
4 Convolution 
Solutions to 
Recommended Problems 
S4.1 

The given input in Figure S4.1-1 can be expressed as linear combinations of xi[n], 
x 2[n], X3[n]. 

x,[ n] 

0 2 
Figure S4.1-1 

(a) 	 x 4[n] = 2x 1 [n] - 2x 2[n] + x3[n] 

(b) 	Using superposition, y 4[n] = 2yi[n] - 2y 2[n] + y3 [n], shown in Figure S4.1-2. 
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Figure S4.1-2 

(c) 	 The system is not time-invariant because an input xi[n] + xi[n - 1] does not 
produce an output yi[n] + yi[n - 1]. The input x,[n] + xi[n - 11 is xi[n] + 
xi[n - 1] = x2[n] (shown in Figure S4.1-3), which we are told produces y 2[n]. 
Since y 2[n] # yi[n] + yi[n - 1], this system is not time-invariant. 

x 1 [n] +x 1 [n-1] =x2[n] 

n 
0 1 

Figure S4.1-3 
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S4.2 

The required convolutions are most easily done graphically by reflecting x[n] about 
the origin and shifting the reflected signal. 

(a) 	By reflecting x[n] about the origin, shifting, multiplying, and adding, we see 
that y[n] = x[n] * h[n] is as shown in Figure S4.2-1. 

(b) 	 By reflecting x[n] about the origin, shifting, multiplying, and adding, we see 
that y[n] = x[n] * h[n] is as shown in Figure S4.2-2. 
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Figure S4.2-2 

Notice that y[n] is a shifted and scaled version of h[n]. 

S4.3 

(a) 	It is easiest to perform this convolution graphically. The result is shown in Fig­
ure S4.3-1. 
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y(t) = x(t) * h(t) 

4-­

| t 
4 8 

Figure S4.3-1 

(b) 	 The convolution can be evaluated by using the convolution formula. The limits 
can be verified by graphically visualizing the convolution. 

y(t) = 7x(r)h (t - r)dr 

= e-'-Ou(r - 1)u(t - r + 1)dr 

1 
t+ 

e (- dr, t > 0, 

-0, t < 0, 

Let r' = T - 1. Then


y( ) e- d r -e t > 0,


0 0 , t < 0


(c) 	 The convolution can be evaluated graphically or by using the convolution 
formula. 

y(t) = x(r)6(t - , - 2) dr = x(t - 2)


So y(t) is a shifted version of x(t).


y(t)
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Figure S4.3-2 
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S4.4 

(a) Since y[n] = E=-oox[m]h[n - m], 

y[n] = 6b[m - no]h[n - m] = h[n - no] 
m= -oO 

We note that this is merely a shifted version of h[n]. 

y [n] = h1[12­ I 

a e|41 8 n 

(n 1) no (n1+ 1) 

Figure S4.4-1 

(b) y[n] = E =_c(!)'u[m]u[n ­ m] 

For n > 0: y[n] = 
1 + 

= 2( 1 

y[n] = 2 - (i)" 

Forn < 0: y[n] = 0 

Here the identity 
N-i N _ 
T am 
Mr=O 1 ­ a 

has been used. 

y[n] 
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Figure S4.4-2 

(c) Reversing the role of the system and the input has no effect 
because 

y[n] = E x[m]h[n ­ m] = L h[m]x[n ­ m] 
m=-oo 

The output and sketch are identical to those in part (b). 

, 

on the output 



Convolution / Solutions 
S4-5 

S4.5 

(a) (i) Using the formula for convolution, we have 

y 1 (t) = x(r)h(t - r) dr 

= r(-)-2u(t - r) dr 

t 

= e -( - 2dr, t > 0, 

2e 10 = 2(1 e t > 0, 

y(t) = 0, t < 0 

y1 (t) 

-
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0 

Figure S4.5-1 

(ii) Using the formula for convolution, we have 

y2(t) = 2e-(t-r)/2 dr, 3 t>- 0, 

y2 (t) 

=4(1 - e-t/2), 

= { 2e-(-­ /2 d-, 

3 t : 0, 

t >_3, 

3 

S4e (t-r)/2 0 4(e -(t-3)/2 _ e-t/2 
0 

= 4e- t/2(e'/ 2 
- 1), t 3, 

y 2(t) = 0, t 0 

y 2 (t) 
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Figure S4.5-2 
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(b) 	 Since x 2(t) = 2[xl(t) - xl(t - 3)] and the system is linear and time-invariant, 
y2(t) = 2[yi(t) - y1(t - 3)]. 

For 0 s t s 3: y 2(t) = 2yi(t) = 4(1 - e-'/2) 
For 3 t y 2(t) = 2y,(t) - 2yi(t - 3) 

= 4(1 - e-1/2 4(1 - e- t 
-3)2) 

= 4e- t/2 e3 / 2 
_ 1 

Fort< 0: y2(t) = 0 

We see that this result is identical to the result obtained in part (a)(ii). 

Solutions to 
Optional Problems 
S4.6 

(a) 
x(T) 

1 

T 
0 	 1 

Figure S4.6-1 

h(-1 -r) 
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Figure S4.6-2 



Convolution / Solutions 

S4-7 

h(0-r) 

Figure S4.6-3 

h(1 -- ) 

Figure S4.6-4 
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Using these curves, we 
Figure S4.6-6. 

see that since y(t) = x(t) * h(t), y(t) is as shown in 

(b) Consider y(t) = x(t) * h(t) = 

1 --

---

f0x(t - r)h(r)dr. 

y(t) 
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Figure S4.6-6 

t 

h(r) 

2 
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For 0 < t < 

0 1 2 

Figure S4.6-7 

1, only one impulse contributes. 

x(t -r) 

For 1 < 

Figure S4.6-8 

t < 2, two impulses contribute. 

x(t ­ ) 

Figure S4.6-9 
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For 2 < t < 3, two impulses contribute. 

x(t- r) 

Figure S4.6-10


For 3 < t < 4, one impulse contributes.


t)x(t ­

Figure S4.6-11 

For t < 0 or t > 4, there is no contribution, so y(t) is as shown in Figure 
S4.6-12. 

y(t) 
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Figure S4.6-12 

S4.7 

y[n] = x[n] * h[n] 

= 1 x[n - m]h[m] 

nO=- - n 0,anmm, > 
M=0 
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y[n] = a" = a" L 
(la) 

a n+1 _ n+1 

a - # 
n > 0, 

y[n] = 0, n < 0 

S4.8 

(a) x(t) = E_= - kT) is a series of impulses spaced T apart. 

x(t) 

t 
-2T -T 0 T 2T 

Figure S4.8-1 

(b) Using the result x(t) *(t - to) = x(to), we have 

y(t) 

.. t 
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2 2 2 2 

Figure S4.8-2 

So y(t) = x(t) *h(t) is as shown in Figure S4.8-3. 

y(t) 
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Figure S4.8-3 
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S4.9 

(a) False. Counterexample: Let g[n] = b[n]. Then 

x[n] * {h[n]g[n]} = x[n] h[0], 

{x[n]* h[n]}g[n] = b[n] [x[n] *h[n]] 
n=0 

and x[n] may in general differ from b[n]. 

(b) True. 

y(2t) = fx(2t - r)h(r)dr 

Let r' = T/ 2 . Then 

y(2t) = f x(2t - 2r')h(2r')2dr' 

= 2x(2t)* h(2t) 

(c) True. 

y(t) = x(t) * h(t)


y(- t) = x(-t) * h(-t)


-f x(-t + r)h(-r)dr = f [-x(t - r)][ -h(r)] dT 

=f x(t - r)h(r)dr since x(-) and h(-) are odd fu ictions 

- y(t) 

Hence y( t) = y(-t), and y(t) is even. 

(d) False. Le t 

x(t) = b(t - 1) 

h(t) = b(t + 1) 
y(t) = b(t), Ev{ y (t)} = 6(t) 

Then 

x(t) *Ev{h(t)} =b(t - 1) *i[b(t + 1) + b(t - 1)]


= i[b(t) + b(t - 2)],

Ev{x(t)} * h(t) =1[6t - 1) + b(t + 1)] * b(t + 1)


= 1[b(t) + b(t + 2)]


But since 1[6(t - 2) + b(t + 2)] # 0,


Ev{y(t)} # x(t) *Ev{h(t)} + Ev{x(t)} *h(t)


S4.10 

(a) 
9(t) = Jro 

TO21 (r)22(t - r) dr, 
O 

D(t + T0) = J 2 1 (T)- 2(t + To - r) d-r 

= TO 1 (r) 2 (t - r)dr = (t) 
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(b) 
9a(t) = T 

a+TO 

2 1(i)2 2(t - -) dr, 

a 

9a(t) 

= 

= 

kTo + b, where 0 
(k+1)T0+b 

2 1(r)A 2(t - i) 
kT0+b 

TO+b 

b -

dr, 

To, 

Pa(t) = fb 2 1 (i)± 2 (t - r) di, i' = i - b


FTo 
 T7 0+b 
= 	 T1()- t - r) dr + 1&)2(t - r) di2 

b 	 TO 

Tb 	 ()A - r) d1 2- ) di 

= 	 )T)TO 
= 21 )12( t T ) dr =q t )t(-r ­

(c) 	 For 0 s t - I 

ft e- I9(t) = di + Ti±e-'di 
0e + e/2+t1/2+1 

=(-e-' t + (-e-T 
0 11/2+t) 

(t) = 1 - e~' + e-(*±1/2) - e-1 = 1 - e-1 + (e 1/2 
- 1)e-

For s t < 1: 

= ft
t(t) e-' di = e- ( 1/2) - e­

- 1/2 )e 

(d) 	 Performing the periodic convolution graphically, we obtain the solution as 
shown in Figure S4.10-1. 

2 X1[n] *x2[n] 

19 

0 1 3 4 5 

-16 (one period) 

Figure S4.10-1 
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(e) 

S4.11 

(a) Since y(t) = x(t) *h (t) and x(t) 	= g(t) *y(t), then g(t) *h(t) = 6(t). But 

g(t )*h (t) = grob t - kT hboTr - lT d, 
wk=0 	 1=0 

= T gkhlo(t - (1+ k)T) 
k=O 1=0 

Let n = 1 + k. Then = n - k and 

g(t)* h (t) = Ygkhn t - n 
n=0 \k=0 

n F, n = 0, 

k=0 n O 

Therefore, 

go = 1/h 0 , 
gi = -- hi/ho, 

1 (-hl h2) 

2 o ho ho 

(b) 	 We are given that h0 = 1, hi = I, hi = 0. So


= 1,


g1 = -i) 

g2=+(1)2, 

g2 = -() 
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Therefore, 

g(t) = ( (-) 
k=O 

(tkT) 

(c) (i) Each impulse is delayed by T and scaled by a, so 

h(t) = 
k=O 

(t -kT ) 

(ii) If 0 < a < 1, a bounded input produces a bounded output because 

y(t) = x (t)* h (t), 

| y(t)| < Zak 
k=0 

< a 
k=O 

f 
6(r ­ kT)x(t - r) di 

-w 

_(T - kT)Ix(t - T)I dr 
-w 

Let M = maxlx(t)|. Then 

1 
I y(t) < M ak= M , al < 1 

k=O 

If a > 1, a bounded input will no longer produce a bounded output. For 
example, consider x(t) = u(t). Then 

00 t 

yt) = Ta f 6(,r - kT) dr 
k=O -w 

Since f 6(r - kD di = u (t-kT ), 

y(t) = ( aku(t-kT) 
k=O 

Consider, for example, t equal to (or slightly greater than) NT: 
N 

y(NT) = Z ak 
k=O 

(iii) 

If a > 1, this grows without bound as N (or t) increases. 

Now we want the inverse system. Recognize that we have actually solved 
this in part (b) of this problem. 

gi = 1, 

g2 = -a 

gi = 0, i # 0, 1 

So the system appears as in Figure S4.11. 

y(t) _0_ x(t) 

Delay T 

Figure S4.11 
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(d) 	 If x[n] = 6[n], then y[n] = h[n]. If 

x[n] = go[n] + iS[n-N], 
then 

y[n] = -h[n] + -h[n], 

y[n] = h[n] 

S4.12 

(a) b[n] = #[n] - -4[n - 1], 

x[n] = ( x[k][n - k] = ( x[k]Q([n - k] - -p[n - k - 1]),
k=-- k=--w 

x[n] = E (x[k] - ix[k - 1])4[n- k] 
k= -w 

So ak = x[k] - lx[k - 1]. 

(b) If r[n] is the response to #[n], we can use superposition to note that if 

x[n] = ( akp[n - k], 
k=­

then 

y[n] = Z akr[n - k] 
k= -w 

and, from part (a), 

y[n] = ( (x [k] - fx[k -	 1])r[n - k] 
k= ­

(c) y[n] = i/[n] *x[n] * r[n] when 

[n] = b[n] - in- 1] 

and, from above, 

3[n] 4[n] - -[- 1] 

So 

/[n] = #[n] - -#[n - 11 - 1(#[n - 11 - -$[n - 2]), 
0[n] = *[n] - *[n - 1] + {1[n - 2] 

(d) 	 4[n] - r[n], 
#[n - 1] - r[n - 1], 

b[n] = 4[n] - -1[n- 1] - r[n] - fr[n -1] 

So 

h[n] = r[n] - tr[n -1], 

where h[n] is the impulse response. Also, from part (c) we know that 

y[n] = Q[n] *x[n] *r[n] 

and if x[n] = #[n] produces r[n], it is apparent that #[n] * 4[n] = 6[n]. 
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