13 Continuous-Time Modulation

Solutions to
Recommended Problems

S13.1

(a) By the shifting property,
x(t)e L X(w — 30) = V(w)
The magnitude and phase of Y(w) are given in Figure S13.1-1.

1Y (w)l
14
} w
2w, 3w, 4w,
XY(w)
x )
2 \ 4w,
4 } w
a 20, 3QN
2 r

Figure S13.1-1

(b) Since e3¢tz = giv/2gilvc! e are modulating the same carrier as in part (a)
except that we multiply the result by e¢’~/2. Thus
Y(w) = ¢ X(w — 3w,)
Note in Figure S13.1-2 that the magnitude of Y{w) is unaffected and that the
phase is shifted by =/2.

1Y (w)l
‘/2\' w
2w, 3w 4,
XY (w)
" \
0 ; w
2w, 4w,
Figure S13.1-2

(¢) Since
@3uct PRELY

cos 3wt = 5 + 5

S13-1
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S13-2

we can think of modulation by cos 3w, as the sum of modulation by

eijCt

2

and

e —j3wet

2

Thus, the magnitude and phase of Y(w) are as shown in Figure S13.1-3. Note the

scaling in the magnitude.
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Figure S13.1-3
(d) We can think of modulation by sin 3w.t as the sum of modulation by
JBwet —jx/2 —j3wet —jx/2
'e'z— and QT
Thus, the magnitude and phase of Y(w) are as given in Figure S13.1-4. Note the
scaling by { in the magnitude.
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Figure S13.1-4

(e) Since the phase terms are different in parts (¢) and (d), we cannot just add spec-

tra. We need to convert cos 3w, + sin 3w, into the form A cos(3w.t + ). Note
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that

cos(ae — f8) = cos a cos B + sin a sin 8
Let « = 3wt and 8 = #/4. Then
iy

—) = Lz (cos 3w,t + sin 3w,t)

coS (cht 2

Thus
cos 3wt + sin 3wt = V2 cos (3th - z)

Now we write c(t) as

\/§ \/-é e ~JBect—(x/4)]

gBoct—(x/D)

2 2

Modulating by each exponential separately and then adding yields the magni-
tude and phase given in Figure S13.1-5. (Note the scaling in the magnitude.)
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Figure S13.1-5

S$13.2
In Figure S13.2-1 we redraw the system with some auxiliary signals labeled.
r @) |1 ry(t) ra@) |
x(t) ! 2 ‘ — ()
1 —W, w, —w, w,
s() m(r) d()

Figure S13.2-1
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By the modulation property, R (), the Fourier transform of r,(t), is
1
R(w) = o [X(w) * S(w)]
4

Since S(w) is composed of impulses, R (w) is a repetition of X(w) centered at —2w,,
0, and 2w,, and scaled by 1/(2r). See Figure S13.2-2.

Ry(w)
L
2w
f ) Y t w
—2w, —W, wWe 2w,
Figure S13.2-2

(a) Sincem(t) = d(t) = 1, y(t)is r,(t) filtered twice by the same ideal lowpass filter
with cutoff at .. Thus, comparing the resulting Fourier transform of y(t),
shown in Figure S13.2-3, we see that y(¢) = 1/(27)x(t), which is nonzero.

Y(w)
1
2w
f ] w
—w, we
Figure S13.2-3

(b) Modulating r,(t) by e’ yields R,(w — w,) as shown in Figure S13.2-4.

Ri(w—w¢)
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Figure S13.2-4




Continuous-Time Modulation / Solutions
S13-56

Similarly, modulating by e 7 yields R,(w + w,) as shown in Figure S13.2-5.

Rl((,d+(4)c)

—_—

2n

1 1 1
i 1 f w

—2wc —W. We

Figure S13.2-5

Since cos wt = (e’ + e 7)/2 , modulating r,(t) by cos w.t yields a Fourier
transform of 7,(t) given by

Rl(w - wc) + Rl(w + wc)
2

Thus, Ry(w) is as given in Figure S13.2-6.

Ry(w)
_1
27
% : = : .
—2(4)(- —We We 2“’(‘
Figure S13.2-6

After filtering, Ry(w) is given as in Figure S13.2-7.

R;(w)
_1
27
w
—We We
Figure S13.2-7
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R (w) is given by shifting Ry(«) up and down by w, and dividing by 2. See Figure

S13.2-8.
R4(w)
_1
4
w
2w, W W, 2w,
Figure S13.2-8
After filtering, ¥(w) is as shown in Figure S13.2-9.
Y(w)
_1
4n
w
—We I We
Figure Sl3,2-9
Comparing Y(w) and X(w) yields
1
y@) = x(t)
(c) Since
e.i“’ct J— e‘j“’c‘
sin w,t = o ,
then
Rz(w) = Rl(w _ wc) 2_‘ Rl(w + wc) ,
J
which is drawn in Figure S13.2-10.
Ry(w)
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4nj /\
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4uj
Figure S13.2-10

After filtering, Ry(w) = 0. Therefore, y(t) = 0.
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(d) In this case, it is not necessary to know 7;(t) exactly. Suppose 7,(t) is nonzero,
with R;(w) given as in Figure S13.2-11.

R3(w)

—We We

Figure S13.2-11

After modulating by d(t) = cos 2w.t, R,(w) is given as in Figure S13.2-12.

R4(w)

+ : w
2w —we we 2w,

Figure S$13.2-12

After filtering, y(t) = 0 since R,(w) has no energy from —w, to w,.
(e) For this part, let us calculate Ry(w) explicitly.

Ri(w — 2w,) + Ri(w + 2w,.)
2 )

Ry(w) =

which is drawn in Figure S13.2-13.

Ry(w)

Figure S13.2-13

S$13-7
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After filtering, Ry(w) is as shown in Figure S13.2-14.

R3(w)
l -
an T
w
_wc wC
Figure S13.2-14
Modulating again yields R,(w) as shown in Figure S13.2-15.
Ry(w)
1
8«
w
e We
Figure S13.2-15

Finally, filtering R,(w) gives the Fourier transform of y(t), shown in Figure

S13.2-16.
Y(w)
1
gm
/ w
_(JJC (J)C
Figure S13.2-16
Thus,

1
y(t) = gx(t)

S13.3

(a) The demodulator signal w(t) is related to x(t) via

w(t) = (cos wyt) (cos w,t)x(t)
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Since cos A cos B = }[cos(A — B) + cos(A + B)],

w(t) = Jcos(Aw)t + cos(Aw + 2w )t]x(t)
= Jeos(Aw)tlx(t) + 3cos(Aw + 2w, )t]x(t)

The first term is bandlimited to *(w, + |Aw]|), while the second term is band-
limited from Aw + 2w, — wy t0 Aw + 2w, + wy. Thus after filtering, only the first
term remains. Therefore, the output of the demodulator lowpass filter is given
by $x(t)cos Awt.

(b) Consider first |Aw| > wy. Then for X(w) as given, ix(t)cos Awt has a Fourier
transform as shown in Figure S13.3-1.

41
4
% % w
—|Awl |Aw]|
Figure S13.3-1
For |Aw| < wy, there is some overlap. See Figure S13.3-2.
3wy <lBwi<ay, |Aco] =2 oy 0<lAwi< T W,
1
1 3
} } w t i w 1 w
“lAw!  Aw] —lAwl " Aw] —lAw| ¥ Awl
Figure S13.3-2

S13.4

(a) In this case,
y(t) = [A + cos wytlcos(w;t + 6.)
But
cos wyt cos(w,t + 8,) = Hcos((wy — wIt — 0,) + cos((wy + @t + 8.)]
Thus,

1 1
y(t) = A cos(w;t + 8,) + Ecos((wM —w)t —8,) + §cos((wM + w )t + 0,)

Ae' Ae
- plwcl +
2 ° 2

e —Jwet + ie _jacej(“‘M—Wc)t

+ le""ce —ion—welt | lea‘acemmwc)t + le —ifeg —ilem+ ot



Signals and Systems
S13-10

We recognize that the preceding expression is a Fourier series expansion. Using
Parseval’s theorem for the Fourier series, we have

oo

1
;f ly®IPdt = 3 |al® = P,
0 To

k=—o
Thus,
A\ 1" 4 1
P, = — 4= ==+ =
- 2(3) +4(3) -5
Since
_ max |x(t)|_l
- A A’
then
1 1
Pr=omty

as shown in Figure S13.4-1.

£
31 ___)
4
11 T
4
} m
L J
Y
overmodulation
Figure S13.4-1

(b) The power in the sidebands is found from P, when A = 0. Thus, P, = } and the
efficiency is

E = % = m2
1/2m®» +§ 2+ m?’

which is sketched in Figure S13.4-2.

Figure S13.4-2
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Solutions to
Optional Problems

S13.5

(a) Using the identity for cos(4 + B), we have
A(t)cos(w,t + 0,) = A(t) (cos 8, cos w,t — sin 0, sin w,t)
Thus, we see that
x(t) = A(t) cos 6.,
y(t) = —A(t) sin 4,
Therefore,
2(t) = A(t)cos(w,t + 6,)
= x(t)cos w,t + y(t)sin w.t
(b) Consider modulating 2(t) by cos w.. Then
2(t)cos wt = x(t)cos’w,t + y(t)sin w,t cos w.t
Using trigonometric identities, we have

x(t) | x(t) y@) .
5 + 9 cos 2w, + 5 sin 2wt

If we use an ideal lowpass filter with cutoff w, and if A(?), and thus x(t), is
bandlimited to *w,, then we recover the term x(t)/2. Thus the processing is as
shown in Figure S13.5-1.

2(t)cos wit =

z(t) — x (1)

cos w,t

Figure S13.5-1

(¢) Similarly, consider

2(t)sin w,t = x(t)cos w.t sin w,t + y(t)sin®w,t
= x@) y@® _ y@
== sin 2wt + 5 9 cos 2w,
Filtering 2(t) sin wt with the same filter as in part (b) yields y(t), as shown in
Figure S13.5-2.
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z(t) — y(?)

sin Wt

Figure S13.5-2

(d) We can readily see that
2%(t) + y*(t) = A%(t) (cos®, + sin%,) = A%(t)

Therefore, A(t) = Va*(t) + y*(t). The block diagram in Figure S13.5-3 sum-
marizes how to recover A(t) from z(t).

——(P—v ? - ()?
—We We
) — cos w, .t vr 40
—»(%)—» 2 > ()
—We We
sin w ¢

Figure S13.5-3

Note that to be able to recover A(?) in this way, the Fourier transform of A(t)
must be zero for w > |w,| and A(t) > 0. Also note that we are implicitly assum-
ing that A(t) is a real signal.

S13.6

From Figures P13.6-1 to P13.6-3, we can relate the Fourier transforms of all the

signals concerned.
=1 . “o
Si(w) % [X(w 2) X(w+ 2):!

1
Sy =§[X(w~%) +X(w+32‘3>]

Thus, S,(w) and Sy(w) appear as in Figure S13.6-1.
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Si(w)
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Figure S13.6-1

After filtering, Ss(w) and Sy(w) are given as in Figure S13.6-2.

S3(w) 54(0))

}
¥
=

Figure S13.6-2

Ss(w) is as follows (see Figure S13.6-3):
1
S5(w)=2—j{S3(w—wc—(—')2—°) —S3(w+wc+£29) ]

Note that the amplitude is reversed since (1/2§)(1/2j) = —4.
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Ss(w)
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Figure S13.6-3

Se¢(w) is as follows and as shown in Figure $13.6-4.

Sﬁ(w)=%[S4(w—wc—%)+s4(w+wc+%>]

Se(w)

1
4

Figure S13.6-4

Finally, Y(w) = S;(w) + Sg(w), as shown in Figure S13.6-5.

Y(w)
11
/I 2 I\
w
—We We
Figure S13.6-5

Thus, y(t) is a single-sideband modulation of x(t).

S13.7

Note that

q,(t) = [s,(t)cos wyt + s5(t)sin wyt]cos wot
= §,(t)cos’wet + $,(t)sin wet cos wot

Using trigonometric identities, we have
q,(t) = 35,(t) + $8,(¢)cos 2wot + 38:()sin 2ew,t

Thus, if s,(¢) is bandlimited to *w, and we use the filter H(w) as given in Figure
S13.7, y,(t) will then equal s,(¢).
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H(w)
2

w

—Yy Yo

Figure S13.7

Similarly,
q+(t) = $,(£)cos wet sin wyt + Sy(t)sin’w,t
$\(8) . Sa(t)  su(t)

= —'2— sin 2wot + —22— - 2—2— cos 2wt

Using the same filter and imposing the same restrictions on s,(1), we obtain y,(t) =

So(t).

S13.8

(a) X(w)is given as in Figure S13.8-1.

Figure S13.8-1

For Y(w), the spectrum of the scrambled signal is as shown in Figure S13.8-2.

Y(w)

41

Figure S13.8-2

Thus, X(w) is reversed for w > 0 and w < 0.
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(b) Suppose we multiply 2(t) by cos w,t. Denoting 2(t) = x(t)cos wyt, we find that
Z(w) is composed of scaled versions of X(w) centered at *w,. See Figure

S13.8-3.
Z(w)
1
T2
f } w
—2wy, Wy, Wyr ZwM
Figure S13.8-3

Filtering 2(¢) with an ideal lowpass filter with a gain of 2 yields y(t), as shown
in Figure S13.8-4.

x(t) ——— ()

Cos OJMt

Figure S13.84

(c¢) Suppose we use the same system to recover x(t). Let y(t)cos wyt = r(t). Then
R(w) is as given in Figure S13.8-5.

R(w)
1
2 L
M l } )
—2wy, —Wy, Wy 2wy,
Figure S13.8-5

Filtering with the same lowpass filter yields x(t).
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