
CHAPTER II
 

PROPERTIES AND MODELING
 
OF FEEDBACK SYSTEMS
 

2.1 INTRODUCTION 

A control system is a system that regulates an output variable with the 
objective of producing a given relationship between it and an input variable 
or of maintaining the output at a fixed value. In a feedback control system, 
at least part of the information used to change the output variable is 
derived from measurements performed on the output variable itself. This 
type of closed-loop control is often used in preference to open-loop control 

(where the system does not use output-variable information to influence 
its output) since feedback can reduce the sensitivity of the system to ex­
ternally applied disturbances and to changes in system parameters. 
Familiar examples of feedback control systems include residential heating 
systems, most high-fidelity audio amplifiers, and the iris-retina combina­
tion that regulates light entering the eye. 

There are a variety of textbooks1 available that provide detailed treat­
ment on servomechanisms, or feedback control systems where at least one 
of the variables is a mechanical quantity. The emphasis in this presentation 
is on feedback amplifiers in general, with particular attention given to 
feedback connections which include operational amplifiers. 

The operational amplifier is a component that is used almost exclusively 
in feedback connections; therefore a detailed knowledge of the behavior of 
feedback systems is necessary to obtain maximum performance from these 
amplifiers. For example, the open-loop transfer function of many opera­
tional amplifiers can be easily and predictably modified by means of external 

I G. S. Brown and D. P. Cambell, Principlesof Servomechanisms, Wiley, New York, 1948; 
J. G. Truxal, Automatic Feedback ControlSystem Synthesis, McGraw-Hill, New York, 1955; 
H. Chestnut and R. W. Mayer, Servomechanisms and Regulating System Design, Vol. 1, 
2nd Ed., Wiley, New York, 1959; R. N. Clark, Introduction to Automatic Control Systems, 
Wiley, New York, 1962; J. J. D'Azzo and C. H. Houpis, Feedback Control System Analysis 
and Synthesis, 2nd Ed., McGraw-Hill, New York, 1966; B. C. Kuo, Automatic Control 
Systems, 2nd Ed., Prentice-Hall, Englewood Cliffs, New Jersey, 1967; K. Ogata, Modern 
Control Engineering,Prentice-Hall, Englewood Cliffs, New Jersey, 1970. 

21 



22 Properties and Modeling of Feedback Systems 

Disturbance 

Input ErrOutput 
vaibl Comparator ErrAmplifier i vral 

Measuring or 
feedback element 

Figure 2.1 A typical feedback system. 

components. The choice of the open-loop transfer function used for a 
particular application must be based on feedback principles. 

2.2 SYMBOLOGY 

Elements common to many electronic feedback systems are shown in 
Fig. 2.1. The input signal is applied directly to a comparator. The output 
signal is determined and possibly operated upon by a feedback element. 
The difference between the input signal and the modified output signal is 
determined by the comparator and is a measure of the error or amount by 
which the output differs from its desired value. An amplifier drives the out­
put in such a way as to reduce the magnitude of the error signal. The system 
output may also be influenced by disturbances that affect the amplifier or 
other elements. 

We shall find it convenient to illustrate the relationships among variables 
in a feedback connection, such as that shown in Fig. 2.1, by means of block 
diagrams.A block diagram includes three types of elements. 

1. A line represents a variable, with an arrow on the line indicating the 
direction of information flow. A line may split, indicating that a single 
variable is supplied to two or more portions of the system. 

2. A block operates on an input supplied to it to provide an output. 
3. Variables are added algebraically at a summation point drawn as 

follows: 

x x-y 

y 
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Figure 2.2 Block diagram for the system of Fig. 2.1. 

One possible representation for the system of Fig. 2.1, assuming that 
the input, output, and disturbance are voltages, is shown in block-diagram 
form in Fig. 2.2. (The voltages are all assumed to be measured with respect 
to references or grounds that are not shown.) The block diagram implies a 
specific set of relationships among system variables, including: 

1. The error is the difference between the input signal and the feedback 
signal, or Ve = Vi - Vf. 

2. The output is the sum of the disturbance and the amplified error 
signal, or V, = Vd + aVe. 

3. The feedback signal is obtained by operating on the output signal with 
the feedback element, or Vf = fV. 

The three relationships can be combined and solved for the output in 
terms of the input and the disturbance, yielding 

aV, Vd 
V0 = V + Vd(2.1)

1+ af 1+ af 

2.3 ADVANTAGES OF FEEDBACK 

There is a frequent tendency on the part of the uninitiated to associate 
almost magical properties to feedback. Closer examination shows that 
many assumed benefits of feedback are illusory. The principal advantage 
is that feedback enables us to reduce the sensitivity of a system to changes 
in gain of certain elements. This reduction in sensitivity is obtained only in 
exchange for an increase in the magnitude of the gain of one or more of the 
elements in the system. 

In some cases it is also possible to reduce the effects of disturbances 
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applied to the system. We shall see that this moderation can always, at 
least conceptually, be accomplished without feedback, although the feedback 
approach is frequently a more practical solution. The limitations of this 
technique preclude reduction of such quantities as noise or drift at the 
input of an amplifier; thus feedback does not provide a method for detect­
ing signals that cannot be detected by other means. 

Feedback provides a convenient method of modifying the input and 
output impedance of amplifiers, although as with disturbance reduction, it 
is at least conceptually possible to obtain similar results without feedback. 

2.3.1 Effect of Feedback on Changes in Open-Loop Gain 

As mentioned above, the principal advantage of feedback systems com­
pared with open-loop systems is that feedback provides a method for re­
ducing the sensitivity of the system to changes in the gain of certain ele­
ments. This advantage can be illustrated using the block diagram of Fig. 
2.2. If the disturbance is assumed to be zero, the closed-loop gain for the 
system is 

a AV0 
- = A (2.2)Vj 1 + af 

(We will frequently use the capital letter A to denote closed-loop gain, 
while the lower-case a is normally reserved for a forward-path gain.) 

The quantity af is the negative of the loop transmission for this system. 
The loop transmission is determined by setting all external inputs (and dis­
turbances) to zero, breaking the system at any point inside the loop, and 
determining the ratio of the signal returned by the system to an applied 
test input.2 If the system is a negativefeedbacksystem, the loop transmission 
is negative. The negative sign on the summing point input that is included 
in the loop shown in Fig. 2.2 indicates that the feedback is negative for this 
system if a andf have the same sign. Alternatively, the inversion necessary 
for negative feedback might be supplied by either the amplifier or the feed­
back element. 

Equation 2.2 shows that negative feedback lowers the magnitude of the 
gain of an amplifier since asf is increased from zero, the magnitude of the 
closed-loop gain decreases if a and f have this same sign. The result is 
general and can be used as a test for negative feedback. 

It is also possible to design systems with positive feedback. Such systems 
are not as useful for our purposes and are not considered in detail. 

The closed-loop gain expression shows that as the loop-transmission 
magnitude becomes large compared to unity, the closed-loop gain ap­

2 An example of this type of calculation is given in Section 2.4.1. 
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proaches the value 1/f. The significance of this relationship is as follows. 
The amplifier will normally include active elements whose characteristics 
vary as a function of age and operating conditions. This uncertainty may be 
unavoidable in that active elements are not available with the stability re­
quired for a given application, or it may be introduced as a compromise in 
return for economic or other advantages. 

Conversely, the feedback network normally attenuates signals, and thus 
can frequently be constructed using only passive components. Fortunately, 
passive components with stable, precisely known values are readily avail­
able. If the magnitude of the loop transmission is sufficiently high, the 
closed-loop gain becomes dependent primarily on the characteristics of 
the feedback network. 

This feature can be emphasized by calculating the fractional change in 
closed-loop gain d(V,/ Vj)/(V 0/ Vj) caused by a given fractional change in 
amplifier forward-path gain da/a, with the result 

d(V0 /Vi) = da ( 1 (2.3) 
(V./Vi) a 1 + afi 

Equation 2.3 shows that changes in the magnitude of a can be attenuated 
to insignificant levels if af is sufficiently large. The quantity 1 + af that 
relates changes in forward-path gain to changes in closed-loop gain is 
frequently called the desensitivity of a feedback system. Figure 2.3 illustrates 
this desensitization process by comparing two amplifier connections in­
tended to give an input-output gain of 10. Clearly the input-output gain is 
identically equal to a in Fig. 2.3a, and thus has the same fractional change 
in gain as does a. Equations 2.2 and 2.3 show that the closed-loop gain for 
the system of Fig. 2.3b is approximately 9.9, and that the fractional change 
in closed-loop gain is less than 1%.of the fractional change in the forward-
path gain of this system. 

The desensitivity characteristic of the feedback process is obtained only 
in exchange for excess gain provided in the system. Returning to the ex­
ample involving Fig. 2.2, we see that the closed-loop gain for the system is 
a/(1 + af), while the forward-path gain provided by the amplifier is a. 
The desensitivity is identically equal to the ratio of the forward-path gain 
to closed-loop gain. Feedback connections are unique in their ability to 
automatically trade excess gain for desensitivity. 

It is important to underline the fact that changes in the gain of the feed­
back element have direct influence on the closed-loop gain of the system, 
and we therefore conclude that it is necessary to observe or measure the 
output variable of a feedback system accurately in order to realize the 
advantages of feedback. 
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Figure 2.3 Amplifier connections for a gain of ten. (a) Open loop. (b) Closed loop. 

2.3.2 Effect of Feedback on Nonlinearities 

Because feedback reduces the sensitivity of a system to changes in open-
loop gain, it can often moderate the effects of nonlinearities. Figure 2.4 
illustrates this process. The forward path in this connection consists of an 
amplifier with a gain of 1000 followed by a nonlinear element that might 
be an idealized representation of the transfer characteristics of a power 
output stage. The transfer characteristics of the nonlinear element show 
these four distinct regions: 

1. A deadzone, where the output remains zero until the input magnitude 
exceeds 1 volt. This region models the crossover distortion associated with 
many types of power amplifiers. 

2. A linear region, where the incremental gain of the element is one. 
3. A region of soft limiting, where the incremental gain of the element 

is lowered to 0.1. 
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4. A region of hard limiting or saturation where the incremental gain of 
the element is zero. 

The performance of the system can be determined by recognizing that, 
since the nonlinear element is piecewise linear, all transfer relationships must 
be piecewise linear. The values of all the variables at a breakpoint can be 
found by an iterative process. Assume, for example, that the variables 
associated with the nonlinear element are such that this element is at its 
breakpoint connecting a slope of zero to a slope of +1. This condition only 
occurs for VA = 1 and VB = 0. If VB 0 = 0, the signal VF must be zero, 

O 3since VF = 0.1 vo. Similarly, with VA = 1, VE = 0VA = 30-'. Since the 
relationships at the summing point imply VE = VI - VF, or v = VE + VF, 

vr must equal 10-1. The values of variables at all other breakpoints can be 
found by similar reasoning. Results are summarized in Table 2.1. 

Table 2.1 Values of Variables at Breakpoints for System of Fig. 2.4 

Vi VE = VI - VF VA = 103VE VB = VO VF = 0.1V0 

<-0.258 v,+0.250 103 
V+ 250 -2.5 -0.25 

-0.258 -0.008 -8 -2.5 -0.25 
-0.203 -0.003 -3 -2 -0.2 
-10-3 -10-3 -1 0 0 

10-3 10-3 1 0 0 
0.203 0.003 3 2 0.2 
0.258 0.008 8 2.5 0.25 

> 0.258 v - 0.250 103V1 - 250 2.5 0.25 

The input-output transfer relationship for the system shown in Fig. 2.4c 
is generated from values included in Table 2.1. The transfer relationship 
can also be found by using the incremental forward gain, or 1000 times the 
incremental gain of the nonlinear element, as the value for a in Eqn. 2.2. 
If the magnitude of signal VA is less than 1volt, a is zero, and the incremental 
closed-loop gain of the system is also zero. If VA is between 1 and 3 volts, 
a is 101, so the incremental closed-loop gain is 9.9. Similarly, the incre­
mental closed-loop gain is 9.1 for 3 < vA < 8. 

Note from Fig. 2.4c that feedback dramatically reduces the width of the 

deadzone and the change in gain as the output stage soft limits. Once the 
amplifier saturates, the incremental loop transmission becomes zero, and 
as a result feedback cannot improve performance in this region. 
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Figure 2.4 The effects of feedback on a nonlinearity. (a) System. (b) Transfer 
characteristics of the nonlinear element. (c) System transfer characteristics (closed 
loop). (Not to scale.) (d) Waveforms for vjQ) a unit ramp. (Not to scale.) 
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Figure 2.4-Continued 

Figure 2.4d provides insight into the operation of the circuit by compar­

ing the output of the system and the voltage VA for a unit ramp input. The 

output remains a good approximation to the input until saturation is 

reached. The signal into the nonlinear element is "predistorted" by feedback 

in such a way as to force the output from this element to be nearly linear. 

The technique of employing feedback to reduce the effects of nonlinear 

elements on system performance is a powerful and widely used method 

that evolves directly from the desensitivity to gain changes provided by 

feedback. In some applications, feedback is used to counteract the un­

avoidable nonlinearities associated with active elements. In other applica­

tions, feedback is used to maintain performance when nonlinearities result 

from economic compromises. Consider the power amplifier that provided 
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the motivation for the previous example. The designs for linear power-
handling stages are complex and expensive because compensation for the 
base-to-emitter voltages of the transistors and variations of gain with 
operating point must be included. Economic advantages normally result if 
linearity of the power-handling stage is reduced and low-power voltage-gain 
stages (possibly in the form of an operational amplifier) are added prior .to 
the output stage so that feedback can be used to restore system linearity. 

While this section has highlighted the use of feedback to reduce the 
effects of nonlinearities associated with the forward-gain element of a sys­
tem, feedback can also be used to produce nonlinearities with well-con­
trolled characteristics. If the feedback element in a system with large loop 
transmission is nonlinear, the output of the system becomes approximately 
vo = f/'(vr). Here f- 1 is the inverse of the feedback-element transfer rela­
tionship, in the sense thatf-1 [f(V)] = V. For example, transistors or diodes 
with exponential characteristics can be used as feedback elements around 
an operational amplifier to provide a logarithmic closed-loop transfer 
relationship. 

2.3.3 Disturbances in Feedback Systems 

Feedback provides a method for reducing the sensitivity of a system to 
certain kinds of disturbances. This advantage is illustrated in Fig. 2.5. 
Three different sources of disturbances are applied to this system. The 
disturbance Vdi enters the system at the same point as the system input, and 
might represent the noise associated with the input stage of an amplifier. 
Disturbance Vd2 enters the system at an intermediate point, and might 
represent a disturbance from the hum associated with the poorly filtered 
voltage often used to power an amplifier output stage. Disturbance Vd3 enters 
at the amplifier output and might represent changing load characteristics. 

Vd Vd3d 2 

a, : a2 V0 

Figure 2.5 Feedback system illustrating effects of disturbances. 
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The reader should convince himself that the block diagram of Fig. 2.5 
implies that the output voltage is related to input and disturbances as 

aia2 [(Vi + Vdl) + (Vd 2 /ai) + (Vd 3/aia2)] (2.4) 
1 + aia2f 

Equation 2.4 shows that the disturbance Vdl is not attenuated relative to 
the input signal. This result is expected since Vi and Vdi enter the system 
at the same point, and reflects the fact that feedback cannot improve quan­
tities such as the noise figure of an amplifier. The disturbances that enter 
the amplifier at other points are attenuated relative to the input signal by 
amounts equal to the forward-path gains between the input and the points 
where the disturbances are applied. 

It is important to emphasize that the forward-path gain preceding the 

disturbance, rather than the feedback, results in the relative attenuation of 
the disturbance. This feature is illustrated in Fig. 2.6. This open-loop sys­
tem, which follows the forward path of Fig. 2.5 with an attenuator, yields 
the same output as the feedback system of Fig. 2.5. The feedback system is 
nearly always the more practical approach, since the open-loop system 
requires large signals, with attendant problems of saturation and power 
dissipation, at the input to the attenuator. Conversely, the feedback realiza­
tion constrains system variables to more realistic levels. 

2.3.4 Summary 

This section has shown how feedback can be used to desensitize a system 
to changes in component values or to externally applied disturbances. This 
desensitivity can only be obtained in return for increases in the gains of 
various components of the system. There are numerous situations where 
this type of trade is advantageous. For example, it may be possible to 
replace a costly, linear output stage in a high-fidelity audio amplifier with 
a cheaper unit and compensate for this change by adding an inexpensive 
stage of low-level amplification. 

The input and output impedances of amplifiers are also modified by feed­
back. For example, if the output variable that is fed back is a voltage, the 

Vd1 Vd2 d3 

+ + + 
ViI 1 a2 1I+a.a-f V0 

Figure 2.6 Open-loop system illustrating effects of disturbances. 
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feedback tends to stabilize the value of this voltage and reduce its depend­
ence on disturbing load currents, implying that the feedback results in 
lower output impedance. Alternatively, if the information fed back is pro­
portional to output current, the feedback raises the output impedance. 
Similarly, feedback can limit input voltage or current applied to an ampli­
fier, resulting in low or high input impedance respectively. A quantitative 
discussion of this effect is reserved for Section 2.5. 

A word of caution is in order to moderate the impression that perform­
ance improvements always accompany increases in loop-transmission 
magnitude. Unfortunately, the loop transmission of a system cannot be 
increased without limit, since sufficiently high gain invariably causes a sys­
tem to become unstable. A stable system is defined as one for which a 
bounded output is produced in response to a bounded input. Conversely, 
an unstable system exhibits runaway or oscillatory behavior in response to 
a bounded input. Instability occurs in high-gain systems because small 
errors give rise to large corrective action. The propagation of signals around 
the loop is delayed by the dynamics of the elements in the loop, and as a 
consequence high-gain systems tend to overcorrect. When this overcorrec­
tion produces an error larger than the initiating error, the.system is unstable. 

This important aspect of the feedback problem did not appear in this 
section since the dynamics associated with various elements have been ig­
nored. The problem of stability will be investigated in detail in Chapter 4. 

2.4 BLOCK DIAGRAMS 

A block diagram is a graphical method of representing the relationships 
among variables in a system. The symbols used to form a block diagram 
were introduced in Section 2.2. Advantages of this representation include 
the insight into system operation that it often provides, its clear indication 
of various feedback loops, and the simplification it affords to determining 
the transfer functions that relate input and.output variables of the system. 
The discussion in this section is limited to linear, time-invariant systems, 
with the enumeration of certain techniques useful for the analysis of non­
linear systems reserved for Chapter 6. 

2.4.1 Forming the Block Diagram 

Just as there are many complete sets of equations that can be written 
to describe the relationships among variables in a system, so there are many 
possible block diagrams that can be used to represent a particular system. 
The choice of block diagram should be made on the basis of the insight it 
lends to operation and the ease with which required transfer functions can 
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be evaluated. The following systematic method is useful for circuits where 
all variables of interest are node voltages. 

1. Determine the node voltages of interest. The selected number of 
voltages does not have to be equal to the total number of nodes in the circuit, 
but it must be possible to write a complete, independent set of equations 
using the selected voltages. One line (which may split into two or more 
branches in the final block diagram) will represent each of these variables, 
and these lines may be drawn as isolated segments. 

2. Determine each of the selected node voltages as a weighted sum of 
the other selected voltages and any inputs or disturbances that may be 
applied to the circuit. This determination requires a set of equations of the 
form 

V, = anV + E b.E. (2.5) 
n/j m 

where Vk is the kth node voltage and Ek is the kth input or disturbance. 
3. The variable V is generated as the output of a summing point in the 

block diagram. The inputs to the summing point come from all other vari­
ables, inputs, and disturbances- via blocks with transmissions that are the 
a's and b's in Eqn. 2.5. Some of the blocks may have transmissions of zero, 
and these blocks and corresponding summing-point inputs can be elimi­
nated. 

The set of equations required in Step 2 can be determined by writing 
node equations for the complete circuit and solving the equation written 
about the jth node for V in terms of all other variables. If a certain node 
voltage Vk is not required in the final block diagram, the equation relating 
Vk to other system voltages is used to eliminate Vk from all other members 
of the set of equations. While this degree of formality is often unnecessary, 
it always yields a correct block diagram, and should be used if the desired 
diagram cannot easily be obtained by other methods. 

As an example of block diagram construction by this formal approach, 
consider the common-emitter amplifier shown in Fig. 2.7a. (Elements used 
for bias have been eliminated for simplicity.) The corresponding small-
signal equivalent circuit is obtained by substituting a hybrid-pi3 model for 
the transistor and is shown in Fig. 2.7b. Node equations are 4 

3The hybrid-pi model will be used exclusively for the analysis of bipolar transistors 
operating in the linear region. The reader who is unfamiliar with the development or use 
of this model is referred to P. E. Gray and C. L. Searle, Electronic Principles:Physics, 
Models, and Circuits,Wiley, New York, 1969. 

4 G's and R's (or g's and r's) are used to identify corresponding conductances and re­
sistances, while Y's and Z's (or y's and z's) are used to identify corresponding admittances 
and impedances. Thus for example, GA =I IRA and zb = I /yb. 
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GsVi = (Gs + g.) Va - g. Vb (2.6) 

0 = -g V + [(g + gr) + (C, + C,)s] V - C's V 

0 = (g - CMS) Vb + (GL + Cys)Vo 

If the desired block diagram includes all three node voltages, Eqn. 2.6 
is arranged so that each member of the set is solved for the voltage at the 
node about which the member was written. Thus, 

V. = 9X Vb + Gs Vi (2.7) 
ga ga 

Vb = 9X V. + CISVo 
Yb Yb 

V1 = (CMs - g.) Vb
 

Yo
 

Where 

ga = Gs + gx 

Yb = [(gx + g,) + (CA + C,)s] 

yo = GL + CyS 

The block diagram shown in Fig. 2.7c follows directly from this set of 
equations. 

Figure 2.8 is the basis for an example that is more typical of our intended 
use of block diagrams. A simple operational-amplifier medel is shown con­
nected as a noninverting amplifier. It is assumed that the variables of 
interest are the voltages Vb and V,. The voltage V, can be related to the 
other selected voltage, Vb, and the input voltage, Vi, by superposition. 

with Vi = 0, 

V0 = -aVb (2.8) 
while with Vb = 0, 

V = a Vi (2.9) 

The equation relating V0 to other selected voltages and inputs is simply the 
superposition of the responses represented by Eqns. 2.8 and 2.9, or 

V, = aVi - aVb (2.10) 

The voltage Vb is independent of Vi and is related to asV0 

V = z V (2.11)
Z + Z2 
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Figure 2.7 Common-emitter amplifier. (a) Circuit. (b) Incremental equivalent 
circuit. (c) Block diagram. 

Equations 2.10 and 2.11 are readily combined to form the block diagram 
shown in Fig. 2.8b. 

It is possible to form a block diagram that provides somewhat greater 
insight into the operation of the circuit by replacing Eqn. 2.10 by the pair 
of equations 

V. = Vi - Vb (2.12) 
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and 

V, = aV. (2.13) 

Note that the original set of equations were not written including Va, since 
Va, Vb, and Vi form a Kirchhoff loop and thus cannot all be included in an 
independent set of equations. 

The alternate block diagram shown in Fig. 2.8c is obtained from Eqns. 
2.11, 2.12, and 2.13. In this block diagram it is clear that the summing point 
models the function provided by the differential input of the operational 
amplifier. This same block diagram would have evolved had and V,V0 
been initially selected as the amplifier voltages of interest. 

The loop transmission for any system represented as a block diagram can 
always be determined by setting all inputs and disturbances to zero, break­
ing the block diagram at any point inside the loop, and finding the signal 
returned by the loop in response to an applied test signal. One possible 
point to break the loop is illustrated in Fig. 2.8c. With Vi = 0, it is evident 
that 

V0 -aZ 1
-1 = , (2.14)

Vt Z1 + Z2 

The same result is obtained for the loop transmission if the loop in Fig. 2.8c 
is broken elsewhere, or if the loop in Fig. 2.8b is broken at any point. 

Figure 2.9 is the basis for a slightly more involved example. Here a-fairly 
detailed operational-amplifier model, which includes input and output im­
pedances, is shown connected as an inverting amplifier. A disturbing current 
generator is included, and this generator can be used to determine the 
closed-loop output impedance of the amplifier Vo/Id. 

It is assumed that the amplifier voltages of interest are V, and V0 . The 
equation relating V, to the other voltage of interest V0, the input Vi, and 
the disturbance Id, is obtained by superposition (allowing all other signals 
to be nonzero one at a time and superposing results) as in the preceding 
example. The reader should verify the results 

Va = Vi + Zi 1 Vo (2.15)
Z1 + Zi 1Z 2 Z2 + Zi 1 Z1 

and 

-aZ2 + Z,
V, = Z 2+Z 0 V + (Zo 11 Z 2)Id (2.16) 

The block diagram of Fig. 2.9b follows directly from Eqns. 2.15 and 2.16. 



aV, 

V. V. 

+ 0­V 
~ + 

z2 

-+ 
V. 

VY 

1I 
Z2 

(a) 

Vi 

(b) 

V 

Possible point 
to break loop 
to determine loop 
transmission 

(c) 

Figure 2.8 Noninverting amplifier. (a) Circuit. (b) Block diagram. (c) Alternative 
block diagram. 
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Figure 2.9 Inverting amplifier. (a) Circuit. (b) Block diagram. 

2.4.2 Block-Diagram Manipulations 

There are a number of ways that block diagrams can be restructured or 

reordered while maintaining the correct gain expression between an input or 

disturbance and an output. These modified block diagrams could be ob­

tained directly by rearranging the equations used to form the block diagram 

or by using other system variables in the equations. Equivalences that can 

be used to modify block diagrams are shown in Fig. 2.10. 
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It is necessary to be able to find the transfer functions relating outputs 
to inputs and disturbances or the relations among other system variables 
from the block diagram of the system. These transfer functions can always 
be found by appropriately applying various equivalences of Fig. 2.10 until 
a single-loop system is obtained. The transfer function can then be deter­
mined by loop reduction (Fig. 2. 10h). Alternatively, once the block diagram 
has been reduced to a single loop, important system quantities are evident. 
The loop transmission as well as the closed-loop gain approached for large 
loop-transmission magnitude can both be found by inspection. 

Figure 2.11 illustrates the use of equivalences to reduce the block diagram 
of the common-emitter amplifier previously shown as Fig. 2.7c. Figure 2.1 la 
is identical to Fig. 2.7c, with the exceptions that a line has been replaced 
with a unity-gain block (see Fig. 2. 1Oa) and an intermediate variable Vc has 
been defined. These changes clarify the transformation from Fig. 2.1 la to 
2.1 lb, which is made as follows. The transfer function from Vc to Vb is 
determined using the equivalance of Fig. 2.1Oh, recognizing that the feed­
back path for this loop is the product of the transfer functions of blocks 
1 and 2. The transfer function Vb/ V is included in the remaining loop, and 
the transfer function of block 1 links V, to Vb. 

The equivalences of Figs. 2.10b and 2.10h using the identification of 
transfer functions shown in Fig. 2.11b (unfortunately, as a diagram is re­
duced, the complexities of the transfer functions of residual blocks increase) 
are used to determine the overall transfer function indicated in Fig. 2.11 c. 

The inverting-amplifier connection (Fig. 2.9) is used as another example 
of block-diagram reduction. The transfer function relating V, to Vi in 
Fig. 2.9b can be reduced to single-loop form by absorbing the left-hand 
block in this diagram (equivalence in Fig. 2.1Od). Figure 2.12 shows the 
result of this absorption after simplifying the feedback path algebraically, 
eliminating the disturbing input, and using the equivalence of Fig. 2.10e to 
introduce an inversion at the summing point. The gain of this system ap­
proaches the reciprocal of the feedback path for large loop transmission; 
thus the ideal closed-loop gain is 

V. Z2V- (2.17) 
Vi Z1 

The forward gain for this system is 

V., Zi |1Z 2 -- aZ + Zo 
Ye _Z1 + Zi Z2_ L_ Z2 + Zo 

=[ Zi 1\ Z2_ ' -- aZ2 ~ Zi 11Z2_ Zo 2.8 
Z1 + Zi \\ Z2 _Z2 + Zo _Z1 + Zi |1 Z21 _Z2 + Zol 
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(a) 

V aVb Va ab Vb 

(b) 

V. V.a a +b Vb 

(c) 
V. a V+ 

bb 
+ 

a y 

a 

(d) 

Vb 

V' VCVe 

Vb 

(e) 

Figure 2.10 Block-diagram equivalences. (a) Unity gain of line. (b) Cascading. 
(c) Summation. (d) Absorption. (e) Negation. (f) Branching. (g) Factoring. (h) Loop 
reduction. 
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Figure 2.10-Continued 

The final term on the right-hand side of Eqn. 2.18 reflects the fact that 
some fraction of the input signal is coupled directly to the output via the 
feedback network, even if the amplifier voltage gain a is zero. Since the 
impedances included in this term are generally resistive or capacitive, the 
magnitude of this coupling term will be less than one at all frequencies. 
Similarly, the component of loop transmission attributable to this direct 
path, determined by setting a = 0 and opening the loop is 

Vf Z1 Zi '' Z2Ve a=0 |_Z2 Z1 + Zi Z2 
Z _

Z o 

= + (2.19)
_ZiZ1 + ZiZ2 + Z1Z2_ _Z2 + Zo_ 

and will be less than one in magnitude at all frequencies when the im­
pedances involved are resistive or capacitive. 
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V 
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g, Yb Cs -gm C' s 

b d 

9a 

(b) 

V. 3 bcd v1 - ce 

Figure 2.11 Simplification of common-emitter block diagram. (a) Original block diagram. (b) After 
eliminating loop generating Vb. (c) Reduction to single block. 
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Z1 

(Break loop here
 
to determine loop transmission
 

Figure 2.12 Reduced diagram for inverting amplifier. 

If the loop-transmission magnitude of the operational-amplifier connec­
tion is large compared to one, the component attributable to direct coupling 
through the feedback network (Eqn. 2.19) must be insignificant. Conse­

quently, the forward-path gain of the system can be approximated as 

V. [ -aZ 2 z 2 (2.20) 
V Z 2+ Z. Z1 + Zi 1|Z2 _ 

in this case. The corresponding loop transmission becomes 

V- -aZj ] ] (2.21) 
Ve LZ2+Z Z 1 + Zi |\ Z2 

It is frequently found that the loop-transmission term involving direct 
coupling through the feedback network can be neglected in practical 
operational-amplifier connections, reflecting the reasonable hypothesis that 
the dominant gain mechanism is the amplifier rather than the passive 
network. While this approximation normally yields excellent results at 
frequencies where the amplifier gain is large, there are systems where sta­
bility calculations are incorrect when the approximation is used. The reason 
is that stability depends largely on the behavior of the loop transmission 
at frequencies where its magnitude is close to one, and the gain of the 
amplifier may not dominate at these frequencies. 

2.4.3 The Closed-Loop Gain 

It is always possibl to determine the gain that relates any signal in a 
block diagram to an input or a disturbance by manipulating the block 
diagram until a single path connects the two quantities of interest. Alter­
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natively, it is possible to use a method developed by Mason 5 to calculate 
gains directly from an unreduced block diagram. 

In order to determine the gain between an input or disturbance and any 
other points in the diagram, it is necessary to identify two topological 
features of a block diagram. A path is a continuous succession of blocks, 
lines, and summation points that connect the input and signal of interest 
and along which no element is encountered more than once. Lines may 
be traversed only in the direction of information flow (with the arrow). It 
is possible in general to have more than one path connecting an input to an 
output or other signal of interest. The path gain is a product of the gains 
of all elements in a path. A loop is a closed succession of blocks, lines, and 
summation points traversed with the arrows, along which no element is 
encountered more than once per cycle. The loop gain is the product of gains 
of all elements in a loop. It is necessary to include the inversions indicated 
by negative signs at summation points when calculating path or loop gains. 

The general expression for the gain or transmission of a block diagram is 

E Pa - E Lb + E LeLd - LeLfL, +-­
T _ a x b c,d e, ,g (2.22)

1- Lh + ELiL1 - Z LjLiLm + -­
h ij k,l,rn 

The numerator of the gain expression is the sum of the gains of all paths 
connecting the input and the signal of interest, with each path gain scaled 
by a cofactor. The first sum in a cofactor includes the gains of all loops that 
do not touch (share a common block or summation point with) the path; 
the second sum includes all possible products of loop gains for loops that 
do not touch the path or each other taken two at a time; the third sum in­
cludes all possible triple products of loop gains for loops that do not touch 
the path or each other; etc. 

The denominator of the gain expression is called the determinant or 
characteristicequation of the block diagram, and is identically equal to one 
minus the loop transmission of the complete block diagram. The first sum 
in the characteristic equation includes all loop gains; the second all possible 
products of the gains of nontouching loops taken two at a time; etc. 

Two examples will serve to clarify the evaluation of the gain expression. 
Figure 2.13 provides the first example. In order to apply Mason's gain 
formula for the transmission V0/ Vi, the paths and loops are identified and 
their gains are evaluated. The results are: 

P1 = ace 

S. J. Mason and H. J. Zimmermann, Electronic Circuits,Signals, and Systems, Wiley, 
New York, 1960, Chapter 4, "Linear Signal-Flow Graphs." 
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= agP2 

= -hP3 

L1 = -ab 

L2 = cd 

L 3 = -ef 

L4 = -acei 

The topology of Fig. 2.13 shows that path P1 shares common blocks with 
and therefore touches all loops. Path P 2 does not touch loops L 2 or L3, while 
path P3 does not touch any loops. Similarly, loops L 1, L2, and L3 do not 
touch each other, but all touch loop L 4. Equation 2.22 evaluated for this 
system becomes 

P1 + P2 (1 -L2 - L3 + L 2L 3) 

V. + P3(1 -L 1 - L 2 - 3L - L4 + L1L2 + L 2L +LL 3 1-L L 2L3 ) 

Vi 1 - L1 - L 2 - 3L - L4 + L1L2 + L 2L + LL3 - LL 2L 

(2.23) 

A second example of block-diagram reduction and some reinforcement 
of the techniques used to describe a system in block-diagram form is pro­
vided by the set of algebraic equations 

X + Y + Z =6 (2.24) 

X+ Y-Z=0 

2X + 3Y + Z= 11 

Figure 2.13 Block diagram for gain-expression example. 
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In order to represent this set of equations in block-diagram form, the three 
equations are rewritten 

X- Y - Z + 6 (2.25) 

Y= -X +Z 
Z= -2X-3Y +11 

This set of equations is shown in block-diagram form in Fig. 2.14. If we 
use the identification of loops in this figure, loop gains are 

Li = 1 

L2 = -3 

L3 = -3 

L4 = 2 

= 2L 5 

Since all loops touch, the determinant of any gain expression for this sys­
tem is 

1 -	 L1 - L 2 - L3 - L 4 - L5 = 2 (2.26) 

(This value is of course identically equal to the determinant of the coeffi­
cients of Eqn. 2.24.) 

Assume that the value of X is required. The block diagram shows one 
path with a transmission of +1 connecting the excitation with a value of 
6 to X. This path does not touch L2. There are also two paths (roughly 
paralleling L3 and L,) with transmissions of - 1 connecting the excitation 
with a value of 11 to X. These paths touch all loops. Linearity allows us 
to combine the X responses related to the two excitations, with the result 
that 

6[1 - (-3)] - 11 - 11 	 (2.27)
2 

The reader should verify that this method yields the values Y = 2 and 
Z = 3 for the other two dependent variables. 

2.5 	 EFFECTS OF FEEDBACK ON INPUT AND
 
OUTPUT IMPEDANCE
 

The gain-stabilizing and linearizing effects of feedback have been de­
scribed earlier in this chapter. Feedback also has important effects on the 
input and output impedances of an amplifier, with the type of modification 
dependent on the topology of the amplifier-feedback network combination. 
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Figure 2.14 Block diagram of Eqn. 2.25. 
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(a) 

Feedback to 
input Current-sampling 

resistor 

(b) 

Figure 2.15 Two possible output topologies. (a) Feedback of load-voltage infor­
mation. (b) Feedback of load-current information. 

Figure 2.15 shows how feedback might be arranged to return information 
about either the voltage applied to the load or the current flow through it. 
It is clear from physical arguments that these two output topologies must 
alter the impedance facing the load in different ways. If the information fed 
back to the input concerns the output voltage, the feedback tends to reduce 
changes in output voltage caused by disturbances (changes in load current), 
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thus implying that the output impedance of the amplifier shown in Fig. 
2.15a is reduced by feedback. Alternatively, if information about load 
current is fed back, changes in output current caused by disturbances 
(changes in load voltage) are reduced, showing that this type of feedback 
raises output impedance. 

Two possible input topologies are shown in Fig. 2.16. In Fig. 2.16a, the 
input signal is applied in series with the differential input of the amplifier. If 
the amplifier characteristics are satisfactory, we are assured that any re­
quired output signal level can be achieved with a small amplifier input 
current. Thus the current required from the input-signal source will be 
small, implying high input impedance. The topology shown in Fig. 2.16b 
reduces input impedance, since only a small voltage appears across the 
parallel input-signal and amplifier-input connection. 

The amount by which feedback scales input and output impedances is 
directly related to the loop transmission, as shown by the following example. 
An operational amplifier connected for high input and high output resis­
tances is shown in Fig. 2.17. The input resistance for this topology is simply 
the ratio Vi/I 1 . Output resistance is determined by including a voltage 
source in series with the load resistor and calculating the ratio of the change 
in the voltage of this source to the resulting change in load current, Vi/I. 
If it is assumed that the components of I and the current through the 
sampling resistor Rs attributable to 1i are negligible (implying that the 

Input + 

Feedback from output 

(a) 

Feedback from output 

Input ­

(b) 

Figure 2.16 Two possible input topologies. (a) Input signal applied in series with 
amplifier input. (b) Input signal applied in parallel with amplifier input. 
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RL 

Figure 2.17 Amplifier with high input and output resistances. 

amplifier, rather than a passive network, provides system gain) and that 
R >> Rs, the following equations apply. 

V. = Vi - RsIj (2.28) 

aVa + V1
I, = a+R+ (2.29)

R,, + RL + RS 

Ii = - (2.30)
R i 

These equations are represented in block-diagram form in Fig. 2.18. This 
block diagram verifies the anticipated result that, since the input voltage is 
compared with the output current sampled via resistor Rs, the ideal trans-
conductance (ratio of I, to Vj) is simply equal to Gs. The input resistance is 
evaluated by noting that 

I, 11 
V - I 1 [R(2.31) 1 
Vi Rin Ri{Il + [aRs/1(R,, + RL + Rs)]} 



51 Effects of Feedback on Input and Output Impedance 

Vi ............... R , + R L + RS
 

Figure 2.18 Block diagram for amplifier of Fig. 2.17. 

or 

Ri. = R I + aRs (2.32) 
R. + RL + Rs) 

The output resistance is determined from' 

I, = I - (2.33)
V, Rout (R, + RL + Rs){ 1 + [aRs/(R. + RL + Rs)]} 

yielding 

Rout = (Ro + RL + RS) + aRs (2.34)
R,, + RL + Rs) 

The essential features of Eqns. 2.32 and 2.34 are the following. If the 

system has no feedback (e.g., if a = 0), the input and output resistances 

become 

R'i. = R (2.35) 

and 

R'out = R. + RL + Rs (2.36) 

Feedback increases both of these quantities by a factor of 1 + [aRs/ 

(R + RL + Rs)], where -aRs/(R + RL + Rs) is recognized as the loop 

transmission. Thus we see that the resistances in this example are increased 

by the same factor (one minus the loop transmission) as the desensitivity 

6 Note that the output resistance in this example is calculated by including a voltage 
source in series with the load resistor. This approach is used to emphasize that the loop 
transmission that determines output resistance is influenced by RL. An alternative develop­
ment might evaluate the resistance facing the load by replacing RL with a test generator. 
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increase attributable to feedback. The result is general, so that input or 
output impedances can always be calculated for the topologies shown in 
Figs. 2.15 or 2.16 by finding the impedance of interest with no feedback 
and scaling it (up or down according to topology) by a factor of one minus 
the loop transmission. 

While feedback offers a convenient method for controlling amplifier input 
or output impedances, comparable (and in certain cases, superior) results 
are at least conceptually possible without the use of feedback. Consider, 
for example, Fig. 2.19, which shows three ways to connect an operational 
amplifier for high input impedance and unity voltage gain. 

The follower connection of Fig. 2.19a provides a voltage gain 

V 1=+ a (2.37)
Vi I + a 

or approximately unity for large values of a. The relationship between input 
impedance and loop transmission discussed earlier in this section shows that 
the input impedance for this connection is 

Vi 
, Zi(1 + a) (2.38)

Ii 

The connection shown in Fig. 2.19b precedes the amplifier with an im­
pedance that, in conjunction with the input impedance of the amplifier, 
attenuates the input signal by a factor of 1/(1 + a). This attenuation com­
bines with the voltage gain of the amplifier itself to provide a composite 
voltage gain identical to that of the follower connection. Similarly, the 
series impedance of the attenuator input element adds to the input im­
pedance of the amplifier itself so that the input impedance of the combina­
tion is identical to that of the follower. 

The use of an ideal transformer as impedance-modifying element can 
lead to improved input impedance compared to the feedback approach. 
With a transformer turns ratio of (a + 1): 1, the overall voltage gain of the 
transformer-amplifier combination is the same as that of the follower 
connection, while the input impedance is 

Vi 
a)2- Zi(l + (2.39) 

This value greatly exceeds the value obtained with the follower for large 
amplifier voltage gain. 

The purpose of the above example is certainly not to imply that atten­
uators or transformers should be used in preference to feedback to modify 
impedance levels. The practical disadvantages associated with the two 



Vi 

(a) 

aZ 

vi 

r V, 

(b) 

V 

Ideal transformer
 
turns ratio = (a + 1):1
 

(c) 

Figure 2.19 Unity-gain amplifiers. (a) Follower connection. (b) Amplifier with 
input attenuator. (c) Amplifier with input transformer. 
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former approaches, such as the noise accentuation that accompanies large 
input-signal attenuation and the limited frequency response characteristic 
of transformers, often preclude their use. The example does, however, 
serve to illustrate that it is really the power gain of the amplifier, rather 
than the use of feedback, that leads to the impedance scaling. We can 
further emphasize this point by noting that the input impedance of the 
amplifier connection can be increased without limit by following it with a 
step-up transformer and increasing the voltage attenuation of either the 
network or the transformer that precedes the amplifier so that the overall 
gain is one. This observation is a reflection of the fact that the amplifier 
alone provides infinite power gain since it has zero output impedance. 

One rather philosophical way to accept this reality concerning impedance 
scaling is to realize that feedback is most frequently used because of its 
fundamental advantage of reducing the sensitivity of a system to changes 
in the gain of its forward-path element. The advantages of impedance 
scaling can be obtained in addition to desensitivity simply by choosing an 
appropriate topology. 

PROBLEMS 

P2.1 
Figure 2.20 shows a block diagram for a linear feedback system. Write 

a complete, independent set of equations for the relationships implied by 
this diagram. Solve your set of equations to determine the input-to-output 
gain of the system. 

P2.2 
Determine how the fractional change in closed-loop gain 

d(V/Vi) 

V./ Vi 

is related to fractional changes in ai, a2, and f for the system shown in 
Fig. 2.21. 

P2.3 
Plot the closed-loop transfer characteristics for the nonlinear system 

shown in Fig. 2.22. 

P2.4 
The complementary emitter-follower connection shown in Fig. 2.23 is a 

simple unity-voltage-gain stage that has a power gain approximately equal 
to the current gain of the transistors used. It has nonlinear transfer charac­
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Vt 

Figure 2.20 Two-loop feedback system. 

V V. 

Figure 2.21 Feedback system with parallel forward paths. 

teristics, since it is necessary to apply approximately 0.6 volts to the base­
to-emitter junction of a silicon transistor in order to initiate conduction. 

(a) 	Approximate the input-output transfer characteristics for the emitter-
follower stage. 

(b) 	 Design a circuit that combines this power stage with an operational 
amplifier and any necessary passive components in order to provide 
a closed-loop gain with an ideal value of +5. 

(c) 	 Approximate the actual input-output characteristics of your feedback 
circuit assuming that the open-loop gain of the operational amplifier 
is 101. 

P2.5 
(a) 	Determine the incremental gain v0/vi for Vr = 0.5 and 1.25 for the 

system shown in Fig. 2.24. 
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VI 1000 	 v0 

vB 	 Nonfinear A 

(a) 

t 
VB 

-1 

1V A 

(b) 

Figure 2.22 Nonlinear feedback system. (a) System. (b) Transfer characteristics 

for nonlinear element. 

(b) 	 Estimate the signal VA for vr, a unit ramp [vr(t) = 0, t < 0, = t, 

t > 0]. 
(c) 	 For vr = 0, determine the amplitude of the sinusoidal component 

of vo. 

P2.6 
Determine V, as a function of Vii and Vi for the feedback system shown 

in Fig. 2.25. 

P2.7 
Draw a block diagram that relates output voltage to input voltage for an 

emitter follower. You may assume that the transistor remains linear, and 
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+ VC 

0; 

vo v 

-VC 

Figure 2.23 Complementary emitter follower. 

use a hybrid-pi model for the device. Include elements r,, r2, C., and C, 
in addition to the dependent generator, in your model. Reduce the block 
diagram to a single input-output transfer function. 

P2.8 

Draw a block diagram that relates V, to Vi for the noninverting connec­
tion shown in Fig. 2.26. Also use block-diagram techniques to determine 
the impedance at the output, assuming that Zi is very large. 

P2.9 

A negative-feedback system used to rotate a roof-top antenna is shown 
in Fig. 2.27a. 

The total inertia of the output member (antenna, motor armature, and 
pot wiper) is 2 kg -m2 . The motor can be modeled as a resistor in series with 
a speed-dependent voltage generator (Fig. 2.27b). 

The torque provided by the motor that accelerates the total output-mem­
ber inertia is 10 N-m per ampere of I,. The polarity of the motor de­
pendent generator is such that it tends to reduce the value of I, as the motor 

accelerates so that I, becomes zero for a motor shaft velocity equal to 
Vm/10 radians per second. 

Draw a block diagram that relates 0, to 6j. You may include as many 
intermediate variables as you wish, but be sure to include Vm and I, in your 

diagram. Find the transfer function 60/6i. 
Modify your diagram to include an output disturbance applied to the 



58 Properties and Modeling of Feedback Systems 

VN = sin 377t 

VI .vo 

Signal limited to ± 30 volts 

(a) 

15­

B >­

(b) 

Figure 2.24 Nonlinear system. (a) System. (b) Transfer characteristics for nonlinear 
element. 

antenna by wind. Calculate the angular error that results from a 1 N-m 
disturbance. 

P2.10 
Draw a block diagram for this set of equations: 

W+X =3 

x+Y =5 

Y+Z=7 
2W+X+ Y+Z= 11 



V 

Vi2 

Figure 2.25 Linear block diagram. 

l
VV 
 V
 

ZL 

Figure 2.26 Noninverting amplifier. 
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Antenna
 

Motor
 
(housing fixed)
 

Input C Output shaft angle
applied ' 
to poten­
tiometer Potentiometer coupled 

to antenna and motor 
shaft.

Error signal =
 
10 volts/radian (0,-0,)
 

(a) 

RA = 5 ohms 

Vm '4 
10 volts/radian/sec X motor speed 

(b) 

Figure 2.27 Antenna rotator System. (a) System configuration. (b) Model for motor. 

Use the block-diagram reduction equation (Eqn. 2.22) to determine the 
values of the four dependent variables. 

P2.11 
The connection shown in Fig. 2.28 feeds back information about both 

load current and load voltage to the amplifier input. Draw a block dia­
gram that allows you to calculate the output resistance V/Id. 

You may assume that R >> Rs and that the load can be modeled as a 

resistor RL. What is the output resistance for very large a? 

P2.12 

An operational amplifier connected to provide an adjustable output 

resistance is shown in Fig. 2.29. Find a Thevenin-equivalent circuit facing 
the load as a function of the potentiometer setting a. You may assume that 
the resistance R is very large and that the operational amplifier has ideal 
characteristics. 



vI 

AAA + ­

, "vv_v 
Load 

Figure 2.28 Operational-amplifier connection with controlled output resistance. 

V. 

F .aLoad uu 
.- (- a) R 

IRS 

Figure 2.29 Circuit with adjustable output resistance. 
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