15 Discrete-Time Modulation

Solutions to
Recommended Problems

S15.1

Recall that the Fourier transform of a train of impulses p(t) is P(w), as shown in
Figure S15.1-1.
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Figure S15.1-1

Since x,(t) = x(t)p(t),
1 oo
X (w) = o le X(OP(w — 6) db

by the modulation property. Thus, X, () is composed of repeated versions of X(w)
centered at 27k/T for an integer k and scaled by 1/T, as shown in Figure S15.1-2.
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Figure S15.1-2

Since X, () = X, (w)H(w), it is as indicated in Figure S15.1-3.

X, (w)
1
T
/\ w
- _n
2T 2T
Figure S15.1-3
Thus
1 1
X(w) = ?X(w) or x, = ?x(t)

S15-1
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S15.2

For @, = =/2, C(Q) is given as in Figure S15.2-1.
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Figure S15.2-1

By the modulation theorem,

Falnlelnl) = Fyln)) = V(@) = 2—11 j C(8) X(Q@ — 6) df

Thus, Y(Q) is X(2) centered on each impulse in Figure S15.2-1 and scaled by 3, as
shown in Figure S15.2-2.
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Figure S15.2-2
For Q,, = n/4, C(®) is given as in Figure S15.2-3.
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Figure S15.2-3

Thus, Y(2) in this case is as shown in Figure S15.2-4.
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Y(Q)

Figure S15.2-4
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S15.3

From the lecture we know that the system in Figure S15.3-1 is equivalent to a filter

with response centered at = =, as shown in Figure S15.3-2.
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Figure $15.3-1
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Figure S$15.3-2

Therefore, the total response is the sum of H'(Q) and H(Q), shown in Figure
S15.3-3.

Figure S15.3-3
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As an example, consider x[n] with Fourier transform X(Q) as in Figure S15.3-4.

X(Q)
/ Q
— 0
Figure S15.3-4

Then, after multiplication by (—1)" the resulting signal has the Fourier transform
given in Figure S15.3-5.

Figure S15.3-5

After filtering by H(Q), the resulting signal has the spectrum given in Figure
515.3-6.
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Figure S15.3-6

Finally, multiplying by (—1)" again yields the spectrum in Figure S15.3-7.
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Thus, the spectrum of y[n] is given by the sum of the spectrum in Figure S15.3-8

and X(Q), as shown in Figure S15.3-8.

Discrete-Time Modulation / Solutions

Y(Q)

-

Figure S15.3-8

(a) P(Q) is composed of impulses spaced at 2x/N, where N is the period of the

sequence. In this case N = 2. The amplitude is 2wa,:

(477

1
2

= %[le—j(2xk0/2) + Oe—-j(21rkl/2)] =1

1
Z p[n]e—j(Zwkn/2)

n=0

Thus, P(Q) is as shown in Figure S15.4-1.
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Figure S15.4-1

We now perform the periodic convolution of X(Q) with P(Q) and scale by

1/(27) to obtain the spectrum in Figure S15.4-2.
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(b) To recover x[n] from y[n], we can filter y[n] with H(Q) given as in Figure
S15.4-3.

H(Q)
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Figure S15.4-3

(¢) Using p[n] we can send only every other sample of x,[n]. Similarly, we can send
every other sample of x,[n] and interleave them over one channel. Note, how-
ever, that we can do this only because X(Q) is bandlimited to less than /2.

S15.5

We note that s(¢) is a periodic signal. Therefore, S(w) is composed of impulses cen-
tered at (2wk)/T for integer k. The impulse at @ = 0 has area given by 2ra,, where
@, is the zeroth Fourier series coefficient of s(t):

7 Jswan= [ =g
= — = dt = —
Qg T Ts(t) dt 1dt T

—A4/2

Thus, S(w) is as shown in Figure S15.5-1.
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Figure S15.5-1

The Fourier transform of x(¢)s(t), denoted by R(w), is given by

n=-—0ao0
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If X(w) = 0 for |w| > «/T, then R(w) will equal (A/T)X(w) in the region |w| < «/T.
Therefore, for H(w) as in Figure S15.5-2, the signal y(t) = x(t).

H(w)

By

N
N

Figure S15.5-2

Solutions to
Optional Problems

$15.6

(a) Consider the labeling of the system in Figure S15.6.

r(n] v[n]
% [n] | hin] L—.Q{}__.ym

¢, [n] ¢, [n]
Figure S15.6

rn] = ¢\[n]x[n]
v[n] = Z rklhin — kl = ) ¢lklx[klh[n — k]

k=—oc0 k=—oco

yln] = vinlpsdn] = ¢oln] Y hin — kl\[klx(k)

Suppose x,[rn] = ax[n]. Then
Yyiln] = éin] ki@ hin — klp,[kloxlk] = ay[n]
Now let z;n] = x,[n] + 2[n]. Then
yn] = ¢on] ,‘i«, hin — Klg\[k)(x\[K] + zok]) = yi[n] + ydn]

and the system is linear.



Signals and Systems
S15-8

If ¢)[n] = d§[n], then

yln] = ¢dn] Y hin — kP[klz[k] = ¢dnlh[n k(0]
k=—oo0

If x[n] is shifted so x [n] = x[n — 1], then

yiln] = ¢Anlh[n]x,[0] = ¢n]k[n]x[—1] # y[n — 1]
and the system is not time-invariant.

(b) From part (a),
yln]l = 2" > hin — klz “2[k]
k=—co
Let x[n — m] = x,[n]. Then
yilrl = 2" > hin — klzg*z [kl = 2" ) hln — ke *x[k — m]

Letp = k — m, k = p + m. Then

2" > hi(n —m) — ple™ "x[p]

yin] =
= 2" ) ki(n —m) — pk*xlp]
= yln — m]

Therefore, the system is time-invariant.

$15.7

In general, w(t) is recoverable from w,(t) if W, (w) contains repeated versions of
W(w) that do not overlap, i.e., that have no aliasing, as shown in Figure S15.7.

Wp(w)
—+ — } w
_2n We m 27
T H—J T T
W(w)
Figure S15.7

Since W(w) is repeated with period 2x/T, the largest frequency component of W(w),
w,, must be less than or equal to «/T. From the modulation property,

1
W(w) = 5 X(w) * Xy(w)
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Thus, since the length of a convolution of two signals is the sum of the individual
lengths,

w, = @+ w

From the preceding observations,

™ ™
- > T<
T w; + w, or o+ o
S15.8
(a) If oy = —Q,;/2x, then the portion of X() around Q; will be modulated down to
about @ = 0 and then filtered by H(?). We now need to reshift the spectrum
back to its original position. Therefore, we need to modulate by /%", or 8 =
+Q,;/2x.
(b) Consider 7 = 0, 1. Then the corresponding filters are as given in Figure S15.8.
1
} Q
v % F W%
Figure S15.8
For no overlap and complete coverage of the frequency band, we need
2 T
QO:F_QO’ or QO:X[
S15.9

(a) Since s(t) is periodic in T, S(w) will consist of impulses located at 2xk/T. See
Figure S15.9-1.

S(w)
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Figure S15.9-1
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If f?ms(t) = 0, then the spectrum looks like Figure S15.9-2.
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Figure S15.9-2
Of course, other impulses may also be zero.
(b) Y(w) will be equal to a sum of the shifted and scaled versions of X(w). Spe-
cifically,
1 [~ 1 & 2™ 2mn
Y(w) = — f XOOS(w—0)do = — S(—) X(w — —)
21 J o 27 Z_w T T (S15.9-1)
s 2mn
= X|w——
w2,
where a, is the nth Fourier series coefficient of one period of s(¢). For some
region Y(w) to be zero, successive terms in the sum in eq. (S15.9-1) cannot over-
lap. Thus, the maximum 7' is such that /T = w,, or T = 7/w,.
(c¢) In general, we need to find some n such that a, # 0. Then we use an ideal real

bandpass filter to isolate the nth term of the sum in eq. (S15.9-1). The resulting
signal 7(¢) has Fourier transform R(w) given by

2mn 2
R(w) = a,X (w - T) +a_,X (w + —T')

Let a, = r,e’”". Then r(t) can be thought of as
27nt
r(t) = x(t) {21"" cos (__;n + 0,,) ]

(remember the effect of modulating by a cosine signal). Suppose we multiply

r(t) by
l cos gﬂt + 6
7, T "

Then

= 1 2mnt _ o [ 2Tt
q(t) = r(t) r COS( r T 9n> = 2(t) 2 cos <—T + 0,,)

= x(t) [1 + cos (4‘"—:t + 20,,) ]

If we now use a lowpass filter with cutoff =/T, we get x(t). If we had picked the
smallest n such that a, # 0, we could have avoided the bandpass filtering
because higher harmonics are eliminated by the lowpass filter.
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$15.10

(a) Y(Q) will consist of repeated versions of X(Q) centered at (2z/5) + 2xk and
scaled by 1. Thus, Y(Q) is as shown in Figure S15.10-1.
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Figure S15.10-1

(b) Z(Q) will consist, in turn, of repeated versions of ¥(), centered at (4x/5) +
27k and scaled by 3, as shown in Figure S15.10-2.

Z(Q)

Figure S15.10-2

Note that the version of Y(Q) centered at 6x/5 contributes to the spectrum
between —3«/5 and .

(¢) Two possible choices are given in Figures S15.10-3 and S15.10-4.
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Figure S15.10-3
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Figure S15.10-4
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