
26 Feedback Example: 
The Inverted Pendulum 
Recommended 
Problems 
P26.1 

Consider an inverted pendulum mounted on a movable cart as depicted in Figure 
P26.1. We have modeled the pendulum as consisting of a massless rod of length L, 
with a mass m attached at the end. The variable 0(t) denotes the pendulum's angular 
deflection from the vertical, g is gravitational acceleration, s(t) is the position of the 
cart with respect to some reference point, a(t) is the acceleration of the cart, and 
x(t) represents the angular acceleration resulting from any disturbances, such as 
gusts of wind. 
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Figure P26.1 

Our goal in this problem is to analyze the dynamics of the inverted pendulum 
and more specifically to investigate the problem of balancing the pendulum by judi­
cious choice of the cart acceleration a(t). The differential equation relating 0(t),
a(t), and x(t) is 

d20(t)
L dt = g sin [(t)] - a(t) cos [(t)] + Lx(t) (P26.1-1) 

This relation merely equates the actual acceleration of the mass along a direction 
perpendicular to the rod and the applied accelerations (gravity, the disturbance 
acceleration due to x(t), and the cart acceleration) along this direction. 

Note that eq. (P26.1-1) is a nonlinear differential equation relating 0(t), a(t), 
and x(t). The detailed, exact analysis of the behavior of the pendulum therefore 
requires that we examine this nonlinear equation; however, we can obtain a great 
deal of insight into the dynamics of the inverted pendulum by performing a linear 
analysis. Specifically, we will examine the dynamics of the pendulum when it is 
nearly vertical (i.e., when 0(t) is small). In this case, we can make the approx­
imations 

0(t), ~sin [(t)] 0 cos [(t)] 1 (P26.1-2) 
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(a) 	Suppose that the cart is stationary (i.e., a(t) = 0) and consider the causal LTI 
system with input x(t) and output 0(t) described by eq. (P26.1-1) together with 
the approximations given in eq. (P26.1-2). Find the system function for this sys­
tem and show that it has a pole in the right half-plane, implying that the system
is unstable. 

The result of part (a) indicates that if the cart is stationary, any minor angular
disturbance caused by x(t) will lead to growing angular deviations from the verti­
cal. Clearly, at some point these deviations will become sufficiently large that the 
approximations of eq. (P26.1-2) will no longer be valid. At this point the linear anal­
ysis is no longer accurate, but the fact that it is accurate for small angular displace­
ments allows us to conclude that the vertical equilibrium position is unstable, as 
small angular displacements will grow rather than diminish. 

(b) 	 We now wish to consider the problem of stabilizing the vertical position of the 
pendulum by moving the cart in an appropriate fashion. Suppose that we try
proportional feedback, with a(t) = KO(t). Assume that 0(t) is small so that the 
approximations in eq. (P26.1-2) are valid. Draw a block diagram of the linear 
system with 0(t) as output, x(t) as the external input, and a(t) as the signal
that is fed back. Show that the resulting closed-loop system is unstable. Find a 
value of K such that if x(t) = 5(t), the pendulum will sway back and forth in 
an undamped oscillatory fashion. 

(c) 	 Consider using proportional plus derivative (PD) feedback: 

d0(t)
a(t) = K 10(t) + K 2 dt

dt 

Show that we can find values of Ki and K 2 that do stabilize the pendulum. In 
fact, using 

g = 9.8 m/s', L = 0.5 m, 	 (P26.1-3) 

choose values of Ki and K 2 so that the damping ratio of the closed-loop system
is 1 and the natural frequency is 3 rad/s. 

P26.2 

Consider the feedback system given in Figure P26.2. 
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Figure P26.2 

(a) 	The closed-loop system is a new second-order system. Find the new natural fre­
quency ,, and the new damping factor k for K = 1. 

(b) 	 Find the poles of the closed-loop transfer function. 
(c) 	 Sketch the trajectory of the poles as K goes from negative infinity to positive

infinity. 
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P26.3 

Consider the system in Figure P26.3. 
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Figure P26.3 

(a) Find X = H1(s).
X(S) 

(b) Find 
W(s) = H 2(s). 

(c) For what range of values of a, 0, and r will both H1(s) andH2(s) be stable? 

P26.4 

Consider the feedback system in Figure P26.4. 
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Figure P26.4 

Find the closed-loop poles and zeros of this system for the following values of K: 

(a) K = 0.01 

(b) K = 1 

(c) K = 10 

(d) K = 100 
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P26.5 

Sketch the root loci for K > 0 and K < 0 for each of the following systems. 

(a) 

x(t) 	 y (t) 

K 1 

Figure P26.5-1 

(b) 

x (t) S 	 y(t) 

s+ 3 

Figure P26.5-2 

Optional

Problems

P26.6 

Consider again the discrete-time feedback system of Example 11.3 of the text (page
712): 

G(z)H(z) = 

(z - 1)(z - 4) 
The root loci for K > 0 and K < 0 are depicted in Figure P26.6. 

(a) 	Consider the root locus for K > 0. In this case the system becomes unstable 
when one of the closed-loop poles is less than or equal to -1. Find the value of 
K for which z = -1 is a closed-loop pole. 

(b) 	 Consider the root locus for K < 0. In this case the system becomes unstable 
when one of the closed-loop poles is greater than or equal to 1. Find the value 
of K for which z = 1 is a closed-loop pole. 

(c) 	 What is the full range of values of K for which the closed-loop system is stable? 
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Figure P26.6 

P26.7 

In this problem we consider several examples of the design of tracking systems. 
Consider the system depicted in Figure P26.7. Here H,(s) is the system whose output 
is to be controlled, and He(s) is the compensator to be designed. Our objective in 
choosing H,(s) is that we would like the output y(t) to follow the input x(t). Spe­
cifically, in addition to stabilizing the system, we would also like to design the sys­
tem so that the error e(t) decays to zero for certain specified inputs. 

(a) Suppose that 

H,(s) = a a =A0 (P26.7-1)
S + a 

Show that if He(s) = K (which is known as proportional or P control), we can 

choose K to stabilize the system so that e(t) goes to 0 if x(t) = b(t). Show that 

we cannot get e(t) - 0 if x(t) = u(t). 
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+ et) dt)
x(t) + He,(s) HP(s) ,, Wt 

Figure P26.7 

(b) 	Again, let H,(s) be as in eq. (P26.7-1) and suppose that we use proportionalplus 
integral(PI) control: 

He(s) = K1 + K2 
S 

Show that we can choose K, and K2 to stabilize the system, and we can also get 
e(t) - 0 if x(t) = u(t). Thus, this system can track a step. In fact, this illus­
trates a basic and important fact in feedback system design: To track a step 
(X(s) = 1/s), we need an integrator (1/s) in the feedback system. 

P26.8 

Consider a system with system function 

(P26.8-1)
(s + 1)(s - 2) 

This system is unstable, and we would like to devise some method for its sta­
bilization. 

(a) 	Consider first a series compensation scheme as illustrated in Figure P26.8-1. 

x(t) C(s) H(s) y(t) 

Figure P26.8-1 

Show that the overall system of this figure is stable if the system function C(s) 
is taken as 

C(s) = 2 
s + 	 3 

In practice, this is not considered a particularly useful way to attempt to sta­
bilize a system. Explain why. 

(b) 	Suppose that instead we use a feedback system as depicted in Figure P26.8-2. 
Is it possible to stabilize this system using a constant gain for the compensating 
element, i.e., C(s) = K? Justify your answer. 
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x(t) + C(s) - H(s) 	 y(t) 

Figure P26.8-2 

(c) 	 Show that the system of Figure P26.8-2 can be stabilized if C(s) is a proportional 
plus derivative system: 

C(s) = K(s + a) 

Consider both 0 < a < 1 and a > 1. 

(d) 	 Suppose that C(s) = K(s + 2). Choose the value of K so that the closed-loop 
system has a pair of complex poles with a damping ratio of = 1.[Hint: In this 
case the denominator of the closed-loop system function must have the form 

s2+ 	 S + W2.} 

P26.9 

In Problem P26.7 we discussed how the presence of an integrator in a feedback sys­
tem can make it possible for the system to track a step input with zero error in 
steady state. This problem extends this idea. Specifically, consider the feedback sys­
tem depicted in Figure P26.9, and assume that the overall closed-loop system is sta­
ble. Suppose also that H(s) has the form 

K f (s - Ok) 

H(s) = 

s' 11 (s - ak) 
k=1 

where a and #kare given, nonzero numbers and I is a positive integer. The feedback 
system of Figure P26.9 is often referred to as a Type 1feedback system. 

x(t) 	 F P26H(s) 

Figure P26.9 
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(a) 	Use the final value theorem (Section 9.5.9 of the text) to show that a Type 1 
feedback system can track a step, i.e., that 

e(t) - 0 if x(t) 	= u(t) 

(b) 	 Similarly, show that a Type 1 system cannot track a ramp but rather that 

e(t) - a finite constant if x(t) = U 2 (t) 

(c) 	 Show that for a Type 1 system, unbounded errors result if x(t) = uk(t), with 
k > 	 2. 

(d) 	 More generally, show that for a Type 1system, 

(i) e(t) - 0 if x(t) = U k(t), with k s 1 
(ii) e(t) - a finite constant if x(t) = Um e(t) 

(iii) e(t) -- oc if x(t) = uk(t), with k > 1 + 1 

P26.10 

(a) 	Consider the discrete-time feedback system of Figure P26.10. Suppose that 

1 
H(z) = 

(z - 1)(z + i) 
Show that this system can track a unit step in the sense that if x[n] = u[n], then 

lim e[n] = 0 (P26.10-1) 

(b) 	 More generally, consider the feedback system of Figure P26.10 and assume that 
the closed-loop system is stable. Suppose that H(z) has a pole at z = 1. Show 
that the system can track a unit step. [Hint: Express the transform E(z) of e[n] 
in terms of H(z) and the transform of u[n]; explain why all the poles of E(z) are 
inside the unit circle.] 

The results of parts (a) and (b) are discrete-time counterparts of the results for con­
tinuous-time systems discussed in Problems P26.7 and P26.9. In discrete time, we 
can also consider the design of systems that track specified inputs perfectly after a 
finite number of steps. Such systems are known as deadbeatfeedback systems, sev­
eral examples of which are illustrated in the remainder of this problem. 

(c) 	 Consider the discrete-time system of Figure P26.10, with 
1z 

H(z) = Z­
1-	 z 

Show that the overall closed-loop system has the property that it tracks a step 
input exactly after one step. That is, if x[n] = u[n], then e[n] = 0, n > 1. 
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(d) 	 Show that the feedback system of Figure P26.10, with 

a + .1z2 
H(z) = 

-1iz-1)(1 - Z-')' 

has the property that the output tracks a unit step perfectly after a finite num­
ber of steps. At what time step does the error e[n] first settle to zero? 

(e) 	 More generally, consider the feedback system of Figure P26.10. Find H(z) such 
that y[n] perfectly tracks a unit step for n > N and in fact such that 

N-1 

e[n] = ak 6[n - k], 	 (P26.10-2) 
k=O 

where the ak are specified constants. [Hint: Use the relation between H(z) and 
E(z) when the input is a unit step and e[n] is given by eq. (P26.10-2).] 

(f) 	Consider the system of Figure P26.10, with 

H(z) = 
(1 + z-1)(1 - z-1)2 

Show that this system tracks a ramp x[n] = (n + 1)u[n] exactly after two time 
steps. 
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