
25 Feedback 
Solutions to 
Recommended Problems 
S25.1 

(a) 

X(s) + ()o H(s) 0 Y(s) 

YS) 

Figure S25.1-1 

We have 

V(s) = X(s) - Y(s)K(s) (S25.1-1) 

and 

Y(s) = V(s)H(s) (S25.1-2) 

From eq. (S25.1-2), 

V(s) = (S25.1-3)
H(s) 

Substituting eq. (S25.1-3) into eq. (S25.1-1), we have 

Y(S) = X(s) - Y(s)K(s),
H(s)
 
Y(s)[1 + H(s)K(s)] = H(s)X(s),
 

Y(s) H(s)
 

X(s) 1 + H(s)K(s) 


Similarly, 

Y(z) H(z) 
X(z) 1 + H(z)K(z) 

1 H(z)(b) Q(s) = 
H(s) 

Q(z) 1 + KHf(z)
1 + KH(s)' 


For H(s) = 2/(s - 2) and H(z) = 2/(z - 2),
 

2 2 
Q(s) = (s - 2) + 2K s - 2(1 - K) 

2 2 
Q(z) = (z - 2) + 2K z - 2(1 - K) 

ForK = 0, 

2 2 
Q(S) = s- 2 

and Q(z) = z -2' 

as shown in Figures S25.1-2 and S25.1-3, respectively. 

S25-1
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For K = -1, 

2	 2
Q(s) = - and Q(z) = , 

s - 4 z -4
 

as shown in Figures S25.1-4 and S25.1-5, respectively.
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For K = 1,
 

Q(s) = 2 
S 

and Q(z) = 
z 
2
 

as shown in Figures S25.1-6 and S25.1-7, respectively.
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2 
(c) 	 Q(s) = 

s - 2(1 - K) 

The pole is located at s = 2(1 -K), as shown in Figure S25.1-8. 
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Hence, the locus of the pole is the line Re{s} = 0. Similarly, for 

2 
Q(z) z 2(1 - K)'-

the locus of the pole is also the line Re{z} = 0, shown in Figure S25.1-9. 
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Figure S25.1-9 

The root location decreases as K moves to infinity and increases as K moves to 

negative infinity. 

2 
(d) Q(s) = 	 - 2(1 - K) 

The system is stable for 2(1 - K) < 0, or K > 1. 

2 
Q(z) = z - 2(1 - K) 

The system is stable for -1 < 2(1 - K) < 1, or < K < i. 

S25.2 

We use Problem P25.1. 

(a) 	(i) Y(s) H(s)
 
X(s) 1 + G(s)H(s)
 

(ii)	 E(s) = X(s) - R(s)
 

= X(s) - Y(s)G(s)
 

= X(s) - E(s)H(s)G(s),
 
E(s)[1 	+ H(s)G(s)] = X(s), 

E(s) 1 

X(s) 1 + H(s)G(s) 
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(iii) E = H(s)
E(s) 

1 
R(s) G(s) 

(b) W(z) = X(z) H (z)11 + G(z)Hl(z)'
 
Y(z) = W(z) + X(z)Ho(z),
 

Y(z) = 1 + G(z)H 1(z) + X(z)Ho(z) 

Thus, 

Y(z) = H1(z) + Ho(z)
X(z) 1 + G(z)H 1(z) 

(C)()W(S) = 1 + GsH(s) , as shown in Figure S25.2. 

x(t) + H2(S) 1+G,(s)(s) --- y(t) 

G2 (S): 

Figure S25.2 

H,(s)H2(s) 
Y(s) 1 + G1(s)H1(s) 

X(s) 1 + G2(s)H 1(s)H 2(s) 
1 + G1(s)H1(s) 

H1(s)H2(s) 
1 + G1(s)H1(s) + G2(s)H 1(s)H 2(s) 

S25.3 

(a) 
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Figure S25.3-2 

(b) 	 From the frequency response in part (a), clearly system 1 tends to make the 
response more constant and system 2 tends to resemble the inverse of G(jw). 

S25.4 

For the system in Figure S25.4-1, we denote the closed-loop system function by 

H 
V +GH 

x(t) + H 	 y(t) 

G 

Figure S25.4-1 

1 
(s + 1)(s + 3) 1 

(a) 	 V(s) = 
1 (s + 1)(s + 3) + 1 

1 + (s + 1)(s + 3) 

s2 + 4s + 4 (s + 2)2 

Therefore, 

v(t) = te 2'u(t) 

s + 	 3
(b) 	 V(s) 

(s + 3) + (s + 1) 
1+ (s + 1) 

2s + 4 2s + 2
 

In this case,
 

v(t) = le -2 tu(t) 

(c) 	 The system function G(s) = e-113 corresponds to a delay of 1, i.e., the feedback 
system of Figure P25.4(a) becomes that shown in Figure S25.4-2. 
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x(t) 	 H(s) y(t) 

Delay 

Figure S25.4-2 

We can now recursively obtain the impulse response by inspection. With 
x(t) = 8(t), 

y(t) =26t) i2116t -- 3)] + 1[46(t -- 3) ­

= O - 1j ( t - ) 

(d) V(z) = 	 2z­

1+ 1 -(i' zz 
1z z

Z-1 

(1-i ~)+ (!z~- Iz- 2) 

1z­

1+ z-1 -z-2
 

-1 

(1 -'-)(1 + i2z-I)
 
6 6
 
5 	 5
 

11-z- 1+ z-
Therefore, 

v[n] = [)"u[n] -- (-)u[n]] 

(e) 	 V(z) = H(z) 2 - iz-1 

1 + H(z)G(z) 
+ 2 1 Z-) z-1
 

1 + z-'
 
3 6 1 -iz­

(23 - iz-)(1 	 - iz-,) 

(1 - iz-1) + (0 - iz-1)-1 
2 - 2z- + nz-2 

1-5z 1l~2 
1+ 1z-1 - Iz-2 

Thus, 

v[n] = 3ib[n + 1] - 23[n] + 14[n - 1],
 

where f[n] is v[n] in part (d).
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Optional Problems 
S25.5 

y(t) = K 2w(t) + KK 2v(t) (S25.5-1) 

By taking the transform of eq. (S25.5-1), we have 

Y(s) = K 2W(s) + KK 2Vs) 

Also 

V(s) = X(s) + s Y(s) 

Therefore, 

Y(s) = K 2W(s) + K1K2 [X(s) + s Y(s),s + 	a 

Y(s)( 1 - KK2S) K2W(s) + KK 2X(s),= 

and 

Y K2W(s) + K 1K2X(s)
Y ) K 1K 2s 
-= 

s + a 

(s + a)[K2W(s) + K1K 2X(s)] 

(1 - K 1K2)s + a 

S25.6 

(a) 	 The system function of the system given in Figure P25.6 must be determined 
first. So we write down the difference equation 

y[n] = x[n] + y[n - 1] + 4y[n - 2] 

Taking the z-transform of the equation, we have 

Y(z) 1 
Y(z)(1 - z- - 4z- 2 ) = X(z), or H(z) =X(z) 1 - z-1 - 4z -2 

The poles of this system are located at 

z2 z - 4=0, or z 
2 - 2

2 

Since Iz I > 1 for at least one pole the system is unstable. 

(b) 	With closed-loop feedback, the difference equation is 

y[n] = x,[n] - Ky[n - 1] + y[n - 1] + 4y[n - 2] 

Thus, 
2
 z
 

H(z) = z2
 + (K - 1)z - 4 
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The poles are now located at 

-(K - 1) ± \/(K - 1)2 + 16 
Z = 2 

Note that the roots are purely real because the term inside the square root is 
always positive. For z = 1, 

K 1 =+(K - 1)2 + 16 
2 2 - 2
 

K + 1 \/(K - 1)2 + 16
 
Thus,
 

K 2 + 2K + 1 = K 2 - 2K + 17, 
4K = 16, or K = 4 

We can also calculate z 2: 

Z2= -4 

Similarly, zi = -1, z 2 = 4 for K = -2. Observe the root locus in Figure 
S25.6-1. 
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Figure S25.6-1 

Observe that if one of the poles is inside zI 1, the other is outside. Hence,
the system is unstable for all values of K. 

(c) The difference equation can be written as 

y[n] = x,[n] + y[n - 1] + (4 - K)y[n - 2] 

Therefore, 
2 

=H(z) z 
z- z + (K - 4) 

In this case, the poles are located at
 

1 +/17 -4K
 
2 2
 

For a stable system, we want
 

izi < 1, 
1 1/17 - 4K 

|z| ->+ 2= 

If we set 17 - 4K > 0, then 

+ 17 - 4K <1 
-< 1 
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/17 -4K 1 
2 2' 

17 - 4K < 1, 
K > 4 

Now suppose 17 - 4K < 0. Then 

liIij\/V - KI77<1 or -K> ­
-K > -) 

K < 5 

Thus, for K in the range 4 < K < 5, we have a stable system. The root locus is 
shown in Figure S25.6-2. 

K>O 	 K=5 

-1.56 	 2.56 

Figure S25.6-2 

S25.7 

(a) 	The de gain of the amplifier is IH(O)| = |G|. 

(b) 	h(t) = Gae-"'u(t).Therefore, the time constant is 1/a.
 

G2a2 1
 
_ 2(C) Hjc)2 a2 2 

+ 
a2 
w 2 

Thus wc = ± a. Hence the bandwidth is a. 

(d) 	 The closed-loop transfer function is 

Ga 

s + a Ga 
=V(s) V()

+
s~ 

KGa (1 + KG)a + s 
s +a 

From part (a), the time constant is 

1 
(1 + KG)a 

From part (c), the bandwidth is (1 + KG)a. From part (a), the dc gain is 

| G | 

1 + KG| 

(e) 	 We require (GK + 1)a = 2a. Hence, K = 1/G. So the bandwidth becomes 2a. 
The time constant is 1/(2a), and IH(0) = IG/2 1,the de gain. 
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