 
meters and some voltage in a simulation represents this variable on a 
1 meter = 1 volt basis, the machine variable should really be labeled 
(1 volt/meter)x rather than simply x as is frequently done. We should realize 
that the number associated with the scale factor can readily be selected 
to be other than unity. Thus we might use lOx as the label for some voltage, 
or, preferably (10 volts/meter)x. If this voltage were 7 volts, the corre­
sponding displacement would be x = (7 volts) (1 meter/ 10 volts) = 0.7 
meter. The appropriate values for scale factors can only be determined with 
a knowledge of approximate problem-variable levels, since the correspond­
ing machine variables should have peak values slightly below the saturation 
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level. Once scale factors have been selected, they are implemented by modi­
fying the gains of amplifiers and integrators from their initially selected 
values. 

Time scaling has advantages beyond those of centering signal-frequency 
components within the range of optimum operational-amplifier perform­
ance. Consider, for example, the simulation of a planetary motion problem 
that may require years of "real time" to complete. Using a faster "machine 
time" scale permits us to obtain the solution in a more reasonable time 
interval. Similarly, the use of a slower than real time scaling procedure 
allows us to display the buildup of charge in the base region of a transistor 
at a rate comfortable for viewing on a display oscilloscope. 

The technique used for time scaling involves the substitution 

t = or (12.40) 

where r is machine time and is equal to real time divided by a scale factor 0. 
A value of a-greater than one implies that the machine solution is faster 
than the actual solution so that one second of real time is represented by a 
shorter period r of machine time. 

This process is illustrated using the form for a differential equation given 
in Eqn. 12.34 and repeated here for convenience. 

dux ux dx 
an dt + an_1 dtx + + a, dt + aox = f(t) (12.34)

dtn dr-1dt 

In order to apply the substitution of Eqn. 12.40, we change f(t) tof(-r) 
and change dmx/dtm to (l/um)(d'x/drm). Thus the time-scaled version of 
Eqn. 12.34 is 

an dax an_1 du'x dxa1 
-. d+x± d + -'lx ±- + aox = f(r) (12.41) 
e-ndr an- 1 dr- o dr 

The equation when simulated will have a solution identical in form to that 
of Eqn. 12.34, but will run a factor of a-faster than the original equation. 

A second way to implement time scaling is to realize that the dynamics 
of the simulation are implemented by means of integrations, and that chang­
ing the scale factor of every integrator in the simulation by some factor 
must change the time scale of the simulation by precisely the same factor. 
Thus problems can be time scaled by first simulating the problem for a 

real-time solution and then dividing the value of every capacitor by a 

factor of a. Alternatively, every resistor used to implement all integrators 
can be reduced in value by a factor of a, or the scale-factor change can be 
apportioned between resistors and capacitors. The net result of any of these 
modifications will be to make the problem on the machine run a factor ofa 
faster than the real-time solution. It is, of course, still necessary to increase 
the speed of driving functions applied to the system by a factor of a if these 
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signals are derived from sources that are not implemented using scaled 
integrators. 

The coefficients of the original differential equation often can be used 
to determine the time scale appropriate to a particular problem. If the 
roots of the characteristic equation have approximately equal magnitudes, 
the natural frequencies of the undriven solution will be the order of 

w - (12.42)(a 
Conversely, if the system is dominated by one pole, the characteristic fre­
quency is the order of 

ao (12.43) 
ai 

The characteristic frequencies given by Eqn. 12.42 or 12.43 can be changed 
to values convenient for display and compatible with operational-amplifier 
performance by appropriate selection of a. 

The element values that occur in a problem simulation often provide 
clear indications of the need to modify amplitude or time scales. If, for 
example, we find that high gain is required at the input of every amplifier 
being supplied with some particular signal, the scale factor of that signal 
is probably too small relative to other amplitude scale factors used. Simi­
larly, if one input resistor to a summing amplifier or an integrator is much 
larger than all other input resistors associated with the amplifier, the 
implication is that the term applied to the input in question contributes 
little to the output of the summer or integrator. In the case of time-scale 
selection, an inappropriate choice is usually reflected by unreasonable 
resistor values, capacitor values, or both associated with integrators. 

The Van der Pol equation simulated earlier (Eqn 12.38) is used as a 
simple example of time and amplitude scaling. For the range of initial 
conditions used previously and with A = 0.25, the maximum magnitudes 
of x and dx/dt are approximately 3 and 3 sec-1, respectively, while the 
maximum magnitude of d 2x/dt2 is slightly greater than 3 sec-2. Accord­

ingly, if 10-volt maximum amplifier outputs are assumed, scale factors of 
3 volts per unit for x and dx/dt, combined with a scale factor of 2 volts 
per unit for d 2x/dt2 are reasonable. If Eqn. 12.39 is rewritten using these 
scale factors, we obtain 

d2
x 2 dx\ 2 dx 2 

2 -= - y(3x)2 3 + - 3- - (3x) (12.44)
dt2 27 \ dt 3 dt 3 

The simulation diagram, again assuming that multipliers with outputs 
equal to the product of the inputs divided by 10 are used, is shown in Fig. 
12.16. It has also been assumed in forming this diagram that a voltage 
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proportional to d2x/dt2 is required. Note that the input signals applied 
to the first amplifier are negatives of the right-hand side of Eqn. 12.44 
because of the inversion associated with this amplifier. The transfer func­
tion of the first integrator is -(3/2s) so that it provides an output of 
-3(dx/dt) when driven with 2(d 2x/dt2). Alternate scaling may be advan­
tageous if different values of y are used to keep the maximum magnitudes 
of the voltages proportional to dx/dt and d 2x/dt2 at optimum levels. 

If a value of RC = 1 second is used, the solution will run at real time, 
and the oscillation frequency will be about one radian per second. Changing 
this product will time scale the solution. For example, the use of RC = 1 ms 
results in limit-cycle oscillation at approximately 1000 radians per second. 

12.3.3 Ancillary Circuits 

There are several interesting circuit configurations that are frequently 
employed in analog computation and that also can be used in other more 
general applications. 

One of these topologies is the three-mode integrator. We have seen that 
it is necessary to apply initial conditions to integrators in order to obtain 
complete (homogeneous plus driven) solutions for simulated differential 

1MG 
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Figure 12.16 Scaled simulation of Van der Pol's equation. 
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equations. Another useful computing mode results if all integrators are 
simultaneously switched to a state where their outputs become time in­
variant and thus hold the values that were present at the switching time. 
The values of problem variables at the switching time can then be deter­
mined accurately with a digital voltmeter. 

The three-mode integrator shown in Fig. 12.17 permits application of 
initial conditions and allows holding an output voltage in addition to 
functioning as an integrator. The reset (or initial condition), operate, and 
hold modes are selected by appropriate choice of switch positions. With 
switch D open and switch o closed, the amplifier closed-loop transfer 
function is 

V0(s) __ 1
 
V(S) RC(12.45)
 
V-(s) R2Cs + 1 

If VA is time invariant in this mode, the capacitor will charge so that the 
output voltage eventually becomes the negative of VA. The capacitor voltage 
can then provide initial conditions for subsequent operations. 

If switch o is closed and switch o is open, the amplifier integrates VB in 
the usual fashion. 

With both switches open, capacitor current is limited to operational-
amplifier input current and capacitor self-leakage; thus capacitor voltage 
is ideally time invariant. 

C 

R|| 

VB 

R2 R2 

VA 

Figure 12.17 Three-mode integrator. 
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The required reset time of the connection shown in Fig. 12.17 can be 
quite long if reasonable values are used for the resistors labeled R2. The 
use of a second operational amplifier connected as a voltage follower and 
supplying a low-resistance drive for the inverting input of the integrator 
can substantially shorten reset times. A practical three-mode integrator 
circuit that incorporates this feature is shown in Fig. 12.18. 

The bipolar-transistor drivers are compatible with T2L logic signals, and 
drive the gate potential of field-effect-transistor switches to ground on 
inputs that exceed two diode forward voltages. With a high level for the 
"operate" signal and the "reset" signal at ground, Q1 is on and Q2 is off. 
This combination puts the circuit in the normal integrating mode. FET Qi 
has a drain-to-source on resistance of approximately 25 ohms, and this 
value is compensated for by reducing the integrating-resistor size by a 

+15V +15V +15V 

10 kE2 

Reseton 
high 

-15 V 

Input to be Q1 2N4391
 
integrated
 

Output 

Initial-condition input 

Figure 12.18 Circuit for three-mode integrator. 
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corresponding amount. Diode D1 does not conduct significant current in 
this state. Diodes D2 and D3 keep the output of the follower within approxi­
mately 0.6 volt of ground. One benefit of this clamping is that the source 
of Q2 cannot become negative enough to initiate conduction with its 
gate at - 15 volts, since the maximum pinchoff voltage of the 2N4391 is 
10 volts. Clamping the follower input level also keeps its signal levels near 
those anticipated during reset thus avoiding long slewing periods when the 
circuit is switched to apply initial conditions. 

With the gate of Q1 at - 15 volts (corresponding to a low level on the 
"operate" control line), diode D1 prevents source potentials that would 
initiate conduction of transistor Q1. If Q2 is on, the output voltage is driven 
toward the negative of the initial-condition input-signal level. The details 
of the transient for a large error depend on diode, FET, and amplifier 
characteristics. As the error signal becomes smaller, the reset loop enters 
its linear operating region. The reader should convince himself that the 
linear-region transmission of the reset loop (assuming ideal operational 
amplifiers) is - l/2rdCs, where rd, is the incremental drain-to-source on 
resistance of the FET. Thus the low FET resistance, rather than R2, deter­
mines linear-region dynamics. 

The hold mode results with both the "operate" and the "reset" signals 
at ground so that both FET's are off. In this state the current supplied to 
the capacitor is determined by FET leakage and amplifier input current. 

One application for this type of circuit in addition to its use in analog 
computation is as a sample-and-hold circuit. In this case the operate switch 
is not needed, and the circuit is switched from sampling the negative of an 
input voltage to hold with Q2. 

Sinusoidal signals are frequently used as test inputs in analog-computer 
simulations. A quadrature oscillator that includes limiting and that is 
easily assembled using components available on most analog computers is 
shown in Fig. 12.19. The diagram implies a simulated differential equation, 
prior to limiting, of 

- 2 C2 d RCdv + v0 (12.46) 
dt2 K dt 

We recognize this equation as a linear, second-order differential equation 
with c = 1/RC and = - 1/2K. The value of K is chosen small enough 

to guarantee oscillation with anticipated capacitor losses and amplifier 
imperfections, thus insuring that signal amplitudes will be determined 
primarily by the diode-resistor networks shown. 

A precisely known voltage reference is required in many simulations to 
apply constant input signals, provide initial-condition voltages, function .as 
a bias level for nonlinearities, or for other purposes. Voltage references are 
also used regularly in a host of applications unrelated to analog simulation. 
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Figure 12.19 Quadrature oscillator with limiting. 
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The circuit shown in Fig. 12.20 is a simple yet highly stable voltage refer­
ence. The operational amplifier is connected for a noninverting gain of 
slightly more than 1.5 so that a 10-volt output results with 6.4 volts applied 
to the noninverting amplifier input. 

With the topology as shown, the voltage across the resistor connected 
from the amplifier output to its noninverting input is constrained by the 
amplifier closed-loop gain to be 0.562 Vz where Vz is the forward voltage 
of the Zener diode. The current through this resister is the bias current ap­
plied to the Zener diode. Zener-diode current is thus established by the 
stable value of the Zener voltage itself. The Zener output resistance does not 
deteriorate voltage regulation since the diode is operated at constant current 
in this connection. The filter following the Zener diode helps to attentuate 
noise fluctuations in its output voltage. 

An emitter follower is included inside the operational-amplifier loop to 
increase output current capacity (current limiting circuitry as discussed in 
Section 8.4 is often a worthwhile precaution) and to lower output imped­
ance, particularly at higher frequencies. While the low-frequency output 
impedance of the circuit would be small even without the follower because 
of feedback, this impedance would increase to the amplifier open-loop 
output impedance at frequencies above crossover. The emitter follower 
reduces open-loop output impedance to improve performance when 
pulsed or high-frequency load-current changes are anticipated. A shunt 
capacitor at the output may also be used to lower high-frequency output 
impedance. (See Section 5.2.2.) 

Start-up diode 

V 
+5 V 
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Temperature ­
compensated 0.562 R1
 
Zener diode
 

Trim to 
-adjust output

voltage 

Figure 12.20 Voltage reference. 
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The bootstrapping used to excite the Zener diode is of course a form of 
positive feedback and would deteriorate performance if the magnitude of 
this feedback approached unity. The low-frequency transmission of the 
positive feedback loop is 

L = 1.562 rd - (12.47)
R + rd 

where rd is the incremental resistance of the Zener diode. This expression 
is evaluated using parameters for a 1N829A, a temperature-compensated 
Zener diode. The diode is designed for an operating current of 7.5 mA, 
and thus R will be approximately 500 Q. The incremental resistance of the 
diode is specified as a maximum of 10 Q. Thus the loop transmission is, 
from Eqn. 12.47, 0.03. This small amount of positive feedback does not 
significantly affect performance. 

The positive feedback can result in the circuit operating with the diode 
in its forward-conducting state rather than its normal reverse-breakdown 
mode. This state, which leads to a negative output of approximately one 
volt, can be eliminated with the start-up diode shown. The start-up diode 
insures that the Zener diode is forced into its reverse region, but does not 
contribute to Zener current under normal operating conditions. 

The expected operational-amplifier imperfections have relatively little 
effect on the overall performance of the reference circuit. A value of 30,000 
for supply-voltage rejection ratio (typical for integrated-circuit amplifiers) 
causes a change in output voltage of approximately 50 AV per volt of 
supply change. (This 33 yV/V sensitivity is amplified by the closed-loop 
gain of 1.5.) The typical input-voltage drift for many inexpensive opera­
tional amplifiers is the order of 5 MV per degree Centigrade. This figure is 
not significant compared to the temperature coefficient of 5 parts per 
million per degree Centigrade or approximately 32 MV per degree Centi­
grade of a high-quality Zener diode such as the 1N829A. 

The designers of the large analog computers that evolved during the 
period from the early 1950s to the mid-1960s often devoted almost fanatical 
effort to achieving high static accuracy in their computing elements. Toward 
this end, operational amplifiers were surrounded with high-precision wire-
wound resistors and capacitors that could be accurately trimmed to desired 
values. These passive components were often placed in temperature-stable 
ovens to eliminate variations with ambient temperature. 

The low-frequency errors (particularly input voltage offset) characteristic 
of vacuum-tube operational amplifiers were largely eliminated by means 
of an imaginative technique known as chopper stabilization.5 This method 

IE. A. Goldberg, "Stabilization of Wide-Band Direct Current Amplifiers for Zero and 
Gain," RCA Review, Vol. II, No. 2, June 1950, pp. 296-300. 



Figure 12.21 Chopper-stabilized amplifier. 
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is still incorporated into some modern operational-amplifier designs, and 
it provides a way of reducing the voltage drift and input current of an 
amplifier to vanishingly small levels. The usual implementation of this 
technique can be viewed as an extreme example of feedforward (see Section 
8.2.2) and thus results in an amplifier that can only be used in inverting 
connections. 

Figure 12.21 illustrates the concept. Assume that the optional network 
is eliminated so that the junction of Zf and Z, is connected directly to the 
inverting input of the top amplifier. The resulting connection clearly func­
tions as an inverting amplifier if the voltage vc is zero. Observe that one 
necessary condition for the amplifier closed-loop gain to be equal to its 
ideal value is that VA = 0. The objective of chopper stabilization is to 
reduce VA to nearly zero by applying an appropriate signal to the non-
inverting input of the top amplifier. 

The d-c component of the voltage VA is determined with a low-pass filter, 
and this component (VB) is "chopped" (converted to a square wave with 
peak-to-peak amplitude VB) using a periodically operated switch. (Early 
designs used vibrating-reed mechanical switches, while more modern units 
often use periodically illuminated photoresistors or field-effect transistors 
as the switch.) The chopped a-c signal can be amplified without offset by 
an a-c amplifier and demodulated to produce a signal yc proportional to 
VB. If the gain of the a-c amplifier is high, the low-frequency gain VC/VA = a0 2 

will be high. If a02 is negative, the signal applied to the positive gain input 
of the top amplifier will be of the correct polarity to drive VA toward zero. 
Arbitrarily small d-c components of VA can theoretically be obtained by 
having a sufficiently high magnitude for a02, although in practice achievable 
offsets are limited by errors such as thermally induced voltages in the switch 
itself. The low-pass filter is necessary to prevent sampling errors that arise if 
signals in excess of half the chopping frequency are applied to the chopper. 

An alternative way to view the operation of a chopper-stabilized amplifier 
is to notice that high-frequency signals pass directly through the top ampli­
fier, while components below the cutoff frequency of the low-pass filter are 
amplified by both the bottom amplifier and the top amplifier in cascade. 
(It is interesting to observe that low-frequency open-loop gain magnitudes 
in excess of 10 have been achieved in this way.) It is therefore not necessary 
to apply low-frequency signals directly to the top amplifier, and a high-
pass filter (shown as the optional network) can be included in series with 
the inverting input of the top amplifier. As a result, both voltage offset and 
input current to the operational amplifier can be reduced by chopper 
stabilization, yielding an amplifier with virtually ideal low-frequency 
characteristics. 

Several manufacturers offer packages that combine discrete-component 
choppers with integrated-circuit amplifiers. More recently, integrated­
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Figure 12.22 Second-order low-pass active filter. 

circuit manufacturers have been able to fabricate complete chopper-
stabilized amplifiers either in monolothic form or by combining several 
monolithic chips to form a hybrid circuit. These circuits incorporate 
topological improvements that permit true differential operation. The large 
capacitors required are connected externally to the package. Drifts of a 
fraction of a microvolt per degree Centigrade, coupled with input currents 
in the picoampere range, are available at surprisingly low cost. 

12.4 ACTIVE FILTERS 
There are numerous applications that require the realization of a particu­

lar transfer function. One of the many limitations of the design of filter 
networks using only passive components is that inductors are required to 
obtain complex pole locations. This restriction is removed if active elements 
are included in the designs, and the resultant activefilterspermit the realiza­

tion of complex poles using only resistors and capacitors in addition to the 
active elements. Further advantages of active-filter synthesis include the 
possibility of a wide range of relative input and output impedances, and the 
use of smaller, less expensive reactive components than is normally possible 
with passive designs. 

There is a fair amount of present research devoted toward improving 
techniques for active-filter synthesis, and the probability is that better de­
signs, particularly with respect to sensitivity (the dependence of the transfer 
function on variations in parameter values), will evolve. This section de­
scribes two presently popular topologies that can be used to realize active 
filters. 

12.4.1 The Sallen and Key Circuit6 

Figure 12.22 shows an active-filter circuit that uses a unity-gain-con­
nected operational amplifier. Node equations for the circuit are easily 

I R. P. Sallen and E. L. Key, "A Practical Method of Designing RC Active Filters," Insti­
tute of Radio Engineers, Transactions on Circuit Theory, March, 1955, pp. 74-85. 
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written by noting that the voltage at the noninverting input of the amplifier 
is equal to the output voltage and are 

G1Vi =(G 1 + G2 + C2s)V. - (G2 + C2 s)Vo (12.48) 

0 = -G 2 V. + (G2 + C1s)V 

Solving for the transfer function yields 

V0(s) 1
V,(S ­CC2S2(12.49) 

Vi(s) R1 R 2C1 C2s
2 + (R 1 + R2 )Cls + 1 

This equation represents a second-order transfer function with standard-
form parameters 

n VR 1R2C1C2 (12.50) 

and 

R1 + R 2 (12.51) 

2VR 1 R 2 C2 

Since only two quantities are required to characterize the second-order 
filter, the four degrees of freedom represented by the four passive-com­
ponent values are redundant. Part of this redundancy is frequently elimi­
nated by choosing R1 = R2 = R. In this case, the standard-form param­
eters become 

on (12.52)
R -\/C1C2 

and 

,= (12.53) 

The addition of another section to the second-order low-pass active filter 
as shown in Fig. 12.23 allows the synthesis of a third-order transfer function 
with a single amplifier. If equal-value resistors are used as shown, the 
transfer function is 

V 0(s) _ _____1________ 
V-(S - I 2S2(12.54) 

C1C2 
2 (C1Vi(s) C3 R's 3 + 2(C 1C3 + C2C3)R2s + + 3C3)Rs + 1 

An nth-order low-pass filter is often designed by combining n/2 second-
order sections in the case of n even, or one third-order section with 
n/2 - 3/2 second-order sections when n is odd. Tables7 that simplify 

I Farouk Al-Nasser, "Tables Speed Design of Low-Pass Active Filters," EDN, March 15, 
1971, pp. 23-32. 
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Figure 12.23 Third-order low-pass active filter. 

element-value selection are available for filters up to the tenth order with 
a number of different pole patterns. 

Interchanging resistors and capacitors as shown in Fig. 12.24 changes 
the second-order low-pass filter to a high-pass filter. The transfer function 
for this configuration is 

2Vo(s) _ R1 R 2C1C 2s

Vi(s) R1R2C1C2s
2 + R2(C1 + C2)s + 1 

If, in a development analogous to that used for the low-pass filter, we 
choose C1 = C2 = C, Eqn. 12.55 reduces to 

V 0(s) s2_____________2 _

V-(S S2 W,2(12.56) 
V1(s) (s2/, 2) + (2 s/o.,) + 1 

where 

I 

CVR1 R 2 
and 

R2 

R 1 

R2 

Cy C2 

7 ++ 

+iR -V 0~-1 

Figure 12.24 Second-order high-pass active filter. 
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The Sallen and Key circuit can be designed with an amplifier gain other 
than unity (see Problem P12.8). This modification allows greater flexibility, 
since the low- or high-frequency gain of the circuit can be made other than 
one. However, the damping ratio of transfer functions realized in this way is 
dependent on the values of resistors that set the closed-loop amplifier gain; 
thus poles may be somewhat less reliably located. A further advantage of 
the unity-gain version is that it may be constructed using the LM 110 inte­
grated circuit (see Section 10.4.4). The bandwidth of this amplifier far 
exceeds that of most general-purpose integrated-circuit units, and corner 
frequencies in the low megahertz range can be obtained using it. 

12.4.2 A General Synthesis Procedure 

The Sallen and Key configuration, together with many other active-
filter topologies, allows-complete freedom in the choice of pole location, 
but does not permit arbitrary placement of transfer-function zeros. The 
application of the analog-computation concepts described in Section 12.3.1 
allows the synthesis of any realizable transfer function that is expressable 
as a ratio of polynomials in s, provided that the number of poles is equal 
to or greater than the number of zeros in the transfer function. 

Consider the transfer function 

V(s) _ b s" + bn_1 s"-1 + -. + b1s + bo (12.57) 
Vi(s) as" + ans" 1 + - + ais + ao 

The first step is to introduce an intermediate variable V(s) such that 
Vj(s)/ Vi(s) contains only the poles of the transfer function, or 

Va(S) 1(12.58)
Vi(s) ans + a._s"--1 + + ais + ao 

Proceeding in a way exactly parallel to the time-domain development of 
Section 12.3.1, we write 

S"Va(S-(s) - -a s V(s) - ao Va(S) + Vi(s) (12.59) 
a, an an a, 

The block-diagram representation of Eqn. 12.59 is shown in Fig. 12.25. 
This block diagram can be readily implemented using summers and inte­
grators. In order to complete the synthesis of our transfer function (Eqn. 
12.57) we recognize that 

V,(s) = Va(s) (b s + bs"--' + - + bis + bo) (12.60) 

The essential feature of Eqn. 12.60 is that it indicates V,(s) is a linear com­
bination of Va(s) and its first n derivatives. Since all of the necessary vari­



Figure 12.25 Block diagram representation of transfer function that contains only poles. 
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ables appear in the block diagram, V,(s) can be generated by simply scaling 
and summing these variables, without the need for differentiation. 

This synthesis procedure is illustrated for an approximation to a pure 
time delay known as the Pad6 approximate. The time delay has a transfer 
function e-1, where r is the length of the delay. The magnitude of this trans­
fer function is one at all frequencies, while its negative phase shift is linearly 
proportional to frequency. The time delay has an essential singularity at the 
origin, and thus cannot be exactly represented as a ratio of polynomials in s. 

The Taylor's series expansion of e- 7 is 

s22 SmnTm 
e- = 1 - sr + - + - - - + (-1)" + - (12.61)

2! M! 

The Pade approximates locate an equal number of poles and zeros so as 
to agree with the maximum possible number of terms of the Taylor's 
series expansion. This approximation always leads to an all-pass network 
that has right-half-plane zeros and left-half-plane poles located symmetrically 
with respect to the imaginary axis. This type of singularity pattern results 
in a frequency-independent magnitude for the transfer function. 

Since we can always frequency or time scale at a later point, we consider 
a unit time delay e- to simplify the development. The first-order Padd 
approximate to this function is 

I - (s/2) s2 s 3 

= 1-s± - +-- + - + (12.62)
1 + (s/2) 2 4 

The expansion for e-" is 

2 5 
s s3 s4 s s6 

e-= 1- s +-- + + - + (12.63)
2 6 24 120 720 

The first-order approximation matches the first two coefficients of s of the 
complete expansion, and is in reasonable agreement with the third coefficient. 
This match is all that can be expected, since only two degrees of freedom 
(the location of the pole and the location of the zero) are available for the 
first-order approximation. The second-order Pad6 approximate to a one-
second time delay is 

1 - (s/2) + (s2/12)
 

1 + (s/2) + (S2/12)
 

s4S2 s 
3 s5 

-s+ + - - - - ---+ (12.64)
2 6 24 144 
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Figure 12.26 Singularity locations for second-order Pade approximate to one-

second time delay. 

As expected, the first four time-delay coefficients of s are matched by the 

approximation. The s-plane plot for P 2(s) is shown in Fig. 12.26. Simple 

vector manipulations confirm the fact that the magnitude of this function 

is one at all frequencies. 
The phase shift of the approximating function is (from Eqn. 12.64) 

4 P2(jo) = 2 4 1 - + (I] 2 tan- 1 
2 [1 - C2/12)] (12.65) 

This function is compared with an angle of - 57.3cr (the value for a one-

second time delay) in Fig. 12.27. We note excellent agreement to frequencies 

of approximately 2 radians per second implying that the approximation 

represents the actual function well for sinusoidal excitation to this fre­

quency, with increasing discrepancy at higher frequencies. The error re­

flects the fact that the maximum negative phase shift of the Pad6 approxi­

mate is 360', while the time delay provides unlimited negative phase shift 

at sufficiently high frequency. 

Synthesis is initiated by defining an intermediate variable Va(s) in accord­

ance with Eqns. 12.58 and 12.59, or 

V-(s) -1 (12.66)
V,(s) (s2/12) + (s/2) + 1 

and 

S2 
Va(S) = -- 6sVa(s) - 12 V,(s) + 12Vi(s) (12.67) 
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Figure 12.27 Comparison of time delay and Pad6 approximate phase characteristics. 

The output voltage is 

S2 s 
V0(s) - V(S) - - Va(S) + Va(S) (12.68)

12 2 

The operational-amplifier synthesis shown in Fig. 12.28 provides the 
required transfer function if RC = 1 second. The reader should convince 
himself that the liberties taken with inversions and various resistor values 
do in fact lead to the desired relationship. 

Anticipated amplitudes depend on the input-signal level and its spectral 
content. For example, if a step is applied to the input of the circuit, the 
magnitude of the signal out of the first amplifier must initially be 12 times 
as large as the step amplitude, since the outputs of the integrators cannot 
change instantaneously to subtract from the input-signal level. Note, how­
ever, that the input-to-output transfer function of the circuit remains the 
same for any values of R1 = R2. If, for example, 10-V step changes are 
expected at the input, selection of R1 = R2 = 120 kQ will limit the signal 
level at the output of the first amplifier to 10 volts while maintaining the 
correct input-to-output gain. 

The circuit shown in Fig. 12.28 was constructed using R = 100 kQ and 
C = 0.01 MF, values resulting in an approximation to a 1-ms time delay. 
This choice of time scale is convenient for oscilloscope presentation. The 
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Figure 12.28 Synthesis of second-order Pade approximate to a time delay. 



200 mV

I 
T 

(a) 1 ms 

200 mV 

(b) 1 Ms 

Figure 12.29 Input and output signals for second-order Padd approximate to a 
1-ms time delay. (a) Sine-wave excitation. (b) Triangular-wave excitation. (c) Square-
wave excitation. 
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Figure 12.29-Continued 

input and output signals for 100-Hz sine-wave excitation are shown in Fig. 
12.29a. The time delay between these two signals is 1 ms to within instru­
mentation tolerances. This performance reflects the prediction of Fig. 12.27, 
since good agreement to 2000 rad/sec or 300 Hz is anticipated for the ap­
proximation to a 1-ms delay. 

Input and output signals for 100-Hz triangular-wave excitation are com­
pared in Fig. 12.29b. The triangular wave contains only odd harmonics, and 
these harmonics fall off as the square of their frequency. Thus the amplitude 
of the third harmonic of the triangular wave is approximately 11 % of the 
amplitude of the fundamental, the amplitude of the fifth harmonic is 4% of 
the fundamental, while higher harmonics are further attentuated. We notice 
that the circuit does very well in approximating a 1-ms time delay most of 
the time. The aberration that results immediately following a change in 
slope reflects the inability of the circuit to provide proper phase shift to 
the higher-frequency components. 

The performance of the circuit when excited with an 100-Hz square wave 
is shown in Fig. 12.29c. The relatively poorer behavior in the vicinity of a 
transition in this case results from the higher harmonic content of the square 
wave. (Recall that the square wave contains odd harmonics that fall off 
only as the first power of the frequency.) 
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12.5 FURTHER EXAMPLES 

It was mentioned in the introduction to Chapter 11 that the objective of 

the application portion of this book was to illustrate concepts for design 

rather than to provide specific, detailed examples in the usually futile 

hope that the reader could apply them directly to his own problems. 

Successful design almost always involves combining bits and pieces, a 

concept here, a topology there, to ultimately arrive at the optimum solution. 

In this section we will see how some of the ideas introduced earlier are 

combined into relatively more sophisticated configurations. The three 

examples that are presented are all "real world" in that they reflect actual 

requirements that the author has encountered recently in his own work. 

12.5.1 A Frequency-Independent Phase Shifter 

There are a number of operational-amplifier connections, such as the 

approximation to a time delay described in the previous section, that have 

a transfer-function magnitude independent of frequency combined with 

specified phase characteristics. The phase shifter shown in Fig. 12.30 is 

another example of this type of circuit. We recognize this circuit as a differ­

ential-amplifier connection, and thus realize that its transfer function is 

V__s = 2RCsRs-1V0(s) = _2RC - 1 = RCs -1 (12.69) 
Vi(s) RCs + 1 RCs + 1 

This transfer function (which is the negative of a first-order Pade approxi­

mate to a time delay of 2RC seconds) produces a phase shift that varies from 

- 1800 at low frequencies to 0' at high frequencies. If a potentiometer or a 

field-effect transistor is used for R, the phase shift can be manually or 

electronically varied. 

R1 

R1 

+ c 
RVi n 

Figure 12.30 Adjustable phase shifter. 
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Figure 12.31 Constant phase shifter using a phase detector. 

One technique for converting resolver8 signals to digital form requires 
that a fixed 900 phase shift be applied to a sinusoidal signal with no change 
in its amplitude. The frequency of the signal to be phase shifted may change 
by a few percent. Unfortunately, there are no finite-polynomial linear 
transfer functions that combine frequency-independent magnitude charac­
teristics with a constant 900 phase shift. While approximating functions do 
exist over restricted frequency ranges, the arc-minute phase-shift constancy 
required in this application precluded the use of such functions. We note 
that since a very specific class of input signals (single-frequency sinusoids) 
is to be applied to the phase shifter, linearity may not be a necessary con­
straint. Nonlinear circuits, in spite of our inability to analyze them syste­
matically, often have very interesting properties. 

Consider the configuration shown diagrammatically in Fig. 12.31 as a 
possible solution to our problem. In this circuit, an all-pass phase shifter 
with a voltage-variable amount of phase shift is the central element. The 
circuit shown in Fig. 12.30 with a field-effect transistor used for the resistor 
R can perform this function. The multiplier is used as a phase detector. If 
the magnitude of the phase shift between the input and output signals is 
less than 900, the average value of the multiplier output will be positive, 
while if this magnitude is between 90' and 1800, the average multiplier out­
put signal will be negative. The integrator, which provides the control 

8 A resolver is basically a transformer with a primary-to-secondary coupling that can be 
varied by mechanically changing the relative alignment of these windings. This device is 
used as a rugged and highly accurate mechanical-angle transducer. 



538 Advanced Applications 

voltage for the FET in the phase shifter, filters the second harmonic that 
results from the multiplication and supplies the loop gain necessary to keep 
the average value of the multiplier output at zero, thus forcing a 900 phase 
shift between input and output signals. Although the circuit described 
above can result in moderate accuracy, a detailed investigation indicated 
that meeting the required specifications probably was not practical with 
this topology. 

It is worth noting that while the basic approach described above was not 
used in this case, it is a valuable technique that has a number of interesting 
and useful variations. For example, the phase shift of a second-order high-
or low-pass active filter is ±90' when excited at its corner frequency. 
Tracking filters can be realized by replacing the fixed resistors in an active 
filter with voltage-controlled resistors and using a phase comparison to 
locate the corner frequency of the filter at its excitation frequency. 

In some applications, other types of phase detectors are used. One possi­
bility involves high-gain limiters that produce square waves with zero cross­
ing synchronized to those of the sine waves of interest. The duty cycle of an 
exclusive OR gate operating on the square waves indicates the relative phase 
of the original signals. 

The previous circuit combined an all-pass network that provides a 
transfer-function magnitude that is independent of frequency with feedback 
which forces 90* of phase shift at the operating frequency. An alternative 
approach is to combine a network that provides 90' of phase shift at all 
frequencies (an integrator) with feedback that forces its gain magnitude to 
be one at the operating frequency. 

The circuit that evolved to implement the above concept is shown in only 
slightly simplified form in Fig. 12.32. The signal integrator provides the 
required 90' of phase shift. Its scale factor is adjusted by means of the field-
effect transistor so that a gain magnitude of one is provided at frequencies 
close to the nominal operating value of 400 Hz. Half of the drain-to-source 
voltage of the field-effect transistor is applied to its gate to linearize the 
drain-to-source resistance as described in Section 12.1.4. The unity-gain 
buffer amplifier prevents current flowing through the FET-gate network from 
being integrated. The capacitor in series with the signal-integrator input re­
sistor and the resistor shunting the integrating capacitor are required to keep 
this integrator from saturating as a consequence of input voltage offset and 
bias current. While they change the ideal phase shift by a total of approxi­
mately eight arc minutes, this value is trimmed out along with other phase-
shift errors with a network (not shown) following the integrator. 

The two full-wave precision-rectifier connections combine with the loop-
gain integrator to provide an average current into the capacitor of this 



0.039 yF 

Input 
(400 Hz) 

37.5 kS2 

U' 

Figure 12.32 Precision phase shifter with amplitude control. 



540 Advanced Applications 

integrator that is proportional to the difference between the magnitudes of 

the input and output signals. If, for example, the output-signal magnitude 

exceeds the input-signal magnitude, the voltage out of the loop-gain inte­

grator is driven negative. This action increases the incremental resistance 

of the FET, thus decreasing the signal-integrator scale factor and lowering 

the magnitude of the output signal. The inputs to the precision rectifiers are 

a-c coupled so that d-c components of these signals do not influence the 

rectifier output signals. A two-pole low-pass filter follows the loop-gain 

integrator to further filter harmonics that would degrade signal-integrator 

performance. 
The maximum positive output level of the loop-gain integrator is clamped 

via an internal node to a maximum output level of zero volts in order to 

eliminate a latch-up mode. If this voltage became positive, the FET would 

conduct gate current, and this current could cause the signal-integrator 

output to saturate. As a result, the a-c component of the signal-integrator 

output would be eliminated, and the loop, in an attempt to restore equi­

librium, would drive the output of the loop-gain integrator further positive. 

The diode clamp prevents initiation of this unfortunate chain of events. 

The circuit shown in Fig. 12.32 has been built and tested at operating 

frequencies between 395 and 405 Hz over the temperature range of 00 to 

50* Centigrade. (The feedback also eliminates the effects of signal-integrator 

component-value changes with temperature.) The input- and output-signal 
amplitudes remain equal within I mV peak-to-peak at any input-signal 

level up to 20 volts peak-to-peak. The phase shift of the circuit with a 20­

volt peak-to-peak input remains constant within one arc minute. While the 

actual phase shift is not precisely 90*, the constant component of the phase 

error can be trimmed out as described earlier. 

12.5.2 A Sine-Wave Shaper 

We have discussed certain aspects of a function-generator circuit that 

combines an integrator and a Schmitt trigger to produce square and triangle 

waves in Sections 6.3.3 and 12.2.1. Commercial versions of this circuit 

usually also provide a sine-wave output that is synthesized by the seemingly 

improbable .method of shaping the triangle wave with a piecewise-linear 

network. This technique is practical because of the ease of generating 

variable-frequency triangular waves, and because the use of relatively few 

segments in the shaping network gives surprisingly good sine-wave fidelity. 

Part of the design problem is to determine how the characteristics of the 

shaping network should be chosen to best approximate a sine wave. The 

parameters that define the network are shown in Fig. 12.33. A total of n 

break points are located over the input-variable range of 00 to 90'. The 
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Figure 12.33 Piecewise-linear network characteristics. 

slope of the input-output transfer relationship is KSm between 0 = 0m and 

o = 6m+1. The multiplying constant K reflects the fact that only relative 
slopes are important, since a multiplicative change in all slopes changes 
only the magnitude of the input-output transfer characteristics. The sym­

metry of the transfer characteristics about the origin insures that the output 
signal will have no d-c component and will contain no even harmonics when 
a zero-average-value triangular signal is used as the input. 

The network specification involves the choice of n values of 0 (the break­
point locations) and n + 1 relative slopes. It can be shown that if the O's 

are selected such that 

m 1800 
Om = M 80 0 < M < n7 (12.70)

2n + 1 ­

and slopes selected as
 

Sm = sin 0m+1 - sin Om 0 < m < n (12.71a) 

Sm= 0 m = n (12.71b) 

the first n odd harmonics will be eliminated from the output signal. 

The decision to use four break points in the realization of the sine shaper 
was based on two considerations. With this number of break points, out­
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put distortion resulting from imprecise break-point locations and slope 
values is comparable to the distortion associated with the piecewise-linear 
approximation unless expensive components are used to establish these 
parameters. Furthermore, an inexpensive integrated-circuit five-diode array 
is available. This matched-diode array can be used for the four break points, 
with the fifth diode providing temperature compensation as described in 
material to follow. Equations 12.70 and 12.71 evaluated for n - 4 suggest 
break points located at input-variable values of 20', 400, 60', and 800, with 
relative segment slopes (normalized to a minimum nonzero slope of one) 
of 2.879, 2.532, 1.879, 1, and 0, respectively. 

With the transfer characteristics of the shaping network determined, it 
is necessary to design the circuit that synthesizes the required function. The 
discussion of Section 11.5.3 mentioned the use of superdiode connections 
to improve the sharpness of break points compared to that which can be 
achieved with diodes alone. This technique was not used for the sine 
shaper, since the rounding associated with the normal diode forward 
characteristics actually improves the quality of the fit to the sine curve. 

The compressive type nonlinearities described in Section 11.5.3 were 
realized using diodes to increase the feedback around an operational 
amplifier, thus reducing its incremental closed-loop gain when a break­
point level was exceeded. An alternative is to use diodes to decrease the 
drive signal applied to the amplifier to lower incremental gain. This ap­
proach simplifies temperature compensation. The topology used is shown 
in Fig. 12.34. 

The input-signal level of 20 volts peak-to-peak corresponds to the input 
variable range of z90* shown in Fig. 12.33. Thus the break-point loca­
tions of L20, ±40, -60*, and L800 correspond to input-voltage levels 
of ±2.22 volts, ±4.44 volts, ±6.67 volts, and ±-+.89 volts, respectively. 
Resistor values are determined as follows. It is initially assumed that the 
diodes are ideal, in that they have a threshold voltage of zero volts, zero 
resistance in the forward direction, and zero conductance in the reverse 
direction. Assume that the R1-R2 path is to provide the break points at 
input voltages of ± 8.89 volts. Since the inverting input of the operational 
amplifier is at ground potential, the resistor ratio necessary to make the 
voltage at the midpoint of these two resistors ± 1.5 volts with ± 8.89 volts 
at the input is 

R21.5 
R2 1 .5 = 0.1687 (12.72)

R1 + R2 8.89 

The ratios of resistor pairs R3-R 4, R5-R6, and RrRs are chosen in a similar 
way to locate the remaining break points. 
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Figure 12.34 Simplified sine-wave shaper. 
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The relative conductances of the resistive paths between the triangular-
wave signal source and the inverting input of the operational amplifier are 
constrained by the relative slopes of the desired transfer characteristics as 
follows. The closed-loop incremental gain of the connection is proportional 
to the incremental transfer conductance from the signal source to the 
current iA defined in Fig. 12.34. With the ratio of the two resistors in each 
path chosen in accordance with relationships like Eqn. 12.72, the incre­
mental transfer conductance is zero (for ideal diodes) when the input-
signal magnitude exceeds 8.89 volts, increases to 1/(R1 + R 2) for input-
signal magnitudes between 6.67 and 8.89 volts,, increases further to 
[1/(R 1 + R 2)] + [1/(R 3 + R 4)] for input-signal magnitudes between 4.44 
and 6.67 volts, etc. If we define 1/(R1 + R2 ) = G, realizing the correct 
relative slope for input-signal magnitudes between 4.44 and 6.67 volts re­
quires 

1 1 
' 2 = 1.S79G (12.73)R, +R 2 R 3 -+FR 4 

The satisfaction of Eqn. 12.73 makes the slope in this input signal range 
1.879 times as large as the slope for input signals between 6.67 and 8.89 
volts. Corresponding relationships couple other resistor-pair values to the 
R1 -R 2 pair. 

The sets of equations that parallel Eqns. 12.72 and 12.73, together with 
the selection of any one resistor value, determine reistors R1 through R 8 . 
The general resistance level set by choosing the one free resistor value is 
selected based on loading considerations and to insure that stray capacitance 
does not deteriorate dynamic performance. 

The circuit used for the sine shaper (Fig. 12.35) uses the standard 1"7o­
tolerance resistor values that best approximate calculated values. The five 
diodes labeled A and those labeled B are from two CA3039 integrated-
circuit diode arrays. One member of each array modifies the bias voltages 
to account for the diode threshold voltages and to provide temperature 
compensation. The compensating diodes are operated at a current level of 
approximately half the maximum operating current level of the shaping 
diodes. While this type of compensation clearly has no effect on the con­
ductance characteristics of the shaping diodes, the exponential diode charac­
teristics actually improve the performance of the circuit as described earlier. 

Since this circuit is intended to operate to 1 MHz (a high-speed integrated-
circuit operational amplifier with a discrete-component buffer to increase 
output-current capacity is used), capacitors are necessary at the output of 
the reference-voltage amplifiers to lower their output impedance at the 
switching frequency of the diodes. The 1.5-V levels are derived from the 
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Figure 12.35 Sine-wave shaper. 
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200 Ts 

Figure 12.36 Output from sine-wave shaper. 

voltages that establish triangle-wave amplitude so that any changes in this 

amplitude cause corresponding break-point location changes. 

The circuit produces approximate sine waves with the amplitude of any 
individual harmonic in the output signal at least 40 dB (a voltage ratio of 
100:1) below the fundamental. This performance is obtained with no 
trimming. If adjustments are made to null the offset of the operational 

.amplifier, and empirical adjustments (guided by a spectrum analyzer) are 

used to counteract component-value errors and to compensate for finite 
diode forward resistance, the amplitude of individual output-signal 
harmonics can be reduced to 55 dB below the fundamental at low frequen­
cies. Performance deteriorates somewhat at frequencies above approxi­

mately 10 kHz because of reduced signal-amplifier open-loop gain. 

A 1-kHz output signal from the circuit is shown in Fig. 12.36. 

12.5.3 A Nonlinear Three-Port Network 

The realization of a device analog that may be of value in teaching the 
dynamic behavior of bipolar transistors requires a three-port network 
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Figure 12.37 Three-port network. 

defined by Fig. 12.37. The synthesis of this network is initiated by first 

designing a circuit that provides the relationship 

VN = VB - V0 exp [(VB- VE) (12.74) 

The parameter Vo, as we might expect, is related to the quantity Is for the 

transistor being simulated, and consequently a corresponding temperature 

dependence is desirable. 
There are a number of ways to simulate Eqn. 12.74. One topology that 

is adaptable to further requirements is shown in Fig. 12.38. Since an even­

tual constraint is that the current at the VB input be zero, a buffer amplifier 

is used at this terminal. The second amplifier is differentially connected 

with an output voltage. 

VA = 2VE - VB (12.75) 

The third amplifier is also connected as a differential amplifier, so that 

VN = VE - (iT + iA)R (12.76) 

Since feedback keeps the inverting input terminal of the third amplifier at 

potential VE, 

A A - VE VE -B (1.77)
R R 
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Figure 12.38 Synthesis of exponential relationship. 
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If we assume the usual transistor characteristics, 

ir Is jexp [(VB- 1i (12.78) 

Substituting Eqns. 12.77 and 12.78 into Eqn. 12.76 yields the form re­
quired by Eqn. 12.75: 

VN = VB - RIs exp VE)] -(VB- (12.79) 

In order to complete the synthesis, it is necessary to sample the current 
flowing at terminal N and make the current flowing at terminal E the nega­
tive of this current. A modification of the Howland current source (see 
Section 11.4.3) can be used. The basic circuit with differential inputs is 
shown in Fig. 12.39a. (The reason for the seemingly strange input-voltage 
connection and the split resistor will become apparent momentarily.) The 
current io for these parameter values is 

22 
(VA - vc) (VA - VA - vr) -2vr 

o - (12.80)
R R R 

In Fig. 12.39b, the voltage source vr and half of the split resistor are re­
placed with a Norton-equivalent circuit. For equivalence, it is necessary 
to make ir = 2vr/R. Expressing Eqn. 12.80 in terms of ir shows 

io = -i (12.81) 

The topology of Fig. 12.39b shows that the iT current source can be re­
turned to ground rather than to voltage source VA. This modification is 
shown in Fig. 12.39c, the current-controlled current source necessary in 
our present application. Note that the output is independent of VA, the 
common-mode input voltage applied to the current source. 

The circuits of Figs. 12.38 and 12.39c are combined to form the three-
port network as shown in Fig. 12.40. In this circuit, the feedback for the 
voltage vN is taken from the output side of the current-sampling resistor so 
that voltage drops in this resistor do not influence vN. It is necessary to 
buffer the 100-kQ feedback resistor with a unity-gain follower to insure that 
current through this resistor does not flow through the current-sampling 
resistor and thus alter iE. 

The trim potentiometer allows precise matching of resistor ratios to 
make current iE independent of common-mode voltage levels at various 
points in the current source and thus dependent only on iN. In this applica­
tion, it was not necessary to have exactly unity gain between iN and - iE, 
so no trim is included for this ratio. The general magnitude of the resistors 
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Figure 12.39 Current-controlled current source. (a) Basic Howland current source. 
(b) Current source following Norton substitution. (c) Final configuration. 
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Figure 12.40 Complete nonlinear three-port network. 

in the current source is chosen for compatibility with required current 
levels and amplifier characteristics and is not important for purposes of 
this discussion. 

PROBLEMS 

P12.1 
Consider a Wien-Bridge oscillator as shown in Fig. 12.1. Show that if 

the output signal is of the general form vo = E sin [(t/RC) + 0] where 0 
is a constant, the signals applied to the two inputs of the operational ampli­
fier are virtually identical, a necessary condition for satisfactory perform­
ance. Note that if the inverting and noninverting inputs are interchanged 
and it is assumed that the output has the form indicated above, the signals 
at the two inputs will also be identical. However, this modified topology 
will not function as an oscillator. Explain. 

P12.2 
A Wien-Bridge oscillator is constructed using the basic topology shown 

in Fig. 12.1. Because of component tolerances, the time constants of the 
series and parallel arms of the frequency-dependent feedback network 
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differ by 5 %. How must component values in the frequency-independent 
feedback path be related to guarantee oscillation? 

P12.3 
Use a describing-function approach to analyze the circuit shown in Fig. 

12.3, assuming that the operational amplifier is ideal and that the diodes 
have zero conductance until a forward voltage of 0.6 volt is reached and 
zero resistance in the forward-conducting state. In particular, determine the 
magnitude of the signal applied to the noninverting input of the amplifier 
and the third-harmonic distortion present at the amplifier output. 

P12.4 
A sinusoidal oscillator is constructed by connecting the output of a 

double integrator (see Fig. 11.12) to its input. Show that amplitude can be 
controlled by varying the magnitude of the (R/2)-valued resistor shown in 
this figure. Design a complete circuit that can produce a 20-V peak-to-peak 
output signal at 1 kHz. Use a FET with parameters given in Section 12.1.4 
for the control element. Analyze your amplitude-control loop to show that 
it has acceptable stability and a crossover frequency compatible with the 
1-kHz frequency of oscillation. If you have confidence in your design, 
build it. The 2N4416 field-effect transistor is reasonably well characterized 
by the parameters referred to above. 

P12.5 
The discussions of Sections 12.2.2 and 12.2.3 suggest operating electronic 

switches connected to symmetrical, variable voltages from the output of a 

t
 
+v F 

VI­

_VF 

Figure 12.41 Infinite-gain limiter. 
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Schmitt trigger for two different applications. An alternative to the use of 

switches is to use a circuit that has the transfer characteristic shown in 

Fig. 12.41 for the necessary shaping function. (In this diagram, the voltage 

VF is a positive variable.) Design a circuit that uses operational amplifiers 

to synthesize this transfer characteristic. Your output levels should be 

insensitive to temperature variations. 

P12.6 

A magnetic-suspension system was described in Section 6.2.3. Develop 

an electronic analog simulation of this system that permits determination 

of the transients that result from disturbing forces applied to the ball. 

Assume that, in addition to operational amplifiers and appropriate passive 

components, multipliers with a scale factor vo = vxvy 10 volts are available. 

A way to perform the division required in this simulation using a multi­

plier and an operational amplifier is outlined in Section 6.2.2. 
You may leave the various element values in the simulation defined in 

terms of system parameters, without developing final amplitude-scaled 
values. 

P12.7 

A circuit intended for use as a precision voltage reference for an analog-

to-digital converter is shown in Fig. 12.42. The circuit uses a fraction of the 

Zener-diode voltage as its output. While this method involving resistive 

attenuation results in relatively high output resistance compared with using 

the voltage at the output of the amplifier as the reference, the output 

voltage becomes essentially independent of operational-amplifier offset 
voltage. 

R1 

1N4779A- + 

9 k2 

Figure 12.42 Voltage reference. 
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Ri 

Figure 12.43 Low-pass Sallen and Key circuit with voltage gain. 

The specified breakdown voltage of the 1N4779A is 8.5 volts 5% . The 
indicated resistor is selected during testing to obtain the required output 
voltage independent of the actual value of the Zener-diode voltage. 

The breakdowh voltage range and the temperature coefficient of the 
device are guaranteed at an operating current of 0.500 mA. By proper 
choice of R1 and R 2, it is possible to make the current through the Zener 
diode independent of the actual Zener voltage after the single indicated 
selection has been completed. Such a choice is advantageous since it sim­
plifies circuit calibration as opposed to methods that require two or more 

interdependent adjustments to set output voltage and Zener-diode operat­
ing current. Find values for R1 and R 2 that result in this simplification. 
(Please excuse the somewhat unwieldy numbers involved in this problem, 
but it is drawn directly from an existing application.) 

P12.8 
A Sallen and Key low-pass circuit with an amplifier closed-loop voltage 

gain greater than unity is shown in Fig. 12.43. Determine the transfer 
function V 0(s)/Vi(s) for this circuit. Compare the sensitivity of this circuit 
to component variations with that of the unity-gain version. 

P12.9 

One way to analyze the Sallen and Key circuit shown in Fig. 12.43 is to 

recognize the configuration as a positive-feedback circuit. If the loop is 

broken at the noninverting input to the operational amplifier, analysis 

techniques based on loop-transmission properties can be used. 

(a) 	 Indicate the loop-transmission singularity pattern that results when the 

loop is broken at the point mentioned above. It is not necessary to 
determine singularity locations exactly in terms of element values. 
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(b) 	 Show how the closed-loop poles of the system move as a function of 
the closed-loop gain of the operational amplifier by using root-locus 
methods that have been appropriately modified for positive feedback 
systems. 

P12.10 
Design a sixth-order Butterworth filter with a 1 kHz corner frequency 

by cascading three unity-gain Sallen and Key circuits. 

P12.11 
The fifth-order Pad6 approximate to a one-second time delay is 

1 - 0.5s + 0.111s 2 
- 1.39 X 10-2 s3 

+ 9.92 X 10- 4s4 - 3.31 X 10- 5s5 

1 + 0.5s + 0.111s2 - 1.39 X 10- 2s3 

+ 9.92 X 10- 4s4 + 3.31 X 10- 5s 

Design an active filter that synthesizes this transfer function. 

P12.12 
Develop a linearized block-diagram for the system shown in Fig. 12.32, 

assuming that the FET is characterized by the parameters given in Section 
12.1.4. Show that the loop crossover frequency is low compared to 400 Hz 
for any input-voltage level up to 20 volts peak-to-peak. Estimate the time 
required for the system to restore equilibrium following an incremental 
perturbation (initiated, for example, by a change in input frequency) when 
the input-signal amplitude is 100 mV peak-to-peak. Note that the system 
is not significantly disturbed by a change in input amplitude when operating 
under equilibrium conditions, and that therefore this relatively long settling 
time does not deteriorate performance. 
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