6 Systems Represented by
Differential and Difference
Equations

Solutions to
Recommended Problems

S6.1

We substitute y3(t) = ay,(t) + By.(t) into the homogeneous differential equation

dys(t d
y;i ) 4 ayy(t) = 2[00 + Byx(D)] + aley(2) + By D))

Since differentiation is distributive, we can express the preceding equation as

dy,(t) dy.(t)
«~au TP T4

+ aay,(t) + aBy(t)

- [yl()

[ dy(t)
dt

+ ayl(t)] + 8 ayz(t)]

However, since both y,(t) and y,(t) satisfy the homogeneous differential equation,
the right side of the equation is zero. Therefore,

dys(t)

di + ays(t) = 0

S6.2

(a) We are assuming that y(t) = ¢*. Substituting in the differential equation yields

2

d2 (e*") + 3 (es‘) + 2¢* =0

so that

s%e + 3se* + 2e* = e*(s> + 35+ 2)=0
For any finite s, ¢* is not zero. Therefore, s must satisfy
0=s"+8+2=(G6+1)(s+2), s=-—-1, -2

(b) From the answer to part (a), we know that both y,(t) = e¢™* and y,(t) = e”*
satisfy the homogeneous LCCDE. Therefore,
Ys(t) = Kie ™' + K,e™®,

for any constants K, K,, will also satisfy the equation.

S6.3

(a) Assuming y(t) of the form
y(t) = Ke*,
we substitute into the LCCDE, setting x[n] =

dy(t)

0= dt

(t) = Kse® + K-— = Ke“(s + ;)

S6-1
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Since K # 0 and ¢ # 0, s must equal —3i. K then becomes arbitrary, so the
family of y(t) that satisfies the homogeneous equation is

y(t) = Ke™"*
(b) Substituting into eq. (P6.3-1) y,(t) = Ae " for t > 0, we find
dy () 1 I
dy +2?/1(t) Ae +2Ae =e¢!, t>0

Since e never equals zero, we can divide it out. This gives us an equation
for A,

—A+‘—3—=1 asA = —2

(c) Fory,(t) = (2e7** — 2e Hu(t),

dy(t) |[2(—He—2-1e], t>0
da o, t< 0,
dy,() | 1 (—e 2+ 2 Y +i2e -2 =e", t>0
= x(t)

S6.4

(a) Note that since y[n]is delayed by one sample by the delay element, we can label
the block diagram as shown in Figure S6.4.

x[n] = Ly[n—1]
x[n] T

> y[n]
\ j

“lyip— D
v [n—1]

y[n—1]

A

(Y

Figure S6.4

Thus y[n] = x[n] — dy[n — 1], or y[n] + dy[n — 1] = x[n].

(b) Since the system is assumed to be causal, y[rn] must be zero before a nonzero

input is applied. Therefore, z[rn] = 0 for n < 0, and consequently y[n] must be
zero for n < 0. Thus, y[—5] = 0.

(¢) Since x[n] = §[n] = 0 for n < 0, y[r] must also equal zero for n < 0. For n = 0,
we have y[0] + §y[—1] = 1 or, substituting for y[n],

Ko ul0] + (Ka 'u[—1] = 1,
K+3-0=1, or K=1
For n > 0, we have

ylnl+3yln —1]1=0 or o+ 3" '=0
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since K = 1. Thus, « must equal —3} for o + 1" ! to equal 0 for all n > 0.
Therefore, y[n] = (—3)"u[n]. Substituting into the left side of the difference
equation, we have

(=" u[n] + 3(—H* ' uln—1]

(=) uln] — (=" uln—1]

1, n=20

0, otherwise

(d) We can successively calculate y{n] by noting that y[—1] = 0 and that
ylnl = —zyln — 1] + dn]

So
n=0 yl0l=-4-0+1=1
n=1 ylll=-4-14+0=—}
n=2 yl2l=—-3-(-D+0=4

We see that these correspond to the answer to part (c).

S6.5

(a) Performing the manipulations in inverse order to that done in the lecture (see
Figure S6.5-1) yields the system shown in Figure 56.5-2.

rin]
x [n] ——(+ 4@—» ¥ [n]

D
e e
1 -2
3
Figure S6.5-1
————————— i B el -
| | A~
o -
x [n] = = (T yin]
| Yy | Y :
{ D : : D !
! b :
| B : | - |
l R l 5 |
I % by 2 |
- O 1
A B
Figure S6.5-2
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Since the system is linear and time-invariant, we can exchange the order of the
two boxes A and B, yielding the direct form I shown in Figure S6.5-3.

x[n] > y[n]

Figure S6.5-3

(b) From the direct form I, we see that the intermediate variable g[n] is related to
x[n] by

qln] = x[n] — 2z[n — 1]

The signal y[n] can be described in terms of g[n] and y[n — 1] as
yln] = gln] + syln — 1]

Combining the two equations yields

y[n] = yln — 1] + x[n] — 2x[n — 1], or
yln] — syln — 1] = z[n] — 2x[n — 1]

(c) (i)  Figure S6.5-4 shows that if we concentrate on the right half of the dia-
gram of direct form II given in Figure P6.5, we see the relation

yin] = rn] — 2r[n — 1]

[n]
I e ¥ [n]

 /
D

.
L

rln—1] —2

Figure S6.5-4

(ii)  Similarly, Figure S6.5-5 shows that if we concentrate on the first half of
the diagram, we obtain the relation

r[n] = x[n] + $rin — 1], or xz[n] = rin] — ¥in — 1)



(iii)

S6.6
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rn]
x[n] —-»G} > —_——
]
D
- rin—1]
1
3
Figure S6.5-5

From the two equations obtained in parts (i) and (ii),

z[n] = r{n] — ¥rin — 1] (86.5-1)
and

y[n] = rin] — 2rn — 1], (S6.5-2)
we solve for r{n], obtaining

rin] = fz[n] — fyln]
Substituting r{n] into eq. (86.5-1), we have
x[n] = fx[n] — yln] — Hxln — 1] — yln — 1J),

which simplifies to

yln] — syln — 1] = z[n] — 22[n — 1]

(a) Integrating both sides of eq. (P6.6-1) yields

y(t) + a Jy(t) dt = ba(t) + ¢ [x(t) dt, or
y(t) = —a [y(t) dt + bx(t) + ¢ [x(t) dt

Thus, we set up the direct form I in Figure S6.6-1.

Pt T I |
' b N1 .
T ()T & — >0
I Y |  J |
I || |
L | i
| L |
: _ D o |

c ) | ) _ [
| ¢ | e |
L I I |

A B

Figure S6.6-1
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(b) Since we are told that the system is linear and time-invariant, we can inter-
change boxes A and B, as shown in Figure S6.6-2.

r __________ —: 777 77777
| b |
Lo/ ) ! J
x(1) | =(+) : ; > ,®—'—> y(1)
: Y | {V :
|
| J : LS '
| L |
l | : |
| —: | > I
l a | ¢ |
L J v J
B A
Figure S6.6-2

Combining the two integrators yields the final answer, shown in Figure S6.6-3.

g :@—» y(?)

Yy A

x(2) +

Y

Figure S6.6-3

Solutions to
Optional Problems

S6.7
(a) In Figure S6.7 we convert the block diagram from Figure P6.7 to direct form I.
qn]
x [n] > (+) »(+) >y [n]
\i Y
D D

—y
[

Figure S6.7
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g[n]is given by
gln} = z[n] + x[n — 1]
while
yln] = qin] — 4y[n — 1]
Substituting for gq[n] yields
y[n] + 4y[n — 1] = x[n] + x[n — 1]

(b) The relation between x[n] and r[n] is r{n] = —4r[rn — 1] + x[n]. For such a
simple equation, we solve it recursively when é§[{n] = x[n].

n é[n] r[n — 1] rin]

<0 0 0 0
0 1 0 1
1 0 1 —4
2 0 —4 16
3 0 16 —64

We see that r{n] = (—4)"u[n].
(¢) y[n]is related to r{n] by
yln] = r[n] + rn — 1]
Now y[n] = h[n], the impulse response, when x[n] = §[n], and
hin] = (—=4)"u[n] + (-4 'uln — 1]
This expression for k[n] can be further simplified:
hln] = (—4)"uln] + (—4)"'uln — 1]

or

0, n <0,

hin] =

1, n=0

Forn > 0,
hln] = (—4)" + (—4)*"!
= —3(—4)"!

Thus,

h[n] = §n]) — 3(—4)* 'u[n — 1]

S6.8

Note that the system in Figure P6.8 is not in any standard form. Relating (%) to x(t)
first, we have

j alx(t) + r(t)jdt = r(t), or (S6.8-1)
D — ar(t) = aat),

represented in the system shown in Figure S6.8.
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S6.9

x(2) -~ r(t)
x(¢) +r(2) J
A
?
Figure S6.8

The signal y(t) is related to r(¢) as follows:

r(t) + bjr(t) dt = y(t), or (S6.8-2)
%2 + br(t) = %Q
Solving for dr(t)/dt in eqs. (S6.8-1) and (S86.8-2) and equating, we obtain
ar(t) + ax(t) = —br(t) + Q?;_(ttl
Therefore,
r(t) = a—jr—"’g () + &_i—b %—” (S6.8-3)

We now substitute eq. (§6.8-3) into eq. (S6.8-1) (or eq. S6.8-2), which, after simpli-
fication, yields

dy’(t)  dy(t) _  da(t)
9t a dt =q dat + abx(t)

(a) Substituting y[n] = Az} into the homogeneous LCCDE, we have
Azy — Az =0

Dividing by Az2 ! yields

Do~

2, —+=0, or 2y =

(b) For the moment, assume that the input is &[n] = Ke’u[n] and the resulting
output is §[n] = Ye™ u[n]. Thus,

gln] — $9(ln — 1] = Z(n]
Substituting for §[=] and &[n] yields
Ye/tr — lyeitte—1) = Kgiton  forp > 1
Dividing by ¢’%", we get
— e .Y =K
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Thus
Y = K _ K
= 1 — %e—jno - \/%——cos_ﬂ—oe” tan—1{(sin ©0)/(2—cos 20)] ’ or
Y = _.__K_ g7 tan~l{(sin 20)/(2—cos Qo)]
V5 — cos @
Therefore,

y[n] = Re[Yejﬂonu[n]] - Re[ej{non—tan—ll(sin Q0)/(2—cos no)])u[n]]

% — cos Q,
K

where B = —————,

V3 — cos Q

sin
0 = —tan™! —_— %
an (2 — €os Qo>

= B cos(Qn + 0),

S$6.10
The important observation to make is that if [dir(t)]/dt* is the input to the system
H, then [dis(¢)]/dt’ will be the output. Suppose that we construct a signal
u A
d'r(t)
t) =  ——
a(t) Zl @
The response of H to the excitation g(t) is
o .
d's(t)
t) = ks
p(t) ;%wl
However, g(t) = 0 for all t. Therefore, p(t) = 0 for all ¢. Thus,
M )
d’t
> a2 -0
i=1 dt
S6.11

(a) Substituting y(t) = Ae** into the homogeneous LCCDE, we have

Yo dyt Y d
> o, TLD =S 6, e = 0

k=0 dtk k=0

N
= (Z aks’g) Ae* =0

k=0

Since A # 0 and e** # 0, we get

N

p(sy) = Z a,s; =0

k=0

(b) Here we need to use a rather subtle trick. Note that

Ate™ = g} (4e*)
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Using this alternative form for Ate™, we obtain
. dal&  d .
Za"dt"( Ae '> =— L;)ak7(Ae ‘)J

= —[p(s)Ae“] = Awp(s) + 4 228,

ds
For s = sy, p(sy) = 0. Also, since p(s) is of the form

p(s) = (s — 50)’q(s),
we have

dp(s)

=0
ds s=sp

Therefore, Ate** satisfies the homogeneous LCCDE.
(c¢) Substituting y(t) = €*, we get the characteristic equation

s +2s+1=0, or s,=—1

Thus, y(t) = K,e™* + Kyte " For y(0) = 1 and y’(0) = 1, we need K, = 1 and
K, — K, = 1,or K, = 2. Thus,

y(t) =e ' + 2te”*
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