25 Feedback

Solutions to
Recommended Problems

S25.1

(@)
+ V(s)
X(s) H(s) » Y(s)
K(s) |-
Figure S$25.1-1
We have
V(s) = X(s) — Y(S)K(s) (825.1-1)
and
Y(s) = V(s)H(s) (S25.1-2)
From eq. (825.1-2),
_Ys
V(s) = HGs) (S25.1-3)
Substituting eq. (S25.1-3) into eq. (S25.1-1), we have
Yes) _ _
ey = X — Y©K),
Y(s)[1 + H(s)K(s)] = H(s)X(s),
Y(s) H(s)
X(s) 1+ H(s)K(s)
Similarly,
Y(z) H(2)
X(z) 1+ HR)K(2)
__He) __HG&
() Q@) = 1 + KH(s)’ Q) = 1 + KH(z)
For H(s) = 2/(s — 2) and H(?) = 2/(z — 2),
2
) =G "2 72K s— 201 - K)
2

0 = 72Kk z—21 - K)
For K = 0,

2 2
Q) = ;=5 and Q@) = —>5,

as shown in Figures $25.1-2 and S25.1-3, respectively.

S$25-1
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Im Im
s plane z plane
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/ \
X Re L %
2 N /2
[z]=1
Figure S$25.1-2
Figure S25.1-3

For K = —1,
2 2
s) = d = —
Q) =-—7 an Q@ = —7,
as shown in Figures S25.1-4 and S25.1-5, respectively.
Im Im
s plane z plane
At lzl=1
N
X— Re [ v
4 \ / A
<l~ 4
Figure S25.1-4 Figure S25.1-5

ForK = 1,

Q(s) = 2 and Q@) = g,
s P

as shown in Figures S25.1-6 and S25.1-7, respectively.

Im Im
s plane z plane
/ \
Re \
Nl
Figure $25.1-6 Figure §25.1-7

2
© Q) = s—21-K

The pole is located at s = 2(1 — K), as shown in Figure $25.1-8.
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Im s plane

K~ 4o

K > —oo

1

Figure S25.1-8

Hence, the locus of the pole is the line Re{s} = 0. Similarly, for

QR) = 231 —K)

the locus of the pole is also the line Re{z} = 0, shown in Figure $25.1-9.

Im z plane

K> +oo

K > —oco

e Re

[ Y

Figure S25.1-9

The root location decreases as K moves to infinity and increases as K moves to
negative infinity.

2
d D
(d) Q) 5= 20 —K)
The system is stable for 2(1 — K) < 0,or K> 1.

U= a0 -6
The system is stable for —1 < 2(1 — K) < 1,or3 < K <}.

§25.2

We use Problem P25.1.

L ¥s)_ H(s)
@O 5 " TT6oHE)
(ii) E(s) = X(s) — R(s)

= X(s) — Y(s)G(s)
= X(s) — E(s)H(s)G(s),
E(s)[1 + H(s)G(s)] = X(s),
E(s) _ 1
X(s) 1+ H(s)G(s)
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S$25-4

() W(z) = X(2)

(©

L YE)
(iii) Es) = H(s)
vy Y© 1
(iv) R(s) B G(s)

H\(2)
1 + G(H,\(2)’
Y(z) = W(2) + X(2)H(2),
X(2)H\(2)

Y(2) = ‘l‘m + X(2)Hy(2)

Thus,
Y@ __ H@)
X() 1+ G(H,(2)

+ Hy(2)

Y(s) _ Hi(s)
W(s) 1+ G(s)H(s)’

as shown in Figure S25.2.

x(1)

+ w(t) H, (5)

|

) "l T 6,06

Ga(s) =

Figure S§25.2

y(®)

S25.3

H.($)Hx(s)
Y(s) _ 1+ G(9)H\(s)
X(s) |, GAH()Hys)
1 + G(s)H\(s)
- H\(s)H(s)
1+ Gu(H\(9) + Go($)H\($)H(s)

(@)

G(jw) H(jw)

100 101

Figure $25.3-1
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G(jw) H(jw)
L~ 1
100 ——— — N
—
1s L ~10-2
w w
—We We —We We
Figure $25.3-2

(b) From the frequency response in part (a), clearly system 1 tends to make the
response more constant and system 2 tends to resemble the inverse of G(jw).

S25.4

For the system in Figure S25.4-1, we denote the closed-loop system function by

H
V=1+cH
+
x(t) + » g > y(t)
G
Figure S25.4-1
1
. (s+1)Xs+3) 1
(“)V(s)'H_ 1 TG+ DE+3) +1
s+ 1)(s + 3)
_ 1 _ 1
T2+ 4s+4  (s+ 27
Therefore,
v(t) = te Hu(t)
1
s+ 3 1
®) Vs) = ) BCEERCEY
1+ (s T3 s+ 1D
-1 _1_1
2s +4 2s+2

In this case,
v(t) = te ~u(t)

(c) The system function G(s) = e¢~*/® corresponds to a delay of 3, i.e., the feedback
system of Figure P25.4(a) becomes that shown in Figure S25.4-2.
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+
x(t) —»@—> H(s)= % > y(1)

Delay
| g U >
to —?
Figure S25.4-2
We can now recursively obtain the impulse response by inspection. With
x(t) = &(1),
y(t) = 20(t) — Yot — HI + Mot —H1 — - - -
12/ 1y n
== ——}élt ——=
2 () (- 3)
2!
1—327!
@ V() = i
1+ L— g —_— l z—l
1—£27'/\3 6
2!
T -k D+ G D
z-l
T 14—
2'71
T (-3 +i )
8 6
— 5 _ 5
1—4271 1+ izt
Therefore,
v[n] = d@ uln] — (—H"uln]]
H(2) ;3!
e = =
© V& = I heem 2 1 Jm
L+ -2 ||l7=0=
3 6 1 - s
__ G-3Ha -4
(1 -3+ G- D!
_itrt e
1+42' — 122
Thus,

v[n] = §o[n + 1] — #[n] + &0[n — 1]

where 9[n] is v[n] in part (d).

b
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Solutions to
Optional Problems

$25.5

y(t) = Kaw(t) + KKy(t) (525.5-1)
By taking the transform of eq. (525.5-1), we have

Y(s) = K,;W(s) + K,K,V(s)
Also

s
V(s) = X(s) + R Y(s)

Therefore,

S

Y(s) = K,W(s) + K\K, | X(s) + ST a

Yis) |,

Y(s) (1 - EIK—2S) = K,W(s) + K\K,X(s),
s+«

and
K;W(s) + K,K,X(s)
K K;s
T s+a
_ (s + a)KW(s) + K K,X(s)]
B (1 — KK)s + a

Y(s) =
1

S$25.6

(a) The system function of the system given in Figure P25.6 must be determined
first. So we write down the difference equation

y[n] = x[n] + yln — 1] + 4yln — 2]
Taking the z-transform of the equation, we have

Y(2) _ 1

Y(e)X1 —2' — 427 = X(2), or H@)= X~ 1—z'— 42

The poles of this system are located at

-3

*

DN | bt

22—2z2—4=0, or =z=

Since |2z] > 1 for at least one pole the system is unstable.
(b) With closed-loop feedback, the difference equation is

y[n] = x [n] — Kyln — 1] + y[n — 1] + 4y[n — 2]
Thus,

z2

H®) = ok~ 1z - 4
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The poles are now located at

~K—-D+ VE=-1F+16
= 2

Note that the roots are purely real because the term inside the square root is
always positive. Forz = 1,

K 1 V(K — 1)2 + 16
S _ 2o+

1+2 2 - 2 ’
K+1=%VK—-172+ 16

Thus,

K*+ 2K+ 1=K*— 2K + 17,
4K = 16, or K=14

We can also calculate 2,:

Ry = _4
Similarly, 2, = —1, 2, = 4 for K = —2. Observe the root locus in Figure
S$25.6-1.
Im Im
K>0 z plane K< 0_ z plane
o+ K= K==2 N
N, = T
Ny N7
ke Xt g———Ie—>—Re
-1.56 N | S o256 -1.56 \\__ A1 256

Figure S25.6-1

Observe that if one of the poles is inside |z| = 1, the other is outside. Hence,
the system is unstable for all values of K.

(¢) The difference equation can be written as
ylr] = z[n] + yln — 1] + (4 — Ky[n — 2]
Therefore,

zZ

Z—z+(K—4)

In this case, the poles are located at

H(z) =

.= 1 + V17 — 4K
2 2
For a stable system, we want
lz| <1,
1, V17 — 4K
2] = 3 * —

If we set 17 — 4K > 0, then

|1+\/17—4K
R a—
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or
V17 — 4K 1
+ e
2 27
17 — 4K < 1,
K>4

Now suppose 17 — 4K < 0. Then
|4 +5VIF=Ki| <1 o §-K>-

—K>_%’
K<5b

Thus, for K in the range 4 < K < 5, we have a stable system. The root locus is
shown in Figure S25.6-2.

K>0

————x—(r I\L-)(—

156 \ 7}/ 256

Figure S25.6-2

(©) |HGw)|* =

(a) The dc gain of the amplifier is |H(0)| = |G|.
(b) h(t) = Gae “‘u(t). Therefore, the time constant is 1/a.

Ga®> 1 ,
a®+ w2 2
Thus w, = *a. Hence the bandwidth is a.

(d) The closed-loop transfer function is

Ga
s+a Ga
V() = KGa (1 + KGa + s
1+ =22
s+ a

From part (a), the time constant is
1
(1 + KGa
From part (c), the bandwidth is (1 + KG)a. From part (a), the dc gain is
I G
1 + KG

(e) We require (GK + 1)a = 2a. Hence, K = 1/G. So the bandwidth becomes 2a.

The time constant is 1/(2a), and |H(0)| = |G/2}, the dc gain.
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