18 Discrete-Time Processing of
Continuous-Time Signals

Solutions to

Recommended Problems

S18.1

(a) Since x,(t) = x.(t)p(t), then X (w) is just a replication of X (w) centered at mul-
tiples of the sampling frequency, namely 8 kHz or 278 X 10° rad/s. The sam-

pling period is T = 1/8000.
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Figure S18.1-1
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(b) X(Q) is just a rescaling of the frequency axis, where 278 X 10° becomes 2.

X(Q) is shown in Figure S18.1-2.
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Figure S18.1-2
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(c) Y(Q) is the product G(2)X(Q). Therefore, Y(2) appears as in Figure S18.1-3.
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(d) Y.(w) is a frequency-scaled version of ¥(w) but only in the range @ = —x to =,
as shown in Figure S18.1-4. Also note the gain of T.
Ye(w)
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Figure S18.1-4
S$18.2
(a) The maximum nonzero frequency component of H(w) is 500. Therefore, this
frequency can correspond to, at most, the maximum digital frequency before
folding, i.e., @ = . From the relation T = Q, we get
™
Thax = 5007 2 ms
(b) Since w = 5007 maps to @ = =, the discrete-time filter G(Q) is as shown in Figure
S18.2-1.
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Figure S18.2-1
(¢) The complete system is given by Figure S18.2-2. Note the need for an anti-alias-
ing filter.
1
— —=! C/D > G(Q2) - D/C b
_SOOTT 500" T =2 ms T = 2 ms

Figure S18.2-2
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S$18.3
(a) Recall that X (w) is as given by Figure S18.3-1.
Xe(w)
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w
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Figure S18.3-1
X(Q) is given by eq. (S18.3-1) and Figure S18.3-2.
X@Q) = % > X, (7, - %”) = 20000 Y  X[20000(Q — 27n)] (S18.3-1)
X(Q)
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Figure S18.3-2
Y, (w) is given by eq. (S18.3-2) and Figure S18.3-3.
TX(T), ol <=
Y, (0) = r (S18.3-2)
0, elsewhere
Ye(w)
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Figure S18.3-3

Thus x(t) = y(¢) in this case.
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(b) X, () is as given in Figure S18.3-4.

Xe(w)
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Figure S18.3-4

We now use eq. (S18.3-1), shown in Figure S18.3-5.
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Figure S18.3-5

Thus, in the range =, X(2) = 20000 =5 _., X [20000(Q2 — 27n)] is given as in
Figure S18.3-6.
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Using eq. (S18.3-2), we find Y (w) as in Figure S18.3-7.

Ye(w)
t m
l w
—140007 | 140007
Figure S18.3-7

Note aliasing since 27000 Hz is above half the sampling rate of 20000 Hz.
(¢) X (w) is as given in Figure S18.3-8.
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Figure S18.3-8
Again we use eq. (S18.3-1), shown in Figure S18.3-9.
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Figure S18.3-9
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Thus X(Q) is given as in Figure S18.3-10.
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Figure S18.3-10
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Finally, from eq. (518.3-2) we have Y (w) shown in Figure S18.3-11.
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Figure S18.3-11

S18.4

It is required that we sample at a rate such that the discrete-time frequency =/2 will
correspond to w,. The relation between (1, and w, is Q. = w,T,. Thus, we require

/2 _

we

T,

As w, increases, demanding a wider filter, T, decreases, and consequently the sam-
pling frequency must be increased. There are two ways to calculate w,. First, since
we are sampling at a rate of

2r or 2 4
o o~ T dWw,

T, (r/2)/w,

we need an anti-aliasing filter that will remove power at frequencies higher than
half the sampling rate; therefore w, = 2w,. Alternatively, we note that the *“folding
frequency,” or the frequency at which aliasing begins, is @ = #. Since @ = 7/2 cor-
responds to w,, then = must correspond to 2w,.
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S18.5
(a) We sketch X(Q) by stretching the frequency axis so that 2r corresponds to the
sampling frequency with a gain of 1/T,. We then repeat the spectrum, as shown
in Figure S18.5-1.
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Figure S18.5-1

After filtering, Y(Q) is given as in Figure S18.5-2.

Y(Q)
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Figure S18.5-2

(b) We see that Y(Q) looks like X(w) filtered and then sampled. The discrete-time

frequency is /3. Again, 2x corresponds to 27/T,, so 7/3 corresponds to =/3T,.
Thus, if x(t) is filtered by G(w) as given in Figure S18.5-3, then y[n] = 2[n].
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Figure S18.5-3
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Solutions to
Optional Problems

S18.6

(a) Since we are allowing all frequencies less than 100x through the anti-aliasing
filter, we need to sample at least twice 100w, or 200«. Thus, 2007 =

= 21r/T0 or
Ty = 10 ms. To find K, recall that impulse sampling introduces a gain of 1/T,.
To account for this, K must equal T, or K = 0.01.

() (i) Since X(w) is bandlimited to 100w, the anti-aliasing filter has no effect. The

Fourier transform of x,(t), the modulated pulse train, is given in Figure

S18.6-1.

Xp(2)
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—400m —100m 1007 400m
Figure S18.6-1
Since T, =

0.005, the sampling frequency is 400x. After conversion to a
discrete-time signal, X(Q) appears as in Figure S18.6-2.
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After filtering, Y(Q) is given by Figure S18.6-3.
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(ii) There are three effects to note in D/C conversion: (1) a gain of Ty, (2) a
frequency scaling by a factor of T\, and (3) the removal of repeated spec-
tra. Thus, Y(w) is as shown in Figure S18.6-4.

Y(w)

_
37, 3T,

Figure S18.6-4

S18.7

After the initial shock, you should realize that this problem is not as difficult as it
seems. If instead of kh[n] we had been given the frequency response H(Q), then
H_ (w) would be just a scaled version of H(?) bandlimited to n/T. Let us find, then,
H(Q). Using properties of the Fourier transform, we have

Q) = %e*""Y(Q) + X(9)

Y(Q) 1
HO =31 1=
Thus,
|H@)| = ———
V3 — cos Q
1sin Q
<H(Q) = —tan™' (11—5(:05)

Therefore, the magnitude and phase of H,(w) are as shown in Figure S18.7.

1 T
e, wl <=,
|H (w)| = { Vi— cosoT ] T
0, elsewhere
tan—l ._%SM le <I
JH () = 1 — $coswT)’ T’

0, elsewhere
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Figure S18.7

S18.8
The system under study is shown in Figure S18.8.
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Figure S18.8

From our previous study, we know that X.(w) in the range *«/T looks just like
X(Q) in the range *w. Similarly, Y (w) between —x/T and +=/T looks like ¥(Q) in

the range — to =. Although there is a factor of T, we can disregard it in analyzing
this system because it is accounted for in the H(w) filter. The transformation of x,(t)

to y,(t) will correspond to filtering x[n], yielding y[n]. In fact, the equivalent system
will have a system function H(Q) given by

where H (v) is the Fourier transform of k(t). Thus, we need to find H,(w). The rela-

o = m.(3), 1<

tion between y.(¢) and x.(t) is governed by the following differential equation:

d?y (t)

dy.(t)

de?

4
+ dt?

+ 3y (t) = 2(t)
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Using the properties of the Fourier transform, we have

(Jw)’Y (@) + 4(Jo)Y(w) + 3Y(w) = X(w),

1

H{(w) = — -

(@) (Jw)® + 44w + 3
Therefore,
1
H() = 2 R

2) 4243
JT ] T

S18.9

(a) It is instructive to sketch a typical y,(t), which we have done in Figure S18.9-1.

Vp ()

-

g
!

Figure S18.9-1

Let us suppose that T is changed by being reduced. Then the envelope of y,(t)
seems to correspond to a higher-frequency cosine. At time kt,

2n(kT)

NT (t — kT) = co s2—6(t — kT),

27k
Y, (1) = cos———&(t — kT) = cos——
where we use the sampling property of the impulse function. Thus,

y,(t) = Z cos—a(t — kT) = cos wt Z 3(t — kT),

k=—c0 k=—0o0

where w, = 27/NT.
If the minimum w, is w,, and since T = 2x/Nwy,

27
Tmax - ‘N-_w1

Similarly,
Tmin - 21r
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(b) Recall that sampling with an impulse train repeats the spectrum with a period
of 2x/T and a gain factor of 1/T. Since F[cos(2xt/NT)] is as given by Figure
S18.9-2, Y, (w) is then given by Figure S18.9-3.
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Figure S18.9-2
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Figure S18.9-3

(¢) The minimum value of N is 2, corresponding to the impulses at w, and (27/T —
w,) being superimposed at =/T. The lowpass filter cutoff frequency must be such
that the (superimposed) impulses at =/7 are in the passband and those at 3z/T
are outside the passband. Consequently,

T o<

T ST

(d) Comparing ¥Y(w) and Y,(w) in Figures S18.9-2 and S18.9-3 respectively, we see
that for N > 2 the cosine output will have an amplitude of 1/T = /2. If N =
2, then the output amplitude will be 2/T = w/x.

S18.10

(a) By sampling s,(¢), we get
s[n] = s, (nT) = x(nT) + ax(nT — T,) = x(nT) + ax[(n — 1)T]
since T = T,. Let x[n] = x(nT). Then
s[n] = x[n] + ax[n — 1]
Therefore

x[n] = —ax[n — 1] + s[n]
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This is a first-order difference equation, so given s[r], we can find x[n]. Since
x(t) is appropriately bandlimited, we can then set

yln] = —ay[n — 1] + s[n]

which will make
A
y(t) = ‘i,x(t)

(b) From part (a) we see that T = A will make y(t) = x(¢).
() Since we do not want to alias, we still need T < 7/wy. Now
s(t) = x(t) + ax(t — Ty)
Taking the continuous Fourier transform, we see that
S(w) = X(w) + ae 7*"X(w)
Thus, the continuous-time inverse system has frequency response

1

HL) = T3 ae

We want to implement this in discrete time. Therefore, using the relation, we
obtain
Q 1 - g
o = He (7") 1 F qe PTom Ty <f<-—

Wy Wy

Again, the filter should be A = T.
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