7 Continuous-Time Fourier Series

Solutions to
Recommended Problems

S7.1
(a) For the LTI system indicated in Figure S7.1, the output y(t) is expressed as
y(t) = j h(D)x(t — 7) dr,
where k(1) is the impulse response and x(t) is the input.
LTI
x(t) ——| Rh(t) — y(1)
Figure S7.1
For x(t) = &',
y(t) = f h(m)e’" " dr
= gl J h(v)e " dr
= e¢"“'H(w)
(b) We are given that the first-order differential equation is of the form
dy(t)
—_— - t
TR ay(t) = x(t)
From part (a), when x(t) = ¢, then y(t) = ¢’’H(w). Also, by differentiating
y(t), we have
dy(t .
Z(z )~ joerH(w)
Substituting, we get
Jwel' H(w) + ae’ ' H(w) = ™
Hence,
JoH(w) + aH(w) = 1, or
1
H(w) =
(@) a + jw
$7.2

(a) The output of a discrete-time LTI system is given by the discrete-time convo-
lution sum

ylnl = Y hlklx[n — k)
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If x[n] = 2", then

> hlkle"*
=2"> hlkl*
= 2"H(2)

y[n]

(b) We are given that the first-order difference equation is of the form

y[n] + ayln — 1] = x[n]
From part (a), if x[n] = 2", then y[n] = 2"H(z). Hence,
yln — 1] = 2" 'H(2).
By substitution,
2"H(2) + az" 'H(2) = 2",
which implies
(1 +az™"HH(2) = 1,

H(z) = 1

1+ az7!

(b) x(t)

(@) z(t) = sin <107rt + %)

ej,r/ﬁ ej27rl5 _ e‘jﬂ/ﬁ
% %
We choose w,, the fundamental frequency, to be 2.

x(t) = ) ae™,
k

e—ijtS

where

eiT/6 — e /6

A5 = 27 ) A_5 = 27

Otherwise a, = 0.

1 + cos(2nt)
ej21rt e—jZﬂrL

1

+ 2 + 2

For Wy = 21", a_; =,

= },and a, = 1. All other a,’s = 0.

(c) x(t) = [1 + cos(2wt)] [sin(lOrt + %)}

= sin(lOart + g) + cos(27rt)sin(101rt + %)

ejar/G . e—j1/6 ) . ) ej1/6 )
= 2 e]2nt5 _ 2 e—]21rt5 + (%e] Tt + ée—ﬂﬂ) 2 e]21rt5 -
J ] ]
7 /6 —jn/6 jr/6 —jn/6
= € gi2mts _ 2 g ~I2rts + € e27e _ € g 72t
% 2 45 45
Jjr/6 —jn/6
+ & gizma _ & e

45 45

—jn/6

2

e —j2rl5)
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Therefore,

x(t) = Z akejkwol,
k

where w, = 2.

ei*/6 — g i/
a, = 4j ] a_, = 4j )
gi™/® —g i/
as = 2]- ’ a_5 = 2j ]
ejw/G _e—jr/ﬁ
Ag = 4f » A_g = 4
All other a,’s = 0.
S7.4
(@)
x(t)
14
} ! 2 .y t
) —1 0 3 4 5
.._1 4
Figure S7.4-1

Note that the period is T, = 6. Fourier coefficients are given by

a, = 1 J x(t)e ~*ot di
To To

We take w, = 27/T, = w/3. Choosing the period of integration as —3 to 3, we

have
1 ! ) 1 2
a, = E j e D gy 6 J g KD gy
-2 1
= L S S - I 1 s ’
6 —jk(m/3) —2 6 —jk(x/3) 1
= jz " [e+j(w/3)k_ e+j(21r/3)k — e—j(21/3)k + e‘j(f/3)k]
- Yy
_ cos(2m/3)k cos(mw/3)k
jrk Jrk
Therefore,
B(®) = Y wmet,  w =g
k
and

_ cos(2w/3)k — cos(w/3)k
B jrk

k
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Note that a, = 0, as can be determined either by applying L’Hbpital’s rule or by
noting that

a, = (1/Ty) jT x(t)dt.

(b)
x(t)

1A I T

—1 1 3

t

-2 0 2 4

Ll

Figure S7.4-2

The period is T, = 2, with w, = 27/2 = 7. The Fourier coefficients are

1 j .
= — t —Jkwot dt
a, To Jn x(t)e

Choosing the period of integration as —1 to %, we have

3/2
a, == J x(t)e *ot dt

—-1/2
3/2

= J [6(t) — 26(t — 1)]e 7*o* dt
—-1/2

) 1 )
— pdkwy = —_ __ —jx\k
e 5 (€7
Therefore,
a = -3 a=3— (-1

It is instructive to plot a;, which we have done in Figure S7.4-3.

o

Figure S7.4-3
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S7.5

(a) (i) and (ii)
From Problem 4.12 of the text (page 260), we have

x (t - -g) = —x(t),

which means odd harmonics. Since x(t) is real and even, the waveform has real
coefficients.
(b) (i) and (iii)
T
etr=2(-2).
which means odd harmonics. Since x(¢) is real and odd, the waveform has imag-
inary coefficients.
(© ()
T
— t) = t — —

which means odd harmonics. Also, x(?) is neither even nor odd.

Solutions to
Optional Problems

S7.6

x(t) is specified in the interval 0 < t < T/4, as shown in Figure S7.6-1.

x(1)

1

4

T
r T
8 4

Figure S7.6-1

(a) Since x(?) is even, we can extend Figure S7.6-1 as indicated in Figure S7.6-2.

x(r)
1
— - t
-Tr _T T T
4 8 8 4
Figure S7.6-2
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Since x(t) has only odd harmonics, it must have the property that x(t — T/2)
= —x(t), as shown in Figure S7.6-3.

T~ _ X([) in
r—2)=-x(t
x(t =)= =0 / Figure $7.6-2 shifted
I I
! ]
I I
} = : S : t
T T T 3
% 4 2 il
—-x(¢)in
Figure §7.6-2
Figure S$7.6-3
So we have x(t) as in Figure S7.6-4.
x(t)
1 —_—
4 + t } t
_T 0 T T 3 T
4 4 2 T
__1 4
Figure S7.6-4

(b) In the interval from ¢ = O tot = T/4, x(t) is given as in Figure S7.6-5.

x(2)

T
4

ool

Figure S7.6-5
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Since x(t) is odd, for —T/4 < t < T/4 it must be as indicated in Figure S7.6-6.

x(t)

1

ool
-

Sl
oo~y
PN

Figure S7.6-6

Since x(t) has odd harmonics, [t — (T/2)] = —x(t). Consequently x(t) is as

shown in Figure S7.6-7.

x()

1

T
1 2 4 t
T T
8 4
—1
Figure S7.6-7
S§7.7
S — —Jkawot
ay To Jn x(t)e dt
. 1 kot
@) a4, =— x(t — ty)e 7ot dit
To To
Substituting = t — t,, we obtain
a, = 1 x(r)e’* " dr - e Freoto
To To
= ake*jkwolo
A 1 —jkwot
M) & == x(—t)e 7ot di
T, To
Substituting 7 = —t, we have

1 )
a, = — j z(r)e™ v dr = a_,
To Ty
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©) a,=—-—| x*(t)e ot dt
T, To
A 1 jkwot
ay = — x(t)e "t dt = a_,,
TO To
dk = afk
@) & = % j w(at)e /T gy
0 To/a

Let 7 = at. Then
A 1 —jk(2x/To)
a, = — x(r)e T dr = q,
T, Jr

Therefore,

S7.8
(a) Since ¢,(t) are eigenfunctions and the system is linear, the output is
y@t) = Z MCidi(L).
k=—o
d?x(t) dx(t)
— #2
®) Yy ==+t
d(l) = tky
dd’k(t) — k—1
TR ke,
2
LoD = kck — e
So if ¢.(t) = x(t), then
y(t) = t’h(k — 1" + the*!
= k(k — 1)t* + kt*
= K’t* = E’pi(t)
The eigenfunction ¢,(t) has eigenvalue A\, = k2
S7.9

(@) 9(t) = 2,(t) ® ZL(t)
= j (1)t — 1) dr
To
The Fourier coefficients for §(t) are given by
1 ' )
C, = — f j Z(E(t — 1) dre /Tt g
To To JTo

jl(.,-)e—jk(zr/To)r dr J i‘z(t _ T)e —jk2x/To)(t—7) dt

TO To To

= Toayb;
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(b) Since 2(t) * 2(t) = x(t), as shown in Figure S7.9-1, then 2(t) is shown in Figure

57.9-2.
x(t)
2
z(r) z(1)
1 1
* =
t t t
-1 1 -1 1 -2 2
Figure S7.9-1
2(1)
1
] 1 t
-T, —1 1 T,
Figure S7.9-2

In Figure S7.9-2, T, = 5. Hence,

2

4 2wk
) - T 2 - — 1 —_—
&(t) 0% = ¢ [smc( 5 )]

(¢) Without explicitly carrying out the convolutions, we can argue that the aperi-
odic convolution of x,(t) and x,(t) will be symmetric about the origin and is
nonzero fromt = —2Ttot = 2T. Now, if #,(t) and &,(t) are periodic with period
T,, then the periodic convolution, #(t), will be periodic with period T,. If T is
large enough, then §(t) is the periodic version of y(t) with period T,. Hence, to
recover y(t) from §(t) we should extract only one period of %(¢) from ¢ =
—T,/2tot = To/2 and set y(t) = O for |t| > Ty/2, where T,/2 = 2T, or T, =
4T.

S7.10

(a) The approximation is
N

Et) = D a(t)

k=—-N
with the corresponding error signal
ex(t) = x(t) — T(t)
N
= 2(t) — ) aul(®)

k=—N
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Hence,

lex(8)|? = [x(t) -> akm(t)] [x*(t) — > alpi(t)
k k
= |2 = D atx(O)ei(t) — Y ax*(@¢u(t) + Y > aal()di(t)
k k k l

b

If we integrate, J |ex(t)|? dt, and use the property that

a

1, k=1,
0, otherwise,

J.a ¢u(t)pi(t) dt =

we get

a

b b
E= j |x(t)|2dt—Za;:f 2(t)pH(t) dit

b
-Ya [ @wemar+ 3 e
k a k

Since a; = b, + jc,,

aEv b b
-a—b— = —f 2(t)pi(t) dt — f x*()e(t) dt + 2b,
and
aE b b
i | swwwan—j | arwewa + 2,
Setting
oF oF
a_m =0 and a_c, = 0,
we can multiply the second equation by j and add the two equations to get
0F OF
FTREA
By substitution, we get
b
b+ o= | @@t ar

= a,

(b) If {¢,(t)} are orthogonal but not orthonormal, then the only thing that changes
from the result of part (a) is

|5 aateawiw dt = 3 ja,a,
i 1 k

It is easy to see that we will now get

1 b
Ly L x(t)pi(t) dt



Continuous-Time Fourier Series / Solutions

(¢) Since

To+a
J ejnwote—jnwot dt = TO

a

for all values of a, using parts (a) and (b) we can write

1 To+a )
a; = — J x(t)e "0 dt

0 a

=—j x(t)e ™t dit
To

S7-11
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