
CHAPTER IV 

STABILITY
 

4.1 THE STABILITY PROBLEM 

The discussion of feedback systems presented up to this point has tacitly 

assumed that the systems under study were stable.A stable system is defined 
in general as one which produces a bounded output in response to any 

bounded input. Thus stability implies that 

I vo(t) dt < M < o (4.1) 

for any input such that 

f vr(t) dt < N < o (4.2) 

If we limit our consideration to linear systems, stability is independent of 

the input signal, and the sufficient and necessary condition for stability is 

that all poles of system transfer function lie in the left half of the s plane. 

This condition follows directly from Eqn. 4.1, since any right-half-plane 

poles contribute terms to the output that grow exponentially with time and 

thus are unbounded. Note that this definition implies that a system with poles 
on the imaginary axis is unstable, since its output is not bounded unless its 
input is rather carefully chosen. 

The origin of the stability problem can be described in intuitively appeal­
ing through nonrigorous terms as follows. If a feedback system detects an 

error between the actual and desired outputs, it attempts to reduce this 
error to zero. However, changes in the error signal that result from correc­
tive action do not occur instantaneously because of time delays around the 

loop. In a high-gain system, these delays can cause a tendency to over­

correct. If the magnitude of the overcorrection exceeds the magnitude of 

the initial error, instability results. Signal amplitudes grow exponentially 

until some nonlinearity limits further growth, at which time the system 

either saturates or oscillates in a constant-amplitude fashion called a limit 

cycle.' The feedback system designer must always temper his desire to 

1The effect of nonlinearities on the steady-state amplitude reached by an unstable system 
is investigated in Chapter 6. 
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Figure 4.1 Block diagram of single-loop amplifier. 

provide a large magnitude and a high unity-gain frequency for the loop 
transmission with the certain knowledge that sufficiently high values for 
these quantities invariably lead to instability. 

As a specific example of a system with potentially unstable behavior, con­
sider a simple single-loop system of the type shown in Fig. 4.1, with 

ao 
a(s) = (s -- (4.3) 

and 

f(s) 1 (4.4) 

The loop transmission for this system is 

- ao 
- a(s)f(s) = (4.5)

(s +1) 
or for sinusoidal excitation, 

-a 0-a0 
- a(jco)f(jo') = =a a (4.6)

(jw + I )I -jw - 3w2 + 3jc + 11 

If we evaluate Eqn. 4.6 at w = V3, we find that 

- a(j13)f(j3) = -" (4.7) 

If the quantity ao is chosen equal to 8, the system has a real, positive loop 

transmission with a magnitude of one for sinusoidal excitation at three 
radians per second. 

We might suspect that a system with a loop transmission of +1 is 
capable of oscillation, and this suspician can be confirmed by examining 
the closed-loop transfer function of the system with ao = 8. In this case, 

A a(s) 8
 

1 + a(s)f(s) sa + 3s2 + 3s + 9
 

8 
s 3(4.8)

(s + 3) (s + j-\1) (s -j5 
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This transfer function has a negative, real-axis pole and a pair of poles 

located on the imaginary axis at s = =E jV3. An argument based on the 

properties of partial-fraction expansions (see Section 3.2.2) shows that the 

response of this system to many common (bounded) transient signals 

includes a constant-amplitude sinusoidal component. 

Further increases in low-frequency loop-transmission magnitude move 

the pole pair into the right-half plane. For example, if we combine the 

forward-path transfer function 

64 
a(s) = (s + l), (4.9) 

with unity feedback, the resultant closed-loop transfer function is 

64 
A(s) =­

(s + 3S2 + 3s + 65 

64 

(s + 5) (s - I + j20) (s - 1 - j2/3) (4.10) 

With this value for ao, the system transient response will include a sinusoidal 

component with an exponentially growing envelope. 

If the dynamics associated with the loop transmission remain fixed, the 

system will be stable only for values of ao less than 8. This stability is 

achieved at the expense of desensitivity. If a value of ao = I is used so that 

a(s)f(s) = ( (4.11) 
(s + 1), 

we find all closed-loop poles are in the left-half plane, since 

A(s)=S + 3s2 + 3s + 2 

(412 
(s + 2) (s + 0.5 + jV3/2) (s + 0.5 - jV3/2) (4.12) 

in this case. 
In certain limited cases, a binary answer to the stability question is 

sufficient. Normally, however, we shall be interested in more quantitative 

information concerning the "degree" of stability of a feedback system. 

Frequently used measures of relative stability include the peak magnitude 

of the frequency response, the fractional overshoot in response to a step 

input, the damping ratio associated with the dominant pole pair, or the 

variation of a certain parameter that can be tolerated without causing 

absolute instability. Any of the measures of relative stability mentioned 

above can be found by direct calculations involving the system transfer 
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function. While such determinations are practical with the aid of machine 
computation, insight into system operation is frequently obscured if this 
process is used. The techniques described in this chapter are intended not 
only to provide answers to questions concerning stability, but also (and 
more important) to indicate how to improve the performance of unsatis­
factory systems. 

4.2 THE ROUTH CRITERION 

The Routh test is a mathematical method that can be used to determine 
the number of zeros of a polynomial with positive real parts. If the test 
is applied to the denominator polynomial of a transfer function (also 
called the characteristicequation) the absence of any right-half-plane zeros 
of the characteristic equation guarantees system stability. One computa­
tional advantage of the Routh test is that it is not necessary to factor the 
polynomial to apply the test. 

4.2.1 Evaluation of Stability 

The test is described for a polynomial of the form 

P(s) = aos + a1s" 1 + - - + a,is + an (4.13) 

A necessary but not sufficient condition for all the zeros of Eqn. 4.13 to 
have negative real parts is that all the a's be present and that they all have 
the same sign. If this necessary condition is satisfied, an array of numbers 
is generated from the a's as follows. (This example is for n even. For n 
odd, an terminates the second row.) 

ao a 2 a 4 . . an-2 a 

ai a3 a5 . . a, 1 0 

aia2 - aoa3 = aia4 - aoa5 aan - -ao .0 b 0 
ai ai ai 

bia3 - aib2 bia5 - aib3 0 0 

b1 b1 

cib2 -­ bic d . . . . 0 0 

cl 

0 0 . . 0 0 

(4.14) 



The Routh Criterion 113 

As the array develops, progressively more elements of each row become 
zero, until only the first element of the n + 1 row is nonzero. The total 
number of sign changes in the first column is then equal to the number of 
zeros of the original polynomial that lie in the right-half plane. 

The use of the Routh criterion is illustrated using the polynomial 

P(s) = s4 + 9s3 + 14s 2 + 266s + 260 (4.15) 

Since all coefficients are real and positive, the necessary condition for all 

roots of Eqn. 4.15 to have negative real parts is satisfied. The array is 

1 14 260 
9 266 0 

9 X 14 - 1 X 266 140 9 X 260 - 1 X 0 = 0260
 
9 9 9
 

(sign change) 

-(140/9) X 266 - 9 X 260 2915 0 0 
-(140/9) 7 

(sign change) 

(2915/7) X 260 - [-(140/9) X 0] = 260 00 
2915/7 (4.16) 

The two sign changes in the first column indicate two right-half-plane 
zeros. This result can be verified by factoring the original polynomial, 
showing that 

s4 + 9s3 + 14s 2 + 266s + 260 = (s - 1+j5)(s - 1 - j5)(s + 1) (s + 10) 
(4.17) 

A second example is provided by the polynomial 

P(s) = s 4 + 13s3 + 58s 2 + 306s + 260 (4.18) 

The corresponding array is 

1 58 260 

13 306 0 

13 X 58-1 X306 448 13 X 260 - 1 X 0 = 260 
0
 

13 13 13
 

(448/13) X 306 - 13 x 260 _ 23287
 
0 0
 

448/13 112
 

(23287/112) X 260 - (448/13) X 0= 260
 
0 0
 

23287/112 
(4.19) 
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Factoring verifies the result that there are no right-half-plane zeros for 
this polynomial, since 

s4 + 13s3 + 58s2 + 306s + 260 

= (s + 1 + j5) (s + 1 - j5) (s + 1) (s + 10) (4.20) 

Two kinds of difficulties can occur when applying the Routh test. It is 
possible that the first element in one row of the array is zero. In this case, 
the original polynomial is multiplied by s + a, where a is any positive real 
number, and the test is repeated. This procedure is illustrated using the 
polynomial 

P(s) = s5+ s4 + 10s + 10s2 + 20s + 5 (4.21) 

The first element of the third row of the array is zero. 

1 10 	 20 

1 10 	 5 

0 15 0 (4.22) 

The difficulty is resolved by multiplying Eqn. 4.21 by s + 1, yielding 

P'(s) = sI + 2sI + 1is 4 + 20s3 + 30s 2 + 25s + 5 (4.23) 

The array for Eqn. 4.23 is
 

1 11 30 5
 

2 20 25 0
 

1 17.5 5 0 

-15 15 0 0 

-18.5 5 0 0 

10.95 	 0 0 0 

5 0 0 0 (4.24) 

Since multiplication by s + 1did not add any right-half-plane zeros to Eqn. 
4.21, we conclude that the two right-half-plane zeros indicated by the array 
of Eqn. 4.24 must be contained in the original polynomial. 

The second possibility is that an entire row becomes zero. This condition 
indicates that there is a pair of roots on the imaginary axis, a pair of real 
roots located symmetrically with respect to the origin, or both kinds of 
pairs in the original polynomial. The terms in the row above the all-zero 
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row are used as coefficients of an equation in even powers of s called the 
auxiliaryequation.The zeros of this equation are the pairs mentioned above. 
The auxiliary equation can be differentiated with respect to s, and the 
resultant coefficients are used in place of the all-zero row to continue the 
array. This type of difficulty is illustrated with the polynomial 

P(s) = s 4 + 11s 3 + 11s2 + 11s + 10 = (s + j) (s - j) (s + 1) (s + 10) 

(4.25) 

The array is 

I 11 10 

11 11 0 

10 10 0 

0 0 0 (4.26) 

The auxiliary equation is 

Q(s) = 1Os 2 + 10 (4.27) 

The roots of the equation are the two imaginary zeros of Eqn. 4.25. 
Differentiating Eqn. 4.27 and using the nonzero coefficient to replace the 
first element of row 4 of Eqn. 4.26 yields a new array. 

1 11 10 

11 11 0 

10 10 0 

20 0 0 

10 0 0 

(4.28) 

The absence of sign changes in the array verifies that the original poly­
nomial has no zeros in the right-half plane. 

Note that, while there are no closed-loop poles in the right-half plane, 
a system with a characteristic equation given by Eqn. 4.25 is unstable by 
our definition since it has a pair of poles on the imaginary axis. Examining 
only the left-hand column of the Routh array only identifies the number 
of right-half-plane zeros of the tested polynomial. Imaginary-axis zeros 
can be found by the manipulations involving the auxiliary equation. 
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Figure 4.2 Block diagram of phase-shift oscillator. 

4.2.2 Use as a Design Aid 

The Routh criterion is most frequently used to determine the stability 
of a feedback system. In certain cases, however, more quantitative design 
information is obtainable, as illustrated by the following examples. 

A phase-shift oscillator can be constructed by applying sufficient negative 

feedback around a network that has three or more poles. If an amplifier 
with frequency-independent gain is combined with a network with three 
coincident poles, the block diagram for the resultant system is as shown in 

Fig. 4.2. The value of ao necessary to sustain oscillations can be determined 

by Routh analysis.2 

Stability investigations for Fig. 4.2 are complicated by the fact that the 
oscillator has no input; thus we cannot use the poles of an input-to-output 
transfer function to determine stability. We should note that the stability 
of a linear system is a property of the system itself and is thus independent 
of input signals that may be applied to it. Any unstable physical system will 
demonstrate its instability with no input, since runaway behavior will be 

stimulated by always present noise. Even in a purely mathematical linear 

system, stability is determined by the location of the closed-loop poles, and 
these locations are clearly input independent. 

The analysis of the oscillator is initiated by recalling that the charac­

teristic equation of any feedback system is one minus its loop transmission. 

Therefore 

ao 
P(s) = I + (T (4.29)

(rS +1) 

In this and other calculations involving the characteristic equation, it is 

possible to clear fractions since the location of the zeros are not altered 

2 The Routh test applied to this example offers computational advantages compared to 
the direct factoring used for a similar transfer function in the example of Section 4.1. 
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by this operation. After clearing fractions and identifying coefficients, the 
Routh array is 

3
T 3r 

372 + ao 

(8 - ao)r 0 

3 

1 + ao 0 (4.30) 

Assuming T is positive, roots with positive real parts occur for ao < -1 
(one right-half-plane zero) and for ao > +8 (two right-half-plane zeros). 
Laplace analysis indicates that generation of a constant-amplitude sinu­
soidal oscillation requires a pole pair on the imaginary axis. In practice, 
a complex pole pair is located slightly to the right of the imaginary axis. An 
intentionally introduced nonlinearity can then be used to limit the ampli­
tude of the oscillation (see Section 6.3.3). Thus, a practical oscillator circuit 
is obtained with ao > 8. 

The frequency of oscillation with ao = 8 can be determined by examining 
the array with this value for ao. Under these conditions the third row be­
comes all zero. The auxiliary equation is 

Q(s) = 3rs2 + 9 (4.31) 

and the equation has zeros at s = E j3/T, indicating oscillation at 

\/3/r radians per second for ao = 8. 
As a second example of the type of design information that can be ob­

tained via Routh analysis, consider an operational amplifier with an open-
loop transfer function 

a(s) = (4.32)
(s + 1) (10- 6 s + 1) (104s + 1) 

It is assumed that this amplifier is connected as a unity-gain noninverting 
amplifier, and we wish to determine the range of values of ao for which all 
closed-loop poles have real parts more negative than -2 X 100 sec- 1. This 
condition on closed-loop pole location implies that any pulse response of 
the system will decay at least as fast as Ke-2xi0o after the exciting pulse 
returns to zero. The constant K is dependent on conditions at the time the 
input becomes zero. 

The characteristic equation for the amplifier is (after dropping insig­
nificant terms) 

6 2P(s) = 10-"s + 1.1 X 10- s + s+ 1 + ao (4.33) 
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In order to determine the range of ao for which all zeros of this charac­
teristic equation have real parts more negative than -2 X 101 sec-1, it is 
only necessary to make a change of variable in Eqn. 4.33 and apply Routh's 
criterion to the modified equation. In particular, application of the Routh 
test to a polynomial obtained by substituting 

=s + c (4.34) 

will determine the number of zeros of the original polynomial with real 
parts more positive than -c, since this substitution shifts singularities in 
the splane to the right by an amount c as they are mapped into the Xplane. 
If the indicated substitution is made with c = 2 X 10- sec-1, Eqn. 4.33 
becomes 

P(X) = 10-13 X3 + 10- 6X2 + 0.57X - 1.57 X 105 + ao (4.35) 

The Routh array is 

10-13 0.57 

10-6 -1.57 X 105 + ao 

0.59 - 10-- ao 0 

-1.57 X 101 + ao 0 (4.36) 

This array shows that Eqn. 4.33 has one zero with a real part more positive 
than -2 x 105 sec-1 for ao < 1.57 X 105, and has two zeros to the right of 
the dividing line for ao > 5.9 X 106. Accordingly, all zeros have real parts 
more negative than -2 X 101 sec- 1 only for 

1.57 X 105 < ao < 5.9 X 100 (4.37) 

4.3 ROOT-LOCUS TECHNIQUES 

A single-loop feedback amplifier is shown in the block diagram of Fig. 
4.1. The closed-loop transfer function for this amplifier is 

Vo(s) A(s) = a(s) 
Vi(s) 1 + a(s)f(s) 

Root-locus techniques provide a method for finding the poles of the closed-
loop transfer function A(s) [or equivalently the zeros of 1 + a(s)f(s)] given 
the poles and zeros of a(s)f(s) and the d-c loop-transmission magnitude 
aofo.3 Notice that since the quantity aofo must appear in one or more terms 

3If the loop transmission has one or more zeros at the origin so that its d-c magnitude 
is zero, the closed-loop poles are found from the midband value of af. 
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of the characteristic equation, the locations of the poles of A(s) must depend 
on aofo. A root-locus diagram consists of a collection of branches or loci in 
the s plane that indicate how the locations of the poles of A(s) change as 
aofo varies. 

The root-locus diagram provides useful information concerning the 
performance of a feedback system since the relative stability of any linear 

system is uniquely determined by its close-loop pole locations. We shall 
find that approximate root-locus diagrams are easily and rapidly sketched, 
and that they provide readily interpreted insight into how the closed-loop 
performance of a system responds to changes in its loop transmission. We 
shall also see that root-locus techniques can be combined with simple 
algebraic methods to yield exact answers in certain cases. 

4.3.1 Forming the Diagram 

A simple example that illustrates several important features of root-
locus techniques is provided by the system shown in Fig. 4.1 with a feedback 
transfer function f of unity and a forward transfer function 

a(s) = a(4.39) 
(ras + 1) (rbs + 1) 

The corresponding closed-loop transfer function is 

a(s)
A(S= a(s) 

__ao 

(4-40)S 

1 + a(s)f(s) TaT2 + (ra + rb)s + (1 + ao) 

The closed-loop poles can be determined by factoring the characteristic 
equation of A(s), yielding 

2 
] (T. + Tb) + \/(ra +Tb) - 4(1 + ao)T.arb (4.41a) 

2 
= Ta-b 

S -(ra + Tb) - V(Ta2 + Tb) 
2 - 4(1 + ao)rab (4.41b)

2 - T b 

The root-locus diagram in Fig. 4.3 is drawn with the aid of Eqn. 4.41. The 

important features of this diagram include the following. 

(a) The loop-transmission pole locations are shown. (Loop-transmission 
zeros are also indicated if they are present.) 

(b) The poles of A(s) coincide with loop-transmission poles for ao = 0. 
(c) As ao increases, the locations of the poles of A(s) change along the 

loci as shown. Arrows indicate the direction of changes that result for 

increasing ao. 
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Figure 4.3 Root-locus diagram for second-order system. 

(d) The two poles coincide at the arithmetic mean of the loop-trans­
mission pole locations for zero radicand in Eqn. 4.41, or for 

ao = -T)2-1 (4.42) 

(e) For increases in ao beyond the value of Eqn. 4.42, the closed-loop 
pole pair is complex with constant real part and a damping ratio that is a 
monotonic decreasing function of ao. Consequently, co increases with in­
creasing ao in this range. 

Certain important features of system behavior are evident from the 
diagram. For example, the system does not become unstable for any posi­
tive value of ao. However, the relative stability decreases as ao increases 
beyond the value indicated in Eqn. 4.42. 
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It is always possible to draw a root-locus diagram by directly factoring 
the characteristic equation of the system under study as in the preceding 
example. Unfortunately, the effort involved in factoring higher-order poly­
nomials makes machine computation mandatory for all but the simplest 
systems. We shall see that it is possible to approximate the root-locus dia­
grams and thus retain the insight often lost with machine computation 
when absolute accuracy is not required. 

The key to developing the rules used to approximate the loci is to realize 
that closed-loop poles occur only at zeros of the characteristic equation or 
at frequencies si such that' 

1 + a(si)f(si) = 0 (4.43a) 

or 

a(si)f(si) = -1 (4.43b) 

Thus, if the point si is a point on a branch of the root-locus diagram, the 
two conditions 

a(si)f(si) = 1 (4.44a) 

and 

2 a(si)f(si) = (2n + 1) 1800 (4.44b) 

where n is any integer, must be satisfied. The angle condition is the more 
important of these two constraints for purposes of forming a root-locus 
diagram. The reason is that since we plot the loci as aofo is varied, it is 
possible to find a value for a aofo that satisfies the magnitude condition at 
any point in the s plane where the angle condition is satisfied. 

By concentrating primarily on the angle condition, we are able to formu­
late a set of rules that greatly simplify root-locus-diagram construction 
compared with brute-force factoring of the characteristic equation. Here 
are some of the rules we shall use. 

1. The number of branches of the diagram is equal to the number of 
poles of a(s)f(s). Each branch starts at a pole of a(s)f(s) for small values of 
aofo and approaches a zero of a(s)f(s) either in the finite s plane or at 
infinity for large values of aofo. The starting and ending points are demon­
strated by considering 

a(s)f(s) = aofog(s) (4.45) 

where g(s) contains the frequency-dependent portion of the loop trans­

4It is assumed throughout that the system under study is a negative feedback system with 
the topology shown in Fig. 4.1. 
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02 

Figure 4.4 Loci on real axis. 

mission and the value of g(O) A go is unity. Rearranging Eqn. 4.44 and 

using this notation yields 

1 
(4.46)g(si) ­

a Ofo 

at any point si on a branch of the root-locus diagram. Thus for small values 

of aofo, Ig(si) must be large, implying that the point si is close to a pole of 

g(s). Conversely, a large value of aofo requires proximity to a zero of g(s). 

2. Branches of the diagram lie on the real axis to the left of an odd 

number of real-axis poles and zeros of a(s)f(s).5 This rule follows directly 

from Eqn. 4.44b as illustrated in Fig. 4.4. Each real-axis zero of a(s)f(s) to 

the right of si adds 1800 to the angle of a(si)f(si) while each real-axis pole 

to the right of si subtracts 1800 from the angle. Real-axis singularities to the 

left of point si do not influence the angle of a(si)f(si). Similarly, since com­

plex singularities must always occur in conjugate pairs, the net angle con­

' Special care is necessary for systems with right-half-plane open-loop singularities. See 

Section 4.3.3. 
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tribution from these singularities is zero. This rule is thus sufficient to satisfy 
Eqn. 4.44b. We are further guaranteed that branches must exist on all 
segments of the real axis to the left of an odd number of singularities of 

a(s)f(s), since there is some value of aofo that will exactly satisfy Eqn. 4.44a 
at every point on these segments, and the satisfaction of Eqns. 4.44a and 
4.44b is both necessary and sufficient for the existence of a pole of A(s). 

3. The two separate branches of the diagram that must exist between 
pairs of poles or pairs of zeros on segments of the real axis that satisfy rule 2 

must at some point depart from or enter the real axis at right angles to it. 

Frequently the precise break-away point is not required in order to sketch 
the loci to acceptable accuracy. If it is necessary to have an exact location, 
it can be shown that the break-away points are the solutions of the equation 

d[g(s)]
ds = 0 (4.47)
ds 

for systems without coincident singularities. 
4. If the number of poles of a(s)f(s) exceeds the number of zeros of this 

function by two or more, the average distance of the poles of A(s) from the 

imaginary axis is independent of aofo. This rule evolves from a property of 
algebraic polynomials. Consider a polynomial 

P(s) = (ais + aisi) (a2s + a2s2) (a3s + a3s 3 ) . . . (ans + a.s.) 

= (aa 2 ... a) (s +s) (s + s2) (s + s3) - - - (S + S,) 

+ (Si + S2 + S3 + - - - + sn)sn-1= (aia2 -.-.an) [sn 

+ . . - + SiS2S3 . . - sn] (4.48) 

From the final expression of Eqn. 4.48, we see that the ratio of the co­
efficients of the sn-1 term and the sn term (denoted as -ns) is 

-ns = S1 + S2 + S3 + -. + sn (4.49) 

Since imaginary components of terms on the right-hand side of Eqn. 4.49 

must occur in conjugate pairs and thus cancel, the quantity 

s - (S-S) +S 2 ±S3+ (4.50) 
n 

is the average distance of the roots of P(s) from the imaginary axis. In 

order to apply Eqn. 4.50 to the characteristic equation of a feedback 
system, assume that 

p(s)
a(s)f(s) = aofo q(s) (4.51) 

q(s) 



124 Stability 

Then 

A(s) - 1a(s) a(s) a(s)q(s)
1 + a(s)f(s) 1 + aofo[p(s)/q(s)] q(s) + aofop(s) 

If the order of q(s) exceeds that of p(s) by two or more, the ratio of the co­
efficients of the two highest-order terms of the characteristic equation of 
A(s) is independent of aofo, and thus the average distance of the poles of 
A(s) from the imaginary axis is a constant. 

5. For large values of aofo, P - Z branches approach infinity, where 
P and Z are the number of poles and finite-plane zeros of a(s)f(s), respec­
tively. These branches approach asymptotes that make angles with the 
real axis given by 

(2n + 1) 1800 
P - Z(4.53) 

In Eqn. 4.53, n assumes all integer values from 0 to P - Z - 1. The 
asymptotes all intersect the real axis at a point 

I real parts of poles of a(s)f(s) - I real parts ofzeros of a(s)f(s) 
P - Z 

The proof of this rule is left to Problem P4.4. 
6. Near a complex pole of a(s)f(s), the angle of a branch with respect to 

the pole is 

Op= 180 + 2 4 z - Z 4 p (4.54) 

where 2 4 z is the sum of the angles of vectors drawn from all the zeros 
of a(s)f(s) to the complex pole in question and I 4 p is the sum of the 
angles of vectors drawn from all other poles of a(s)f(s) to the complex pole. 
Similarly, the angle a branch makes with a loop-transmission zero in the 
vicinity of the zero is 

6, = 180 - 2 4 z + Z 4 p (4.55) 

These conditions follow directly from Eqn. 4.44b. 
7. If the singularities of a(s)f(s) include a group much nearer the origin 

than all other singularities of a(s)f(s), the higher-frequency singularities can 
be ignored when determining loci in the vicinity of the origin. Figure 4.5 
illustrates this situation. It is assumed that the point si is on a branch if the 
high-frequency singularities are ignored, and thus the angle of the low-
frequency portion of a(s)f(s) evaluated at s = si must be (2n + 1) 180. 
The geometry shows that the angular contribution attributable to remote 
singularities such as that indicated as 61 is small. (The two angles from a re­
mote complex-conjugate pair also sum to a small angle.) Small changes in the 
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Figure 4.5 Loci in vicinity of low-frequency singularities. 

location of si that can cause relatively large changes in the angle (e.g., 62) 

from low-frequency singularities offset the contribution from remote 

singularities, implying that ignoring the remote singularities results in in­

significant changes in the root-locus diagram in the vicinity of the low-

frequency singularities. Furthermore, all closed-loop pole locations will lie 

relatively close to their starting points for low and moderate values of aofo. 

Since the discussion of Section 3.3.2 shows that A(s) will be dominated by 
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its lowest-frequency poles, the higher-frequency singularities of a(s)f(s) can 
be ignored when we are interested in the performance of the system for low 
and moderate values of afo. 

8. The value of aofo required to make a closed-loop pole lie at the point 
si on a branch of the root-locus diagram is 

aofo = 1 (4.56)
1g(sOI 

where g(s) is defined in rule 1. This rule is required to satisfy Eqn. 4.44a. 

4.3.2 Examples 

The root-locus diagram shown in Fig. 4.3 can be developed using the 
rules given above rather than by factoring the denominator of the closed-
loop transfer function. The general behavior of the two branches on the 
real axis is determined using rules 2 and 3. While the break-away point 
can be found from Eqn. 4.47, it is easier to use either rule 4 or rule 5 to 
establish off-axis behavior. Since the average distance of the closed-loop 
poles from the imaginary axis must remain constant for this system [the 
number of poles of a(s)f(s) is two greater than the number of its zeros], the 
branches must move parallel to the imaginary axis after they leave the real 
axis. Furthermore, the average distance must be identical to that for aofo = 0, 
and thus the segment parallel to the imaginary axis must be located at 
- [(1/r) + (1/r)]. Rule 5 gives the same result, since it shows that the 
two branches must approach vertical asymptotes that intersect the real axis 
at -}[(1/4) + (1/Tb)]. 

More interesting root-locus diagrams result for systems with more loop-
transmission singularities. For example, the transfer function of an ampli­
fier with three common-emitter stages normally has three poles at moderate 
frequencies and three additional poles at considerably higher frequencies. 
Rule 7 indicates that the three high-frequency poles can be ignored if this 
type of amplifier is used in a feedback connection with moderate values of 
d-c loop transmission. If it is assumed that frequency-independent negative 
feedback is applied around the three-stage amplifier, a representative af 
product could be' 

a(s)f(s) = (4.57)
(s + 1) (0.5s + 1) (O.ls + 1) 

' The corresponding pole locations at - 1, -2, and -10 sec-1 are unrealistically low 
for most amplifiers. These values result, however, if the transfer function for an amplifier 
with poles at - 106, -- 2 X 106, and - 107 sec- 1is normalized using the microsecond rather 
than the second as the basic time unit. Such frequency scaling will often be used since it 
eliminates some of the unwieldy powers of 10 from our calculations. 
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The root-locus diagram for this system is shown in Fig. 4.6. Rule 2 
determines the diagram on the real axis, while rule 5 establishes the asymp­
totes. Rule 4 can be used to estimate the branches off the real axis, since 
the branches corresponding to the two lower-frequency poles must move 
to the right to balance the branch going left from the high-frequency pole. 
The break-away point can be determined from Eqn. 4.47, with 

d[g(s)] _ -[0.15s2 + 1.3s + 1.6] 
ds [(s + 1) (0.5s + 1) (0.ls + 1)]2 

Zeros of Eqn. 4.58 are at -- 7.2 sec-1 and -1.47 sec-1. The higher-frequency 
location is meaningless for this problem, and in fact corresponds to a break­
away point which results if positive feedback is applied around the ampli­
fier. Note that the break-away point can be accurately estimated using 
rule 7. If the relatively higher-frequency pole at 10 sec-1 is ignored, a 
break-away point at - 1.5 sec-1 results for the remaining two-pole transfer 
function. 

Algebraic manipulations can be used to obtain more quantitative infor­
mation about the system. Figure 4.6 shows that the system becomes un­
stable as two poles move into the right-half plane for sufficiently large 
values of aofo. The value of aofo that moves the pair of closed-loop poles 
onto the imaginary axis is found by applying Routh's criterion to the 
characteristic equation of the system, which is (after clearing fractions) 

P(s) = (s + 1) (0.5s + 1) (0.ls + 1) + aofo (4.59) 

= 0.05s' + 0.65s2 + 1.6s + 1 + aofo 

The Routh array is 

0.05 1.6 

0.65 1 + aofo (4.60) 

0 (0.99 - 0.05aofo) 00.65 

1 + aofo 0 

Two sign reversals indicating instability occur for aofo > 19.8. With this 
value of aofo, the auxiliary equation is 

Q(s) = 0.65s2 + 20.8 (4.61) 

The roots of this equation indicate that the poles cross the imaginary axis 
at s = d-j(5.65). 

http:d-j(5.65
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Figure 4.6 Root-locus diagram for third-order system. 

It is also possible to determine values for aofo that result in specified 

closed-loop pole configurations. This type of calculation is illustrated by 

finding the value of aofo required to provide a damping ratio of 0.5, corre­

sponding to complex-pair poles located 60' from the real axis. The magni­

tude of the ratio of the imaginary part to the real part of the pole location 

for a pole pair with = 0.5 is V3. Thus the characteristic equation for this 

system, when the damping ratio of the complex pole pair is 0.5, is 

P'(s) = (s + -y)(s + 0 + j00#) (s + 0 - j050) 

= s' + (y + 20)s2 + 2(y + 20)s + 4 702 (4.62) 

where -y is the location of the real-axis pole. 
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The parameters are determined by multiplying Eqn. 4.59 by 20 (to make 
the coefficient of the s3 term unity) and equating the new equation to P'(s). 

s' + 13s 2 + 32s + 20(1 + aofo) 
2= s3 + (y + 20)s2 + 20(-y + 20)s + 4 -y3 (4.63) 

Equation 4.63 is easily solved for -y,0, and aofo, with the results 

= 10.54 

#3= 1.23 

aofo = 2.2 (4.64) 

Several features of the system are evident from this analysis. Since the 
complex pair is located at s = -1.23 (1 ±j\3) when the real-axis pole is 
located at s = - 10.54, a two-pole approximation based on the pair should 
accurately model the transient or frequency response of the system. The 
relatively low desensitivity 1 + aofo = 3.2 results if the damping ratio of 
the complex pair is made 0.5, and any increase in desensitivity will result 
in poorer damping. The earlier analysis shows that attempts to increase 
desensitivity beyond 20.8 result in instability. 

Note that since there was only one degree of freedom (the value of aofo) 
existed in our calculations, only one feature of the closed-loop pole pattern 
could be controlled. It is not possible to force arbitrary values for more than 
one of the three quantities defining the closed-loop pole locations ( and W, 
for the pair and the location of the real pole) unless more degrees of design 
freedom are allowed. 

Another example of root-locus diagram construction is shown in Fig. 
4.7, the diagram for 

a(s)f(s) = aofo(4.65) 
(s + 1) (s2/8 + s/2 + 1) 

Rule 5 establishes the asymptotes, while rule 6 is used to determine the loci 
near the complex poles. The value of aofo for which the complex pair of poles 
enters the right-half plane and the frequency at which they cross the 
imaginary axis are found by Routh's criterion. The reader should verify that 
these poles cross the imaginary axis at s = ±j2V3 for aofo = 6.5. 

The root-locus diagram for a system with 

a(s)f(s) = aofo(0.5s + 1) (4.66)
s(s + 1) 

is shown in Fig. 4.8. Rule 2 indicates that branches are on the real axis 
between the two loop-transmission poles and to the left of the zero. The 

http:aofo(0.5s
http:aofo(4.65
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Figure 4.7 Root-locus diagram for a(s)f(s) = aofo/[(s + 1)(s2 /8 + s/2 + 1)]. 

points of departure from and reentry to the real axis are obtained by solving 

d ~(0.5s + 1)1~ = (4.67) 
ds L s(s + 1) 

yielding s -2 -A V . 

4.3.3 	 Systems With Right-Half-Plane Loop-Transmission
 
Singularities
 

It is necessary to be particularly careful about the sign of the loop trans­
mission when root-locus diagrams are drawn for systems with right-half­
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Figure 4.8 Root-locus for diagram a(s)f(s) = aofo(O.5s + 1)/[s(s + 1)]. 

plane loop-transmission singularities. Some systems that are unstable with­
out feedback have one or more loop-transmission poles in the right-half 
plane. For example, a large rocket does not become aerodynamically stable 
until it reaches a certain critical speed, and would tip over shortly after 
lift off if the thrust were not vectored by means of a feedback system. It 
can be shown that the transfer function of the rocket alone includes a real-
axis right-half-plane pole. 

A more familiar example arises from a single-stage common-emitter 
amplifier. The transfer function of this type of amplifier includes a pole at 
moderate frequency, a second pole at high frequency, and a high-frequency 
right-half-plane zero that reflects the signal fed forward from input to 
output through the collector-to-base capacitance of the transistor. A repre­
sentative af product for this type of amplifier with frequency-independent 
feedback applied around it is 

aofo(-10-8 s + 1)
a(s)f(s) = ( 1) s + 1) (4.68)

(10-Is + 1) (s + 1) 

The singularities for this amplifier are shown in Fig. 4.9. If the root-locus 
rules are applied blindly, we conclude that the low-frequency pole moves 
to the right, and enters the right-half plane for d-c loop-transmission 
magnitudes in excess of one. Fortunately, experimental evidence refutes 

http:aofo(O.5s
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Figure 4.9 Singularities for common-emitter amplifier. 

this result. The difficulty stems from the sign of the low-frequency gain. It 
has been assumed throughout this discussion that loop transmission is 
negative at low frequency so that the system has negative feedback. The 
rules were developed assuming the topology shown in Fig. 4.1 where nega­
tive feedback results when ao and fo have the same sign. If we consider 
positive feedback systems, Eqn. 4.44b must be changed to 

4 a(si)f(si) = n 3600 (4.69) 

where n is any integer, and rules evolved from the angle condition must be 
appropriately modified. For example, rule 2 is changed to "branches lie on 
the real axis to the left of an even number of real-axis singularities for 
positive feedback systems." 

The singularity pattern shown in Fig. 4.9 corresponds to a transfer 
function 

a'(s)f'(S) = aofo(10-3s - 1) - -aofo(-10-as + 1) (4.70)
(10- 3 s + 1) (s + 1) (10-as + 1) (s + 1) 

because the vector from the zero to s = 0 has an angle of 1800. The sign 
reversal associated with the zero when plotted in the s plane diagram has 
changed the sign of the d-c loop transmission compared with that of Eqn. 
4.68. One way to reverse the effects of this sign change is to substitute Eqn. 
4.69 for Eqn. 4.44b and modify all angle-dependent rules accordingly. 
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A far simpler technique that works equally well for amplifiers with the 
right-half plane zeros located at high frequencies is to ignore these zeros 
when forming the root-locus diagram. Since elimination of these zeros 
eliminates associated sign reversals, no modification of the rules is neces­
sary. Rule 7 insures that the diagram is not changed for moderate magni­
tudes of loop transmission by ignoring the high-frequency zeros. 

4.3.4 Location of Closed-Loop Zeros 

A root-locus diagram indicates the location of the closed-loop poles of 
a feedback system. In addition to the stability information provided by the 
pole locations, we may need the locations of the closed-loop zeros to 
determine some aspects of system performance. 

The method used to determine the closed-loop zeros is developed with 
the aid of Fig. 4.10. Part a of this figure shows the block diagram for a 
single-loop feedback system. The diagram of Fig. 4.10b has the same input-
output transfer function as that of Fig. 4.10a, but has been modified so that 

KoVi 

(a) 

V. 
V.Vi 

(b) 

Figure 4.10 System used to determine closed-loop zeros. (a) Single-loop feedback 
system. (b) Modified block diagram. 
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the feedback path inside the loop has unity gain. We first consider the 
closed-loop transfer function 

V(s) a(s)f(s) 
Vi(s) 1 + a(s)f(s) 

A root-locus diagram gives the pole locations for this closed-loop trans­
fer function directly, since the diagram indicates the frequencies at which 
the denominator of Eqn. 4.71 is zero. The zeros of Eqn. 4.71 coincide with 
the zeros of the transfer function a(s)f(s). However, from Fig. 4.10b, 

A() V,,(s) V"(s) V"(s) V"(s) (472 
VI _Vi(s)] _V-W) _V]) fs 

Thus in addition to the singularities associated with Eqn. 4.71, A(s) has 
poles at poles of 1/f(s), or equivalently at zeros off(s), and has zeros at 
poles off(s). The additional poles of Eqn. 4.72 cancel the zeros off(s) in 
Eqn. 4.71, with the net result that A(s) has zeros at zeros of a(s) and at 
poles off(s). It is important to recognize that the zeros of A(s) are inde­
pendent of aofo. 

An alternative approach is to recognize that zeros of A(s) occur at zeros 
of the numerator of this function and at frequencies where the denominator 
becomes infinite while the numerator remains finite. The later condition is 
satisfied at poles off(s), since this term is included in the denominator of 
A(s) but not in its numerator. 

Note that the singularities of A(s) are particularly easy to determine if 
the feedback path is frequency independent. In this case, (as always) 
closed-loop poles are obtained directly from the root-locus diagram. The 
zeros of a(s), which are the only zeros plotted in the diagram when f(s) = fo, 
are also the zeros of A(s). 

These concepts are illustrated by means of two examples of frequency-
selective feedback amplifiers. Amplifiers of this type can be constructed by 
combining twin-T networks with operational amplifiers. A twin-T network 
can have a voltage transfer function that includes complex zeros with posi­
tive, negative, or zero real parts. It is assumed that a twin-T with a voltage-
transfer ratio7 

s 2 +1 
T(S) = (4.73)

s2 + 2s + 1 
is available. 

I The transfer function of a twin-T network includes a third real-axis zero, as well as a 
third pole. Furthermore, none of the poles coincide. The departure from reality repre­
sented by Eqn. 4.73 simplifies the following development without significantly changing the 
conclusions. The reader who is interested in the transfer function of this type of network 
is referred to J. E. Gibson and F. B. Tuteur, ControlSystem Components, McGraw-Hill, 
New York, 1958, Section 1.26. 
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Figure 4.11 Rejection amplifier. 

Figures 4.11 and 4.12 show two ways of combining this network with an 
amplifier that is assumed to have constant gain ao at frequencies of interest. 
Since both of these systems have the same loop transmission, they have 
identical root-locus diagrams as shown in Fig. 4.13. The closed-loop poles 
leave the real axis for any finite value of ao and approach the j-axis zeros 
along circular arcs. The closed-loop pole location for one particular value 
of ao is also indicated in this figure. 

The rejection amplifier (Fig. 4.11) is considered first. Since the connection 
has a frequency-independent feedback path, its closed-loop zeros are the 
two shown in the root-locus diagram. If the signal Vi is a constant-ampli­
tude sinusoid, the effects of the closed-loop poles and zeros very nearly 
cancel except at frequencies close to one radian per second. The closed-loop 
frequency response is indicated in Fig. 4.14a. As ao is increased, the distance 
between the closed-loop poles and zeros becomes smaller. Thus the band of 
frequencies over which the poles and zeros do not cancel becomes narrower, 
implying a sharper notch, as ao is increased. 

The bandpass amplifier combines the poles from the root-locus diagram 
with a second-order closed-loop zero at s = - 1, corresponding to the pole 
pair off(s). The closed-loop transfer function has no other zeros, since a(s) 
has no zeros in this connection. The frequency response for this amplifier is 
shown in Fig. 4.14b. In this case the amplifier becomes more selective and 
provides higher gain at one radian per second as ao increases, since the 
damping ratio of the complex pole pair decreases. 

vi aov 

Figure 4.12 Bandpass amplifier. 
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Figure 4.13 Root-locus diagram for systems of Figs. 4.11 and 4.12. 

4.3.5 Root Contours 

The root-locus method allows us to determine how the locations of the 
closed-loop poles of a feedback system change as the magnitude of the low-
frequency loop transmission is varied. There are many systems where 
relative stability as a function of some parameter other than gain is required. 
We shall see, for example, that the location of an open-loop singularity in 
the transfer function of an operational amplifier is frequently varied to 
compensate the amplifier and thus improve its performance in a given 
application. Root-locus techniques could be used to plot a family of root-
locus diagrams corresponding to various values for a system parameter 
other than gain. It is also possible to extend root-locus concepts so that the 
variation in closed-loop pole location as a function of some single param­
eter other than gain is determined for a fixed value of aofo. The generalized 
root-locus diagram that results from this extension is called a root-contour 

diagram. 
In order to see how the root contours are constructed, we recall that the 

characteristic equation for a negative feedback system can be written in the 

form 

P(s) = q(s) + aofop(s) (4.74) 

where it is assumed that 

a(s)f(s) = 
p(s)

aofo q(S) 
q(s) 
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Figure 4.14. Frequency responses for selective amplifiers. (a) Rejection amplifier. 
(b) Bandpass amplifier. 

If the aofo product is constant, but some other system parameter r varies, 
the characteristic equation can be rewritten 

P(s) = q'(s) + rp'(s) (4.75) 

All of the terms that multiply r are included in p'(s) in Eqn. 4.75, so that 
q'(s) and p'(s) are both independent of T. The root-contour diagram as a 
function of r can then be drawn by applying the construction rules to a 
singularity pattern that has poles at zeros of q'(s) and zeros at zeros of p'(s). 

An operational amplifier connected as a unity-gain follower is used to 
illustrate the construction of a root-contour diagram. This connection has 
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unity feedback, and it is assumed that the amplifier open-loop transfer 
function is 

1)a(s) = 101(rs + (4.76) 
(S + 1)2 

The characteristic equation after clearing fractions is 

P(s) = s2 + 2s + (106 + 1) + T16s (4.77) 

Identifying terms in accordance with Eqn. 4.75 results in 

p'(s) = 10's (4.78a) 

2q'(s) = S2 + 2s + 106 + 1 ~ s + 2s + 106 (4.78b) 

Thus the singularity pattern used to form the root contours has a zero at 
the origin and complex poles at s = - 1 ± jlj0. The root-contour diagram 
is shown in Fig. 4.15. Rule 8 is used to find the value of Tnecessary to locate 

i 

Arrows indicate direction -1 + j1000
of increasing r 
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Pole 
for i 

locations 
= 0.707 

at -500\/- (11j) 

-1 a -­

-1 -j1000
 

Figure 4.15 Root-contour diagram for p'(s)/q'(s) = 106s/(s2 + 2s + 106).
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the complex pole pair 450 from the negative real axis corresponding to a 
damping ratio of 0.707. From Eqn. 4.56, the required value is 

q'(s) I 

p'(S) = - 50 0 \ 2 (1+j) 

s 2 + 2s + 106| X 10-3 (4.79) 
610 s = -500\/2 (1+j) 

4.4 STABILITY BASED ON FREQUENCY RESPONSE 

The Routh criterion and root-locus methods provide information con­
cerning the stability of a feedback system starting with either the charac­
teristic equation or the loop-transmission singularities of the system. Thus 
both of these techniques require that the system loop transmission be 
expressible as a ratio of polynomials in s. There are two possible difficulties. 
The system may include elements with transfer functions that cannot be 
expressed as a ratio of finite polynomials. A familiar example of this type of 
element is the pure time delay of r seconds with a transfer function e-s-. A 
second possibility is that the available information about the system con­
sists of an experimentally determined frequency response. Approximating 
the measured data in a form suitable for Routh or root-locus analysis may 
not be practical. 

The methods described in this section evaluate the stability of a feedback 
system starting from its loop transmission as a function of frequency. The 
only required data are the magnitude and angle of this transmission, and it 
is not necessary that these data be presented as analytic expressions. As a 
result, stability can be determined directly from experimental results. 

4.4.1 The Nyquist Criterion 

It is necessary to develop a method for determining absolute and relative 
stability information for feedback systems based on the variation of their 
loop transmissions with frequency. The topology of Fig. 4.1 is assumed. If 
there is some frequency c at which 

a(jo)f(jw) - (4.80) 

the loop transmission is + 1 at this frequency. It is evident that the system 
can then oscillate at the frequency co, since it can in effect supply its own 
driving signal without an externally applied input. This kind of intuitive 
argument fails in many cases of practical interest. For example, a system 
with a loop transmission of +10 at some frequency may or may not be 
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stable depending on the loop-transmission values at other frequencies. The 
Nyquist criterion can be used to resolve this and other stability questions. 

The test determines if there are any values of s with positive real parts for 
which a(s)f(s) = - 1. If this condition is satisfied, the characteristic equa­
tion of the system has a right-half-plane zero implying instability. In order 
to use the Nyquist criterion, the function a(s)f(s) is evaluated as s takes on 
values along the contour shown in the s-plane plot of Fig. 4.16. The contour 
includes a segment of the imaginary axis and is closed with a large semi­
circle of radius R that lies in the right half of the s plane. The values of 
a(s)f(s) as s varies along the indicated contour are plotted in gain-phase 
form in an af plane. A possible af-plane plot is shown in Fig. 4.17. The 
symmetry about the 0' line in the af plane is characteristic of all such plots 
since Im[a(jco)f(jo)] = - Im[a(-jw)f(-jo)]. 

Our objective is to determine if there are any values of s that lie in the 
shaded region of Fig. 4.16 for which a(s)f(s) = - 1. This determination is 
simplified by recognizing that the transformation involved maps closed 
contours in the s plane into closed contours in the af plane. Furthermore, 

s = 0 + jR 

s plane 

s =Re .* {> 0 > 
ao 2along this path 

2 

Starting point 
s = 0 + j0+ 

a -­

s = 0 + j0­

s = 0 - jR 

Figure 4.16 Contour Used to evaluate a(s)f(s). 
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Value for s = +jR Value for s = -jR 

Figure 4.17 Plot of a(s)f(s) as s varies along contour of Fig. 4.16. 

all values of s that lie on one side of a contour in the s plane must map to 
values of afthat lie on one side of the corresponding contour in the afplane. 
The - 1 points are clearly indicated in the af-plane plot. Thus the only 
remaining task is to determine if the shaded region in Fig. 4.16 maps to the 
inside or to the outside of the contour in Fig. 4.17. If it maps to the inside, 
there are two values of s in the right-half plane for which a(s)f(s) = -1, 
and the system is unstable. 

The form of the af-plane plot and corresponding regions of the two plots 
are easily determined from a(s)f(s) as illustrated in the following examples. 
Figure 4.18 indicates the general shape of the s-plane and af-plane plots for 

a(s)f(s) - (4.81)
(s + 1) (0.1s + 1) (0.01s + 1) 

Note that the magnitude of af in this example is 103 and its angle is zero 
at s = 0. As s takes on values approaching +jR, the angle of af changes 
from 0' toward -270', and its magnitude decreases. These relationships 
are readily obtained from the usual vector manipulations in the s plane. 
For a sufficiently large value of R, the magnitude of af is arbitrarily small, 
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Figure 4.18 Nyquist test for a(s)f(s) = 103/[(s + 1)(O.1s + 1)(0.01s + 1)). 
(a) s-plane plot. (b) af-plane plot. 
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and its angle is nearly - 2700. As s assumes values in the right-half plane 
along a semicircle of radius R, the magnitude of af remains constant (for R 
much greater than the distance of any singularities of af from the origin), 
and its angle changes from -270* to 0* as s goes from +jR to +R. The 
remainder of the af-plane plot must be symmetric about the 0* line. 

In order to show that the two shaded regions correspond to each other, 
a small detour from the contour in the s plane is made at s = 0 as indi­
cated in Fig. 4.18a. As s assumes real positive values, the magnitude of 
a(s)f(s)decreases, since the distance from the point on the test detour to each 
of the poles increases. Thus the detour produces values in the afplane that 
lie in the shaded region. While we shall normally use a test detour to deter­
mine corresponding regions in the two planes, the angular relationships 
indicated in this example are general ones. Because of the way axes are 
chosen in the two planes, right-hand turns in one plane map to left-hand 
turns in the other. A consequence of this reversal is illustrated in Fig. 4.18. 
Note that if we follow the contour in the s plane in the direction of the 
arrows, the shaded region is to our right. The angle reversal places the 
corresponding region in the af plane to the left when its boundary is fol­
lowed in the direction of the arrows. 

Since the two - 1 points lie in the shaded region of the af plane, there 
are two values of s in the right-half plane for which a(s)f(s) = - 1 and the 
system is unstable. Note that if aofo is reduced, the contour in the af plane 
slides downward and for sufficiently small values of aofo the system is stable. 
A geometric development or the Routh criterion shows that the system is 
stable for positive values of aofo smaller than 122.21. 

Contours with the general shape shown in Fig. 4.19 result if a zero is 
added at the origin changing a(s)f(s) to 

a(s)f(s) = 10s(4.82) 
(s+ 1) (0.Is + 1) (0.01s + 1) 

In order to avoid angle and magnitude uncertainties that result if the s-plane 
contour passes through a singularity, a small-radius circular arc is used to 
avoid the zero. Two test detours on the s-plane contour are shown. As the 
first is followed, the magnitude of af increases since the dominant effect 
is that of leaving the zero. As the second test detour is followed, the magni­
tude of af increases since this detour approaches three poles and only one 
zero. The location of the shaded region in the afplane indicates that the - 1 
points remain outside this region for all positive values of ao and, therefore, 
the system is stable for any amount of negative feedback. 

The Nyquist test can also be used for systems that have one or more loop-
transmission poles in the right-half plane and thus are unstable without 
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Figure 4.19 Nyquist test for a(s)f(s) = 10s/[(s + 1)(O.1s + 1)(0.01s + 1)]. 

(a) s-plane plot. (b) af-plane plot. 
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feedback. An example of this type of system results for 

a(s)f(s) = ao (4.83)
S - 1 

with s-plane and af-plane plots shown in Figs. 4.20a and 4.20b. The line 
indicated by + marks in the af-plane plot is an attempt to show that for 
this system the angle must be continuous as s changes from jO- to j0+. In 
order to preserve this necessary continuity, we must realize that + 1800 and 
- 1800 are identical angles, and conceive of the af plane as a cylinder 

joined at the h 1800 lines. This concept is made somewhat less disturbing 
by using polar coordinates for the af-plane plot as shown in Fig. 4.20c. Here 
the -1 point appears only once. The use of the test detour shows that 
values of s in the right-half plane map outside of a circle that extends from 
0 to -ao as shown in Fig. 4.20c. The location of the - 1point in either af­
plane plot shows that the system is stable only for ao > 1. 

Note that the - 1points in the afplane corresponding to angles of 1180' 
collapse to one point when the af cylinder necessary for the Nyquist con­
struction for this example is formed. This feature and the nature of the af 
contour show that when ao is less than one, there is only one value of s for 
which a(s)f(s) = - 1. Thus this system has a single closed-loop pole on the 
positive real axis for values of ao that result in instability. 

This system indicates another type of difficulty that can be encountered 
with systems that have right-half-plane loop-transmission singularities. The 
angle of a(j)f(jo) is 1800 at low frequencies, implying that the system 
actually has positive feedback at these frequencies. (Recall the additional 
inversion included at the summation point in our standard representation.) 
The s-plane representation (Fig. 4.20a) is consistent since it indicates an 
angle of 1800 for s = 0. Thus no procedural modification of the type de­
scribed in Section 4.3.3 is necessary in this case. 

4.4.2 Interpretation of Bode Plots 

A Bode plot does not contain the information concerning values of af 
as the contour in the s plane is closed, which is necessary to apply the 
Nyquist test. Experience shows that the easiest way to determine stability 
from a Bode plot of an arbitrary loop transmission is to roughly sketch a 
complete af-plane plot and apply the Nyquist test as described in Section 
4.4.1. For many systems of practical interest, however, it is possible to 
circumvent this step and use the Bode information directly. 

The following two rules evolve from the Nyquist test for systems that 
have negative feedback at low or mid frequencies and that have no right-
half-plane singularities in their loop transmission. 
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Figure 4.20 Nyquist test for a(s)f(s) = ao/(s - 1). (a) s-plane plot. (b) af-plane 
plot. (c) af-plane plot (polar coordinates). 
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(C) 

Figure 4.20-Continued 

1. If the magnitude of af is 1 at only one frequency, the system is stable 
if the angle of af is between + 1800 and - 1800 at the unity-gain frequency. 

2. If the angle of af passes through +180 or - 1800 at only one fre­
quency, the system is stable if the magnitude of af is less than 1 at this 
frequency. 

Information concerning the relative stability of a feedback system can 
also be determined from a Bode plot for the following reason. The values 
of s for which af = - 1 are the closed-loop pole locations of a feedback 
system. The Nyquist test exploits this relationship in order to determine 
the absolute stability of a system. If the system is stable, but a pair of - l's 
of afoccur for values of s close to the imaginary axis, the system must have 
a pair of closed-loop poles with a small damping ratio. 

The quantities shown in Fig. 4.21 provide a useful estimation of the 
proximity of - l's of af to the imaginary axis and thus indicate relative 
stability. The phase margin is the difference between the angle of af and 
- 1800 at the frequency where the magnitude of af is 1. A phase margin 
of 00 indicates closed-loop poles on the imaignary axis, and therefore the 
phase margin is a measure of the additional negative phase shift at the 
unity-magnitude frequency that will cause instability. Similarly, the gain 
margin is the amount of gain increase required to make the magnitude of af 
unity at the frequency where the angle of af is - 1800, and represents the 
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Figure 4.21 Loop-transmission quantities. 

amount of increase in aofo required to cause instability. The frequency at 
which the magnitude of af is unity is called the unity-gainfrequency or the 
crossoverfrequency. This parameter characterizes the relative frequency re­
sponse or speed of the time response of the system. 

A particularly valuable feature of analysis based on the loop-transmission 
characteristics of a system is that the gain margin and the phase margin, 
quantities that are quickly and easily determined using Bode techniques, 
give surprisingly good indications of the relative stability of a feedback 
system. It is generally found that gain margins of three or more combined 
with phase margins between 30 and 60' result in desirable trade-offs be­
tween bandwidth or rise time and relative stability. The smaller values for 
gain and phase margin correspond to lower relative stability and are avoided 
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if small overshoot in response to a step or small frequency-response peaking 
is necessary or if there is the possibility of severe changes in parameter 
values. 

The closed-loop bandwidth and rise time are almost directly related to 
the unity-gain frequency for systems with equal gain and phase margins. 
Thus any changes that increase the unity-gain frequency while maintaining 
constant values for gain and phase margins tend to increase closed-loop 
bandwidth and decrease closed-loop rise time. 

Certain relationships between these three quantities and the correspond­
ing closed-loop performance are given in the following section. Prior to 
presenting these relationships, it is emphasized that the simplicity and 
excellence of results associated with frequency-response analysis makes this 
method a frequently used one, particularly during the initial design phase. 
Once a tentative design based on these concepts is determined, more de­
tailed information, such as the exact location of closed-loop singularities 
or the transient response of the system may be investigated, frequently 
with the aid of machine computation. 

4.4.3 	 Closed-Loop Performance in Terms of
 
Loop-Transmission Parameters
 

The quantity a(j)f(jw) can generally be quickly and accurately obtained 
in Bode-plot form. The effects of system-parameter changes on the loop 
transmission are also easily determined. Thus approximate relationships 
between the loop transmission and closed-loop performance provide a 
useful and powerful basis for feedback-system design. 

The input-output relationship for a system of the type illustrated in 
Fig. 4.1Oa is 

V0(s) _ a(s)
A(s= a(s) 	 (4.84)

Vi(s) 1 + a(s)f(s) 

If the system is stable, the closed-loop transfer function of the system can 
be approximated for limiting values of loop transmission as 

A(jo) 	 ~- a(jw)f(jw) >> 1 (4.85a) 

A(jw) a(jw) Ia(jw)f(je) < 1 (4.85b) 

One objective in the design of feedback systems is to insure that the 
approximation of Eqn. 4.85a is valid at all frequencies of interest, so that 
the system closed-loop gain is controlled by the feedback element. The 
approximation of Eqn. 4.85b is relatively unimportant, since the system is 
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effective operating without feedback in this case. While we normally do not 
expect to have the system provide precisely controlled closed-loop gain at 
frequencies where the magnitude of the loop transmission is close to one, 
the discussion of Section 4.4.2 shows that the relative stability of a system 
is largely determined by its performance in this frequency range. 

The Nichols chart shown in Fig. 4.22 provides a convenient method of 
evaluating the closed-loop gain of a feedback system from its loop trans-
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mission, and is particularly valuable when neither of the limiting approxi­
mations of Eqn. 4.85 is valid. This chart relates G/(1 + G) to G where G 
is any complex number. In order to use the chart, the value of G is located 
on the rectangular gain-phase coordinates. The angle and magnitude of 
G/(1 + G) are than read directly from the curved coordinates that intersect 
the value of G selected. 

The gain-phase coordinates shown in Fig. 4.22 cover the complete 00 to 
-360* range in angle and a ratio of 106 in magnitude. This magnitude range 
is unnecessary, since the approximations of Eqn. 4.85 are usually valid 
when the loop-transmission magnitude exceeds 10 or is less than 0.1. 
Similarly, the range of angles of greatest interest is that which surrounds 
the -1800 value and which includes anticipated phase margins. The 
Nichols chart shown in Fig. 4.23 is expanded to provide greater resolution 
in the region where it will normally be used. 

One effective way to view the Nichols chart is as a three-dimensional 
surface, with the height of the surface proportional to the magnitude of the 
closed-loop transfer function corresponding to the loop-transmission 
parameters that define the point of interest. This visualization shows a 
"mountain" (with a peak of infinite height) where the loop transmission 
is +1. 

The Nichols chart can be used directly for any unity-gain feedback sys­
tem. The transformation indicated in Fig. 4.10b shows that the chart can 
be used for arbitrary single-loop systems by observing that 

A(jw) = a(jw) [ a(jo)f(j I) ~1 ] (4.86)
1 + a(jo)f(jo) 1 + a(jw)f(jj).f(jo)_ 

The closed-loop frequency response is determined by multiplying the factor 
a(jw)f(j)/[1 + a(jw)f(jo)] obtained via the Nichols chart by I/f(j) using 
Bode techniques. 

One quantity of interest for feedback systems with frequency-independent 
feedback paths is the peak magnitude M, equal to the ratio of the maxi­
mum magnitude of A(jw) to its low-frequency magnitude (see Section 3.5). 
A large value for M, indicates a relatively less stable system, since it shows 
that there is some frequency for which the characteristic equation approaches 
zero and thus that there is a pair of closed-loop poles near the imaginary 
axis at approximately the peaking frequency. Feedback amplifiers are 
frequently designed to have M,'s between 1.1 and 1.5. Lower values for 
MP imply greater relative stability, while higher values indicate that 
stability has been compromised in order to obtain a larger low-frequency 
loop transmission and a higher crossover frequency. 

The value of M, for a particular system can be easily determined from 
the Nichols chart. Furthermore, the chart can be used to evaluate the 
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effects of variations in loop transmission on M,. One frequently used 
manipulation determines the relationship between M, and aofo for a system 
with fixed loop-transmission singularities. The quantity a(jW)f(jW)/aofo is 
first plotted on gain-phase coordinates using the same scale as the Nichols 
chart. If this plot is made on tracing paper, it can be aligned with the 
Nichols chart and slid up or down to illustrate the effects of different values 
of aofo. The closed-loop transfer function is obtained directly from the 
Nichols chart by evaluating A(jw) at various frequencies, while the highest 
magnitude curve of the Nichols chart touched by a(jw)f(jw) for a particular 
value of aofo indicates the corresponding M. 

Figure 4.24 shows this construction for a system with f = 1 and 

a(s) = a(4.87)
(s + 1) (0.1s + 1) 

The values of ao for the three loop transmissions are 8.5, 22, and 50. The 
corresponding M,'s are 1, 1.4, and 2, respectively. 

While the Nichols chart is normally used to determine the closed-loop 
function from the loop transmission, it is possible to use it to go the other 
way; that is, to determine a(j)f(jo) from A(jw). This transformation is 

occasionally useful for the analysis of systems for which only closed-loop 
measurements are practical. The transformation yields good results when 
the magnitude of a(j)f(jw) is close to one. Furthermore,the approximation 
of Eqn. 4.85b shows tha A(jw) - a(jw) when the magnitude of the loop 
transmission is small. However, Eqn. 4.85a indicates that A(jw) is essen­
tially independent of the loop transmission when the loop-transmission 
magnitude is large. Examination of the Nichols chart confirms this result 
since it shows that very small changes in the closed-loop magnitude or 
angle translate to very large changes in the loop transmission for large loop-
transmission magnitudes. Thus even small errors in the measurement of 
A(jw) preclude estimation of large values for a(jo)f(jw) with any accuracy. 

The relative stability of a feedback system and many other important 
characteristics of its closed-loop response are largely determined by the 
behavior of its loop transmission at frequencies where the magnitude of 
this quantity is close to unity. The approximations presented below relate 
closed-loop quantities defined in Section 3.5 to the loop-transmission 
properties defined in Section 4.4.2. These approximations are useful for 

predicting closed-loop response, comparing the performance of various 
systems, and estimating the effects of changes in loop transmission on 

closed-loop performance. 
The assumptions used in Section 3.5, in particular that f is one at all 
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frequencies, that ao is large, and that the lowest frequency singularity of 
a(s) is a pole, are assumed here. Under these conditions, 

M, ~ sin 1kmn (4.88) 

where $m.is the phase margin. The considerations that lead to this approxi­
mation are illustrated in Fig. 4.25. This figure shows several closed-loop­
magnitude curves in the vicinity of M, = 1.4 and assumes that the system 
phase margin is 45*. Since the point G = 1, 4 G = -135* must exist 
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Figure 4.25 M, for several systems with 450 of phase margin. 
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for a system with a 450 phase margin, there is no possible way that M, can 
be less than approximately 1.3, and the loop-transmission gain-phase curve 
must be quite specifically constrained for M, just to equal this value. 
If it is assumed that the magnitude and angle of G are linearly related, the 
linear constructions included in Fig. 4.25 show that M, cannot exceed 
approximately 1.5 unless the gain margin is very small. Well-behaved sys­
tems are actually most likely to have a gain-phase curve that provides an 
extended region of approximate tangency to the M, = 1.4 curve for a 
phase margin of 450. Similar arguments hold for other values of phase 
margin, and the approximation of Eqn. 4.88 represents a good fit to the 
relationship between phase margin and corresponding M,. 

Two other approximations relate the system transient response to its 
crossover frequency we. 

0.6 2.2 
-- < tr < - (4.89) 
wc (Jc 

The shorter values of rise time correspond to lower values of phase margin. 

4 
t, > - (4.90)

COc 

The limit is approached only for systems with large phase margins. 
We shall see that the open-loop transfer function of many operational 

amplifiers includes one pole at low frequencies and a second pole in the 
vicinity of the unity-gain frequency of the amplifier. If the system dynamics 
are dominated by these two poles, the damping ratio and natural frequency 
of a second-order system that approximates the actual closed-loop system 
can be obtained from Bode-plot parameters of a system with a frequency-
independent feedback path using the curves shown in Fig. 4.26a. The curves 
shown in Fig. 4.26b relate peak overshoot and M, for a second-order system 
to damping ratio and are derived using Eqns. 3.58 and 3.62. While the 
relationships of Fig. 4.26a are strictly valid only for a system with two widely 
spaced poles in its loop transmission, they provide an accurate approxima­
tion providing two conditions are satisfied. 

1. The system loop-transmission magnitude falls off as l1w at frequencies 
between one decade below crossover and the next higher frequency singu­
larity. 

2. Additional negative phase shift is provided in the vicinity of the cross­
over frequency by other components of the loop transmission. 

The value of these curves is that they provide a way to determine an 
approximating second-order system from either phase margin, M, or peak 
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Figure 4.26a Closed-loop quantities from loop-transmission parameters for system 
with two widely spaced poles. Damping ratio and natural frequency as a function 
of phase margin and crossover frequency. 

overshoot of a complex system. The validity of this approach stems from 
the fact that most systems must be dominated by one or two poles in the 
vicinity of the crossover frequency in order to yield acceptable performance. 
Examples illustrating the use of these approximations are included in later 
sections. We shall see that transient responses based on the approximation 
are virtually indistinguishable from those of the actual system in many 
cases of interest. 
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Figure 4.26b Po and M, versus damping ratio for second-order system. 

The first significant error coefficient for a system with unity feedback can 
also be determined directly from its Bode plot. If the loop transmission 
includes a wide range of frequencies below the crossover frequency where 
its magnitude is equal to k/wn, the error coefficients eo through e..- are 
negligible and e. equals 1/k. 

PROBLEMS
 
P4.1
 
Find the number of right-half-plane zeros of the polynomial 

P(s) = s1 + s 4 + 3s' + 4s2 + s + 2 
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P4.2 
A phase-shift oscillator is constructed with a loop transmission 

ao--=L(s) 
1)4(r-S + 

Use the Routh condition to determine the value of ao that places a pair of 
closed-loop poles on the imaginary axis. Also determine the location of the 
poles. Use this information to factor the characteristic equation of the 
system, thus finding the location of all four closed-loop poles for the critical 
value of ao. 

P4.3 
Describe how the Routh test can be modified to determine the real parts 

of all singularities in a polynomial. Also explain why this modification is 
usually of little value as a computational aid to factoring the polynomial. 

P4.4 
Prove the root-locus construction rule that establishes the angle and 

intersection of branch asymptotes with the real axis. 

P4.5 
Sketch root-locus diagrams for the loop-transmission singularity pattern 

shown in Fig. 4.27. Evaluate part c for moderate values of aofo, and part d 
for both moderate and very large values of aofo. 

P4.6 
Consider two systems, both with f = 1. One of these systems has a 

forward-path transfer function 

a(s) = ao(O.5s + 1) 
(s + 1) (0.01s + 1) (0.51s + 1) 

while the second system has 

ao(O.51s + 1)a'(S) = 
(s + 1) (0.01s + 1) (0.5s + 1) 

Common sense dictates that the closed-loop transfer functions of these 

systems should be very nearly identical and, furthermore, that both should 
be similar to a system with 

a"(s) =a 
(s + 1) (0.01s + 1) 

[The closely spaced pole-zero doublets in a(s) and a'(s) should effectively 

cancel out.] Use root-locus diagrams to show that the closed-loop responses 
are, in fact, similar. 
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Figure 4.27 Loop-transmission singularity patterns. 

P4.7 
An operational amplifier has an open-loop transfer function 

106
a(s) = (0.ls + 1) (10-6s + 1)2 

This amplifier is combined with two resistors in a noninverting-amplifier 
configuration. Neglecting loading, determine the value of closed-loop gain 
that results when the damping ratio of the complex closed-loop pole pair 
is 0.5. 

P4.8 
An operational amplifier has an open-loop transfer function 

105 
a(s) = 10 + 

(rS + 1) (10-6S + 1) 

The quantity T can be adjusted by changing the amplifier compensation. 
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Use root-contour techniques to determine a value of r that results in a 
closed-loop damping ratio of 0.707 when the amplifier is connected as a 
unity-gain inverter. 

P4.9 
A feedback system that includes a time delay has a loop transmission 

aoe-0.013L~)L(s) = a- 0 l
(s + 1) 

Use the Nyquist test to determine the maximum value of ao for stable 
operation. What value of ao should be selected to limit M, to a factor of 
1.4? (You may assume that the feedback path of the system is frequency 
independent.) 

P4.10 
We have been investigating the stability of feedback systems that are 

generally low pass in nature, since the transfer functions of most opera­
tional-amplifier connections fall in this category. However, stability prob­
lems also arise in high-pass systems. For example, a-c coupled feedback 
amplifiers designed for use at audio frequencies sometimes display a low-
frequency instability called "motor-boating." Use the Nyquist test to 
demonstrate the possibility of this type of instability for an amplifier with 
a loop transmission 

L(s) - aosa 
(s + 1) (0.ls + 1)2 

Also show the potentially unstable behavior using root-locus methods. 
For what range of values of ao is the amplifier stable? 

P4.11 
Develop a modification of the Nyquist test that enables you to determine 

if a feedback system has any closed-loop poles with a damping ratio of less 
than 0.707. Illustrate your test by forming the modified Nyquist diagram 
for a system with a(s) = ao/(s + 1) 

2 , f(s) = 1. For what value of ao does 
the damping ratio of the closed-loop pole pair equal 0.707? Verify your 
answer by factoring the characteristic equation for this value of ao. 

P4.12 
The open-loop transfer function of an operational amplifier is 

1050
a(s) = 
(0.s + 1) (10-s + 1)2 

Determine the gain margin, phase margin, crossover frequency, and M, 
for this amplifier when used in a feedback connection withf = 1. Also find 
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the value off that results in an M, of 1.1. What are the values of phase and 
gain margin and crossover frequency with this value forf? 

P4.13 
A feedback system is constructed with 

a(s) = 106(0.Ols + 1)2 
(s + 1)3 

and an adjustable, frequency-independent value forf.Asf is increased from 
zero, it is observed that the system is stable for very small values off, then 
becomes unstable, and eventually returns to stable behavior for sufficiently 
high values of f. Explain this performance using Nyquist and root-locus 
analysis. Use the Routh criterion to determine the two borderline values 
for f. 

P4.14 
An operational amplifier with a frequency-independent feedback path 

exhibits 40% overshoot and 10 to 90% rise time of 0.5 ps in response to a 

step input. Estimate the phase margin and crossover frequency of the feed­
back connection, assuming that its performance is dominated by two 
widely separated loop-transmission poles. 

P4.15 
Consider a feedback system with 

=a(s) 
a 0 

s[(s2/2) + s + 1] 

and f(s) = 1. 
Show that by appropriate choice of ao, the closed-loop poles of the system 

can be placed in a third-order Butterworth pattern. Find the crossover 
frequency and the phase margin of the loop transmission when ao is selected 
for the closed-loop Butterworth response. Use these quantities in conjunc­
tion with Fig. 4.26 to find the damping ratio and natural frequency of a 

second-order system that can be used to approximate the transient response 
of the third-order Butterworth filter. Compare the peak overshoot and rise 

time of the approximating system in response to a step with those of the 

Butterworth response (Fig. 3.10). Note that, even though this system is con­

siderably different from that used to develop Fig. 4.26, the approximation 
predicts time-domain parameters with fair accuracy. 
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