11 Discrete-Time Fourier Transform

Solutions to
Recommended Problems

S11.1
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Here we have used the fact that
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(b) x[n] = (a" sin Qyn)u[n]

We can use the modulation property to evaluate this signal. Since
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periodically repeated, then
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Alternatively, we can use the fact that x[n] = u[n] — u[n — 4], so
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S11.2
(a) The difference equation y[n] — $y[n — 1] = x[n], which is initially at rest, has
a system transfer function that can be obtained by taking the Fourier transform
of both sides of the equation. This yields
Q)1 — te ™) = X(@),
SO
Y(Q) 1
HQ) = = -
@30 1T~
(b) (D) If x[n] = d[nr], then X(Q) = 1 and
1
Y@ = HOX®) = T—1—,
SO
yln] = 3 uln]
(i) X(Q) = e ™0, g0
e —jQng
YO ===
and, using the delay property of the Fourier transform,
yln] = @ "uln — n()
(iii) If z[n] = )™u[n], then
1
X(Q) = 1 — %e _jﬂ)
1 1 -2 3
= (1 = %e-f“)(l —%e-f“> DA
SO
ylnl = —2@)"uln] + 3D u[n]
S11.3

(a) We are given a system with impulse response

hin] = [(%) cos %} uln]

The signal k,[n] = (3)"u[n] has the Fourier transform
1

H\(Q) = 1 — %e—jn
Using the modulation theorem, we have
1 1 1
H) =5 [1 — Lo @D . Io —j(n+7/2)]
(b) We expect the system output to be a sinusoid modified in amplitude and phase.
Using the results in part (a) and the fact that

x[n] = %ej(fﬂ/z) + %e —j("l/z)’
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we have
1 1 1
H(Q ==
()ﬂ=1/2 2 1_%+1+é)
1 2 4
= — 2 -] = —
2\ %" 3) 3’
4
H(Q) = H*(Q) ==
Q=—/2 o=r/2 3
S0
2 . 2
y[n] = _3_ef(m/2) + ge —j(xn/2)
_4 cos=n
3 2
Sii4
(a) The use of the Fourier transform simplifies the analysis of the difference
equation.
1 1
yln] + gyln — 1] — 2yln — 2) = z[n] — a[n — 1],
Y1 + i—e e — —ée 2y = X(Q(1 — e ™™,
(V)] 1—e*
—==H({Q) = : -
x@ " AT ma e
We want to put this in a form that is easily invertible to get the impulse
response h[n]. Using a partial fraction expansion, we see that
2 -1
Q= . -
H® 1+ 3 + 1 — e’
SO
hin] = 2(—9)"u[n] — @) uln]
(b) AtQ = 0, HQ) = 0. At @ = 7/4, H(Q) = 0.65¢’"?®, Since k[n] is real, H(Q) =
H*(—Q), so H(—Q) = H*(Q) and H(—=/4) = 0.65¢ 7?2, Since H(Q) is periodic
in 2,
B2 = H(T) = 0.65e002
4 4 '
S11.5

(a) x[n]is an aperiodic signal with extent [0, N — 1]. The periodic signal
ginl = >  x[n + rN]
is periodic with period N. To get the Fourier series coefficients for §[n], we sum
over one period of §[n] to get
1 N-—-1
= = xlnle —*@r/Nm
@, =5 2 ]

n=0
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(b) The Fourier transform of x[n] is

foe]

Z x[nle 7"

n=-o
N-1

Z x[nle 7"

n=0

X =

sincex[n] = 0forn <0,n >N — 1.
We can now easily see the relation between a, and X(Q) since

1 1= .
_X Q - —~jk(2nx/N)n
N @ Q= (2xk)/N N,;)x[n]e
Therefore,
1 2rk
NX(7> = o

S11.6
(a) Signal Description Transform

Continuous time | Infinite duration | Periodic I, III
Continuous time | Infinite duration | Aperiodic II1
Continuous time | Finite duration Aperiodic I, 1*
Discrete time Infinite duration | Periodic II, IV
Discrete time Infinite duration | Aperiodic v
Discrete time Finite duration Aperiodic Iv, I1*

*Because these two signals are aperiodic, we know that they do not possess a
Fourier series. However, since they are both finite duration, the Fourier series
can be used to express a periodic signal that is formed by periodically replicat-
ing the finite-duration signal.

(b) The discrete-time Fourier series has time- and frequency-domain duality. Both
the analysis and synthesis equations are summations. The continuous-time
Fourier transform has time- and frequency-domain duality. Both the analysis
and synthesis equations are integrals.

(¢) The discrete-time Fourier series and Fourier transform are periodic with peri-
ods N and 2x respectively.

Solutions to
Optional Problems

S11.7

Because of the discrete nature of a discrete-time signal, the time/frequency scaling
property does not hold. A result that closely parallels this property but does hold
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for discrete-time signals can be developed. Define
x[n/k], if n is a multiple of k,
Taln] = X
, otherwise

xln] is a “slowed-down’” version of x[n] with zeros interspersed. By analysis in
the frequency domain,

X)) = X(kQ),

which indicates that X,,(?) is compressed in the frequency domain.

S11.8

(a) X(Q — Q) is a shift in frequency of the spectrum X(Q). We will see later that
this is the result of modulating x[»n] with an exponential carrier. To derive the
modification x,[n], we use the synthesis equation:

1 .
Zyn] = — J X(Q — Q)e’™ dQ
27|' 27
Changing variables so that @ — Q, = &, we have

1 . .
Tn] = o L X(@)e? W+ dQ = x[n]e’%"

(b) Using the synthesis equation, we have

l 'Qn _i . i
’z_wL,Re{X(Q)}e e = o 2‘2[X(Q)+X(Q)]e g
1 —jin *
3% ["H“(J 5 X(@e dQ)
1
g{x[n] + 2 [—n])
‘ magg < L [ [FR-X®@] .

= —x[n ]——( j X(Q)e ~in dQ)
= — —_ H—
T {x[n] — 2*[—n]}
(d) Since | X(Q)|* = X(2)X*(Q), we see that the inverse transform will be in the form

of a convolution. Since
1 ) *
(— J X(Qe 7" dQ)
27|' 2%

x—n],

Lf X*(Q)e’™ dQ
27 Jeox

then

i 2,700 _ * ¥ —
o L | X(2)|%e™ dQ = x[n] * x*[—n]

S11-6
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S11.9
We are given an LTI system with impulse response
hn] = sin(wn/3)
™

(a) We know from duality that H(Q) is a pulse sequence that is periodic with period
27. Suppose we assume this and adjust the parameters of the pulse so that

1 Jon =
o j H(Qe™ dQ = h[n]

Let a be the pulse amplitude and let 2W be the pulse width. Then

w JOW __  —jaw
aj ef“”d9=i<e e )

2r

-W 27 ]’n
_ a 2sinWn
2 n

soa = 1 and W = n/3, as indicated in Figure S11.9-1.

H(Q)

w(3
Wl

Figure S11.9-1

(b) We know that
3r F 3 3
cos - n == r[é(ﬂ _T) + 5(9 +z-)],

periodically repeated, and that multiplication by (—1)" shifts the periodic spec-
trum by =, so the spectrum Y(Q) is as shown in Figure S11.9-2.

Y(Q)

B f—

B e
2

|

Figure S$11.9-2

From Figures S11.9-1 and S11.9-2, we can see that
Y(Q) = HOX(Q) = X(D)
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Therefore,

= il = (—1) cos °F n = cos ™
Yyln] = xfn] = (—1) cos4n cos4

S11.10

Here

Y(Q) = 2X(Q) + ¢ 7°X(Q) — d‘z_(ﬂﬂ)
(a) (D The system is linear because if
x[n] = ax,[n] + bxyn],
then
Y[n] = ayi(n] + by n],

where y,[n] is obtained from x,[n] via the given transfer function. The
similar result applies for yjn].

(ii) The system is time-varying by the following argument.
If x[n] — y[n], does x[n — 1] = y[n — 1]?
F .
z[n — 1] == e X(Q)
The corresponding Y(Q) is

dX(Q)

2e7X(Q) + e ' X(Qe 7 + je 'X(Q) — e? 40

# e | 2X(Q) + e °X(Q) —

h.((D) ]
dQ

(iii) Ifx[n] = én], X(2) = 1. Then

Q) =2+ e
y[n] = 28[n] + o[n — 1]

S11.11

Z[n] = Z akejk(21r/N)n
k=(N)

—jl(2%/N)n

(a) If we multiply both sides of this equation by e

obtain
Z .,z[n]e—jl@r/bl)n = Z Z a, el HE/Nm

n=(N) k=(N) n=(N)

and sum over (N), we

If k is held fixed, the summation over (N) is zero unless k = I, which yields Na,.
Thus
1

a == Z o"c[n]e —jl(2x/N)n
Nn=(N)
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and therefore

1 .
a, = N Z x[n]e —~Jjk(2x/N)n
n=(N)

(b) We are given that x[n] is an aperiodic signal

)

(i)

(iii)

S11.12

afn] = + f X(@)e™ dQ
21!’ 2n

By multiplying both sides by e ~7*'" and summing over all n, we have

o0

‘ 1 =
—Jun — ___ Je—-enn
> a[nle . LX(Q) > e e

n=—0o0 n=-00

- _ ®7" needs to be evaluated. We can recognize that this summa-
tion is a Fourier series representation

[eo] o0
Z el@—0n — Z aneﬂ(wnvm))/nn,

n=-—0oco n=—oco

where T = 27 and a,, = 1. The periodic function represented by this series
is a periodic impulse train with period T = 2, so

D e = 2r N §(Q — @, + 2wn)
Only a single impulse in the train appears in the integration interval of
one period. So

2i j X@©Q) Y e/ = X(Q, + 27n)
g 2r

= X(Q)
Therefore, the analysis formula for aperiodic discrete signals has been
verified to be analogous to the analysis formula in part (a).

oo

X@ = Y znle

n=-—o

(a) The Fourier transform of ¢’***/™" can be performed by inspection using the syn-
thesis formula

ejk(21r/N)n _ L J_ X(Q)e_jﬂn dQ,
21|' 27

X@) = 215(9 ——%vlk) 2] <

and since we know that X(Q) is periodic in @ = 2x, we have

. ¥ =
eik@r/Nm T oo Z 5 (Q — % + 27r’m)

m= —0oo

(b) By using superposition and the result in part (a), we have

. F
Z ake]k(2r/N)n
k=(N) m

> 2y ak6<9—2%k+21rm)

=—0  k=(N)
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(c) We can change the double summation to a single summation since g, is periodic:
i 27k d 27k
2 ad|Q—— =+ 2mn | =2r adl{Q——
Ty esln- 5 vem)-or 3 asfo-57)

So we have established the Fourier transform of a periodic signal via the use of
a Fourier series:

. F od
Znl = S aerern Looon S a (a _ sz)

k=(N) k=—co N

(d) We have

oo

Zlnl= Y x[n — kN] == i X(Q)e %N

k=—o0 k=—

As in S11.11(b)(ii), we can show that

- —'ch__zlw _ e
> o= 2t Za(a N)

k=—o0

Therefore,

Zn]<= 2 > %}X(Q)é(ﬂ - 2Lk)

k=-o00 N
= 1 _[2xk 27k
= 2 —X|—8{Q - —
- Z e - %)
Comparing with the result of part (c), we see that
a, = lX(Q)
N

Q=(2xk)/N
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