24 Butterworth Filters

Solutions to
Recommended Problems

S24.1

(a) For N = 5 and w, = (27)1 kHz, |B(jw)|? is given by
1

_ 10
Jw
1+ (jzooow)

(b) The denominator of B(s)B(—s) is set to zero. Thus

|B(jw)|* =

20007

Expressing —1 as e’" and j as e’*/?, we find that the poles of B(s)B(—s) are

10
0=1 +(j 5 ) Cor s = (=1)"1%20007

= 1(x/10)+ (x/2)+ (xk/5)
s = 2000we’ /B

as shown in Figure S24.1-1.
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Figure S24.1-1

(¢) For B(s) to be stable and causal, its poles must be in the left half-plane, as
shown in Figure S24.1-2.
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Figure S24.1-2
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S24-2

S24.2

(d) Since the total number of poles must be as shown in part (b), the poles of
B(—s) must be given as in Figure S24.1-3.
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Figure S24.1-3

(a) When there is no aliasing, the relation in the frequency domain between the
continuous-time filter and the discrete-time filter corresponding to impulse
invariance is

. 1 Q
My = = ] — <
H(e™) Tm@T) IS
Thus, there is an amplitude scaling of T and a frequency scaling given by
Q = oT, Q] <, |lw| =< =T

The required transfer function can be found by reflecting TH(e’") through the
preceding transformation, as shown in Figure S24.2-1.
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Since the relation between Q and w is linear, the shape of the frequency response
is preserved.

(b) For the bilinear transformation, there is no amplitude scaling of the frequency
response; however, there is the following frequency transformation:

Q = 2 arctan (327—')

As in part (a), we can find H,(jw) by reflecting H(e’®) through the preceding
frequency transformation, shown in Figure S24.2-2.
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Figure $24.2-2

Because of the nonlinear relation between Q and w, H,(jw) does not exhibit a
linear slope as H(e'®) does.

(c) We redraw the transformation of part (a) for the new H(e’™) in Figure S24.2-3.
As in part (a), the shape of the frequency response is preserved.

S24-3
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Figure S24.2-3

We redraw the transformation of part (b) for the new H(e’®) in Figure S24.2-4.
Unlike part (b), the general shape of H(e’?) is preserved because of the piece-
wise-constant nature of H(e’®).
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S24-5

S24.3

(a) Using the bilinear transformation, we get

1+2!
1 _ 1+2! _ 1+a
1-2' a+l+z'a-1) l—a
142" _(1+a)z_l

(b) Since H(s) has a pole at —a, we need a > 0 for H(s) to be stable and causal.

(¢) Figure S24.3 contains a plot of (1 — a)/(1 + a), the pole location of H(2), ver-
sus a.

H(z) =

a +

1\

Figure S24.3

We see that fora > 0, (1 — a)/(1 + a) is between —1 and 1. Since the only pole
of H(2) occurs at 2 = (1 — a)/(1 + a), H(2) must be stable whenever H(s) is
stable, assuming that H(2) represents a causal k[n].

S24.4

(a) For T = 1 and the impulse invariance method, B(jw) must satisfy

1= |B(jo)| = 0.8 forOSwsg,
0.2= |B(jw)] =0 for%ESw
Therefore, if we ignore aliasing,
.\ |? 1
(e
Jwe
2

1

‘B('i—”) = — = (0.2)?

1+ <j37r/4)

Joe
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(b) For T = 1 and the bilinear transformation, B(jw) must satisfy

1 > |B(jw)| = 0.8, 05wsztan§,

0.2 = |B(jw)| = 0, 2tan38—1rSw

Therefore,
1
2N
J2 tan (1/8)]

Jw.

1
72 tan (31/8)]

Jwe

= (0.8),
1+ [

= = (0.2)°

-

S24.5

(a) The relation between Q and w is given by Q@ = wT, where T = 1/15000. Thus,
n 27
1 = |H(e™| =0.9 forOSQSg,

0.1 = |He™| =0 for35—1rSQS1r

Note that while H,(jw) was restricted to be between 0.1 and 0 for all w larger
than 2w(4500), we can specify H(e’®) only up to @ = . For values higher than
w, we rely on some anti-aliasing filter to do the attenuation for us.

(b) Assuming no aliasing,

. 1 Q
i = g
H(e’™ TG(] T)
Therefore,
3= |G(jw)| = 2.7, OSwS?—g,
0.3 = |G(jw)| = 0, gs(»<§

(¢) The relation between w and Q is given by @ = 2 arctan (w). Thus,
1> |G(jw)| =09, O=<w< tang,
0.1 = |G(jw)| = 0, tanl—gSw<oo
(d) If T changes, then the specifications for G(jw) will change for either the impulse
variance method or the bilinear transformation. However, they will change in

such a way that the resulting discrete-time filter H(e’*) will not change. Thus,
H (jw) will also not change.
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S$24-7

Solutions to
Optional Problems

S24.6

(a) We first assume that a B(s) exists such that the filter specifications are met
exactly. Since

|B(jw)|* =

we require that
1

12 2N
1+ (j. ")

o,

1

03 2N
()

|B(j21l')|2 (10—0405)2 _ 10—0.1,

|B(j3m)|* 1071

Je.
Substituting N = 5.88 and w, = 7.047, we see that the preceding equations are
satisfied.

(b) Since we know that N = 6, we use the first equation to solve for w.:
1

. 12
s

Jw,
Solving for w,, we find that w, = 7.032. The frequency response at w = 0.37 is
given by

10—0.1 —

1
— e 0.02890,

Jom
1+ (7'7.032)
20 log,o| B(j37)| = —15.4 dB

(¢) If we picked N = 5, there would be no value of w, that would lead to a Butter-
worth filter that would meet the filter specifications.

| B(j3m)|*

$24.7

We require an H,(2) such that
0 = 20 log,o|Hy(e’™)| = —0.75, 0 <9 =<0.2613m,
—20 dB = 20 log,,| Hy(e™™|, 04018r <Q=<r

We will for the moment assume that the specifications can be met exactly. Let Q, be
the frequency where

20 log,o|He’*?)| = —0.75,  or |H (e?%)|? = 107007
Similarly, we define Q, as the frequency where
20 log,o | H(e’*)| = —20, or |H (e?%)|? = 1072
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S24-8

Using T' = 1, we find the specifications for the continuous-time filter H,(jw) as

| Ho(jwp)|? = 1077, |Ho(jwo)|? = 1077,
where
.261
w, = 2 tan% = 2tan (@) = 0.8703,
401
w, = 2 tan% = 2 tan (%) = 1.4617

For the specification to be met exactly, we need N and w, such that

0.8703\"" i1.4617\"
1+<J‘ ) = 10" and 1+<J' ) = 10°

Jw. Jw,

Solving for N, we find that N = 6.04. Since N is so close to 6 we may relax the
specifications slightly and choose N = 6. Alternatively, we pick N = 7. Meeting the
passband specification exactly, we choose w, such that

- (;0@703

Jwe

14
) = 10%975, or w, = 0.9805

The continuous-time filter H,(s) is then specified by
1

s 14
L+ (j0.9805>

Ha(s)Ha(_S) =

The poles are drawn in Figure S24.7.
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Figure S24.7

We associate with H,(s) the poles that are on the left half-plane, as follows:
s, = —0.9805, s, = 0.9805¢7%/14 5, = gt
s, = 0.9805¢710/14 S5 = s%, S¢ = 0.9805e7127/14 S; = 8
H,(s) is given by

Hys) = SO.9805)

H (s —sy)
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S24-9

H,(2) can be obtained by the substitution
Hy(2) = Hy(S)|s=201—-2-1y/1+2-1y

S24.8

(a) Assuming no aliasing, H,(e’®) is related to H,(jw) by
. 1 . Q
Ny = — j — T =
H,(e™) THb (J T) s 2
Thus, the specifications for H,(jw) are given by

2 = |H(jow)| = 2a, 0<w=02r/2,
2b = |H,(jw)| = 0, 031/2 <w

(b) Substituting

A . 2 L2
Hjo) = 5 H, (J 3‘“)

_gl ,go.%‘_gl .0.21rl
'3HS<J3 2) ‘3HS(J 3)

for @ = 0.27/2, we have

L [.0.27
(525

But

Thus

~ [.027w
H. (J T)l =

. ,0.37r|
HS< 5 > = 2b

Thus, H,(s) satisfies the filter specifications for H,(jw) exactly.

(c) H(e™)is given by
rem = L 5 g | (8_ 2k
H(e)—ZZHS[J(Z 2”

k=—o0

[SVR )

Similarly,

But H,(jw) = 2H, (j%). Therefore,

o =L 5 2 [52(8-228)
He™ =5 2 gH. |izl53~

k=—o0

= k )
S nlie-22)] e

—0

L
=

S24.9

(a) Using properties of the Laplace transform, we have

sY(s) = X(s), or H(s) = %
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(b) Here h is given by T, a is given by x[(n — 1)T], and b is given by x(nT). There-
fore, the area is given by

a+b
2

(c) From the definition of §[n], we find that

)h = g [x((n — DT) + x(nT)] = A,

fin—11= > A

k=—00

Subtracting g[n — 1] from §[n], we find

fnl— g —11= 5 A~ 3 A=A,

k=—o00 k=—o
Therefore,
gln] = gln — 1] + A,.

(d) From the answer to part (a), we substitute for A4,, yielding
gin] = fln — 1) + 2 (a((n ~ DT) + 2(aT)
=gn — 1]+ g{i[n — 1) + &[n])
(e) Using z-transforms, we find
Y(2) = 27'¥(2) + g[z*X’(z) + X)),

Y T(1+ 2"
H@) = 22 - —(1 fz) = H(s)

X(z) 2

s=(2/T(1-2"1)/(1+2~1)]
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