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[MUSIC PLAYING]

PROFESSOR: We concluded the last lecture with the statement of the sampling theorem. And just

as a quick reminder, the sampling theorem said that if we have a continuous-time

signal and we have equally spaced samples of that signal, sampled at a sampling

period, which I indicate is capital T and if x of t is band-limited-- in other words, the

Fourier transform is zero outside some band where omega sub m is the highest

frequency-- then under the condition that the sampling frequency, which is 2 pi

divided by the period, is greater than twice the highest frequency. The original

signal is uniquely recoverable from the set of samples.

And the sampling theorem essentially was derived by observing or using the notion

that sampling could be done by multiplication or modulation with an impulse train.

And the sampling theorem developed by examining the consequence of the

modulation property in the context of the Fourier transform. In particular, if we have

our signal x of t and if multiplied by an impulse train to give us a sampled signal--

another impulse train whose values or areas are samples of the original time

function, as I indicate here-- then in fact, if we examine this equation or equivalently,

bringing x of t inside this sum, if we examine either of these equations in the

frequency domain, the Fourier transform of x of p of t is the convolution of the

Fourier transform of the original signal and the Fourier transform of the impulse

train.

Now the impulse train is a periodic signal. It's Fourier transform. Therefore, as we

talked about with Fourier transforms is itself an impulse train. And when we do this

convolution, then using the fact that the Fourier transform, the impulse train is an

impulse train. The result of this convolution, then tells us that the Fourier transform
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of the sample signal or the impulse train, which represents the samples, is a sum of

frequency-shifted replications of the Fourier transform of the original signal. So

mathematically, that's the relationship. It essentially says that after sampling or

modulation with an impulse train, the resulting spectrum is the original spectrum

added to itself, shifted by integer multiples of the sampling frequency.

Well, let's see that as we did last time in terms of pictures. And again, to remind you

of the basic picture involved, if we have an original signal with a spectrum as I

indicated here-- where it's band-limited with the highest frequency omega sub m--

and if the time function is sampled so that in the frequency domain we convolve this

spectrum with the spectrum shown below, which is the spectrum of the impulse

train, the convolution of these two is then the Fourier transform or spectrum of the

sample time function. And so that's what we end up with here. And then as you

recall, to recover the original time function from this-- as long as these individual

triangles don't overlap--to recover it just simply involves passing the impulse train

through a low-pass filter, in effect extracting just one of these replications of the

original spectrum.

So the overall system then for doing the sampling and then the reconstruction of the

original signal from the samples, consists of multiplying the original time function by

an impulse train. And that gives us then the sampled signal. The Fourier transform I

show here of the original signal and after modulation with the impulse train, the

resulting spectrum that we have is that replicated around integer multiples of the

sampling frequency. And then finally, to recover the original signal or to generate a

reconstructed signal, we then multiply this in the frequency domain by the frequency

response of an ideal low-pass filter. And what that accomplishes for us then is

recovering the original signal.

Now in this picture, an important point that I raised last time, relates to the fact that

in doing the reconstruction--well we've assumed-- is that in replicating these

individual versions of the original signal, those replications don't overlap and so by

passing this through a low-pass filter in fact, we can recover the original signal. Well,

what that requires is that this frequency, omega sub m, be less than this frequency.
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And this frequency is omega sub s minus omega sub m. And so what we require is

that the frequency omega sub m be less than omega sub s minus omega sub m. Or

equivalently, what we require is that the sampling frequency be greater than twice

the highest frequency in the original signal.

Now, if in fact that condition is violated, then we end up with a very important effect.

And that effect is referred to as aliasing. In particular, if we look back at our original

example--we are here-- we were able to recover our original spectrum by low-pass

filtering. If in fact the sampling frequency is not high enough to avoid aliasing, then

what happens in that case is that the individual replications of the Fourier transform

of the original signal overlap and what we end up with is some distortion. As you can

see, if we try to pass this through a low-pass filter to recover the original signal, in

fact we won't recover the original signal since these individual replications have

overlapped. And this is the case where omega sub s minus omega sub m is less

than omega sub s. In other words, the sampling frequency is not greater in this case

than twice the highest frequency.

So what happens here then is that in effect, higher frequencies get folded down into

lower frequencies. What would come out of the low-pass filter is the reflection of

some higher frequencies into lower frequencies. As I suggested a minute ago, that

effect is referred to as aliasing. And in order to both understand that term better and

to understand in fact the effect better, it's useful to examine this a little more closely

for the specific example of a sinusoidal signal.

So let's concentrate on that. And what we want to look at is the effect of aliasing

when our input signal is a sinusoidal signal. Now to do that, what I want to show

shortly is a computer-generated movie that we've made. And let's first walk through

a few frames of it to give you-- first of all, to set up our notation and to suggest what

it is that we're trying to demonstrate.

Well, what we have is an input signal-- is a sinusoidal signal. And the spectrum or

Fourier transform of that is an impulse in the frequency domain at the frequency of

the sinusoid. We then have samples of that and when we sample that-- and for this
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particular example, it's sampled at 10 kilohertz-- this spectrum is then replicated at

multiples of the sampling frequency. And I haven't shown negative frequencies

here, but the contribution due to the negative frequency is at 10 kilohertz minus the

input sinusoid.

We then carry out a reconstruction with an ideal low-pass filter. And the ideal low-

pass filter is set at half the sampling frequency or 5 kilohertz. So what we have then

is the input signal x of t and the impulse train x of p of t. And then the reconstructed

signal is the output from the low-pass filter which I denote as x of r of t. Now as the

input frequency x of t increases, this impulse moves up in frequency, but this

impulse moves down in frequency. And so let's just look at a few frames as the input

frequency increases.

So we have here a case where the input frequency has moved up close to 5

kilohertz. As we continue further, these two impulses will cross and what we'll end

up with, as I indicated, is aliasing. So here now is a case where we have aliasing.

The replication of the negative frequency has crossed into the passband of the filter

and the reconstructed sinusoid will now be the frequency associated with this

impulse rather than the frequency associated with the original sinusoid. And to

dramatize that even further, here is the example where now the input frequency has

moved up close to 10 kilohertz, but what comes out of the low-pass filter is a much

lower frequency. And in fact, you can see that here is the reconstructed sinusoid,

whereas here we have the input sinusoid.

Well, now what I'm going to want to do is demonstrate this as I indicated with a

computer-generated movie. And what we'll see is the effect of reconstructing from

the samples using a low-pass filter for an input which changes in frequency and with

a sampling rate of 10 kilohertz. And what we'll see in the first part of this movie is

the input x of t and the reconstructed signal x of r of t without explicitly showing the

samples. And then, at a later point, we'll also show this and indicate that in fact the

samples of those two are equal, even though they themselves are not.

So at the top, we'll have the input sinusoid without showing the samples. And its
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Fourier transform is an impulse in the frequency domain as we've indicated. And if

we sample it, that impulse then gets replicated. And so its samples, in particular, will

have a Fourier transform not only with an impulse at the input sinusoidal frequency,

but also at 10 kilohertz minus that frequency.

Now for the reconstruction, we passed the samples through an ideal low-pass filter.

I picked the cutoff frequency of the low-pass filter at half the sampling frequency,

namely 5 kilohertz. And here, what we see is that the output reconstructed signal in

fact matches in frequency the input signal.

Now as we change the input frequency, the reconstructed sinusoid is identical until

we get to an input frequency, which exceeds half the sampling frequency. At that

point we have aliasing and while the input frequency is increasing, the output

frequency in fact is decreasing because that's what's inside the passband of the

filter. Now let's sweep it back. And as the input frequency decreases, the output

frequency increases until there's no aliasing and now the output reconstructed

signal is equal to the input.

So we've sampled a signal and then reconstructed the signal from the samples. And

keep in mind, that given a set of samples, there are lots of continuous curves that

we can thread through the set of samples. The one that we picked, of course, is the

one consistent with the assumption about the signal bandwidth. In particular, we've

reconstructed the signal whose spectrum falls within the passband of the filter.

Now what I'd like to show is the same reconstruction and input as I showed before,

but now let's look at the samples and what we'll see is that when there's aliasing,

even though the output-- the reconstructed signal-- is not identical to the input. In

fact it's consistent with the input samples that is sampling the reconstructed signal. It

gives a set of samples identical to the samples of the input and it's just that the

interpolation in between those samples is an interpolation consistent with the

assumed bandwidth of the input based on the sampling theorem.

So let's now look at that with the samples also shown along with the sinusoid. So at

the top, we have the input sinusoid together with its samples. The bottom trace is
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the Fourier transform of the sampled waveform. The middle trace is the

reconstructed sinusoid together with its samples. And notice, of course, that the

samples of the input or reconstructed signal are identical. And also the input

sinusoidal frequency and the output sinusoidal frequency are identical. And we now

increase the frequency at the input. The reconstructed sinusoid tracks the input in

frequency and, of course, the samples of the two are identical. The interpolation in

between the samples is identical because of the fact that the input frequency is still

less than half the sampling frequency.

And so, as long as the input is frequency is less than half the sampling frequency,

not only will the samples be identical, but also the reconstructed continuous

waveform will match the input waveform. Now when we get to half the sampling

frequency, we're just on the verge of aliasing. This isn't aliasing quite yet, but any

increase in the input frequency will now generate aliasing.

We now have aliasing, the output frequency is lower than the input frequency, but

notice that the samples are identical. Now the low-pass filter is interpolating in

between those samples with a sinusoid that falls within the passband of the low-

pass filter, which no longer matches the frequency of the input sinusoid. But the

important point is that even when we have aliasing, the samples of the

reconstructed waveform are identical to the samples of the original waveform. And

notice that as the input frequency increases, in fact the interpolated output, the

reconstructed output has decreased in frequency.

Now as the input frequency begins to get closer to 10 kilohertz-- in fact your eye

tends to also interpolate between the samples with a frequency that is lower than

the input frequency. And that's particularly evident here. Notice that the input

samples in fact look like they would be associated with a much lower frequency

sinusoid, than in fact was the sinusoid that generated them. The lower-frequency

sinusoid in fact corresponds to the reconstructed one. Now as we sweep back

down, the aliasing eventually disappears and the output sinusoid tracks the input

sinusoid in frequency.
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So we've seen the effect of aliasing for sinusoidal signals in terms of waveforms.

Now let's hear how it sounds. Now what we have for this demonstration is an

oscillator and a sampler. And the output of the sampler goes into a low-pass filter.

So the input from the oscillator goes into the sampler and the output of the sampler

goes into the low-pass filter. The sampler frequency is 10 kilohertz. And so the low-

pass filter has a cutoff frequency as I indicate here, of 5 kilohertz. And what we'll

listen to is the reconstructed output as the oscillator input frequency varies.

And recall that what should happen is that when the oscillator input frequency gets

past half the sampling frequency, we should hear aliasing. So we'll start the

oscillator at 2 kilohertz.

[OSCILLATOR SOUND IN BACKGROUND]

PROFESSOR: And keep in mind that what you see on the dial is the input frequency, what you

hear is the output frequency. As long as the input frequency is less than half the

sampling frequency-- in other words, 5 kilohertz -- the reconstructed signal sounds

identical to the input.

Now at 5 kilohertz, we're right on the verge of aliasing, and when we increase the

input frequency past 5 kilohertz, the reconstructed frequency in fact will decrease.

So as we move, for example, from 5 kilohertz up to let's say, 6 kilohertz. 6 kilohertz

in fact gets aliased down to, what? It gets aliased down to 4 kilohertz. So 6 kilohertz

at the input is 4 kilohertz at the output. Now, if we move up even further, 7 kilohertz

at the input gets aliased down to 3 kilohertz at the output. So that, then is an audio

demonstration of aliasing.

So to summarize, if we sample a signal and then reconstruct from the samples

using a low-pass filter, as long as the sampling frequency is greater than twice the

highest frequency in the signal we reconstruct exactly. If on the other hand, the

sampling frequency is too low, less than twice the highest frequency, then we get

aliasing. In other words, higher frequencies get folded or reflected down into lower

frequencies as they come through the low-pass filter.
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Now, one of the common applications of the whole concept of sampling is the use of

sampling to convert a continuous-time signal into a discrete-time signal to carry out

what's often referred to as discrete-time processing of continuous-time signals. And

this in fact is something that we'll be talking about in a fair amount of detail,

beginning with the next lecture. But let me indicate that for that kind of processing,

essentially what happens, is that we begin with the continuous-time signal and

convert it to a discrete-time signal, carry out the discrete-time processing, and then

convert back to continuous-time.

And the conversion from a continuous-time signal to a discrete-time signal in fact, is

done by exploiting sampling, specifically by sampling the continuous-time signal with

an impulse train and then converting the impulse train into a sequence in a matter

that I'll talk about in more detail next time. Now in doing that-- of course, as you can

imagine-- it's important since we want an accurate representation of the original

continuous-time signal, to choose the sampling frequency, to very carefully avoid

aliasing. And so in fact, in that context and in many other contexts, aliasing is

something that we're very eager to avoid. However, it's also important to

understand that aliasing isn't all bad. And there are some very specific contexts in

which aliasing is very useful and very heavily exploited.

One example of a very useful context of aliasing is when you want to look at things

that happen at frequencies that you can't look at, for one reason or another. And

sampling and aliasing is used to map those into lower frequencies. One very

common example of that is the use of the stroboscope which was invented by Dr.

Harold Edgerton at MIT. And sometime earlier, in fact we had the opportunity to visit

Dr. Edgerton's laboratory at MIT and see some examples of this. So I'd like to-- as a

conclusion to this lecture-- take you on a visit to the strobe lab at MIT.

In the lecture-- in discussing aliasing-- we've stressed the fact that in most

situations, it's something that we'd like to avoid. However, right now we're at MIT, in

Strobe Alley as it's called, on the way to visit the laboratory of my MIT colleague,

Professor Harold Edgerton, where in fact aliasing is an everyday occurrence.

Basically, the idea is the following-- that if in fact you want to make measurements
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at frequencies that, for one reason or another, you can't measure, then sampling

and, consequently, aliasing can be used to bring those frequencies down into a

frequency range that you can measure.

Well, Professor Edgerton alias Doc Edgerton invented the stroboscope for exactly

that reason. And, kind of, the idea is the following. The eye, essentially, is a low-

pass filter and so there are things that happen at frequencies above which your eye

can track. And by sampling with light pulses, sampling in time, what in effect you're

able to do is sample in such a way that higher frequencies get aliased down to lower

frequencies so that, in fact, your eye can track them. So let's take a look inside the

lab and in fact see an illustration of this strobe and some of its effects.

Let me introduce you to my MIT colleague, Doc Edgerton. Also by the way, this is a

great place for kids of all ages and so my daughter, Justine, insisted on coming

along to also help out. Doc, maybe we could begin with you just saying a little bit

about what the strobe is and what some of the history is?

DR. HAROLD

EDGERTON:

Sure, it's a very simple application of intermittent light. And this is a xenon lamp that

flashes in a controlled rate depending on this knob which Justine's going to turn.

And we're going to look at a motor that's driving an unbalanced weight to set up

some [INAUDIBLE] oscillations in the spring. I'll turn on the motor. I'll turn on the

strobe.

[STROBOSCOPE SOUND IN BACKGROUND]

DR. HAROLD

EDGERTON:

Just get the right range. All right, Justine, turn that now, until it stops. See that,

Justine, the frequency is that the light, which corresponds to the frequency of the

motor. And it's a little less or a little more, when you lean to go forward to

backwards.

PROFESSOR: Doc, maybe we could turn this strobe off for minute. And let me point out, by the

way, the fact that when we're looking at this without the strobe on, what we're

seeing essentially are frequencies that our eye can't track. So we can't see the

motor turning and we can't really see other than with a blur. We can't see the
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movement of the spring. And so I guess, your point is that when we put the strobe

on, we're essentially sampling this. And now we brought this down to a frequency

that our eye is able to track.

In fact, I guess if we turn the incandescent light off, what we'll be able to really bring

out are the alias frequencies. So now, what we're looking at in fact are the alias

frequencies. The spring, of course, is moving a lot faster than we see it, isn't that

right?

DR. HAROLD

EDGERTON:

Yes, it's going approximately 30 times a second. The motor is going far from 30

times a second. I will speed this up while I hit the next mode, where I get a figure 8

out of this thing. You want to see that now?

PROFESSOR: Yeah, great.

DR. HAROLD

EDGERTON:

[INAUDIBLE]

[MACHINE NOISE GETS LOUDER]

PROFESSOR: So what we'll be seeing now is essentially a second harmonic, is it?

DR. HAROLD

EDGERTON:

Yes, that's the second harmonic.

PROFESSOR: Justine, you think you could make that spring dance around a little bit by changing

the strobe frequency?

DR. HAROLD

EDGERTON:

Yeah, you need to go around that way. You go around this way.

PROFESSOR: Hey, that's really neat. Let's turn the lights back on if we can.

DR. HAROLD

EDGERTON:

Tomorrow [INAUDIBLE] it's periodic, it has to be periodic.

PROFESSOR: And what's interesting now, if we look at this in a-- let's see, can you flip this strobe
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off again?

DR. HAROLD

EDGERTON:

Sure.

DR. HAROLD

EDGERTON:

Notice, Justine, when we look at the spring now, all that we can see is a blur. And

you really can't see-- because your eye can't track it, you can't see things

happening spatially in frequency.

You said, by the way, that this was originally demonstrated at the World's Fair.

DR. HAROLD

EDGERTON:

This particular instrument was made the World's Fair in Chicago-- not the last one,

but the one before that.

PROFESSOR: Wow.

DR. HAROLD

EDGERTON:

It was a--you see it all scratched up because it's a-- the [INAUDIBLE] use this thing

is to break the springs. Because of the uses, you try to find the parts that fail.

PROFESSOR: I see. You put them under stress and fatigue and--

DR. HAROLD

EDGERTON:

If I run this for half an hour and so, the spring will break. And they work on

automobiles, they run them until something vibrates. Then they find out what the

part is and what frequency it is.

PROFESSOR: Well let's--by the way, I bet you run this for a lot more than half an hour in this state.

DR. HAROLD

EDGERTON:

Oh, yeah, we've broken many, many springs in this thing-- and it's continuous. We

experiment, try new things on it.

PROFESSOR: Maybe we could look at a couple of other things. How about the fan? Maybe--

DR. HAROLD

EDGERTON:

Sure, I'll plug this fan and this is a classic experiment for the strobe.

[MACHINE NOISE STOPS]

DR. HAROLD That's a good idea. Get that thing off. Makes too much noise.
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EDGERTON:

PROFESSOR: Guess, we move that over here.

DR. HAROLD

EDGERTON:

This is just an ordinary electric fan, but it has a mark on one blade, so that you can

identify it. We'll plug it in, get it up to speed.

PROFESSOR: This looks like a fan that was also demonstrated in the World's Fair, a few years

ago.

DR. HAROLD

EDGERTON:

Yeah, could've been. There was a movie Quicker'n a Wink had this thing in there

and--

PROFESSOR: With this very fan?

DR. HAROLD

EDGERTON:

Well, one like it. It was loaned to MGM. And Pete Smith, he said he wanted me to

throw out a custard pie into it. I said, no, I'm a serious scientist. So he says, let's

compromise on the egg. So we dropped an egg into it and you would see a high-

speed movie of the egg dropping. No, not with the strobe, but with this [INAUDIBLE]

PROFESSOR: That was with the high-speed photography.

DR. HAROLD

EDGERTON:

High-speed movies, yeah.

PROFESSOR: So again, I guess, without the strobe, when we look at it, what we're looking at are

frequencies that are much higher than the eye can follow. And now, with the strobe

on, you can see both the alias frequency and you can also see the original

frequency because we had the incandescent light on.

Let's turn down the background light again. And then, really all that we're able to

see are the aliasing frequencies. And I guess when we see more than one mark,

that means that we're actually running it at--

DR. HAROLD

EDGERTON:

Four times the speed of the fan.
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PROFESSOR: --four times the speed the fan, yeah.

DR. HAROLD

EDGERTON:

You see a little variation in the--

PROFESSOR: Oh, yeah. Right.

DR. HAROLD

EDGERTON:

It's because the blades aren't exactly the same.

PROFESSOR: Actually, this gives me a chance to illustrate another important point related to the

lecture. Let's see, can we bring it down to a frequency so that we only get one

mark?

DR. HAROLD

EDGERTON:

Sure. You may miss this because it's too lowered to just one blade there now.

PROFESSOR: So the way we have it now, we've essentially aliased the fan's speed down so that

it's just a little higher than DC. And now, I'm right at DC. And now, if I go down just a

little further, in fact it looks like the fan is turning backwards. And if you think of this

in the context of aliasing, it's like the two impulses in the frequency domain have

crossed over. And what you get in effect, if you analyze it mathematically, is you get

a phase reversal. And it wasn't until I first understood about aliasing, by the way,

Doc, that I understood why when I went to Western movies, every once in a while

you'd see the wagon wheels turning backwards. Then there's the wagon wheels of

the Western movie going backwards, I guess.

And, Justine, why don't you see if you can--

DR. HAROLD

EDGERTON:

Too much flicker there. Why don't you bring it up so you get two marks.

PROFESSOR: See if you can bring the frequency up so that you get two marks.

DR. HAROLD

EDGERTON:

You turn that, Justine. Grab right ahold of that and give it a big twist. You went past

it. They're not regular there now. Here we are. Now hold it right there. Put your
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finger on there, hold the dial. It's flashing twice per revolution now, Al.

PROFESSOR: I guess another thing that this demonstrates is something that I've heard a long time

ago, which is that you should never use a power saw with a fluorescent light

because the fluorescent light gives you a little bit of a strobe effect and you could

actually convince yourself that that's standing still and make the mistake of trying to

put your finger between the blades.

DR. HAROLD

EDGERTON:

You want to stick your finger in there?

PROFESSOR: No, I don't think I want to try it. How about you, Justine? What do you think? Is that

standing still or is that moving?

DR. HAROLD

EDGERTON:

She knows it's going. We won't let her get close to that fan.

PROFESSOR: Actually if we turn the lights back on again, what that will let us see once again is

that we can see both the alias frequencies when we do that and we can also see

the higher frequencies because of the incandescent lighting. Maybe what we can do

now is take a look at some other fun things. And one I guess I'm curious about is

the disk that you have over there.

Doc, maybe you can tell us what we have here?

DR. HAROLD

EDGERTON:

Sure, Al. This is a disk to show how you can get motion pictures out of a series of

still pictures. This circle is repeated 12 times. The white dot goes from the outer part

of it on this side to the inner part on the other. If I flash one time per revolution on

this, you'll see it exactly as it is. But if I skip one picture each time, then you get the

relative motion of this ball. Well, the object is to show the ball rotating either this way

or that way depending on whether the strobe was going faster or slower than the

other.

This way motion pictures were developed hundred years ago, long before

photography. They drew pictures of people in different poses, animated pictures.
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Like to see it run?

PROFESSOR: Yeah, great. It's actually, the title, kind of, is "Aliasing Can Be Fun."

DR. HAROLD

EDGERTON:

That's right. Let me get it up to speed. On the way up, you get a lot of different, sort

of, patterns as it goes through. When it eventually reaches its speed, which is about

1,100 per minute, you'll see it stop.

PROFESSOR: And the background blur, basically at the high frequencies that the eye can't follow

and then, kind of, superimposed on that again, we can see the frequencies that are

aliased down. And that's what the eye can follow.

DR. HAROLD

EDGERTON:

Right now, we have one flash per revolution, so you can see the part of the disk

that's illuminated with the strobe exactly as if it was standing still. Now if I increase

the frequency, so they skip one circle, then you get the illusion that, that dot is

moving.

PROFESSOR: In fact, let's really enhance the revolution, let's turn the incandescent lights off

again. And now, now what we see really are the alias frequencies. What do you

think of this Justine?

JUSTINE: Neat.

DR. HAROLD

EDGERTON:

It looks like magic. I still have great joy in watching this thing, though it's so simple.

PROFESSOR: Now, while we're watching this, something also I might point out for the lecture--for

the course-- is that actually there really are two sampling frequencies that we're

seeing. One is the strobe, which is the strobe that you're running. The other is the

inherent frame rate for the TV, that's running at 30 frames a second. And that's one

of the reasons, by the way, that people watching this on the video course are in fact

seeing a flicker or a beating or modulation between the two unsynchronized frame

rates.

DR. HAROLD

EDGERTON:

I'll run the frequencies of the strobe up, so we get two of them in there. You keep

watching, we had all these other interesting patterns. There's two now. And I'll make
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the two bounce on each other. You get all these patterns for free. You design a disk

to show one thing and then when you run it, you find all the other patterns.

PROFESSOR: I think it would be a terrific homework problem for the video course, to have them all

sit down and analyze all the frequencies that they're seeing and what they're being

aliased to. What do you think of that?

DR. HAROLD

EDGERTON:

That's a good idea. As a teacher, I love to give quizzes. Find out whether the

students are listening.

PROFESSOR: I think that'll chase a few people away from the course, that's what I like--

DR. HAROLD

EDGERTON:

No, it attracts them because you get involved in these optical things, there's no limit

on what you can do.

PROFESSOR: Let's bring the incandescent lights back up again, just to remind everybody that in

back of all these are some frequencies that are a lot higher than the ones that we

begin to get the impression that we're watching.

DR. HAROLD

EDGERTON:

It's just a motor running at constant speed with a pattern on it.

PROFESSOR: Doc, I have to say that there aren't many people I know that have as much fun in

their work as you do.

DR. HAROLD

EDGERTON:

Well, I'm a lucky man.

PROFESSOR: Well, what I'd like to do now, maybe, is take a look at one last experiment, if you

could.

DR. HAROLD

EDGERTON:

Sure.

PROFESSOR: And what I'd like to do is go take a look at, I guess, what sometimes is called the--

well, not the water drop experiment-- what's the name of the--
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DR. HAROLD

EDGERTON:

You mean the Double Piddler Hydraulic Happening Machine?

PROFESSOR: That's the one I was thinking of. Let's take a look over there.

DR. HAROLD

EDGERTON:

Come on, Justine, let's go and turn on the water.

PROFESSOR: So, Doc, this is the--what did you call it DPHHM for Double Piddler Hydraulic

Happening Machine? Got it.

DR. HAROLD

EDGERTON:

It looks like a continuous stream, but it's not. It's a pump over there. It's pumping 60

pulses a second. The water is coming out in spurts.

PROFESSOR: So actually, again it's the 60 pulses a second your eye can't follow.

DR. HAROLD

EDGERTON:

Your eye's no good at 60 a second.

PROFESSOR: Basically looks like a blur.

DR. HAROLD

EDGERTON:

It is a blur, a nice juicy blur. Now we put the strobe on.

PROFESSOR: So again, I guess we have this essentially aliased down. And again with the

incandescent light, you can see both the high frequency and the alias frequency.

And let's see, I guess that's what the frequency close to DC and we can adjust it so

that it's stopped.

DR. HAROLD

EDGERTON:

All right, make the water go up.

PROFESSOR: And then we can actually make it go up.

DR. HAROLD

EDGERTON:

Of course, nobody believes that.
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PROFESSOR: Yeah, in fact, let me just again, to stress this point to the class. The idea here of the

phase reversal-- of course, you can see it in the time domain-- you just think about

when the flashes of light come. But if you think of these impulses that we have in the

frequency domain and we're aliasing as we change the sampling frequency, what

happens is that these impulses cross over and what that means is that we get a

phase reversal depending on which phases are associated with which side of DC so

that's kind of the idea of the phase reversal. Let's turn the--

DR. HAROLD

EDGERTON:

Well, we tried to have Justine put her finger in between those two drops.

PROFESSOR: Yeah, let's turn the incandescent light off first. And--

DR. HAROLD

EDGERTON:

Take one finger out now. Put it right in between those two drops.

PROFESSOR: Justine,you think you can do that?

DR. HAROLD

EDGERTON:

Better get on the other side. Use your other hand, so they can see with it. You can--

PROFESSOR: Think you can get your finger in there?

PROFESSOR: Whoop, there's water there all the time.

PROFESSOR: Well I don't know, Doc. It seems to me if we-- can't we just adjust this so that the

dots just go through each other?

DR. HAROLD

EDGERTON:

Sure.

PROFESSOR: Now if the dots can do it, Justine, how come you can't get your finger in there?

JUSTINE: I don't know.

PROFESSOR: Why don't you try that once more? I guess not.
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DR. HAROLD

EDGERTON:

No, that's one thing you can't do with it.

PROFESSOR: Well let's bring the lights back up and again, just to stress the point, here we are at

DC, here we are at a frequency that's just a little above DC, and we can go back

down to DC and we can actually get a phase reversal. And I guess, if we do this

long enough, we can empty out the whole ocean and put it back in wherever it

comes from. Isn't that right?

DR. HAROLD

EDGERTON:

And we caution the students when they run this, not to run it too long--

PROFESSOR: That's right.

DR. HAROLD

EDGERTON:

We've got the bucket here.

PROFESSOR: You have to be careful--

DR. HAROLD

EDGERTON:

--and it's been a while since somebody believes me.

PROFESSOR: Well, I don't know about them, but I guess I believe you, Doc.

DR. HAROLD

EDGERTON:

I'll put a little more pressure on so we get little more interesting patterns. Little

patterns or surface tension that's pulling in things together. We have these

machines, they're all over the place. They're a lot of fun.

PROFESSOR: Well, Doc, this is really terrific. I think that this whole idea of using aliasing and

strobes and the kinds of things that you do with them are just fantastic. And we

really appreciate the chance to come in here and see the demonstration.

DR. HAROLD

EDGERTON:

Well, that's the whole game. We've [? been happy to use ?] them for years and

probably will for many years to come.

PROFESSOR: So as I emphasized at the beginning, in lots of situations aliasing can, in fact, be
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very useful. Also what this demonstrates is that particularly when you have a

colleague, like Doc Edgerton, aliasing and for that matter science, in general, can

be an awful lot of fun.

DR. HAROLD

EDGERTON:

Thanks for coming in.

PROFESSOR: Thanks a lot, Doc.

DR. HAROLD

EDGERTON:

See you again.

PROFESSOR: And thank you, Justine.

JUSTINE: You're welcome.

PROFESSOR: Well, I have to say that visit was an awful lot of fun for me and for Justine and in

fact, for the whole camera crew that was there. And hopefully, all of you at some

point will also have a chance to visit at Strobe Alley.

Well, hopefully what we've gone through today gives you a good feeling for the

concepts of sampling and aliasing and both, why it might be useful and why we

might want to avoid it.

In the next lecture, we'll continue on the discussion of sampling. And in particular,

what I'll be talking about is the interpretation of the reconstruction process not in the

frequency domain, but in a time domain and interpretation specifically associated

with the concept of interpolating between the samples. We'll then proceed from

there to a discussion as I've alluded to in several lectures of what I've referred to as

discrete-time processing of continuous-time signals, very heavily exploiting the

concept and issues associated with sampling. Thank you.
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