26 Feedback Example:
The Inverted Pendulum

Solutions to
Recommended Problems

S$26.1

2
de(:gt) = gi(t) — a(t) + La(t),

— g0(t) = Lx(t)

Ld*(t)
de?

Taking the Laplace transform of both sides yields

s2LO(s) — gb(s) = LX(s),

__ X(s)
0(8) _Sz—g/L’

os) 1 1
X(s) s*—g/L (s+ Vg/LXs — Vg/L)’

The pole at \/g/Lis in the right half-plane and therefore the system is unstable.
(b) We are given that a(t) = K0(t). See Figure S26.1-1.

x(t) —» > 6(t)

K/L

Figure S26.1-1

0(s) _ H
X(s) 1+ GH’
S0, with
H = ;z_jlm and G = %,
6(s)/X(s) is given by
0(s) _ 1

X(s) ~ s*—(g/L) + (K/L)
The poles of the system are at

K—g

s= = 7

which implies that the system is unstable. Any K < g will cause the system
poles to be pure imaginary, thereby causing an oscillatory impulse response.
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(c) Now the system is as indicated in Figure $26.1-2.

x(¢) 2

6(t)

K
1
—+
L

Figure S26.1-2

1
H(s) =
© 2——+I&+I&s
L L L
_ 1
B K K —g
2 222 1
s +Ls+ L

The poles are at

-K, | (g)z_af.—g)
2L — 2L L ’

which can be adjusted to yield a stable system. A general second-order system
can be expressed as

Aw?
H)=a7 20w,S + w?’
so, for our case,
K, —g K,
2 -_—
W=7 and 2{w, I’
g = 9.8 m/s?
L=05m
=1
w, = 3 rad/s
K, = 14.3 m/s?
K, = 3m/s
S$26.2
(a) Here
2
H(s) = o

$? + 2tw,s + w2’
G(s) =K
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The closed-loop transfer function H(s) is

H(s) = H _ w?
¢ 1+ GH s*+ 2{w,s + w? + Ko?
wh
T8 4 2w,s + wi(l + K)
2
= O . whered, = w(l + K)\”
s+ 2 (‘f"") &,8 + &2
wn
2 /A2 A2
= (w"/fo n) &n = where { = ¢ &
s+ 260, + & Wy
Therefore,
&, = w,(1 + K)'7,
R S
1+ K7
w? 1
A=m_ -
@ 1+K’

forK=1,8, = V2w, and { = ¢/ V2.
(b) Now we want to determine the poles of the closed-loop system

wp

H) = o otes + 2 + K)

The poles are at

—fw, £V, — wi(1 + K)

(©

s plane

Re

AT

K = +oo

Figure S26.2

The poles start out at + oo, approach each other and touch at K = ¢ — 1, and
then proceed to —{w, *jco
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S26.3
Y(s) KK, Bs + KK,
a) —= = = =
@ X)) - ® |, Kfa " Bs 47+ KKa
Bs +r
Y(s) _ B K, _ (Bs + 1K,
®) W) ~ S = |, KiKa " Bs 7+ KKa
Bs +r
(¢) For stability we require the pole to be in the left half-plane.
K,
sp - (M) < 0
B
N r + KlKga - O
B
If 8 > 0, then r/a > —K|K,; if 8 < 0, then r/a < —K,K,.
S26.4
_ K _ K(s 4+ 100)
H(s) = |+ K6+ D T s F100 +Ks + K
s + 100
_ K(s + 100)
100 + K
&+ 1 ( + ‘xﬁ)
(a) K = 0.01,
. 1
H(s) = 0.01(s + 100)

1.01(s + 99.0198)
The zero is at s = —100, and the pole is at s = —99.0198.

(b) K =1,
H(s) = s + 100
2|s+ 1—01
2
The zero is at s = —100; the pole is at s = —50.5.
(c) K =10,
1 0
H(s) = O(s_"'ll%(_))_
1 J—
1 (s + 11)
The zero is at s = —100; the pole is at s = —10.
(d) K = 100,
100 1
H(s) = _(8_4_2%
101 (S + 1—0'I>
The zero is at s = —100; the pole is at s = —1.9802.
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S26.5
1
s+1 1
(a)H(s)'l+ K s+1+K
s+1

The pole is at s = —1 — K, as shown in Figure S26.5-1.

Im Im

K>0 s plane K<O0 s plane

-1

Figure S26.5-1

The pole moves from infinity to negative infinity as K changes from negative
infinity to infinity.

1
s—1 s+ 3
() Hs) = K 1) G+3s-D+K
1+<s+3$—1)
s+ 3

TSP +2+K-3
The poles are ats, = —1 £ V1 — (K — 3), as shown in Figure 526.5-2.

Im Im
K>0 K<o
s plane s plane
K =4 A

— P ——¢ Y—P— Re

-3 ~1 V +1 3 1

Figure $26.5-2

The poles start at + oo when K = —oo, move toward —1, touch when K = 4,

and proceed to —1 * joo as K approaches positive infinity.
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Solutions to
Optional Problems

S$26.6
(a) The poles for the closed-loop system are determined by the denominator of the
closed-loop transfer function
Kz
1+ ——7———7—=0,
CRaR) )
S0
& —He—H+Ke=0
Since we are told a pole occurs when 2 = —1, we want to solve the equation
for K:
— 1 — 1 1
Ko —@-be-H| _15
4 z=—1 8
(b) In a similar manner to that in part (a),
K=_®-dE-d| _=3
2 z=1 8
(¢) From the root locus diagram in Figure P26.6, we see that for K > 0 when K
exceeds a critical value of K = %, as determined in part (a), one root remains
outside the unit circle. Similarly, when K < —2, one root is outside the unit
circle. Therefore, to ensure stability, we need
—i<K<¥
$26.7

(@)

The closed-loop transfer function is

Y(s) _ H(s) _ _ H()H(s)
X(s) 1+ G(s)H(s) 1 + H(s)H,(s)

and, therefore, from the given H.(s) and H,(s), we have

Ka
Ys) _ s+a Ka _ Ko
X(s)"1+ Ka s+a+Ke s+ K+ Da
S+ «

The system is stable for denominator roots in the left half of the s plane; there-
fore —(K + 1)a < 0 implies that the system is stable.
Now since E(s)H (s)H,(s) = Y(s), we have
E(s) _ 1 _ S+« _ s+«
X(s) 1+H(SH() s+a+Ka s+ K+ Da
The final value theorem, lim, .., e(t) = lim,_, sE(s), shows that

. s(s + a)
S8 ra) for —(K <
I T Kt Do~ 0 for ~(&K+ Da<0
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Note that if x(t) = u(t), then
1 st a

Es)=|-|—o—"7—

(5 (s)s ¥ & + Da

and

lim s (_) S+ a _ 1
o \s/s+E+Da K+1
so lim,_,, e(t) # 0.

Y(s) _  HJ(s)Hs)

X(s) 1+ H(s)H,s)

K2 43
K p——
( 1+s)s+a

K
1+<K1+—2) -

# 0, for —(K+ 1Da <0

s/s+ «a

K
(sK, + Ky _ K,
s(s + a) + (Kis + K))a  §* + sa(K, + 1) + K
The poles for this system occur at

2
‘- —a(l{é +D, \/<a(K12+ 1)) _ K

Note that if a(K; + 1) > 0 and if K,a > 0, we are assured that both poles are
in the left half-plane. Therefore, a(K; + 1) > 0 and K, > 0 are the conditions
for stability. Now since

1
1 + H(s)H,(s)
s(s + a)
32 + a(Kl + l)s + Kza’

E(s) = X(s)

-1
s

then
lim sE(s) = 0 implies that lime(t) = 0,

s—~0 t—>o0

for a(K, + 1) > 0 and K,a > 0, so we can track a step with this stable system.

(@)

Y(s)

XG) = H(s)C(s)

_ 1 s—2
s+ 1)s — 2)(s+ 3)
We can see from this expression that the overall transfer function for the sys-
tem is
Y(s) _ 1
X)) (+1D(s+3)’

a stable system. In effect, the system was made stable by canceling a pole of
H(s) with a zero of C(s). In practice, if this is not done exactly, i.e., if any com-
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S$26.9

(b)

©

(@D

ponent tolerances cause the zero to be slightly off from s = 2, the resultant
system will still be unstable.

Y(s) _ C(s)H(s) K
X(s) 1+CEH(G) (+1)Xs—2)+K
K
= s?—s+K—-2

The poles are at
1t Vi—(K—-2)

We see from this that at least one pole is in the right half-plane, i.e., there is
instability for all values of K.

1
¥(s) _ Ks+ o) i he =2
X(s) 1
1+ K(s + a)——(s TG =D
L K(s + a)
T s+ 1)Xs—2)+ K(s + a)
K(s + a) _ K(s + a)

TS¥—s—2+Ks+Ka $+ (K- s+ (Ka—2)
The poles are at

—mg”i\/fgﬁ—mhm

Now, if Ka — 2 > 0, the system is stable. K > 2/a because ¢ > 0 is assumed.
This is true for 1 > a > 0 and 2 > a > 1. For a = 2, the system is stable for
K> 1.
Y(s) _ K(s + a)
X(s) s£+(K—1s+ Ka—2)’
WewantK — 1 = w,, 2K — 2 = wi. So
(K— 1 =2K — 2,
K=3 or K=1

If K =1, then w, = 0, so K = 3 implies that w, = 2.

a =2

(a)

Es) = ! = s where
X(s) 1+ H(s) s +G(s)’
K[l -80
G(s) = 77—
I —a
k=1
For s = 0, G(s) constant = g.
(1/s)s' . ) s
O =gy md lmsEe) =lim == 0

Thus, lim,_ e(t) = 0.
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-1

®) B = o f e

So

forl =1, x(t) = u_u(1)

1
lim sE(s) = ————— = — = Constant

1
50 s + G(S) s=0 q
1-k 2—k

s s
() E(s) = S+ G)’ sE(s) = 5+ GG
For k > 2,

lim sE(s) = oo, lim e(t) = o0

s—0 t—oco

l—k l—k+1

; =5 =5
(d) (1) E(s) - Sl + G(S)’ SE(S) sl + G(s)
If k <, then

l—k+1 0

lim sE(s) = i - =0
lim sk(s) = M e S ~0+g

so lim,_. e(t) = 0.

(ii) Ifk =1+ 1 and since

I—k

s
E(s) = ———
(5 st + G(s)’
then
lim sE(s) = lim—l— 1. Constant
50 T a0 S+ GG g
Thus, lim,_e(t) = Constant.
(iii) Ifk > 1 + 1, then since
sl'k sl—k+l
E(s) = ——— E(s) = —————
() st + G(s)’ SE(s) st + G(s)
lim,_., SE(s) = oo implies lim,_,, e(t) = co.
$26.10
(a) E@) 1
Xz 1+ H®’
z
X&) _ z—1 _ 22+ 9
E(z)—l+H(z)—1+ 1 T -DE+H I
(z— 1D+
22+ 32 z2—3
=2 _1 : =1+

1 1
—§Z+§

The poles are at } * Vs — 5. These poles are inside the unit circle and therefore
yield stable inverse z-transforms, so e[rn] = én] + (2 stable sequences). So
lim,_.e[n] = 0.
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_A®
() H(z) = &= DB®)

since H(2) has a pole at z = 1. Now
E(2) _ 1 _ (z — 1B(=)
X(z) 1+ H@® (z— 1B +A®R)’
z
(z — 1) (z — DB(=)
(z — DB(=) + A(2)
_ 2B(2)
" (2 — DB(2) + A(2)
Furthermore, we know that
Y(z) _ H® _ (z — DB()
X(z) 1+ H(®) (z— DBR)+ A®R)
There are no poles for |2| > 1 because h[n] is stable. Therefore,
2B(2)
(z — DB(2) + A(2)
has no poles for |z| > 1, and lim,_..e[r] = 0.
2! 1

© HD = 7= = ;=7

ER) _ 1 _z—1
X(z) 1+ H( =z

—1 -1
ER) = i7—)((2) = (z " )(z i 1) for x[n] = u[n]

for x[n] = u[n]

E(z) =

E(z) =

’

= 1= e¢[n] = in],
soerl=0,n=1

_ d271 + 1272
(d) H(Z) - (1 + %z—l)(l — z~1):
E(=) _ 1 _ A+ DHa—-2H
X(z) 1+H@ A+ Yl-2zD+k '+
_ (1+%#H
Ez) = A+ HA—2zH+%!+ i
=144
Therefore,
e[n] = 8[n] + ¥[n — 1]
=0, n =2
E@) _ _ 1 _X@) _
® Yo~ 1+8: T® g !
For x[n] = u[n], we have
1
X(2) = -

1 -2z
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We would like

e[n] = i adln — k],
k=0

S0
E@@) = Z a2 "
k=0
Therefore,
1-1 -2 (Z a,cz")
H(z) = T
(-2 (Z akz*)
k=0
) Hz) = 2l 2tz E®) _ 1

L+2Y% -2 X 1+ H)
Now z[n] = (n + 1)u[rn] and

1
X(2) = =z
S0
1
1+2H1 -2y —mm —
B) = ( . a7
A+2HA -2V +zl+22—-2°
_1+2
1
and

e[n] = é[n] + én — 1]
= 0, n =2

$26-11
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