
CHAPTER I 

BACKGROUND AND
 
OBJECTIVES
 

1.1 INTRODUCTION 

An operational amplifier is a high-gain direct-coupled amplifier that is 
normally used in feedback connections. If the amplifier characteristics are 
satisfactory, the transfer function of the amplifier with feedback can often 
be controlled primarily by the stable and well-known values of passive 
feedback elements. 

The term operational amplifier evolved from original applications in 
analog computation where these circuits were used to perform various 
mathematical operations such as summation and integration. Because of 
the performance and economic advantages of available units, present 
applications extend far beyond the original ones, and modern operational 
amplifiers are used as general purpose analog data-processing elements. 

High-quality operational amplifiers' were available in the early 1950s. 
These amplifiers were generally committed to use with analog computers 
and were not used with the flexibility of modern units. The range of opera­
tional-amplifier usage began to expand toward the present spectrum of 
applications in the early 1960s as various manufacturers developed modu­
lar, solid-state circuits. These amplifiers were smaller, much more rugged, 
less expensive, and had less demanding power-supply requirements than 
their predecessors. A variety of these discrete-component circuits are cur­
rently available, and their performance characteristics are spectacular when 
compared with older units. 

A quantum jump in usage occurred in the late 1960s, as monolithic 
integrated-circuit amplifiers with respectable performance characteristics 
evolved. While certain performance characteristics of these units still do 
not compare with those of the better discrete-component circuits, the inte­

grated types have an undeniable cost advantage, with several designs 

available at prices of approximately $0.50. This availability frequently 
justifies the replacement of two- or three-transistor circuits with operational 

1 An excellent description of the technology of this era is available in G. A. Korn and 
T. M. Korn, Electronic Analog Computers, 2nd Ed., McGraw-Hill, New York, 1956. 
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amplifiers on economic grounds alone, independent of associated perform­
ance advantages. As processing and designs improve, the integrated circuit 
will invade more areas once considered exclusively the domain of the 
discrete design, and it is probable that the days of the discrete-component 
circuit, except for specials with limited production requirements, are 
numbered. 

There are several reasons for pursuing a detailed study of operational 
amplifiers. We must discuss both the theoretical and the practical aspects 
of these versatile devices rather than simply listing a representative sample 
of their applications. Since virtually all operational-amplifier connections 
involve some form of feedback, a thorough understanding of this process 
is central to the intelligent application of the devices. While partially under­
stood rules of thumb may suffice for routine requirements, this design 
method fails as performance objectives approach the maximum possible 
use from the amplifier in question. 

Similarly, an appreciation of the internal structure and function of opera­
tional amplifiers is imperative for the serious user, since such information 
is necessary to determine various limitations and to indicate how a unit 
may be modified (via, for example, appropriate connections to its com­
pensation terminals) or connected for optimum performance in a given 
application. The modern analog circuit designer thus needs to understand 
the internal function of an operational amplifier (even though he may 
never design one) for much the same reason that his counterpart of 10 years 
ago required a knowledge of semiconductor physics. Furthermore, this 
is an area where good design practice has evolved to a remarkable degree, 
and many of the circuit techniques that are described in following chapters 
can be applied to other types of electronic circuit and system design. 

1.2 	 THE CLOSED-LOOP GAIN OF AN OPERATIONAL
 
AMPLIFIER
 

As mentioned in the introduction, most operational-amplifier connec­

tions involve feedback. Therefore the user is normally interested in deter­

mining the closed-loop gain or closed-loop transferfunctionof the amplifier, 

which results when feedback is included. As we shall see, this quantity can 

be made primarily dependent on the characteristics of the feedback ele­

ments in many cases of interest. 

A prerequisite for the material presented in the remainder of this book 

is the ability to determine the gain of the amplifier-feedback network com­
bination in simple connections. The techniques used to evaluate closed-loop 

gain are outlined in this section. 
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Vb 

Figure 1.1 Symbol for an operational amplifier. 

1.2.1 Closed-Loop Gain Calculation
 

The symbol used to designate an operational amplifier is shown in Fig.
 
1.1. The amplifier shown has a differential input and a single output. The 
input terminals marked - and + are called the inverting and the non-
inverting input terminals respectively. The implied linear-region relationship 
among input and output variables2 is 

V, = a(V, - Vb) (1.1) 

The quantity a in this equation is the open-loop gain or open-loop transfer 
function of the amplifier. (Note that a gain of a is assumed, even if it is not 
explicitly indicated inside the amplifier symbol.) The dynamics normally 
associated with this transfer function are frequently emphasized by writ­
ing a(s). 

It is also necessary to provide operating power to the operational ampli­
fier via power-supply terminals. Many operational amplifiers use balanced 
(equal positive and negative) supply voltages. The various signals are 
usually referenced to the common ground connection of these power sup­

2 The notation used to designate system variables consists of a symbol and a subscript. 
This combination serves not only as a label, but also to identify the nature of the quantity 
as follows: 

Total instantaneous variables: 
lower-case symbols with upper-case subscripts. 

Quiescent or operating-point variables: 
upper-case symbols with upper-case subscripts. 

Incremental instantaneous variables: 
lower-case symbols with lower-case subscripts. 

Complex amplitudes or Laplace transforms of incremental variables: 
upper-case symbols with lower-case subscripts. 

Using this notation we would write v1 = V, + vi, indicating that the instantaneous value of 
vi consists of a quiescent plus an incremental component. The transform of vi is Vi. The 
notation Vi(s) is often used to reinforce the fact that Vi is a function of the complex vari­
able s. 
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plies. The power connections are normally not included in diagrams in­
tended only to indicate relationships among signal variables, since elimi­
nating these connections simplifies the diagram. 

Although operational amplifiers are used in a myriad of configurations, 
many applications are variations of either the inverting connection (Fig. 
1.2a) or the noninverting connection (Fig. 1.2b). These connections com­
bine the amplifier with impedances that provide feedback. 

The closed-loop transfer function is calculated as follows for the invert­
ing connection. Because of the reference polarity chosen for the inter­
mediate variable V., 

V, = -a V, (1.2) 

z 
2 

z, 

+ \ a Vo 0 

K. 
Vl 

(a) 

V0 

Vi 

-I 
(b) 

Figure 1.2 Operational-amplifier connections. (a) Inverting. (b) Noninverting. 
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where it has been assumed that the output voltage of the amplifier is not 
modified by the loading of the Z1-Z2 network. If the input impedance of the 
amplifier itself is high enough so that the Z 1 -Z 2 network is not loaded 
significantly, the voltage V, is 

Z2 Z1 
V, = 2 Vi + V" (1.3) 

(Z1 + Z2) (Z1 + Z2) 

Combining Eqns. 1.2 and 1.3 yields 

aZs aZ1 
V, = - ( V, (1.4)V0 

(Z1 + Z2) (Z1 + Z2) 

or, solving for the closed-loop gain, 

Vo -aZ 2/(Z 1 + Z 2) 

Vi 1 + [aZ1 /(Z 1 + Z 2)] 

The condition that is necessary to have the closed-loop gain depend 
primarily on the characteristics of the Zi-Z2 network rather than on the 
performance of the amplifier itself is easily determined from Eqn. 1.5. At 
any frequency w where the inequality la(jo)Z 1(jw)/[Z1(jo) + Z 2(jO)] >> 1 
is satisfied, Eqn. 1.5 reduces to 

V0(jw) Z2(jo)
 

Vi(jco) Z1(jo)
 

The closed-loop gain calculation for the noninverting connection is simi­
lar. If we assume negligible loading at the amplifier input and output, 

V, = a(V- V,) = aVi - aZ) V0 (1.7) 
(Z1 + Z2) 

or 

aV0 V, a (1.8) 
- 1 + [aZ1 /(Z 1 + Z 2)] 

This expression reduces to 

V(jo) Zi(jW) + Z2(jO) 

Vi(jco) Z1(jo) 

when ja(jo)Z1(jo)/[Z1(jo) + Z 2(jw)]| >> 1. 

The quantity 

L aZi (1.10)
Z1 + Z2 
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is the loop transmission for either of the connections of Fig. 1.2. The loop 
transmission is of fundamental importance in any feedback system because 
it influences virtually all closed-loop parameters of the system. For ex­
ample, the preceding discussion shows that if the magnitude of loop trans­
mission is large, the closed-loop gain of either the inverting or the non-
inverting amplifier connection becomes virtually independent of a. This 
relationship is valuable, since the passive feedback components that deter­
mine closed-loop gain for large loop-transmission magnitude are normally 
considerably more stable with time and environmental changes than is the 
open-loop gain a. 

The loop transmission can be determined by setting the inputs of a feed­
back system to zero and breaking the signal path at any point inside the 
feedback loop.' The loop transmission is the ratio of the signal returned by 
the loop to a test applied at the point where the loop is opened. Figure 1.3 
indicates one way to determine the loop transmission for the connections 
of Fig. 1.2. Note that the topology shown is common to both the inverting 
and the noninverting connection when input points are grounded. 

It is important to emphasize the difference between the loop transmission, 
which is dependent on properties of both the feedback elements and the 
operational amplifier, and the open-loop gain of the operational amplifier 
itself. 

1.2.2 The Ideal Closed-Loop Gain 

Detailed gain calculations similar to those of the last section are always 
possible for operational-amplifier connections. However, operational ampli­
fiers are frequently used in feedback connections where loop characteristics 
are such that the closed-loop gain is determined primarily by the feedback 
elements. Therefore, approximations that indicate the idealclosed-loop gain 
or the gain that results with perfect amplifier characteristics simplify the 
analysis or design of many practical connections. 

It is possible to calculate the ideal closed-loop gain assuming only two 
conditions (in addition to the implied condition that the amplifier-feedback 
network combination is stable4) are satisfied. 

1. A negligibly small differential voltage applied between the two input 
terminals of the amplifier is sufficient to produce any desired output 
voltage. 

3There are practical difficulties, such as insuring that the various elements in the loop 
remain in their linear operating regions and that loading is maintained. These difficulties 
complicate the determination of the loop transmission in physical systems. Therefore, the 
technique described here should be considered a conceptual experiment. Methods that are 
useful for actual hardware are introduced in later sections. 

4Stability is discussed in detail in Chapter 4. 
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Z Z 
2 

Input set to zero
 
if inverting connection
 

*:_ Input set to zero if 
Test generator noninverting connection 

Figure 1.3 Loop transmission for connections of Fig. 1.2. Loop transmission is 
Vr/Vt = -a Z1 /(Z 1 + Z 2). 

2. The current required at either amplifier terminal is negligibly small. 

The use of these assumptions to calculate the ideal closed-loop gain is 
first illustrated for the inverting amplifier connection (Fig. 1.2a). Since the 
noninverting amplifier input terminal is grounded in this connection, condi­
tion 1 implies that 

V,, 0 (1.11) 

Kirchhoff's current law combined with condition 2 shows that 

I. + Ib ~ 0 (1.12) 

With Eqn. 1.11 satisfied, the currents I, and I are readily determined in 
terms of the input and output voltages. 

Vai 
(1.13)

Z1 

Va 
b (1.14)Z2 

Combining Eqns. 1.12, 1.13, and 1.14 and solving for the ratio of V, to Vi 
yields the ideal closed-loop gain 

V. Z2V- (1.15) 
Vi Z1 

The technique used to determine the ideal closed-loop gain is called the 
virtual-groundmethod when applied to the inverting connection, since in 
this case the inverting input terminal of the operational amplifier is as­
sumed to be at ground potential. 
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The noninverting amplifier (Fig. 1.2b) provides a second example of 
ideal-gain determination. Condition 2 insures that the voltage V,, is not 
influenced by current at the inverting input. Thus, 

Z1V1 ~ (1.16)V0Zi + Z 2 

Since condition 1 requires equality between Ve, and Vi, the ideal closed-
loop gain is 

Vo Z1 + Z2
0 = Z Z(1.17) 

Vi Z1 

The conditions can be used to determine ideal values for characteristics 
other than gain. Consider, for example, the input impedance of the two 
amplifier connections shown in Fig. 1.2. In Fig. 1.2a, the inverting input 
terminal and, consequently, the right-hand end of impedance Z 1, is at 
ground potential if the amplifier characteristics are ideal. Thus the input 
impedance seen by the driving source is simply Z1. The input source is 
connected directly to the noninverting input of the operational amplifier 
in the topology of Fig. 1.2b. If the amplifier satisfies condition 2 and has 
negligible input current required at this terminal, the impedance loading 
the signal source will be very high. The noninverting connection is often used 
as a buffer amplifier for this reason. 

The two conditions used to determine the ideal closed-loop gain are 
deceptively simple in that a complex combination of amplifier characteris­
tics are required to insure satisfaction of these conditions. Consider the 
first condition. High open-loop voltage gain at anticipated operating fre­
quencies is necessary but not sufficient to guarantee this condition. Note 
that gain at the frequency of interest is necessary, while the high open-loop 
gain specified by the manufacturer is normally measured at d-c. This speci­
fication is somewhat misleading, since the gain may start to decrease at a 

frequency on the order of one hertz or less. 

In addition to high open-loop gain, the amplifier must have low voltage 

offset5 referred to the input to satisfy the first condition. This quantity, 

defined as the voltage that must be applied between the amplifier input 

terminals to make the output voltage zero, usually arises because of mis­

matches between various amplifier components. 

Surprisingly, the incremental input impedance of an operational ampli­

fier often has relatively little effect on its input current, since the voltage 

that appears across this impedance is very low if condition 1 is satisfied. 

I Offset and other problems with d-c amplifiers are discussed in Chapter 7. 
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A more important contribution to input current often results from the bias 
current that must be supplied to the amplifier input transistors. 

Many of the design techniques that are used in an attempt to combine the 
two conditions necessary to approach the ideal gain are described in sub­
sequent sections. 

The reason that the satisfaction of the two conditions introduced earlier 
guarantees that the actual closed-loop gain of the amplifier approaches the 
ideal value is because of the negative feedback associated with operational-
amplifier connections. Assume, for example, that the actual voltage out of 
the inverting-amplifier connection shown in Fig. 1.2a is more positive than 
the value predicted by the ideal-gain relationship for a particular input 
signal level. In this case, the voltage V0 will be positive, and this positive 
voltage applied to the inverting input terminal of the amplifier drives the 
output voltage negative until equilibrium is reached. This reasoning shows 
that it is actually the negative feedback that forces the voltage between 
the two input terminals to be very small. 

Alternatively, consider the situation that results if positive feedback is 
used by interchanging the connections to the two input terminals of the 

zi1 

+1 /~ 

Vi,? 

Iz2 
0 

Vi 2 
S -p1
0 

ZiN 

iN 

V1 N 

Figure 1.4 Summing amplifier. 
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amplifier. In this case, the voltage V0 is again zero when V and Vi are 
related by the ideal closed-loop gain expression. However, the resulting 
equilibrium is unstable, and a small perturbation from the ideal output 
voltage results in this voltage being driven further from the ideal value 
until the amplifier saturates. The ideal gain is not achieved in this case in 
spite of perfect amplifier characteristics because the connection is unstable. 
As we shall see, negative feedback connections can also be unstable. The 
ideal gain of these unstable systems is meaningless because they oscillate, 
producing an output signal that is often nearly independent of the input 
signal. 

1.2.3 	 Examples 

The technique introduced in the last section can be used to determine the 
ideal closed-loop transfer function of any operational-amplifier connec­
tion. The summing amplifier shown in Fig. 1.4 illustrates the use of this 
technique for a connection slightly more complex than the two basic 
amplifiers discussed earlier. 

Since the inverting input terminal of the amplifier is a virtual ground, the 
currents can be determined as 

Vnl1I1 = 

Z1 

1i2 =Vi 2
2 

liN ~ 	 VN 
Z i N 

if = 
=V	 0 

(1.18)
Zf 

These currents must sum to zero in the absence of significant current at the 
inverting input terminal of the amplifier. Thus 

Iil + I + - - - + IiN + If 	 -92 

Combining Eqns. 1.18 and 1.19 shows that 

Zf Zf Zf
V0 - - V n2 - -Vi- ViN (1.20) 

Zul Z2 ZiN 
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We see that this amplifier, which is an extension of the basic inverting-
amplifier connection, provides an output that is the weighted sum of several 
input voltages. 

Summation is one of the "operations" that operational amplifiers per­
form in analog computation. A subsequent development (Section 12.3) will 
show that if the operations of gain, summation, and integration are com­
bined, an electrical network that satisfies any linear, ordinary differential 
equation can be constructed. This technique is the basis for analog com­
putation. 

Integrators required for analog computation or for any other application 
can be constructed by using an operational amplifier in the inverting con­
nection (Fig. 1.2a) and making impedance Z 2 a capacitor C and impedance 
Z1 a resistor R. In this case, Eqn. 1.15 shows that the ideal closrd-loop 
transfer function is 

VJ(s) Z 2(s) 1 1.1 
Vi(s) Z1(s) RCs 

so that the connection functions as an inverting integrator. 
It is also possible to construct noninverting integrators using an opera­

tional amplifier connected as shown in Fig. 1.5. This topology precedes a 
noninverting amplifier with a low-pass filter. The ideal transfer function 
from the noninverting input of the amplifier to its output is (see Eqn. 1.17) 

V0(s) _ RCs + 1 (1.22) 

Va(S) RCs 

Since the conditions for an ideal operational amplifier preclude input cur-

R, 

0 + 

C, V V0 

r 
C 

Figure 1.5 Noninverting integrator. 
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Figure 1.6 Log circuit. 

rent, the transfer function from Vi to V, can be calculated with no loading, 
and in this case 

V.(s) 1 1.23) 
Vi(s) R1Cis + 1 

Combining Eqns. 1.22 and 1.23 shows that the ideal closed-loop gain is 

V0(s) = 1 1 FRCs + 11 (1.24) 
Vi(s) R1C1 s + I RCs _ 

If the two time constants in Eqn. 1.24 are made equal, noninverting inte­
gration results. 

The comparison between the two integrator connections hints at the 
possibility of realizing most functions via either an inverting or a non-
inverting connection. Practical considerations often recommend one ap­
proach in preference to the other. For example, the noninverting integrator 
requires more external components than does the inverting version. This 
difference is important because the high-quality capacitors required for 
accurate integration are often larger and more expensive than the opera­
tional amplifier that is used. 

The examples considered up to now have involved only linear elements, 
at least if it is assumed that the operational amplifier remains in its linear 

operating region. Operational amplifiers are also frequently used in inten­
tionally nonlinear connections. One possibility is the circuit shown in Fig. 
1.6.6 It is assumed that the diode current-voltage relationship is 

iD = IS(eqvD/kT - 1) (1.25) 

6 Note that the notation for the variables used in this case combines lower-case variables 

with upper-case subscripts, indicating the total instantaneous signals necessary to describe 

the anticipated nonlinear relationships. 
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where Is is a constant dependent on diode construction, q is the charge 
of an electron, k is Boltzmann's constant, and T is the absolute temperature. 

If the voltage at the inverting input of the amplifier is negligibly small, 
the diode voltage is equal to the output voltage. If the input current is 
negligibly small, the diode current and the current iR sum to zero. Thus, 
if these two conditions are satisfied, 

- R = Is(evolkT - 1) (1.26)
R 

Consider operation with a positive input voltage. The maximum negative 
value of the diode current is limited to -Is. If vI/R > Is, the current 
through the reverse-biased diode cannot balance the current IR.Accordingly, 
the amplifier output voltage is driven negative until the amplifier saturates. 
In this case, the feedback loop cannot keep the voltage at the inverting 
amplifier input near ground because of the limited current that the diode 
can conduct in the reverse direction. The problem is clearly not with the 
amplifier, since no solution exists to Eqn. 1.26 for sufficiently positive 
values of vr. 

This problem does not exist with negative values for vi. If the magnitude 
of iR is considerably larger than Is (typical values for Is are less than 10-1 
A), Eqn. 1.26 reduces to 

- R~ Isero~kT (1.27)
R 

or 

kT - Vr 
vo 1- In (1.28) 

q \R1s 

Thus the circuit provides an output voltage proportional to the log of the 
magnitude of the input voltage for negative inputs. 

1.3 OVERVIEW 

The operational amplifier is a powerful, multifaceted analog data-proc­
essing element, and the optimum exploitation of this versatile building 
block requires a background in several different areas. The primary objec­
tive of this book is to help the reader apply operational amplifiers to his 
own problems. While the use of a "handbook" approach that basically 
tabulates a number of configurations that others have found useful is 
attractive because of its simplicity, this approach has definite limitations. 
Superior results are invariably obtained when the designer tailors the circuit 
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he uses to his own specific, detailed requirements, and to the particular 
operational amplifier he chooses. 

A balanced presentation that combines practical circuit and system design 
concepts with applicable theory is essential background for the type of 
creative approach that results in optimum operational-amplifier systems. 
The following chapters provide the necessary concepts. A second advan­
tage of this presentation is that many of the techniques are readily applied 
to a wide spectrum of circuit and system design problems, and the material 
is structured to encourage this type of transfer. 

Feedback is central to virtually all operational-amplifier applications, 
and a thorough understanding of this important topic is necessary in any 
challenging design situation. Chapters 2 through 6 are devoted to feedback 
concepts, with emphasis placed on examples drawn from operational-
amplifier connections. However, the presentation in these chapters is kept 
general enough to allow its application to a wide variety of feedback sys­
tems. Topics covered include modeling, a detailed study of the advantages 
and limitations of feedback, determination of responses, stability, and com­
pensation techniques intended to improve stability. Simple methods for the 
analysis of certain types of nonlinear systems are also included. This in-
depth approach is included at least in part because I am convinced that a 
detailed understanding of feedback is the single most important pre­
requisite to successful electronic circuit and system design. 

Several interesting and widely applicable circuit-design techniques are 
used to realize operational amplifiers. The design of operational-amplifier 
circuits is complicated by the requirement of obtaining gain at zero fre­
quency with low drift and input current. Chapter 7 discusses the design 
of the necessary d-c amplifiers. The implications of topology on the dy­
namics of operational-amplifier circuits are discussed in Chapter 8. The 
design of the high-gain stages used in most modern operational amplifiers 
and the factors which influence output-stage performance are also included. 
Chapter 9 illustrates how circuit design techniques and feedback-system 
concepts are combined in an illustrative operational-amplifier circuit. 

The factors influencing the design of the modern integrated-circuit opera­
tional amplifiers that have dramatically increased amplifier usage are dis­
cussed in Chapter 10. Several examples of representative present-day de­
signs are included. 

A variety of operational-amplifier applications are sprinkled throughout 
the first 10 chapters to illustrate important concepts. Chapters 11 and 12 
focus on further applications, with major emphasis given to clarifying im­
portant techniques and topologies rather than concentrating on minor 
details that are highly dependent on the specifics of a given application and 
the amplifier used. 
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Chapter 13 is devoted to the problem of compensating operational ampli­
fiers for optimum dynamic performance in a variety of applications. Dis­
cussion of this material is deferred until the final chapter because only then 
is the feedback, circuit, and application background necessary to fully 
appreciate the subtleties of compensating modern operational amplifiers 
available. Compensation is probably the single most important aspect of 
effectively applying operational amplifiers, and often represents the differ­
ence between inadequate and superlative performance. Several examples 
of the way in which compensation influences the performance of a repre­
sentative integrated-circuit operational amplifier are used to reinforce the 
theoretical discussion included in this chapter. 

PROBLEMS 

P1.1 
Design a circuit using a single operational amplifier that provides an 

ideal input-output relationship 

V, = -Vn 1 - 2V,2 - 3Vi3 

Keep the values of all resistors used between 10 and 100 kU. 
Determine the loop transmission (assuming no loading) for your design. 

P1.2 
Note that it is possible to provide an ideal input-output relationship 

V, = V 1 + 2Vi + 3Vi3 

by following the design for Problem 1.1 with a unity-gain inverter. Find a 
more efficient design that produces this relationship using only a single 
operational amplifier. 

P1.3 
An operational amplifier is connected to provide an inverting gain with 

an ideal value of 10. At low frequencies, the open-loop gain of the ampli­
fier is frequency independent and equal to ao. Assuming that the only source 
of error is the finite value of open-loop gain, how large should ao be so that 
the actual closed-loop gain of the amplifier differs from its ideal value by 
less than 0.1 %? 

P1.4 
Design a single-amplifier connection that provides the ideal input-output 

relationship 

Vo = -100f (vil + v 2) dt 
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Vi 

10 k&2 

(a) 

10 k92 

10 kW 

10 k2 ++
Vi 2 + 

Vg, 10 k2 

(b) 

Figure 1.7 Differential-amplifier connections. 

Keep the values of all resistors you use between 10 and 100 k2. 

P1.5 
Design a single-amplifier connection that provides the ideal input-output 

relationship 

V,= +100f (vnl + vi2) dt 

using only resistor values between 10 and 100 kU. Determine the loop trans­
mission of your configuration, assuming negligible loading. 

P1.6 
Determine the ideal input-output relationships for the two connections 

shown in Fig. 1.7. 
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1 M 2 1 M2V 
-

Vi - 2 pF 1pF 1 pF 

0.5 MS2 

Figure 1.8 Two-pole system. 

P1.7 
Determine the ideal input-output transfer function for the operational-

amplifier connection shown in Fig. 1.8. Estimate the value of open-loop 
gain required such that the actual closed-loop gain of the circuit approaches 
its ideal value at an input frequency of 0.01 radian per second. You may 
neglect loading. 

P1.8 
Assume that the operational-amplifier connection shown in Fig. 1.9 

satisfies the two conditions stated in Section 1.2.2. Use these conditions to 
determine the output resistance of the connection (i.e., the resistance seen 
by the load). 

V + >7 

vi 

R 

Figure 1.9 Circuit with controlled output resistance. 
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ic 

10 kn B 

VvoOB' 

Figure 1.10 Log circuit. 

P1.9 
Determine the ideal input-output transfer relationship for the circuit 

shown in Fig. 1.10. Assume that transistor terminal variables are related as 

ic = 10-"e40VBE 

where ic is expressed in amperes and VBE is expressed in volts. 

P1.10 
Plot the ideal input-output characteristics for the two circuits shown 

in Fig. 1.11. In part a, assume that the diode variables are related by 
4 0iD = 10-1 3 e V, where iD is expressed in amperes and VD is expressed 

in volts. In part b, assume that iD = 0, VD < 0, and VD = 0, iD > 0. 

P1.11 
We have concentrated on operational-amplifier connections involving 

negative feedback. However, several useful connections, such as that 
shown in Fig. 1.12, use positive feedback around an amplifier. Assume that 
the linear-region open-loop gain of the amplifier is very high, but that its 
output voltage is limited to ±10 volts because of saturation of the ampli­

fier output stage. Approximate and plot the output signal for the circuit 
shown in Fig. 1.12 using these assumptions. 

P1.12 
Design an operational-amplifier circuit that provides an ideal input-

output relationship of the form 

vo = KevI/K2 

where K 1 and K 2 are constants dependent on parameter values used in 
your design. 
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Figure 1.11 Nonlinear circuits. 

(b) 
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Figure 1.12 Schmitt trigger. 
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