12 Filtering

Solutions to
Recommended Problems

S12.1

(a) The impulse response is real because

1 ™ )

R(t) = — J- H(w)e’™ dw,
27r —o0
1 [ . 1 [® .

h*(t) = — J. H*(w)e 7 dw = — J- H(w)e 7' dw
27|' —o0 21(' —
1 [~ ) it )

= — j H(—w)e’* dw = 1 f H(w)e’ dw = h(t)

27 J-o 27 J -

where we used the fact that H(w) = H*(w) = H(—w).
The impulse response is even because

h(t) = i J H(w)e’™ dw,
27!' —o0
h(—t) = L j H(w)e ' dw
27!' —o0
= 1 f H(—w)e™ dw
27!' —00
Since H(—w) = H(w),

h(—1t) = %{ J:o H(w)e’™ dw
= h(t)

The impulse response is noncausal because k(—t) = h(?) # 0.

®) 2(t) = Y &t — 9n),

n=—0o0
@
x(t) = Z a, e/
k=—oco

a = -17; JOT x(t)e /T gy

Here T = 9, so
27k

and F(e/ 2Oy = Qe (w - ?)

Consequently, the Fourier transform of the filter input is as shown in Figure
S12.1-1.
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Figure S12.1-1
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Since Y(w) = H(w)X(w), the Fourier transform of the filter output is as shown
in Figure S12.1-2.

Y(w)
2n
1 2
w
_2n 0 2n
9 9
Figure S12.1-2

(c) We determine y(t) by performing an inverse Fourier transform on Y(w) as found
in part (b). Using superposition, we have

1 2 27t
y(t) = 9 + 9 cos (—)

9
S12.2
From the filter frequency response plots we can determine that
H(w) = 0.25¢ ~7=/® atw =w, =,
H(w) = 0.5¢ 7/ atw = w, = 27
Using superposition, we easily determine y(t) to be
7
y(t) = 0.25 sin(rt + 7/8) + cos(21rt - 1—’2')
S12.3
dv,
(a) RC 9t + v, = v,

Taking the Fourier transform of this equation, we have
(BGjo + DV (w) = V()
We now define

Vi(w) _ 1
V{w) 1+ jwRC

We can see from this expression that v(t) is a lowpass version of v (t).

H(w) =
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The magnitude and phase of H,(w) are given in Figure S12.3-1.

S12-3
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d(v, — v
RC_(ST—Zz + Vs — UV = Uy,

RCjwV,(«) — RCjwV (w) — V(w) = 0,

JwRC)V(w) = (1 + jwRC)V(w),
Vi(w) _ JwRC
V{w) 1+ jwRC

Hy(w) =
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The magnitude and phase of H,(w) are given in Figure S12.3-2.
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(¢) The cutoff frequencies are w, = 1/RC in both cases.

V(w) JwRC
=1—H =
@ v @) = T 0RC
This is the same frequency response as sketched in part (b). We have trans-
formed a lowpass into a highpass filter by a feed-forward system. The cutoff

frequency, as in part (¢), is w, = 1/RC.

= Hy(w)

S12.4

Consider 0 < @, < . In this range, the gain of the filter | H(Q)| is Q,. The phase shift
for the positive frequency component is +#/2 and the shift for the negative fre-
quency component is —x/2. Since

1 . ‘
x[n] = cos (Qn + 0) = E[e“"""”) + e @on*
= %o\ staonsorierm ~ilgm +0+(x/2))
yln] 5 [e +e |

= J % [ef(90ﬂ+0) — e —j(ﬂon+0)]’
y[n] = —Q,sin (Qn + 6)

It is apparent from this expression that H(Q) is a discrete-time differentiator. A sim-
ilar result holds for —n < Q, < 0.
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If Q, is outside the range —r < Q, =< x, we can express z[n] identically using a
Q, within this range. For example,
3r
cos > n+40

cos(—gn + 0),

T . s
y[n] —ésm( 2n+0)

x[n]

S$12.5

(a) We see by examining y,[n] and y,[n] that y,[r] averages x[n] and thus tends to
suppress changes while y,[n] tends to suppress components that have not var-

ied from x[n — 1] to x[n]. Therefore, the y,[n] system is lowpass and y,[n] is
highpass.
(b) Taking the Fourier transforms yields
1+e*
Y(Q) = X(@) (—2—> )

H,(Q) = %(1 + e

IH; ()]
1
+ — Q
—2m 4 0 m 27
Figure S12.5-1
1—¢™
Y, () = X() ("—2_) )
HA®) = 3(1 — ¢ ™)
|H, ()]
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} } 9
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Figure S12.5-2
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S12.6

(a) By inspection we see that the impulse response is given by

> on — k]

h =
= on 1.4,

2 1
sin(QN+ )

2
2N + 1 sin(Q/2)

() Hy(D) =1 -
(9

|H (S2)]
1

Figure S12.6-2

Zero and one crossings are at

27
(o) *

(d) H,(Q) is an approximation to a highpass filter.

S12.7

(a) From the specification that H(0) = 1, we know that

21
Hw) = a+ jo
®  H| =
o
(az + 4)1/2 = IH((‘))' e
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The low end specification is satisfied for o = 4, as shown in Figure $12.7-1.

|H(w)]

W3 l::"::::: ——=
5

Figure S12.7-1

The high end specification is met for « < 6, as shown in Figure S12.7-2.

|H(w)]

i

Figure S12.7-2

The range of a such that the total specification is met is 4 < a < 6.

Solutions to
Optional Problems

S12.8

The easiest method for solving this problem is to recognize that passing x(t) through
H(w) is equivalent to performing

dx(t)
2=

This is easily seen since

x(t) = % j_m X(w)e™ dw,

-2 9“&-(;2 = 51- f —2j0 X(w)e™ dw
T H®
SO
-2 da(t) - —2jwX(w)

dat
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dat) _ _,de" . _
(a) -2 e 2 9L 2je y(t)
dax(t d[(si t t
(b) —2 d(t)= _g W(sin ‘;‘; WO _ g, cos wothu(t)
1 1 —1
(© X)) = ———— =>4+ —

Jo(6 +jw) Jo 6 +jw’
1 1 1
x(t) = g [u(t) - 5] - Ee “Bu(t)

_dx®) _,[1 ~stu(t) — L g0t
2 i 2[66(t)+e u(t) i 66(1:)]

= —2e %yu(t)

Alternatively, for this part it is perhaps simpler to use the fact that

_ _ —2jw
Y(o) = Hw)X(w) = 76 + jo)

_ 2
6 + jw

so that y(t) = —2e~®u(t)

1
@ X(w) = 2+ jo
x(t) = e~ u(t)
-2 %t—) = —2[—2¢ %u(t) + e *8(t)] = 4e *u(t) — 25(t)

S12.9

(a) HQ) = H(Qe "
1) H.(Q) is real and even:
hn] <= H.(Q)

From Table 5.1 of the text (page 335), we see that the even part of k,[n]
has a Fourier transform that is the real part of H,(Q). This result is easily

verified:
S h-nle = Y hfnlen = ( S hinle )
- H®),
S0
i(hn] + hi—n]) <= {H(D) + H}D)),
Ev{h [n]} == Re(H (D)}
Now since

Re{H,()) = H(®),
we have that Ev{h [n]} = h[n], i.e., h[n] is even, and therefore
kIn] = h[—n]
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(ii) From Table 5.1,
z[n — ng) == e 7™,
SO
H(Qe ™<= h,[n — M),
hin] = hn — M]

(b) hn] = h[—n]
Since h[n] = hIn — M),

hln + M] = h[n],
hM — n] = kM — n) — M] = h]—n],

but
hin] = h]—n]= h{M — n) = h[M + n]

(¢) hIM + n] = h[M — n] from part (b). Since h[n] is causal, h[M — n] = 0 for
n > M. But if h[M + n] = h[M — n], then

hIM +n] =0 forn > M,
SO
h[n] =0 forn > 2M
Summarizing, we have
hin] =0 forn <0,n > 2M

S12.10
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Figure S12.10-1




Signals and Systems
S12-10

(b) If the cutoff frequency Q. = =/N, the total system is an identity system.

N—-1 N—-1
(©) RIn] = ) hin] = 3" ¢’ Mhn]
k=0 k=0
1 _ ej21rn
= {1 _ ej(z,,n/N)JhO[n]?
hin] [Nho[n], n = an integer multiple of N,
ni =
0, n # an integer multiple of N,

so r[n] is as shown in Figure S12.10-2.

N
- - - - *—eo
-N 0 N
Figure S12.10-2
@ hfnl =~ =0
0 N) - ’
hon} = 0, n = an integer multiple of N,

are the necessary and sufficient conditions.

S12.11

From the system diagram,
Y(w) = X(w)a — G(w)],
H(w) = a — G(w)

(a) < H(w) is O for all w.

[H(w)|
o
a—14
t } w
0 W W
Figure S12.11-1
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(b)
|H(w)
14+
a
l—a+
+ + w
0 W Wy
AH(w)
ﬂ ——
w
Figure S12.11-2
(¢) < H(w) is = for all w.
[H(w)
| +a+4
14
a
} } w
“ )
Figure S12.11-3
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