4 Convolution

Solutions to
Recommended Problems

S4.1

The given input in Figure S4.1-1 can be expressed as linear combinations of x,[n],
Zz[n], 23[n).

x,[n]

L1

Figure S4.1-1

(@) xyn] = 2x,[n] — 2x;:[n] + 25(n]
(b) Using superposition, y,[n] = 2y,[n] — 2y,[n] + ys[r], shown in Figure S4.1-2.

2e [

—2
Figure S4.1-2

(c¢) The system is not time-invariant because an input x,[n] + x,[n — 1] does not
produce an output y,[n] + y,[n — 1]. The input x\[r] + x[n — 1] is x|[rn] +
x[n — 1] = x,[n] (shown in Figure S4.1-3), which we are told produces y,[n].
Since y,[n]l # yi[n] + yi[n — 1], this system is not time-invariant.

x[n] +xy[n—1]=x,[n]

0 1
Figure S4.1-3

S4-1
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S4.2

The required convolutions are most easily done graphically by reflecting x{n] about
the origin and shifting the reflected signal.

(a) By reflecting x[n] about the origin, shifting, multiplying, and adding, we see
that y[n] = x[n] * h[nr] is as shown in Figure S4.2-1.

yln] 938
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Figure S4.2-1

(b) By reflecting x[n] about the origin, shifting, multiplying, and adding, we see
that y[n] = x[n] * h[n] is as shown in Figure S4.2-2.
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Figure S4.2-2

Notice that y[n] is a shifted and scaled version of h[n].

S4.3

(a) It is easiest to perform this convolution graphically. The result is shown in Fig-
ure S4.3-1.
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y(t)=x(t) «h(2)

Figure S4.3-1

(b) The convolution can be evaluated by using the convolution formula
can be verified by graphically visualizing the convolution.

y(t) J_ x()h (t— 1)d7

J- e " Vy(r — Du(t — 7 + dr

t+1
[Meevan i
1

0, t <0,
Let 77 = 7 — 1. Then

t
e 7dr 1—et, t>0,
y(t) = J~o =

0 0, t<0

S$4-3

. The limits

(¢) The convolution can be evaluated graphically or by using the convolution

formula.
y(t) = j_wx(r)é(t —7—=2)dr = x2(t — 2)

So y(t) is a shifted version of x(?).

y()

Figure S4.3-2
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S4.4

(a) Since y[n] = Z5. _x[mlh{n — m],

yinl = Y om — nolhln — m] = hin — ny)

m=—oo

We note that this is merely a shifted version of k[n].

ylnl =h[n - n

[

(;10 - 1) ng (gt 1)

ool»—-

n

Figure S4.4-1

() yln] = Z5_ (@) ulmlu[n — m]

| YA A PR O A
Forn > 0: y[n]—Z(z) = -1 —2(1 <2> >,

m=0
yln] =2 — @
Forn < 0: Yyn] =0
Here the identity

has been used.

o _
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0 1 2

Figure S4.4-2

(c¢) Reversing the role of the system and the input has no effect on the output
because

el

yln] = Z x[mlh[n — m] = Z h[m]x[n — m]

m=—o0 m=—co

The output and sketch are identical to those in part (b).
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S4.5

(a) (1) Using the formula for convolution, we have

y.(1) J_ x(T)h(t — ) dr

j u(r)e Uyt — 1) dr

12
J e dr, 1> 0,
0

t

= 2(1 — e, t>0,

0

y(t) = 0, t<O0

= ze—(t—r)/2

y.(0)

Figure $4.5-1

(ii) Using the formula for convolution, we have

t
yo(t) = J 2e "2 dr, 3=t=0,
0
=41 —e"?), 3=t=0,
3
yo(t) = j 2e "2 dr  t =3,
0

3

= 4(e "2 — el
0

= 4e V¥ e*?* — 1), t =3,
yZ(t) = 0) = 0

= 4e (t-7)/2

¥, (1)

Figure S4.5-2
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(b) Since xy(t) = 2[x,(t) — x,(t — 3)] and the system is linear and time-invariant,
Y1) = 2[y,(¢) — yi(t — 3)).

For0=t=3: y,(t) =2y,(t) = 41 — e ?)
For3 <t: Ys(t) = 2y,(t) — 2y,(t — 3)
=4(1 — e — 4(1 — e 3/
= 4e VY% — 1]
Fort < O: Yyt) =0

We see that this result is identical to the result obtained in part (a)(ii).

Solutions to
Optional Problems

S4.6

(@)
x(7)

1A T
r

0 1

Figure S4.6-1

h(—1-7)

.
1 -1 0
-1Y

Figure S4.6-2
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h(0—7)

e

Figure S4.6-3
h(l—1)
2 A
2
T
0 1 1
—1Y
Figure S4.6-4
h(2—1)
2
1 3
r
0 1 2 l
—1

Figure S4.6-5

S4-7
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Using these curves, we see that since y(t) = x(¢) * h_(t), y(t) is as shown in
Figure S4.6-6.

Figure S4.6-6

fee]

(b) Consider y(t) = x(¢) * h(t) = f x(t — Th(r) dr.

h(7)
2
14
1 T
0 1 2
Figure S4.6-7

For 0 <t < 1, only one impulse contributes.

x(t—17)

1

Figure S4.6-8

For 1 <t < 2, two impulses contribute.

x(t—r1)

i

Figure S4.6-9
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For 2 < t < 3, two impulses contribute.

Convolution / Solutions

x(t—1)

Figure S4.6-10

For 3 <t < 4, one impulse contributes.

x(t—1)

Figure S4.6-11

T

S4-9

Fort < 0 or t > 4, there is no contribution, so y(t) is as shown in Figure

S4.6-12.

Figure S4.6-12

yln] =

x[n] * hin]

> x[n — mlh[m]

m=—

Z """ u [n— mlB"u[m]

m=—00

n
Z o mp™, n > 0,
m=0
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n

o= 3 (8] = o [L 0]
Y 2 \a 1 — (8/a)

an+l_ m+1
Al AL —
a—p

yln]l = 0, n <0

S4.8

(@) x(t) = T _o0(t — kT) is a series of impulses spaced T apart.

x(2)
| I [
] [ ’ | t
—2T -T 0 T 2T
Figure S4.8-1
(b) Using the result x(%) * 6(t — t,) = x(t,), we have
y(1)
—2 3 -1 -1 o 1 1 3 2
2 2 2 2
Figure S4.8-2
So y(t) = x(t) * h(t) is as shown in Figure S4.8-3
y(1)
1
WW
2
= e e U R
2 2 2 2

Figure S4.8-3
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S4.9
(a) False. Counterexample: Let g[n] = §[n]. Then
x[n]* {k[nlg(n]} = x[n] - R[O],
{x[n] * hIn]}gln] = d[n] - [x[n] *h[n]] "
and x[n] may in general differ from d§[n].
(b) True.
y(2t) = j x(2t — Dh(r)dr
Let = 7/2. Then
y(2t) = j x(2t — 27)h(27)2 d7’
= 2x(2t) * h(2t)
(¢) True.
y(t) = x2(t) = h(t)
y(—=t) = 2(—t) * h(—1t)
= I x(—t + Dh(—1)d7 = j [—x(t — Dl—h(@)]dr
= J x(t — h(r) dr since x(-) and h(-) are odd functions
= y(t)
Hence y(t) = y(—t), and y(¢) is even.
(d) False. Let
x(t) = 8(t — 1),
h(t) = &(t + 1),
y(t) =&t), Ev{y(®)} =41)
Then
x(t) * Ev{h(t)} = 6(t — 1) +3[6(t + 1) + 5(t — 1))
= §[6(2) + ot — 2)],
Ev{x(t)) *h(t) = 36(t — 1) + 6(¢ + D] *d(t + 1)
= 4o(t) + o(t + 2)]
But since §[6(t — 2) + 8(t + 2)] # 0,
Ev{y ()} # x(¢) * Ev{h(8)} + Ev{x (1)} * h(t)
S$4.10

@ y(t) = f B — 1) dr,
0

To

gt + T,) = J. (Nt + Ty — 1) dr
0
To

= ()Xt — 1) d7 = F(2)

0
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(b) a+T,
Pu(t) = f Z(7)Z(T — 1) dr,

a = kT, + b, where 0 < b < T,

e+ DTo+b
§a(t) = J- Z,(1)Z(t — 7) dr,

kTo+b

Ty+b
(1) j T(NE(t —T)dr, T =71—0b
b

To+b

f O.i‘l(r).’%z(t —7ndr + (1) (t — 1) dr

Ty

Ty b
f Z(1)T(t — 1) d7 + J Z(1)E(t — 1) dr

J:) 05%1(7')1‘2((‘, —71)dr = j(t)

() For0=t=<1i

1

t
J e 'dr + e'dr
0

1/2+t
t 1
=|—e” +|—e’ ,
0 1/2+¢

g)=1—e'+e P —e'=1—e"'+ (e - e

a(t)

Fori=t=<1:
t

) = j e dr =e ¢V — gt
t—1/2

= (e — De!

(d) Performing the periodic convolution graphically, we obtain the solution

shown in Figure S4.10-1.

2 p x[n] xx,[n]
1
2
. . n
0 1 3 4 5
-1 (one period)
Figure S4.10-1

as



(e)
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xy[n] * x,[n]

®
®
®
=

(one period)

Figure S4.10-2

S4.11

(a) Since y(t) = x(t) * h(t) and x(t) = g(t) * y(t), then g(t) * h(¢) = 4(¢). But

g(t)*h (1) = J > gt — 7 — k)Y hi(r — IT) dr
- =0

Letn

g(t) *

So

Therefore,

(b) We are given that k,

k=0

l+ k. Thenl =n — k and

® k=0

o o

> gehid(t — (U + k)T

1=0

Ry =Y <Z gkhn_k) 8¢ —nT)

n=0 \k=0

i h [’1, n =0,
Gy - =
k=0 * * 0, n#0
9o = 1/h0’
g = —hl/h(2)7
it el R A

P70 \ B ke
1, hl =%, hi = 0. So

9o = 1)

g, = _%7

gZ = +(%)21

g =—@’.
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Therefore,
gt) = > (—Hre(t—kT)
k=0

(c) (D) Each impulse is delayed by T and scaled by «, so

oo

h(t) = ) a(t—kT)

k=0
(ii) If 0 <a <1, abounded input produces a bounded output because
y(t) = x (L) *h (),

Ly <D o
k=0

j o(r — kT)x(t — 7)dr

<Za"j o(r — kT)|x(t — 7)| dr
k=0 -
Let M = max|x(t)|. Then

d 1
|y <MY o = M—— ol <1

k=0 1 -

If « > 1, a bounded input will no longer produce a bounded output. For
example, consider x(t) = u(t). Then

yy =y o f 8(r — kT) dr
k=0 —®
Since j o(r — kD) dr = u (t—kT),

y() = > du(t—kT)

k=0
Consider, for example, ¢ equal to (or slightly greater than) NT:
N
Yy(NT) = Y o
k=0
If « > 1, this grows without bound as N (or t) increases.

(iii) Now we want the inverse system. Recognize that we have actually solved
this in part (b) of this problem.

gl=17
g = —«a
g,;=0, 1:?&0,1

So the system appears as in Figure S4.11.

y(t) :@—> x(1)
> Delay T _’—'T

—Q

Figure S4.11
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(d) If x[n] = §[n], then y[n] = h[n]. If
x[n] = B[n] + 3[n—N],
then

yln] = hin] + shin],
y[n] = hin]

S4.12

(@) d[n] = ¢[n] — 3¢ln — 1],
zn) = Y a[kBln —kl = > z[kl(¢[n — k] — d¢[n — k — 1)),

k=—00 k=—00

zn] = Y (afk] — salk — 1eln— kI

k=—oco

So a; = afk] — $afk — 1].

(b) If r[n] is the response to ¢[n], we can use superposition to note that if

oo

n] = > apln — ki,

k=—o

then

(e

yinl = > auin — k]

k=—o0
and, from part (a),

ylnl = > (@ (k] — baxlk — 1Drin — k]

() y[n] = Y{n] * x[n] * r[n] when
Yn] = §n] — 3¥(n — 1]
and, from above,
3n] = ¢[n] — f¢ln — 1]
So
¥Un] = ¢[n] — té(n — 1] — $(¢ln — 1] — $¢[n — 2],
¥n] = ¢(n] — ¢ln — 1] + igln — 2]

(D ¢{n] — rin],
¢ln — 1] = r[n — 1],
dn] = ¢[n] — i¢ln — 1] = rin] — irin — 1]

So
h[n] = rin] — 3r{n — 1],

where h[n] is the impulse response. Also, from part (c) we know that
yln] = Yn]* x[n] * r{n]

and if x[r] = ¢[n] produces r{n}], it is apparent that ¢[n] * Y{n] = d[n].
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