
21 Continuous-Time 
Second-Order Systems 

Solutions to 
Recommended Problems 
S21.1 

(a) H2(s) 	= -e-au(-t)e-" dt = - e"(a+s) dt 

Following our previous arguments, we can integrate only if the function dies 
out as t goes to minus infinity. e -' will die out as t goes to minus infinity only 
if Re{x} is negative. Thus we need Re{a + s} < 0 or Re(s) < -a. For s in this 
range, 

a + s 

(b) 	 (i) hi(t) has a pole at -a and no zeros. Furthermore, since a > 0, the pole 
must be in the left half-plane. Since hi(t) is causal, the ROC must be to 
the right of the rightmost pole, as given in D, Figure P21.1-4. 

(ii) 	 h 2(t) is left-sided; hence the ROC is to the left of the leftmost pole. Since 
a is positive, the pole is in the left half-plane, as shown in A, Figure 
P21.1-1. 

(iii) 	 h 3(t) is right-sided and has a pole in the right half-plane, as given in E, 
Figure P21.1-5. 

(iv) 	 h4 (t) is left-sided and has a pole in the right half-plane, as shown in C, 
Figure P21.1-3. 

For a signal to be stable, its ROC must include the fw axis. Thus, C, D, and F 
qualify. B is an ROC that includes a pole, which is impossible; hence it corre­
sponds to no signal. 

S21.2 

(a) By definition, 

X(s) = fl x(t)e -t dt 

= 	 e -te -S dt 

We limit the integral to (0, oo) because of u(t), so


-1*

X(s) = e -(1+s>' dt = e -(+s)t 

fo'M 1 + s 0 

If the real 	part of (1 + s) is positive, i.e., Re(s) > - 1, then 

lim e -(+s)t= 0 

S21-1
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Thus 

X(s) = 0(-1) 1(-1) 1 
Refs) > -11+s 1+s 1+s 

The condition on Re{s} is the ROC and basically indicates the region for which 
1/(1 + s) is equal to the integral defined originally. Similarly, 

H(s) = e 2tu(t)e - dt = J e -(2 ** dt = 1 
Refs) > -20 s + 2' 

(b) 	 By the convolution property of the Laplace transform, Y(s) = H(s)X(s) in a 
manner similar to the property of the Fourier transform. Thus, 

1 

(s + 1)(s + 2) Refs) > -1, 

where the ROC is the intersection of individual ROCs. 
(c) 	 Here we can use partial fractions: 

1 A B 
(s + 1)(s + 2) s + 1 s + 2' 

A = Y(s)(s + 1) = 1, 
s= -1 

B = Y(s)(s + 2) = -1 
S= -2 

Thus, 

1 1 
Y(s)+-,2	 Refs) > -1s+1I s+ 2 

Recognizing the individual Laplace transforms, we have 

y(t) = e -u(t) - e ~2 t u(t) 

S21.3 

(a) 	The property to be derived is 

x(t - to) e SoX(s), 

with the same ROC as X(s). 

Let y(t) = x(t - to). Then 

Y(s) 	 = y(t)e -' dt = x(t - to)e " dt 

Let p = t - to. Then t = p + to and dp = dt. Substituting 

Y(s) 	 = x(p)e -"s>+to) dp 

Since we are not integrating over s or to, we can remove the e S'o term, 

Y(s) 	 = e - o (p)e -svdp = e -stoX(s) 
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Note that wherever X(s) converges, the integral defining Y(s) also converges; 
thus the ROC of X(s) is the same as the ROC of Y(s). 

(b) 	 Now we study one of the most useful properties of the Laplace transform. 

xi(t) *x 2(t) _ X1(s)X 2(s),


with the ROC containing R1 n R 2. Let


y(t) = x1 (ir)x 2(t - r) dr


Then 

Y(s) 	 = f xI(i)x 2(t - 1)e dr dt 

= f x 1(r) f x2(t- r)e - dt di 

Suppose we are in a region of the s plane where X 2(s) converges. Then using the 
property shown in part (a), we have 

J x 2(t - r)e -"t dt = e -STX(s) 

Substituting, we have 

Y(s) = x 1(-)e -sX2(s) dT = X 2(s) x(ir)e -" dr 

We can associate this last integral with Xi(s) if we are also in the ROC of xi(t). 
Thus Y(s) = X 2(s)Xi(s) for s inside at least the region R, n R 2. It could happen 
that the ROC is larger,but it must contain R, n R 2 ­

S21.4 

(a) 	From the properties of the Laplace transform, 

Y(s) = X(s)H(s) 

A second relation occurs due to the differential equation. Since 

dkx(t) L kXS 

dtk rskX(s) 

and using the linearity property of the Laplace transform, we can take the 
Laplace transform of both sides of the differential equation, yielding 

s2Y(s) - sY(s) - 2Y(s) = X(s). 

Therefore, 

Y(s) _ 1 1 
H(s) 

X(s) 
S 

S2 
-

- s - 2 
= 

(s - 2)(s + 1) 
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The pole-zero plot is shown in Figure S21.4-1. 

Im 

-1 

s plane 

X 
2 

Re 

(b) (i) For a stable system, the ROC must include thejw axis. Thus the ROC must 
be as drawn in Figure S21.4-2. 

Figure S21.4-1 

Figure S21.4-2 

(ii) 	 For a causal system, the ROC must be to the right of the rightmost pole, 
as shown in Figure S21.4-3. 

s plane 

Figure S21.4-3 
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(iii) 	 For a system that is not causal or stable, we are left with an ROC that is 
to the left of s = -1, as shown in Figure S21.4-4. 

Im 
s plane 

Xi Re 
--l 2 

A 
Figure S21.4-4 

(c) To take the inverse Laplace transform, we use the partial fraction expansion: 

1 1 

H(s) 
H'-

= 
1 

= 
A 

+ 
B _ 

= + 
(s +1)(s - 2) s + 1 s - 2 s + 1 s - 2 

We now take the inverse Laplace transform of each term in the partial fraction 
expansion. Since the system is causal, we choose right-sided signals in both 
cases. Thus, 

h(t) = -ie-u(t) + le 2'u(t) 

S21.5 

o = 0: Since there is a zero at s = 0, 1H(jO)I = 0. You may think that the phase is 
also zero, but if we move slightly on the jw axis, 4 H(jw) becomes 

(Angle to s = 0) - (Angle to s = -1) = - - 0 = ­

2 2 

= 1: The distance to s = 0 is 1 and the distance to s = -1 is /2. Thus 

1 _/ 

IH(jl)I -
/ZF 

-
2
2 

The phase is 

(Angle to s = 0) - (Angle to s = -1) = - -= =- H(jl)2 4 	 4 

W= oo: The distance to s = 0 and s = -1 is infinite; however, the ratio tends to 1 
as oincreases. Thus, IH(joo) I = 1. The phase is given by 

T r 
= 0

2 2 



Signals and Systems 
S21-6 

The magnitude and phase of H(jw) are given in Figure S21.5. 

(H(jw)l 

4H(jo) 

Figure S21.5 

S21.6 

The pole-zero plot is shown in Figure S21.6. 

Im 
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Because the zero at s = -5 is so far away from thejw axis, it will have virtually no 
effect on IH(jw)I. Since there is a zero at o = 0 and poles near o = 2, we estimate a 
valley (actually a null) at w = 0 and a peak at o ±i 2. 

Figure S21.6 
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Solutions to 
Optional Problems 
S21.7 

(a) 	Let y(t) be the system response to the excitation x(t). Then the differential 
equation relating y(t) to x(t) is 

d yt) + 2 w. dy(t) + Woy(t) = w2x(t)
dt2 dt 

Integrating twice, we have 

y(t) + 2 0nf 0 y(i-) di- n f w 
T= w j x(-) di d-T', 

t 	 tr 

y(r) dr - f. y(r) dr dr' + o4 0J. x(r) dr dr',y(t) = -2co, 


shown in Figure S21.7-1.
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Recall that Figure S21.7-1 can be simplified as given in Figure S21.7-2. 

x(t) -- am +-- y(t) 

f 

Direct Form II 

In 
u .7 

Figure S21.7-2 

(b) (i) For a constant w,, and 0 s< 1, H(s) has a conjugate pole pair on a circle 
centered at the origin of radius wn. As changes from 0 to 1, the poles 
move from close to the jo axis to -CO, as shown in Figures S21.7-3, 
S21.7-4, and S21.7-5. 

Figure S21.7-3 shows that for s~ 0 the pole is close to thejw axis, so 
|H(jw) I has a peak very near w.. 

s plane 

f ~0 / 
Re 

\ AfWn 

|H(ico) 

I 
-on II-2 2 (On d 1 -2[2 

Figure S21.7-3 
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Figure S21.7-4 shows that the peaks are closer together and more spread 
out at { = 0.5. 

s plane 

0O.5/ 
Re 

IH(jw) 
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Figure S21.7-4 

Figure S21.7-5 shows that at s~ 1 the poles are so close together and far 
from the jw axis that IH(jw) I has a single peak. 
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(ii) For constant between 0 and 1, the poles are located on two straight 
lines. As w, increases, the peak frequency increases as well as the band­
width, as indicated in Figures S21.7-6 and S21.7-7. 

Wn2 0 

Im 
s plane 

Re 

IH(jco)| 

Figure S21.7-6 

Im 
s plane 

wn > 0 

/ 

/ 

IH(jo)| 

-on V 1 -2 2 Wnon 1 -2 2 

Figure S21.7-7 
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S21.8 

(a) 	 (i) The parallel implementation of H(s), shown in Figure S21.8-1, can be 
drawn directly from the form for H(s) given in the problem statement. 
The corresponding differential equations for each section are as follows: 

d2y 1(t) 	 dyi(t) dx(t)
+ + y i(t)

dt2 dt dt 
d'y 2(t) 

+ 
2dy2(t) 

+ 2y(t) =xMt)
dt dt 

y(t) = yi(t) + y 2(t) 

Y1(t) 

y (t) 

x(t) 

Figure S21.8-1 

(ii) 	 To generate the cascade implementation, shown in Figure S21.8-2, w< 
first express H(s) as a product of second-order sections. Thus, 

s(s2 + 2s + 2) + (S2 + s + 1) s3 + 3S2 + 3s + 1 
H(s) = 

(S2 + S + 	 1)(S2 + 2s + 2) (S2 + s + 1)(s2 + 2s + 2) 

Now we need to separate the numerator into two sections. In this case, 
the numerator equals (s + 1)', so an obvious choice is 

(s + 1)(s2 + 2s + 1) 

Thus, 

H~s)- S + 1 s 2 + 2s + 1

H(S) s2 + S + 1 S2 + 2s + 2)
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The corresponding differential equations are as follows: 

d2 r(t) dr(t) 
dt2 + dt + r(t) 

d2y(t) 2dy(t) 
dt 2 dt 

dx(t) 
dt 

d2 r(t) 2dr(t) 
= dt2 dt 

+ r(t) 

r(t) 
y(t) 

Figure S21.8-2 

(b) 	We see that we could have decomposed H(s) as


s
H(s) = (s2 + 2s + 1 + 1 
(S2 + S+1 )S 2+ 2s +2) 

Thus, the cascade implementation is not unique. 

S21.9 

(a) Decompose sin wot as 

_gjwot -jwot 

2j 

Then 

xI(t) = sin(wot)u(t) = e.U(t) - e u(t)
2j 2j 

Using the transform pair given in the problem statement and the linearity prop­
erty of the Laplace transform, we have 

Xi(s) = - ­
2js-jwO S + jAOo 

1 2jwo _ CO


2j S2 + wo S2 + w'


with an ROC corresponding to Re(s) > 0.

(b) x 2(t) = e -2' sin(wot)u(t). Since 

e 2' sin(wot)u(t) - Xi(s + 2), 
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the 	ROC is shifted by 2. Therefore, 

e 2 ' sin(wot)u(t) +­
(s + 2)2 + w0 

and the ROC is Re{s) > -2. Here we have used our answer to part (a). 
(c) 	 Since 

£ dX(s) 
tx(t)) 

with the same ROC as X(s), then


£ d [ 1 1

te -2'u(t) -1 

ds (s + 2)' 

Thus 

te 2 1 u(t) + 2)2 (s + 2)2-[(s 

with the ROC given by Re{s} > -2. 

(d) 	 Here we use partial fractions: 

s+ 1 A B 
(s + 2)(s + 3) s + 2 s + 3' 

A [s+ 1 -1 B [s+11 -2 
s + 3J s=-2 s + 2 s=-3 -1 

s+1 -1 2 
(s + 2)(s + 3) s + 2 s+3 (S21.9-1) 

The ROC associated with the first term of eq. (S21.9-1) is Re{s} > -2 and the 
ROC associated with the second term is Re{s} > -3 to be consistent with the 
given total ROC. Thus, 

x(t) = -e --2tu(t) + 2e -3'u(t) 

(e) 	From properties of the Laplace transform we know that 

L 
x(t - T) +-~ e ~TX(s), 

with the same ROC as X(s). Since


-c 1

e --3'u(t) 

s + 3' 

with an ROC given by Re{s} > -3, (1 - e-2)/(s + 3) must correspond to 

x(t) = e 3 u(t) - e -( -2)u(t - 2) 

S21.10 

(a) 	(1), (2): An impulse has a constant Fourier transform whose magnitude is unaf­
fected by a time shift. Hence, the Fourier transform magnitudes of (1) and (2) 
are shown in (c). 

(3), (5): A decaying exponential corresponds to a lowpass filter; hence, (3) 
could be (a) or (d). By comparing it with (5), we see that (5) corresponds to 
kte-"'u(t), which has a double pole at -a. Thus, (5) is a steeper lowpass filter 
than (3). Hence, (3) corresponds to (d) and (5) corresponds to (a). 
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(4), 	(7): These signals are of the form e-'" cos(wot)u(t). For larger a, the 
poles are farther to the left. Hence H(jw) I for larger a is less peaky. Thus, (4) 
corresponds to (f) and (7) corresponds to (g). 

(6): If we convolve x(t) = 1 with h(t) given in (6), we find that the output 
is zero. Thus (6) corresponds to a null at w = 0, either (b) or (h). Note that (6) 
can be thought of as an h(t) given by (1) minus an h(t) given by (3). Thus, the 
Fourier transform is the difference between a constant and a lowpass filter. 
Therefore, (6) is a highpass filter, or (b). 

(b) 	 (a), (d): These are simple lowpass filters that correspond to (i) or (ii). Since (a)
is a steeper lowpass filter, we associate (a) with (ii) and (d) with (i).

(b), (h): These require a null at zero, and thus could correspond to (iii) or 
(viii). In the case of (iii), as w increases, one pole-zero pair is canceled so that 
for large w,H(s) looks like a lowpass filter. Hence, (b) corresponds to (viii) and 
(h) corresponds to (iii). 

(c): Here we need a pole-zero plot that is an all-pass system. The only pos­
sible pole-zero plot is (vi). 

(e): Here we need a null on thejw axis, but not at w = 0. The only possibility 
is (v). 

(f), (g): These are resonant second-order systems that could correspond to 
(iv) 	or (vii). Since poles closer to thejw axis lead to peakier Fourier transforms, 
(f) must correspond to (iv) and (g) to (vii). 
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