
CHAPTER VI 

NONLINEAR SYSTEMS
 

6.1 INTRODUCTION 

The techniques discussed up to this point have all been developed for 
the analysis of linear systems. While the computational advantages of the 
assumption of linearity are legion, this assumption is often unrealistic, 
since virtually all physical systems are nonlinear when examined in suffi­
cient detail. In addition to systems where the nonlinearity represents an 
undesired effect, there are many systems that are intentionally designed 
for or to exploit nonlinear performance characteristics. 

Analytic difficulties arise because most'of the methods we have learned 
are dependent on the principle of superposition, and nonlinear systems 
violate this condition. Time-domain methods such as convolution and fre­
quency-domain methods based on transforms usually cannot be applied 
directly to nonlinear systems. Similarly, the blocks in a nonlinear block 
diagram cannot be shuffled with impunity. The absolute stability question 
may no longer have a binary answer, since nonlinear systems can be stable 
for certain classes of inputs and unstable for others. 

The difficulty of effectively handling nonlinear differential equations is 
evidenced by the fact that the few equations we know how to solve are often 
named for the solvers. While considerable present and past research has 
been devoted to this area, it is clear that much work remains to be done. 
For many nonlinear systems the only methods that yield useful results in­
volve experimental evaluation or machine computation. 

This chapter describes two methods that can be used to determine the 
response or stability of certain types of nonlinear systems. The methods, 
while certainly not suited to the analysis of general nonlinear systems, are 
relatively easy to apply to many physical systems. Since they represent 
straightforward extensions of previously studied linear techniques, the in­
sight characteristic of linear-system analysis is often retained. 

6.2 LINEARIZATION 

One direct and powerful method for the analysis of nonlinear systems 
involves approximation of the actual system by a linear one. If the approxi­

209 



210 Nonlinear Systems 

mating system is correctly chosen, it accurately predicts the behavior of the 
actual system over some restricted range of signal levels. 

This technique of linearization based on a tangent approximation to a 
nonlinear relationship is familiar to electrical engineers, since it is used to 
model many electronic devices. For example, the bipolar transistor is a 
highly nonlinear element. In order to develop a linear-region model such 
as the hybrid-pi model to predict the circuit behavior of this device, the 
relationships between base-to-emitter voltage and collector and base cur­
rent are linearized. Similarly, if the dynamic performance of the transistor 
is of interest, linearized capacitances that relate incremental changes in 
stored charge to incremental changes in terminal voltages are included in 
the model. 

6.2.1 The Approximating Function 

The tangent approximation is based on the use of a Taylor's series esti­
mation of the function of interest. In general, it is assumed that the output 
variable of an element is a function of N input variables 

vo = F(v 11, v12 , . . . , VIN) 	 (6.1) 

The output variable is expressed for small variation vi,, Vi 2 , ... , viN about 
input-variable operating points V11, Vr 2 , . . . , VIN by noting that 

VO = Vo + v. = F(V1 1 , V 1 2, VIN) 

N VO 
+ 	 I Vii 

(=VIj Vn1,V 12,...,VIN 

1 N g2 
+ E vikVil --. + (6.2)

aVka V11, V2!k,= I VI1 1 2,..VIN 

(Recall that the variable and subscript notation used indicates that vo is a 
total variable, Vo is its operating-point value, and v0 its incremental com­
ponent.) 

The expansion of Eqn. 6.2 is valid at any operating point where the 
derivatives exist. 

Since the various derivatives are assumed bounded, the function can be 
adequately approximated by the first-order terms over some restricted 
range of inputs. Thus 

VO + vo - F(V1 1, V1 2, . . . , VIN) i (.3 
j-i a VIj VI, V12, VIN 
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Figure 6.1 Linearized block diagram. 

The constant terms in Eqn. 6.3 are substracted out, leaving 

N~VO vij (6.4) 
j-i 0 V1 I V11, V12,- VIN 

Equation 6.4 can be used to develop linear-system equations that relate 
incremental rather than total variables and that approximate the incre­
mental behavior of the actual system over some restricted range of opera­

tion. A block diagram of the relationships implied by Eqn. 6.4 is shown in 

Fig. 6.1. 

6.2.2 Analysis of an Analog Divider 

Certain types of signal-processing operations require that the ratio of 

two analog variables be determined, and this function can be performed 

by a divider. Division is frequently accomplished by applying feedback 
around an analog multiplier, and several commercially available multi­

pliers can be converted to dividers by making appropriate jumpered con­

nections to the output amplifier included in these units. A possible divider 

connection of this type is shown in Fig. 6.2a. 

The multiplier scale factor shown in this figure is commonly used since 

it provides a full-scale output of 10 volts for two 10-volt input signals. It 
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is assumed that the multiplying element itself has no dynamics and thus 
the speed of response of the system is determined by the operational 
amplifier. 

The ideal relationship between input and output variables can easily be 
determined using the virtual-ground method. If the current at the inverting 
input of the amplifier is small and if the magnitude of the loop transmission 
is high enough so that the voltage at this terminal is negligible, the circuit 

relationships are 

VA+ VD 0 (6.5) 

and 

VD 
VBVC

=-(6*6)
10 

VBVO 

10 

Solving Eqns. 6.5 and 6.6 for vo in terms of VA and VB yields 

o 	 = OVA (6.7) 
VB 

System dynamics are determined by linearizing the multiplying-element 
characteristics. Applying Eqn. 6.3 to the variables of Eqn. 6.6 shows that 

VC 68VD+Vd B VBVc VCVb 
10 	 10 10 

The incremental portion of this equation is 

VBVc 	 VCVb 
vd - + 	 (6.9)

10 	 10 

This relationship combined with other circuit constraints (assuming the 

operational amplifier has infinite input impedance and zero output im­

pedance) is used to develop the incremental block diagram shown in Fig. 
6.2b. 

The incremental dependence of V on V,, assuming that VB is constant, 

is 
V0(s) _ - a(s)/2 (6.10) 
Va(s) 1 + VBa(s)120 

If the operational-amplifier transfer function is approximately single pole 

so that 

a(s) ao 	 (6.11) 
rS + 1 
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and ao is very large, Eqn. 6.10 reduces to 

V/0(s) -10/'VBV"S) - 0' (6.12)
V0(s) (20r Vaao)s + I 

Several features are evident from this transfer function. First, if VB is 
negative, the system is unstable. Second, the incremental step response of 
the system is first order, with a time constant of 2

0r VBao seconds. These 
features indicate two of the many ways that nonlinearities can affect the 
performance of a system. The stability of the circuit depends on an input-
signal level. Furthermore, if VB is positive, the transient response of the 
circuit becomes faster with increasing VB, since the loop transmission de­
pends on the value of this input. 

6.2.3 A Magnetic-Suspension System 

An electromechanical system that provides a second example of linear­
ized analysis is illustrated in Fig. 6.3. The purpose of the system is to sus­
pend an iron ball in the field of an electromagnet. Only vertical motion of 
the ball is considered. 

In order to suspend the ball it is necessary to cancel the downward gravi­
tational force on the ball with an upward force produced by the magnet. 
It is clear that stabilization with constant current is impossible, since while 
a value of XB for which there is no net force on the ball exists, a small 
deviation from this position changes the magnetic force in such a way as 
to accelerate the ball further from equilibrium. This effect can be cancelled 
by appropriately controlling the magnet current as a function of measured 
ball position. 

For certain geometries and with appropriate choice of the reference 
position for XB, the magnetic force fM exerted on the ball in an upward 
direction is 

f = Ci2 
fl 2 (6.13) 

XB 

where C is a constant. 
Assuming incremental changes Xb and im about operating-point values 

XB and IM, respectively, 

CI2CIM
fM=FMfm -- 2 2 m -CI3 Xb 

B Bi 

+ higher-order terms (6.14) 
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Figure 6.3 Magnetic-suspension system. 

The equation of motion of the ball is 

Md'xB 
(6.15)

dt2 - fi= Mg 

where g is the acceleration of gravity. Equilibrium or operating-point 
values are selected so that 

Mg -	 (6.16) 
X'B 

When we combine Eqns. 6.14 and 6.15 and assume operation about the 
equilibrium point, the linearized relationship among incremental variables 
becomes 

M d2xb 2CI 2CI . 
(6.17)

dt2 - X3 x=- - XB . 

Equation 6.17 is transformed and rearranged as 

s2 Xb(s) s + s XB 
-- 1 1 - IM Im(s) (6.18)

2 - Xb(s) = Xb(s) 

where k2 = 2C4m/ MXB. 
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1, (s) 

Figure 6.4 Linearized block diagram for system of Fig. 6.3. 

Feedback is applied to the system by making im a linear function of Xb, or 

Im(s) = a(s)Xb(s) (6.19) 

Equations 6.18 and 6.19 are used to draw the linearized block diagram 
shown in Fig. 6.4. [The input If,(s) is used as a test input later in the 
analysis.] 

The loop transmission for this system 

a(s) XB 

L(s) = - (6.20) 

+1) - ) 

contains a pole in the right-half plane that reflects the fact that the system 

is unstable in the absence of feedback. A naive attempt at stabilization for 

this type of system involves cancellation of the right-half-plane pole with 

a zero of a(s). While such cancellation works when the singularities in 

question are in the left-half plane, it is doomed to failure in this case. 

Although the pole could seemingly be removed from the loop transmission 

by this method,' consider the closed-loop transfer function that relates Xb 
to a disturbance Ij. 

I Component tolerances preclude exact cancellation in any but a mathematical system. 
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If a(s) is selected as a'(s)(s/k - 1), this transfer function is 

- XB Ji 

Xb(s) (s/k + 1)(s/k - 1) 
(6.21)

I'(s) a'(s) XB IM 
I+s/k + I 

Equation 6.21 contains a right-half-plane pole implying exponentially grow­
ing responses for Xb even though this growth is not observed as a change 
in i,. 

A satisfactory method for compensating the system can be determined 
by considering the root-locus diagrams shown in Fig. 6.5. Figure 6.5a is 
the diagram for frequency-independent feedback with a(s) = ao. As ao is 
increased, the two poles come together and branch out along the imaginary 
axis. This diagram shows that it is possible to remove the closed-loop pole 
from the right-half plane if ao is appropriately chosen. However, the poles 
cannot be moved into the left-half plane, and thus the system exhibits un­
dampened oscillatory responses. The system can be stabilized by including 
a lead transfer function in a(s). It is possible to move all closed-loop poles 
to the left-half plane for any lead-network parameters coupled with a suf­
ficiently high value of ao. Figure 6.5b illustrates the root trajectories for 
one possible choice of lead-network singularities. 

6.3 DESCRIBING FUNCTIONS 

Describing functions provide a method for the analysis of nonlinear sys­
tems that is closely related to the linear-system techniques involving Bode 
or gain-phase plots. It is possible to use this type of analysis to determine 
if limit cycles (constant-amplitude periodic oscillations) are possible for a 
given system. It is also possible to use describing functions to predict the 
response of certain nonlinear systems to purely sinusoidal excitation, al­
though this topic is not covered here.2 Unfortunately, since the frequency 
response and transient response of nonlinear systems are not directly re­
lated, the determination of transient response is not possible via describing 
functions. 

6.3.1 The Derivation of the Describing Function 

A describing function describes the behavior of a nonlinear element for 
purely sinusoidal excitation. Thus the input signal applied to the nonlinear 

2 G. J. Thaler and M. P. Pastel, Analysis and Design of Nonlinear Feedback Control 

Systems, McGraw-Hill, New York, 1962. 
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Figure 6.5 Root-locus diagrams for magnetic-suspension system. (a) Uncom­
pensated. (b) With lead compensation. 

element to determine its describing function is 

vr = E sin wt (6.22) 

If the nonlinearity does not rectify the input (produce a d-c output) and 
does not introduce subharmonics, the output of the nonlinear element can 
be expanded in a Fourier series of the form 

vo = A1(E, w) cos wt + B 1(E, co) sin wt + A 2(E, o) cos 2 wt 

+ B2(E, o) sin 2wt + - + (6.23) 
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The describing function for the nonlinear element is defined as 

IVA2(E, ) + B2(E, t) A1(E, c)
GD(E, ) 4 tan-B 1 (E, ) (6.24) 

The describing-function characterization of a nonlinear element parallels 
the transfer-function characterization of a linear element. If the transfer 
function of a linear element is evaluated for s = jo, the magnitude of re­
sulting function of a complex variable is the ratio of the amplitudes of the 
output and input signals when the element is excited with a sinusoid at a fre­
quency co. Similarly, the angle of the function is the phase angle between 
the output and input signals under sinusoidal steady-state conditions. For 
linear elements these quantities must be independent of the amplitude of 
excitation. 

The describing function indicates the relative amplitude and phase angle 
of thefundamentalcomponent of the output of a nonlinear element when the 
element is excited with a sinusoid. In contrast to the case with linear ele­
ments, these quantities can be dependent on the amplitude as well as the 
frequency of the excitation. 

Two examples illustrate the derivation of the describing function for 
nonlinear elements. Figure 6.6 shows the transfer characteristics of a satu­
rating nonlinearity together with input and output waveforms for sinusoidal 
excitation. Since the transfer characteristics for this element are not de­
pendent on the dynamics of the input signal, it is clear that the describing 
function must be frequency independent. 

If the input amplitude E is less than EM, 

0 = Kyr (6.25) 

In this case, 

GD = K 4 0 E < E (6.26) 

For E > E, the output signal over the interval 0< at< r is 

vo = K 0 < wt < a or r - a < wt < r (6.27a) 

vo = KEu1 a < wt < r - a (6.27b) 

where 

a = sin-1 
E 
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Figure 6.6 Relationships for a saturating nonlinearity. (a) Transfer characteristics 
for saturating element. (b) Input and output waveforms for sinusoidal excitation. 

The coefficients A1 and B 1 are in this case, 

A1 - KE sin wt coswt dt + - KE. cos wt dt 

+ J KE sin wt cos wt dwt = 0 (6.28) 

2r ra2­

B1 = fKE sins cot dcot + - KE sin cot dwt 

2 i 
+ - KE sin 2 wt dwt 

2KEF~. 1 EM EM 
- sn- + E 1 - ( ) (6.29) 

7r _ E E 7
Using Eqn. 6.24, we obtain 

GD(E) = K 4 0' E < EAI (6.30a) 

2K n 
GD(E) = .~ (sin'IR + R \f -- K) 4 0 E > EM (6.30b) 

where R = EM/E. 

The transfer characteristics of an element with hysteresis, such as a 
Schmitt trigger or a relay, are shown in Fig. 6.7a. The memory associated 
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Figure 6.6-Continued 

with this type of element produces a phase shift between the fundamental 
component of the output and the input sinusoid applied to it as shown in 
Fig. 6.7b. It is necessary for the peak amplitude of the input signal to ex­
ceed Em in order to have the output signal other than a constant. 

Several features of the output signal permit writing the describing func­
tion for this element. The relevant relationships include the following. 
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Figure 6.7 Relationships for an element with hysteresis. (a) Transfer characteristics. 
(b) Input and output waveforms for sinusoidal excitation. 
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(a) While there is phase shift between the input signal and the funda­
mental component of the output, neither the amount of this phase shift 
nor the amplitude of the output signal are dependent on the excitation 
frequency. 

(b) The amplitude of the fundamental component of a square wave 
with a peak amplitude EN is 4 EN7r. 

(c) The relative phase shift between the input signal and the fundamental 
component of the output is sin- 1 (EM/E), with the output lagging the 
input. 

Table 6.1 Describing Functions 

Nonlinearity Describing Function
 
Input = v, = E sin cor (All are frequency independent.)
 

GD(E) = K 4 00 E < EMI 
Slope= K GDE) (sin-R + RV1 - R 2) 400, 

E > EM 

where R Em 
E 

V1 
GD(E) = 4EN 4 0* 

;b 

EN 

Gn(E) = 0 4 0' E EM 

GD(E) = K [1 - 2sin-' R + RVR--R) 4 00, 

E > EM 

= Emwhere R 
E 
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Table 6.1-Continued 

Nonlinearity Describing Function 
Input = v, = E sin wt (All are frequency independent.) 

t GD(E) = 0 4 0' E < EmV
0 

EM GD(E) -
4EN 

-1 - R2 2 0* E > Em7rE 
EN 

= Emwhere R 
E 

E must exceed EM or a d-c term results. 

4EN 1
GD(E)= E2 -sin- R

7rE 

= Emwhere R 
E 

Combining these relationships shows that 

GD(E) = 4EN -sin- 1 Em E > Em (6.31)
irE E 

GD(E) undefined otherwise 

Table 6.1 lists the describing functions for several common nonlineari­
ties. Since the transfer characteristics shown are all independent of the 
frequency of the input signal, the corresponding describing functions are 
dependent only on input-signal amplitude. While this restriction is not 
necessary to use describing-function techniques, the complexity associated 
with describing-function analysis of systems that include frequency-de­
pendent nonlinearities often limits its usefulness. 

The linearity of the Fourier series can be exploited to determine the de­
scribing function of certain nonlinearities from the known describing func­
tions of other elements. Consider, for example, the soft-saturation charac­
teristics shown in Fig. 6.8a. The input-output characteristics for this ele­
ment can be duplicated by combining two tabulated elements as shown in 
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Figure 6.8 Soft saturation as a combination of two nonlinearities. (a) Transfer 
characteristics. (b) Decomposition into two nonlinearities. 
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Fig. 6.8b. Since the fundamental component of the output of the system of 
Fig. 6.8b is the sum of the fundamental components from the two non­
linearities 

GD(E) =K 1 4 00 E < EM (6.32a) 

GD(E) = 2K sin-IR + R V11--R2 

+ K 2 - 2K2 sin-1R + R /-R2) 0 

= LK2 + (K1 2) (sin-R + R - 0 (6.32b) 

for E > EM, where R = sin-1 (E 1 /E). 

6.3.2 Stability Analysis with the Aid of Describing Functions 

Describing functions are most frequently used to determine if limit 
cycles (stable-amplitude periodic oscillations) are possible for a given sys­
tem, and to determine the amplitudes of various signals when these oscil­
lations are present. 

Describing-function analysis is simplified if the system can be arranged 
in a form similar to that shown in Fig. 6.9. The inverting block is included 
to represent the inversion conventionally indicated at the summing point 
in a negative-feedback system. Since the intent of the analysis is to examine 
the possibility of steady-state oscillations, system input and output points 
are irrevelant. The important feature of the topology shown in Fig. 6.9 is 

Nonlinear element 

Figure 6.9 System arranged for describing-function analysis. 
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that a single nonlinear element appears in a loop with a single linear ele­
ment. The linear element shown can of course represent the reduction of a 
complex interconnection of linear elements in the original system to a single 
transfer function. The techniques described in Sections 2.4.2 and 2.4.3 are 
often useful for these reductions. 

The system shown in Fig. 6.10 illustrates a type of manipulation that 
simplifies the use of describing functions in certain cases. A limiter con­
sisting of back-to-back Zener diodes is included in a circuit that also con­
tains an amplifier and a resistor-capacitor network. The Zener limiter is 
assumed to have the piecewise-linear characteristics shown in Fig. 6.10b. 

The describing function for the nonlinear network that includes R 1, R 2, 
C, and the limiter could be calculated by assuming a sinusoidal signal for 

and finding the amplitude and relative phase angle of the fundamental 
component of VA. The resulting describing function would be frequency 
VB 

Amplifier with zero input 

R, conductance and output 
resistance 

A VA b(S) = a(s) VB 

(a) 

Vz A 

(b) 

Figure 6.10 Nonlinear system. (a) Circuit. (b) Zener-limiter characteristics. 



VA 

(a) 

(b) 

Figure 6.11 Modeling system of Fig. 6.10 as a single loop. (a) Block-diagram 
representation of nonlinear network. (b) Block diagram representation of complete 
system. (c) Reduced to form of Fig. 6.9. 
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+Vz 

a(s) (R1.11 R2)Cs + 1 

R, R,\\1 R2 

(c) 

Figure 6.11-Continued 

dependent. A more satisfactory representation results if the value of the 
Zener current iA is determined as a function of the voltage applied to the 
network. 

i - VB VA -C dvA (6.33)
R 1 R 1[0R 2 dt 

The Zener limiter forces the additional constraints 

VA = +-Vz iA > 0 (6.34a) 

VA = -Vz iA < 0 (6.34b) 

Equations 6.33 and 6.34 imply that the block diagram shown in Fig. 
6.1la can be used to relate the variables in the nonlinear network. The 
pleasing feature of this representation is that the remaining nonlinearity 
can be characterized by a frequency-independent describing function. 
Figure 6.11b illustrates the block diagram that results when the network 
is combined with the amplifier. The two linear paths in this diagram are 
combined in Fig. 6.1 c, which is the form suggested for analysis. 

Once a system has been reduced to the form shown in Fig. 6.9, it can be 
analyzed by means of describing functions. The describing-function ap­
proximation states that oscillations may be possible if particular values of 
Ei and coi exist such that 

a(joi)GD(Ei,w i) = - 1 (6.35a) 
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or
 
-l1
 

a(jwi) = (6.35b)GD(E1, wi) 

The satisfaction of Eqn. 6.35 does not guarantee that the system in 
question will oscillate. It is possible that a system satisfying Eqn. 6.35 will 
be stable for a range of signal levels and must be triggered into oscillation 
by, for example, exceeding a particular signal level at the input to the non­
linear element. A second possibility is that the equality of Eqn. 6.35 does 
not describe a stable-amplitude oscillation. In this case, if it is assumed that 
the system is oscillating with parameter values given in Eqn. 6.35, a small 
amplitude perturbation is divergent and leads to either an increasing or a 
decreasing amplitude. As we shall see, the method can be used to resolve 
these questions. The describing-function analysis also predicts that if stable-
amplitude oscillations exist, the frequency of the oscillations will be Wi 
and the amplitude of the fundamental component of the signal applied to 
the nonlinearity will be E1. 

The above discussion shows how closely the describing-function stability 
analysis of nonlinear systems parallels the Nyquist or Bode-plot analysis 
of linear systems. In particular, oscillations are predicted for linear systems 
at frequencies where the loop transmission is -- 1, while describing-function 
analysis indicates possible oscillations for amplitude-frequency combina­
tions that produce the nonlinear-system equivalent of unity loop trans­
mission. 

The basic approximation of describing-function analysis is now evident. 
It is assumed that under conditions of steady-state oscillation, the input to 
the nonlinear element consists of a single-frequency sinusoid. While this 
assumption is certainly not exactly satisfied because the nonlinear element 
generates harmonics that propagate around the loop, it is often a useful 
approximation for two reasons. First, many nonlinearities generate har­
monics with amplitudes that are small compared to the fundamental. 
Second, since many linear elements in feedback systems are low-pass in 
nature, the harmonics in the signal returned to the nonlinear element are 
often attenuated to a greater degree than the fundamental by the linear 
elements. The second reason indicates a better approximation for higher-
order low-pass systems. 

The existence of the relationship indicated in Eqn. 6.35 is often deter­
mined graphically. The transfer function of the linear element is plotted in 
gain-phase form. The function - 1/GD(E, w) is also plotted on the same 
graph. If GD is frequency independent, - l/GD(E) is a single curve with E 
a parameter along the curve. The necessary condition for oscillation is 
satisfied if an intersection of the two curves exists. The frequency can be 
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determined from the a(jo) curve, while amplitude of the fundamental com­
ponent of the signal into the nonlinearity is determined from the - 1/GD(E) 
curve. If the nonlinearity is frequency dependent, a family of curves 
- 1/GD(E, Wi), -1/GD(E, W2), .. . , is plotted. The oscillation condition 
is satisfied if the -1/GD(E, cot) curve intersects the a(jw) curve at the point 
a(joi). 

The satisfaction of Eqn. 6.35 is a necessary though not sufficient condi­
tion for a limit cycle to exist. It is also necessary to insure that the oscilla­
tion predicted by the intersection is stable in amplitude. In order to test 
for amplitude stability, it is assumed that the amplitude E increases slightly, 
and the point corresponding to the perturbed value of E is found on the 
- 1/GD(E, co)curve. If this point lies to the left of the a(jo) curve, the geom­
etry implies that the system poles 3 lie in the left-half plane for an increased 
value of E, tending to restore the amplitude to its original value. Alterna­
tively, if the perturbed point lies to the right of the a(jw) curve, a growing-
amplitude oscillation results from the perturbation and a limit cycle with 
parameters predicted by the intersection is not possible. These relationships 
can be verified by applying the Nyquist stability test to the loop transmis­
sion, which includes the linear transfer function and the describing function 
of interest. 

It should be noted that the stability of arbitrarily complex nonlinear sys­
tems that combine a multiplicity of nonlinear elements in a loop with linear 
elements can, at least in theory, be determined using describing functions. 
For example, numerous Nyquist plots corresponding to the nonlinear loop 
transmissions for a variety of signal amplitudes might be constructed to 
determine if the possibility for instability exists. Unfortunately, the effort 
required to complete this type of analysis is generally prohibitive. 

6.3.3 Examples 

Since describing-function analysis predicts the existence of stable-ampli­
tude limit cycles, it is particularly useful for the investigation of oscillators, 
and for this reason the two examples in this section involve oscillator cir­
cuits. 

The discussion of Section 4.2.2 showed that it is possible to produce 
sinusoidal oscillations by applying negative feedback around a phase-shift 
network with three identically located real-axis poles. If the magnitude of 
the low-frequency loop transmission is exactly 8, the system closed-loop 

3The concept of a pole is strictly valid only for a linear system. Once we apply the 
describing-function approximation (which is a particular kind of linearization about an 
operating point defined by a signal amplitude), we take the same liberty with the definition 
of a pole as we do with systems that have been linearized by other methods. 
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Figure 6.12 Phase-shift oscillator with limiting. 

poles are on the imaginary axis and, thus, resultant oscillations are stable 

in amplitude. It is possible to control the magnitude of the loop transmission 

precisely by means of an auxiliary feedback loop that measures the ampli­

tude of the oscillation and adjusts loop transmission to regulate this ampli­

tude. This approach to amplitude control is discussed in Section 12.1.4. 

An alternative and simpler approach that is often used is illustrated in 
Fig. 6.12. The loop transmission of the system for small signal levels is 

made large enough (in this case 10) to insure growing-amplitude oscillations 

if signal levels are such that the limiter remains linear. As the peak amplitude 

of the signal VA increases beyond one, the limiter reduces the magnitude of the 

loop transmission (in a describing-function sense) so as to stabilize the 

amplitude of the oscillations. 
The describing function for the limiter in Fig. 6.12 is (see Table 6.1) 

GD(E) = 1 4 00 E < 1 (6.36a) 

GD(E) = 2(sin-1 - + - - -2) 400 E > 1 (6.36b) 
7r E E E2 

This function decreases monotonically as E increases beyond one. Thus 

the quantity - 1/GD(E) increases monotonically for E greater than one 

and has an angle of - 1800. The general behavior of - 1/GD(E) and the 

transfer function of the linear portion of the oscillator circuit are sketched 

on the gain-phase plane of Fig. 6.13. 
The intersection shown is seen to represent a stable-amplitude oscilla­

tion when the test proposed in the last section is used. An increase in E 
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Figure 6.13 Describing-function analysis of the phase-shift oscillator. 

from the value at the intersection moves the - 1/GD(E) point to the left 
of the a(jw) curve. The physical significance of the rule is as follows. As­
sume the system is oscillating with the value of E necessary to make 
GD(E) a(j V3) = - 1. An incremental increase in the value of E decreases 
the magnitude of GD(E) and thus decreases the loop transmission below 
the value necessary to maintain a constant-amplitude oscillation. The 
amplitude decreases until E is restored to its original value. Similarly, an 
incremental decrease in E leads to a growing-amplitude oscillation until E 
reaches its equilibrium value. 

The magnitude of E under steady-state conditions can be determined 
directly from Eqn. 6.36. The magnitude of a(jo) at the frequency where its 
phase shift if - 1800, (w = V), is 1.25. Thus oscillations occur with 
GD(E) = 0.8. Solving Eqn. 6.36 for the required value of E by trial and 
error results in E ~_1.45, and this value corresponds to the amplitude of 
the fundamental component of VA. 

The validity of the describing-function assumption concerning the purity 
of the signal at the input of the nonlinear element is easily demonstrated 
for this example. If a sinusoid is applied to the limiter, only odd harmonics 
are present in its output signal, and the amplitudes of higher harmonics 
decrease monotonically. The usual Fourier-series calculations show that 
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the ratio of the magnitude of the third harmonic to that of the fundamental 
at the output of the limiter is 0.14 for a 1.45-volt peak-amplitude sinusoid 

as the limiter input. The linear elements attenuate the third harmonic of 

a V radian-per-second sinusoid by a factor of 18 greater than the funda­
mental. Thus the ratio of third harmonic to fundamental is approximately 
0.008 at the input to the nonlinear element. The amplitudes of higher 
harmonics are insignificant since their magnitudes at the limiter output are 

smaller and since they are attenuated to a greater extent by the linear ele­

ment. As a matter of practical interest, the attenuation provided by the 

phase-shift network to harmonics is the reason that good design practice 
dictates the use of the signal out of the phase-shift network rather than that 
from the limiter as the oscillator output signal. 

Figure 6.14a shows another oscillator configuration that is used as a 

second example of describing-function analysis. This circuit, which com­

bines a Schmitt trigger and an integrator, is a simplified representation of 

that used in several commercially available function generators. It can be 

shown by direct evaluation that the signal at the input to the nonlinear 

element is a two-volt peak-to-peak triangle wave with a four-second period 

and that the signal at the output of the nonlinear element is a two-volt 

peak-to-peak square wave at the same frequency. Zero crossings of these 

two signals are displaced by one second as shown in Fig. 6.14b. The ratio 

of the third harmonic to the fundamental at the input to the nonlinear ele­
ment is 1/9, a considerably higher value than in the previous example. 

Table 6.1 shows that the describing function for this nonlinearity is 

4 1 
GD(E) = -sin-' E > 1 (6.37)

rE E 

The quantity - 1 GD(E) and the transfer function for the linear element are 

plotted in gain-phase form in Fig. 6.15. The intersection occurs for a value 

of E that results in the maximum phase lag of 90' from the nonlinear ele­

ment. The parameters predicted for the stable-amplitude limit cycle im­

plied by this intersection are a peak-to-peak amplitude for vA of two volts 

and a period of oscillation of approximately five seconds. The correspond­

ence between these parameters and those of the exact solution is excellent 

considering the actual nature of the signals involved. 

6.3.4 Conditional Stability 

The system shown in block-diagram form in Fig. 6.16 combines a satu­

rating nonlinearity with linear elements. The negative of the loop trans­
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Figure 6.14 Function generator. (a) Configuration. (b) Waveforms. 

mission for this system, assuming that the amplitude of the signal at VA is 
less than 10- volts so that the nonlinearity provides a gain of 10, is deter­
mined by breaking the loop at the inverting block, yielding 

-L(s) = 105a(s) = 	5 X 105(0.02s + 1)2 (6.38)
(s + 1)3(10- 3s + 1)2 
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Figure 6.15 Describing-function analysis of the function generator. 

A Nyquist diagram for this function is shown in Fig. 6.17. The plot re­
veals a phase margin of 40* combined with a gain margin of 10, implying 
moderately well-damped performance. The plot also shows that if the mag­
nitude of the low-frequency loop transmission is lowered by a factor of 
between 8 and 6 X 104, the system becomes unstable. Systems having the 
property that a decrease in the magnitude of the low-frequency loop trans­
mission from its design-center value converts them from stable to unstable 
performance are called conditionallystable systems. 

The nonlinearity can produce the decrease in gain that results in insta­
bility. The system shown in Fig. 6.16 is stable for sufficiently small values 
of the signal VA. If the amplitude of VA becomes large enough, possibly be­
cause of an externally applied input (not shown in the diagram) or because 
of the transient that may accompany the turn-on, the system may start to 
oscillate because the describing-function gain decreases. 

The common characteristic of conditionally stable systems is a phase 
curve that drops below - 1800 over some range of frequencies and then 
recovers so that positive phase margin exists at crossover. These phase 
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Figure 6.16 Conditionally stable system. 

characteristics can result when the amplitude falls off more rapidly than 
1/o 2 over a range of frequencies below crossover. The high-order rolloff 
is used in some systems since it combines large loop transmissions at 
moderate frequencies with a limited crossover frequency. For example, the 
transfer function 

5 X 105 
-L'(s) 5X1 -(6.39)

(2.5 X 103s + 1)(10- 3s + 1)2 

has the same low-frequency gain and unity-gain frequency as does Eqn. 6.38. 
However, the desensitivity associated with Eqn. 6.38 exceeds that of 6.39 at 
frequencies between 4 X 104 radians per second and 50 radians per second 
because of the high-order rolloff associated with Eqn. 6.38. The gain 
advantage reaches a maximum of approximately 10 at one radian per 
second. This higher gain results in significantly greater desensitivity for 
the loop transmission of Eqn. 6.38 over a wide range of frequencies. 

Quantitative information about the performance of the system shown in 
Fig. 6.16 can be obtained using describing-function analysis. The describing-
function for the nonlinearity for E > 10-5 is 

2 X 105 10-5 10-5 10-1 
GD(E)- (sin-i - + 1 -- E2) 400 (6.40) 

where E is the amplitude of the (assumed sinusoidal) signal VA. The quan­
tities - 1/GD(E) and a(jo) are plotted in gain-phase form in Fig. 6.18, and 
two intersections are evident. The intersection at co 50 radians per sec­
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= 5 x 11 30 

Figure 6.17 Nyquist diagram of conditionally stable system. 

ond, E ~_ 10-4 volt does not represent a stable limit cycle. If the system is 

assumed to be oscillating with these parameters, an incremental decrease 
in the amplitude of the signal VA leads to a further decrease in amplitude 

and the system returns to stable operation. This result follows from the 

rule mentioned in Section 6.3.2. In this case, a decrease in E causes the 

- 1/GD(E) curve to lie to the left of the a(jw) curve, and thus the system 

poles move from the imaginary axis to the left-half plane as a consequence 



239 Describing Functions 

10 

a(jw) 

E = 1 
= 1.8 

. = 5 
10-1 

Ila (jw) and GD(E) 

10- 2 
( = 10 

GD(E) 

w = 20 

10-4 

o 	 = 100 
= 200 

-270' -225'	 135* -90* -45' 0 

= 500 4 a(jw) and 4 [- 1 

-6 

=2 x 103 / 

Figure 6.18 Describing function analysis of conditionally stable system. 

of the perturbation. The same conclusion is reached if we consider the 
Nyquist plot for the system when the amplitude of VA is 10-4 volt. The 
gain attenuation of the limiter then shifts the curve of Fig. 6.17 downward 
so that the point corresponding to co = 50 radians per second intersects 
the - 1 point. An incremental decrease in E moves the curve upward 
slightly, and the resulting Nyquist diagram is that of a stable system. 
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Similar reasoning shows that a small increase in amplitude at the lower 
intersection leads to further increases in amplitude. Following this type of 
perturbation, the system eventually achieves the stable-amplitude limit cycle 
implied by the upper intersection with w - 1.8 radians per second and 
E - 0.73 volt. (The reader should convince himself that the upper inter­
section satisfies the conditions for a stable-amplitude limit cycle.) 

It should be noted that the concept of conditionally stable behavior aids 
in understanding the large-signal performance of systems for which the 
phase shift approaches but does not exceed ­ 1800 well below crossover, 
and then recovers to a more reasonable value at crossover. While these 
systems can exhibit excellent performance for signal levels that constrain 
operation to the linear region, performance generally deteriorates dra­
matically when some element in the loop saturates. For example, the 
recovery of this type of system following a large-amplitude step may 
include a number of large-signal overshoots, even if the small-signal step 
response of the system is approximately first order. 

Although a detailed analysis of such behavior is beyond the scope of 
this book, examples of the large-signal performance of systems that 
approach conditional stability are included in Chapter 13. 

6.3.5 Nonlinear Compensation 

As we might suspect, the techniques for compensating nonlinear systems 
using either linear or nonlinear compensating networks are not particu­
larly well understood. The method of choice is frequently critically depend­
ent on exact details of the linear and nonlinear elements included in the 
loop. In some cases, describing-function analysis is useful for indicating 
compensation approaches, since systems with greater separation between 
the a(jo) and - 1/GD(E) curves are generally relatively more stable. This 
section outlines one specific method for the compensation of nonlinear 
systems. 

As mentioned earlier, fast-rolloff loop transmissions are used because 
of the large magnitudes they can yield at intermediate frequencies. Unfor­
tunately, if the phase shift of this type of loop transmission falls below 
- 1800 at a frequency where its magnitude exceeds one, conditional sta­
bility can result. Nonlinear compensation can be used to eliminate the pos­
sibility of oscillations in certain systems with this type of loop transmission. 

As one example, consider a system with a linear-region loop transmission 

200 
-L(s) = 20(6.41)

(s + 1)(10- 3s + 1)2 

This loop transmission has a monotonically decreasing phase shift as a 
function of increasing frequency, and exhibits a phase margin of approxi­
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mately 650. Consequently, unconditional stability is assured even when 
some element in the loop saturates. 

In an attempt to improve the desensitivity of the system, series compen­
sation consisting of gain and two lag transfer functions might be added to 
the loop transmission of Eqn. 6.41, leading to the modified loop trans­
mission 

200 2.5 X 103(0.02s + 1)2 (6.42) 
(s -+ 1)(10- 3 s + )2_] (s + 1)2 j 

This loop transmission is of course the one used to illustrate the possibility 
of conditional stability (Eqn. 6.38). 

Consider the effect of implementing one or both of the lag transfer func­
tions with a network of the type shown in Fig. 6.19. If the magnitude of 
voltage yc is less than VB, the diodes do not conduct and the transfer function 
of the network is 

V6(s) R 2Cs + 1 
Vi(s) (R 1 + R 2)Cs + 1 

Element values can be selected to yield the lag parameters included in 
Eqn. 6.42. 

The bias voltage VB is chosen so that when the signal applied to the 
network is that which exists when the loop oscillates, the diodes clip the 
capacitor voltage during most of the cycle. Under these conditions, the 
gain of the nonlinear network (in a describing-function sense) is 

vo * R2 (6.44) 
or R1 + R2 

R 
+ 

V0 C 

+ VB 

VI R2 

++ 

Figure 6.19 Nonlinear compensating network. 
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Note that if both lag transfer functions are realized this way, the loop 
transmission can be made to automatically convert from that given by 
Eqn. 6.42 to that of Eqn. 6.41 under conditions of impending instability. 
This type of compensation can eliminate the possibility of conditionally 
stable performance in certain systems. The signal levels that cause satura­
tion also remove the lag functions, and thus the possibility of instability 
can be eliminated. 

PROBLEMS 

P6.1 
One of the difficulties involved in analyzing nonlinear systems is that 

the order of nonlinear elements in a block diagram is important. Demon­
strate this relationship by comparing the transfer characteristics that result 
when the two nonlinear elements shown in Fig. 6.20 are used in the order 

'o 

-1 1 

- -1 

(a) 

t 
V 

0 

Slope = +1 

Slope = +1 

(b) 

Figure 6.20 Nonlinear elements. (a) Limiter. (b)Deadzone. 
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00E 	 OE 

Resolver pair 

Figure 6.21 Positional servomechanism. 

ab with the transfer characteristics that result when the order is changed 
to ba. 

P6.2 
Resolvers are essentially variable transformers that can be used as 

mechanical-angle transducers. When two of these devices are used in a 
servomechanism, the voltage obtained from the pair is a sinusoidal function 
of the difference between the input and output angles of the system. A 
model for a servomechanism using resolvers is shown in Fig. 6.21. 
(a) 	 The voltage applied to the amplifier-motor combination is zero for 

Oo - 0r = nir, where n is any integer. Use linearized analysis to deter­
mine which of these equilibrium points are stable. 

(b) 	The system is driven at a constant input velocity of 7 radians per sec­
ond. What is the steady-state error between the output and input for 
this excitation? 

R 

VO C,_I 

VI 

VB 	 VA 

Figure 6.22 Square-rooting circuit. 
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(c) 	 The input rate is charged from 7 to 7.1 radians per second in zero time. 
Find the corresponding output-angle transient. 

P6.3 
An analog divider was described in Section 6.2.2. Assume that the trans­

fer function of the operational amplifier shown in Fig. 6.2 is 

3 X 101 
+ 1)2(s + 1)(10-Is 

Is the divider stable over the range of inputs - 10 < VA < + 10, 0 < VB < 

+10? 
A square-rooting circuit using a technique similar to that of the divider 

is shown in Fig. 6.22. What is the ideal input-output relationship for this 
circuit? Determine the range of input voltages for which the square-rooter 
is stable, assuming a(s) is as given above. 

P6.4 
Figure 6.23 defines variables that can be used to describe the motion of 

an inverted pendulum. Determine a transfer function that relates the angle 
0 to the position XB, which is valid for small values of 6. Hint. You may find 
that a relatively easy way to obtain the required transfer function is to use 
the two simultaneous equations (or the corresponding block diagram) 
which relate XT to 6 and 6 to XB and XT. 

Assume that you are able to drive XT as a function of 6. Find a transfer 
function, X,(s)/6(s), such that the inverted pendulum is stabilized. 

P6.5 
A diode-capacitor network is shown in Fig. 6.24. Plot the output voltage 

that results for a sinewave input signal with a peak value of E. You may 
assume that the diodes have an ideal threshold of 0.5 volt (i.e., no conduc­
tion until a forward-bias voltage of 0.5 volt is reached, any forward cur­
rent possible without increasing the diode voltage above 0.5 volt). Evalu­
ate the magnitude and angle of GD(1) for this network. (You may, ofcourse, 

XT Point mass 

Reference 	 - 1 meter massless rod 

0 
MeXB-K 

Figure 6.23 Inverted pendulum. 
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Figure 6.24 Diode-capacitor network. 

work out GD(E) in general if you wish, but it is a relatively involved 
expression.) 

P6.6 
Determine the describing function for an element with the transfer char­

acteristics shown in Fig. 6.25. 

P6.7 
Analyze the loop shown in Fig. 6.26. In particular, find the frequency of 

oscillation and estimate the levels of the signals VA and vB. Also calculate 
the ratio of third harmonic to first harmonic at the input to the nonlinear 
element. 

P6.8 
Can the system shown in Fig. 6.27 produce a stable amplitude limit 

cycle? Explain. 

vlp = K 

+EN 

SEN 
Slope = K 

Figure 6.25 Nonlinear transfer relationship. 
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Figure 6.26 Nonlinear oscillator. 

P6.9 
Find a transfer function that, when combined with a limiter, can pro­

duce stable-amplitude limit cycles at two different frequencies. Design an 
operational-amplifier network that realizes your transfer function. 

P6.10 
The transfer characteristics for a three-state, relay-type controller are 

illustrated in Fig. 6.28. 

(a) Show that the describing function for this element is 

GD(E) = 2 2 + 2 11 42 -tan-' 
rE 2 n (I+E 1-I 

Slope = +2 

vB 

1 - ­

va VB_ -5 

(rs + 1)3I 1 -' 
-

Slope = +2 

Figure 6.27 Nonlinear system. 
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Figure 6.28 Controller transfer characteristics. 

(b) 	 The controller is combined in a negative-feedback loop with linear 
elements with a transfer function 

a(s) 	= ao 
(s + 1)(0.Is + 1) 

What is the range of values of ao for stable operation? 
(c) 	For ao that is twice the critical value, find the amplitude of the funda­

mental component of the signal applied to the controller. 

f 
VB 

+EN 

VBVA +EM
 

-EM 
 VA 

-EN 

R L 

C 

Figure 6.29 R-L-C oscillator. 
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P6.11 
One possible configuration for a sinusoidal oscillator combines a Schmitt 

trigger with an R-L-C circuit as shown in Fig. 6.29. Find the relationship 
between Em, EN, and the damping ratio of the network that insures that 
oscillations can be maintained. (You may assume negligible loading at the 
input and output of the Schmitt trigger.) 

P6.12 
Three loop-transmission values, given by Eqns. 6.38, 6.39, and 6.41 were 

considered as part of the discussion of conditionally stable systems. As­
sume that three negative-feedback systems are constructed with f(s) = 1 
and loop transmissions given by the expressions referred to above. Com­
pare performance by calculating the first three error coefficients for each of 
the three systems. 
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