9 Fourier Transform Properties

Solutions to
Recommended Problems

S9.1

The Fourier transform of x(¢) is

X(w) = J x(t)e 7 dt = J e 2u(t)e 7 dt

Since u(t) = 0 for t < 0, eq. (59.1-1) can be rewritten as

oo

X(w) = f e~ (/2HIt gy

0

__t2
T 1+ 520
It is convenient to write X(w) in terms of its real and imaginary parts:
. — 4
X() = 2. 1 .7.20) =2 jc:

1+ 72w\l — j2w 1+ 4w

_ 2 . 4w
1+ 40 71+ 40

2

Magnitude of X{ = —
gnitude of X(w) = TA==15
X(w) = tan"'(—2w) = —tan ' (2w)

+2 —4w
Re{X(w)} = 15 4’ Im{X(w)} = 17 40
(@)
| X (w)]
2
_/\ )
Figure S9.1-1
(b)
% X (w)
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L ——— —
Figure S9.1-2
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©
Re{X(w)}
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Figure S9.1-3
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Im{ X(w)}
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Figure S9.14

S9.2

(a) The magnitude of X(w) is given by
| X(w)| = VXi(w) + X{(w),

where Xp(w) is the real part of X(w) and X(w) is the imaginary part of X(w). It
follows that

V2, el <W,

| X(w)| =
0, |w| > W
1X ()
2
w
-W W
Figure S9.2-1

The phase of X(w) is given by

X
4X(w) = tan™! <X;(((:)))) =tan" (1), |w| <W
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%X (w)
i
+ w
W
Figure $9.2-2

b 1+7, <W

®) X(w) = J o] _
0, otherwise
1+, jlw] < W

X(—w) = .
0, otherwise
1—j, lw| <W
X (w) = .

0, otherwise

Hence, the signal is not real.

$9.3
For x(t) to be real-valued, X(w) is conjugate symmetric:
X(—w) = X*(w)
(@) X(w) = [X(w)|e’*¥®
= | X(w)|cos(IX(w)) + 7| X(w)|sin(<IX(w))
Therefore,
X(—w) = |X(—w)|cos(IX(—w)) + J|X(—w)|sin(ILX(—w))
= [ X(w)|cos(ILX(w)) — j|X(w)|sin(FX(w))
= X*(w)
Hence, x(t) is real-valued.
()  X(w) = Xp(w) + jX(w)
X(—w) = Xp(—w) + jX[(—w)
= Xp(w) + j[—X{w) + 2] forw >0
X*(w) = Xp(w) — JX{(w)
Therefore,
X*w) # X(—w)
Hence, x(t) is not real-valued.
S9.4

o0

@ () Xw = J. wx(t)e""”‘ d

t

We take the complex conjugate of both sides to get

XHw) = j

oo

—oo

x*(t)et dt
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(i1

() (O

(i)

S9.5

Since x(t) is real-valued,

foel

X (w) = J- Oc)ar:(t)ej‘”' dt

Therefore,

oo

XH(—w) = f mx(t)e’j”‘ dt

= X(w)

1 bt )
x(t) = o J_m X(w)e’™ dw

Taking the complex conjugate of both sides, we have
1 = .
x*(t) = — j X*(w)e ™ dw
21|' -0
Therefore,
1 = )
x*(—t) = — J X*(w)e’ dw
27|' -0
Since x(t) = x*(—t), we have
1 [° 4 b )
— f X(w)e'' dw = 1 J- XH(w)e' dw
2‘”' -0 21!' —o0

This shows that X(w) must be real-valued.

Since x(t) is real, X(w) = X*(—w). Since x(t) is real and even, it satisfies
z(t) = x*(—t) and, therefore, X(w) is real. Hence, X(w) = X*(—w) =
X(—w). It follows that X(w) is real and even.

If () is real, X(w) = X*(—w). Since x(t) is real and odd, x(t) =
—x*(—t); an analysis similar to part (a)(ii) proves that X(w) must be
imaginary. Hence, X(w) = X*(—w) = —X(—w). It follows that X(w) is also
odd.

@) Fle "} = Fle u(t) + e u(—1t))

1 1
a+jw+a—-jw
_ 2a

a? + o?

(b) Duality states that

Since

F
9(t) =— G(w)
G(t) <z> 27g(—w)

¥ 2a
e_"ltl ~—
2 2
a + w
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we have

17
e "

1 F 1 ¥ 1 w
S A 17 J - hat
(0 1+ 3ty 3 e since x(at) a] X ( )

(d) We are given Figure S9.5-1.

x(t)

Figure $9.5-1

T ) A ) .
Xw)=A f et dt = — (e T — ")
-7 —jw

-4 —27 s%n T
—jw
- oTA sin(wT)
w

Sketches of y(t), Y(w), and X(w) are given in Figure §9.5-2.

X(w)
2TA
T T~ (o5}
— \_/_' S E_v —
T T
y(w)
»()
4TA
1
-
t T — T w
2T 2T - T P
2T 2T
Figure S9.5-2
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Substituting 27 for T in X(w), we have

Y(w) = 2(2T) ———Si“j;"f,m

The zero crossings are at

@ 2T = nm, or w, =N E%‘

$9.6
1 (= ot
@) 2(t) = - X(w)e™ dw
27|' -0
Substituting ¢ = 0 in the preceding equation, we get
1 oo
x(0) = — j X(w) dw
27|' —oo
® X = | awe a
Substituting w = 0 in the preceding equation, we get
X(0) = J x(t) dt
S9.7

(a) We are given the differential equation

dy(t) _
PTEREAVREIQ)

Taking the Fourier transform of eq. (§9.7-1), we have

joY(@) + 2Y(0) = X(w)

Hence,
Y(w)2 + jo] = X(w)
and
Y w) 1
H(w) = —= =
@)= Y@ ~ 2470’
1 1 (2 —jw 2 — jo
H(w) = = =
() 2 + jw 2+jw\2—jw> 4 + o?

_ 2 L
1+ 4+

(89.7-1)



Fourier Transform Properties / Solutions
S9-7

2 2
2 _ w - 44+ w
HO =G T arar @+
H@)| = ——
|H(w)| R
H(w)]

o f—

w
XH(w) = —tan" ! (%)
m
T2
4T
2
} } w
-2 2
_nl
4
_nl
2

Figure S9.7

(b) We are given x(t) = e ‘u(t). Taking the Fourier transform, we obtain

Hence,

X(w) =

Y(w)

1+ jow’

1 1 1
T 402 +jw) 14je 2+ je

(¢) Taking the inverse transform of ¥Y(w), we get

y(t) = e"'u(t) — e *u(t)
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S9.8

A triangular signal can be represented as the convolution of two rectangular pulses,
as indicated in Figure S9.8.

(89

-1 -1 -1 —1

Figure S9.8

Since each of the rectangular pulses on the right has a Fourier transform given
by (2 sin w)/w, the convolution property tells us that the triangular function will
have a Fourier transform given by the square of (2 sin w)/w:

4 sin’w
X(w) = >
w

Solutions to
Optional Problems

S9.9

We can compute the function x(t) by taking the inverse Fourier transform of X(w)

1 [«
x(t) = — J- me’ dw
27 J -y

A

_ Sin wot
t

Therefore,

v ) sin (wot)]

cos (w.t) [ ;
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From the multiplicative property, we have

Y(w) = X(w) * [7é(w — w,) — 7w0(w + w,)}

Y(w) is sketched in Figure S9.9.

—We T Wy TWe  Twe tw, W — Wo W we 1wy,

i }
Y t

Figure S9.9

e~ cos wetu(t), a>0
e “u(t)cos(wyt)

Therefore,

X(w) = o ¥ jo * [18(w — wp) + 7w + wp)]

_ 1/2 + 1/2
a+ jlw—w) o+ jlw+ w)

x(t) = e 3" sin 2¢

6
9 + ?

F o
sin 2t = ; [6(w — wp) — 8w + wy)], wy = 2

Therefore,

() x(t) =

6
_ J3 B J3
T4+ (@+2? 9+ (w— 2

sin 7t [sin 2«t
i ’

X(@) = 5= X(0) * Xilw),

1, || <,
Xi(w) =

0, otherwise

Xy )_ll, lw| < 2,
20 0, otherwise
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Hence, X(w) is given by the convolution shown in Figure S9.10.

X,(w) X,y ()
1 1
w t t
- m —2m 2n
X(w)
1
Il : 1 l w
—3r —2m -7 i 2m 3n
Figure S9.10
S9.11
We are given the LCCDE
dy(t
% + 2y(t) = A cos wyt

We can view the LCCDE as

dy(t) _
dt + 2y(t) = x(1),

the transfer function of which is given by

1

H =
(@) 2 + jow

and x(t) = A cos wyt

We have already seen that for LTI systems,

y(t) = |H(wy)| A cos(wet + ¢), where ¢ = <H(w,)

1
= ————A cos(wyt +
Va T o costet + 9)
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For the maximum value of y(t) to be A/3, we require

1
4 4 w

Ste
Nl il

Therefore, w, = V5.

$9.12
2
(@) F [d;’tg‘) + 2dgt(‘) + 3y(t)] = —¥(w) + 2je¥(w) + 3¥(w)
= (—® + j20w + 3)Y(w),
A(w) = —® + j2w + 3
) F [4d;t(t) - x(t)J = 4juX(w) — X(w)
= (J4w — DX(w),
B(w) = j4w — 1,
A(w)Y(w) = B(w)X(w),
- B
(w) = A@) X(w)
= H(w)X(w)
Therefore,
_B(@ _ —1+jdw
H(w) = A(w) —o®+ 3+ j20
_ 1 —jdo
T WP — 3 —j2
$9.13
1
sin Wt 4__3:_>
wt
—W 1%
Figure S9.13-1

sin w ! F
x(t)=m 0
wt

Figure S9.13-2




Signals and Systems

S9-12

H(w)
in (2 ) -
sin w nl
h(t) = Tr_ﬂTi.._ <—L>
Figure S9.13-3
Y(w)
a2
Y(w) = X(w)H(w) =
w
—w, N
Figure $9.13-4
Therefore, y(t) = rw-)-
$9.14
1 [~ 2
(a) Energy = o | X(w)|* dw
|X (w)?
4
._1 ——
: : ©
-2 -l ! 2
Figure S9.14-1

Area = (4)(2) + (2)(1)(1)
=10

Energy = 5
™
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(d)

X(w) =

—1 1 -2 2

Figure S9.14-2

S9.15

Given that
yi(t) = 27X(—w)|,-,

we have

oo

v = 2 |

u=—

x(u)e’™ du
Similarly, let y4(t) be the output due to passing x(¢) through F twice.

yu(t) = 27 J 2w J. x(u)e™ du e dv

v=—00 u=—00

= (21r)2J x(u)j ) et dv du

= (2‘”)2',‘00 x(u)(2m)é(t + u) du

u=-—00

= (2r)’ 2(—1)

Finally, let y;(t) be the output due to passing x(t) through F three times.

Ys(t) = w(t) 27rj°° @rY’x(—u)e™ du

= (27)* J. e " x(u) du

= (27)'X(1)

$9.16

We are given

n—1

) =y

e “u(t), a>0

S$9-13
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Letn = 1:
x(t) = e “u(t), a >0,
1
X(w) = a + jw
Letn = 2:

x(t) = te u(t),

d F d
X(w)=7— i tx(t) <= j—
(w) =73 do (a +jw) since (t) J de X(w)
-1
(a + jw)?
Assume it is true for n:
n—1
- —  _ p-—at
x(t) m—1° u(t),
1
X = —
@) = 7oy

We consider the case for n + 1:

tﬂ
x(t) = o e *u(t),

_Ja|_ 1
Xy =4 [(aﬂw)"J
(@ + jo)

(=n)a + jw)™" Y

Therefore, it is true for all n.
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