14 Demonstration of
Amplitude Modulation

Solutions to
Recommended Problems

Si14.1

(a) We see in Figure S14.1-1 that the modulating cosine wave has a peak amplitude
of 2K = 2, so that K = 1. At the point in time when the modulating cosine wave
is zero, the total signal is A = 2, so K/A = 0.5. Therefore, the signal has 50%
modulation. See Figure S14.1-1.
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Figure S14.1-1

M 2K=2,K=1,A = 1,50 K/A = 1, and the signal has 100% modulation. See
Figure S14.1-2.
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Figure S14.1-2

(¢) 2K =2,K=1,A = 0.5,s0 K/A = 2, and the signal has 200% modulation.
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(b) @ Xw f_w y(t)e 7 dt

* t . t 1
= e dt v = - ar = —
J x(z)e , 2 t 5 dt

-0

J- x(tHe %2 dt’

2X(2w)
Therefore, Y(w) is a compressed version of X(w). See Figure S14.2-4,
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(ii)  From the convolution theorem,

Y(w) = él; f:) X(MH(w — Q) dQ,



where cos =t - H(w), and H(w) is as shown in Figure S14.2-5. There-

Demonstration of Amplitude Modulation / Solutions

fore, Y(w) is as given in Figure S14.2-6.
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(i) Y(w) = El‘; J_: X(Q)P(w — Q) dQ

P(w) is an impulsive spectrum, as shown in Figure S14.2-7, because the
corresponding p(t) is periodic. (Note that only odd harmonics are

present.)
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Therefore Y(w) is as shown in Figure S14.2-8.
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(a) We are considering

N-1

X@) = x[n]e~™,

n=0

which is effectively the Fourier transform of a signal of infinite duration mul-
tiplied by a window of length N:

X = i cos wnT(u[n] — u[n — N]e ™

n=-—0co

From the convolution theorem we can compute the Fourier transform of the
product of these two sequences:

F
€08 wT == #[0(Q — weT) + 6(Q + w, )], —7 <A<

F 1 — e W . sin NQ/2
_ _ - T p-jaN-D/2
u[n] — u[n — N] o = ¢ SNz
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Therefore,
X@) = 1 ¢ ~H0-egDXN-1)/2 sin[N(Q — w,T)/2] n 1 ¢ I8+ TXN= D)2 sin(N(Q + w,T)/2]
2 sin[(Q — wT)/2] 2 sin[(Q + w,T)/2]’
as shown in Figure S14.4-1. (Note that the spectrum is periodic with period
27.)
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M)  X@) =) z[nle ™
n=0
2 k N-1 ]
X (—;—) = Z cos wynTe ~J@rk/Nm
n=0
N-1 N-—-1
- - ejwonTe —J(2xk/N)n + Ze —jwonTe —j(2xk/Nn

1 /1 — giwoT—2xk/NN 11 — ei(-woT—2xk/MN
= E( 1 — ej(“oT—ka/N)) + E 1 — gi(-woT—27k/N)
(i) For w, T = 2x(¥) and N = 5, the first term is zero for
k=...-827,...

However, when k = 2 we have the ratio of
1 (1 - ej21(2/5—k/5)5) 0

E 1 — eier@/5-k/5) = '6
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(i)

and we treat the limit as k — 0. Using L’Hépital’s rule, we have 45) =
2.5. Similarly, the second term is zero except whenk = ... —2,3,8 .. ..
Taking the limit yields 2.5. So X(27k/5) is as shown in Figure S14.4-2.
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Note that X(27k/5) is periodic in k with period 5 since X(Q) is periodic in
Q with period 2.

2rk 1 /(1 — gitwoT—2nk/MN 1 /1 — @i~woT~2xk/NN
X 7 = 5 1 - ej(“’OT—Zrk/N)) + 5 1 —_ ef("on—Zrk/N)

Now w,T = 273, and the numerator and denominator are nonzero for all

k. Evaluating the preceding expression yields X(k) as shown in Figure
S14.4-3.
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