3 Signals and Systems: Part II

Solutions to
Recommended Problems

S3.1

(a)
x[n]=8[n]+8[n—3]

Figure S3.1-1

)

x[{n]=u[n]—uln—735]

o A 111

Figure S3.1-2

©
x[n]=8[n]+ 38[n—1]1+(§)*8[n]+ (3)38[n—3]

@ e
(V0 ]
o @
RSN ]

(d
x()=u(t +3) —u(t—3)

1

-3 0 3

Figure S3.1-4
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(e)
x(1)=6(t+2)
1
T t
-2 o|
Figure S3.1-5
®
x(t)=e""u(r)
t
Figure S3.1-6

S3.2

(D h

2)d

@b

“4) e

(B5) a, f

(6) None
S3.3

(@) z[n] = 6[n — 1] — 28[n — 2] + 36[n — 3] — 20[n — 4] + 8[n — 5]

(b) s[n] = —uln + 3] + 4u[n + 1] — 4u[n — 2] + u[n — 4]
S3.4

We are given Figure S3.4-1.

x(t)

12

Figure S3.4-1
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x(—t)and (1 — t) are as shown in Figures S3.4-2 and S3.4-3.

x(=1)

12
Figure S3.4-2
x(1—t)
1
L
—11 1
Figure S3.4-3

(a) u(t + 1) — u(t — 2) is as shown in Figure S3.4-4.

+
—1 0 1 2
Figure S3.4-4

Hence, (1 — t)[u(t + 1) — u(t — 2)] looks as in Figure S3.4-5.

N[

-1 1

Figure S3.4-5

S3-3
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(b) —u(2 — 3t) looks as in Figure S3.4-6.

2
3

Figure S3.4-6

Hence, u(t + 1) — u(2 — 3t) is given as in Figure S3.4-7.

+1

wito

Figure S3.4-7

So (1 — t)u(t + 1) — u(2 — 3t)] is given as in Figure S3.4-8.

Nas
36
—1

- .
—11 21
3
4.3
6

Figure S3.4-8

S3.5

(@) yn] = 2n] + z[n] — z[n — 1]
(®) yln] = 2%[n] + z[n] — z[n — 1]

(©) yln] = Hlz[n] — x[n — 1]]
= zn] + x(n — 1] — 2x[nlxn — 1]

(@) y[n] = Glx[n]]
= zn] — 2% n — 1]
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(e) y[rn] = Flx[n] — z[n — 1]]
= 2(x[n] — x[n — 1) + (x[n — 1] — x[n — 2))
y[nl = 2x[n] — x[n — 1] — x[n — 2]
®) yin] = Gl2x[n] + x[n — 1]]
= 2x[n] + x[n — 1] — 2x[n — 1] — z[n — 2]
= 2x[n] — z[n — 1] — x[n — 2]

(a) and (b) are equivalent. (e) and (f) are equivalent.

Memoryless:

(a) y(t) = (2 + sint)x(t) is memoryless because y(t) depends only on x(t) and not
on prior values of x(t).

(d) y[n] = Zi._.x[n] is not memoryless because y[n] does depend on values of
x{-] before the time instant «n.

®) y[n] = max{x[n], x[n — 1], ..., x[—o0]} is clearly not memoryless.
Linear:
(a) y(t) = (2 + sin t)x(t) = T[x(t)],

Tlax,(t) + bxy(t)] = (2 + sin t)[ax,(t) + bxy(t)]
= a(2 + sin t)x,(t) + b(2 + sin t)x(t)
= aTlx,(t)] + bT[xy(1)]
Therefore, y(t) = (2 + sin t)x() is linear.
(b) y(t) = x(2t) = Tlx(?)],
Tlax,(t) + bxy(t)] = ax,(2t) + bxy(t)
= aT[x,(t)] + bT[xy(t)]
Therefore, y(t) = x(2t) is linear.

o

© yinl = > alk] = Tlz[n]],
Tlax[n] + bxdn]l = a > @ikl +b > xlk]

= aTlx\[n]] + bTlxn]]
Therefore, y[n] = . _,x[k] is linear.

n

(d) y[n] = Z x[k] is linear (see part c).

© v = 28 = 1iz0),
d
Tlax,(t) + bxy(L)] = a;[axn(t) + bay(1)]
_dx(t) dxy(t) _
=a i + b T aT[x,(t)] + bT[xy(1)]
Therefore, y(t) = dx(t)/dt is linear.
Tlax,[n] + bx)[n]] = max{ax,[n] + bxjn], ..., ax,[—0] + bx]— 0]}
# a max{x,[n], ..., x,[—o0]} + b max{x,n], ..., x{—co])

Therefore, y[n] = max{x[n], ..., 2[—oo]} is not linear.
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Time-invariant:

(@ y(t) = (2 + sin t)x(t) = Tlx(t)],
Tlx(t — Ty)] = (2 + sin Dax(t — Ty)
#FYt —Ty) = (2 +sin(t — T)x(t — Ty
Therefore, y(t) = (2 + sin t)x(t) is not time-invariant.
(b) y() = x2(2t) = Tlz(?)],
Tlx(t — Ty)] = x(2t — 2T,) # x(2t — T,) = y(t — T,)
Therefore, y(t) = x(2t) is not time-invariant.

e

(© ylnl = > alk] = Tlx[n]),

k=—oco
o

Tlx[n — NoJl = >  x[k — No] = y[n — N]

k=—-co

Therefore, y[n] = L _.x[k] is time-invariant.

n

@ ylnl = > x[k] = T(z[n]],
k=—-
Tlxln — Noll = > alk — Nl = > [l] = y[n — N,
k=—o0 l=—~x

Therefore, y[n] = Z;___ x[k] is time-invariant.
= da(t) _

(e) y@) = =~ = Tla@)),
Tlx(t — Ty)] = %x(t —To) =yt — To)
Therefore, y(t) = dx(t)/dt is time-invariant.
Causal:
(b) y() = x2(2¢),
y(1) = x(2)

The value of y(-) at time = 1 depends on x(-) at a future time = 2. Therefore,
y(t) = x(2t) is not causal.

n

@ yln] = > x[k]

k=—o

Yes, y[n] = Zi__.x[k] is causal because the value of y[-] at any instant »
depends only on the previous (past) values of x[-].

Invertible:

(b) y(t) = x(2t) is invertible; x(t) = y(t/2).

() y[n] = ZF._.x[k] is not invertible. Summation is not generally an invertible
operation.

(e) y(t) = dx(t)/dt is invertible to within a constant.

Stable:

@) If [x(t)| <M, |y(t)| < (2 + sin t)M. Therefore, y(t) = (2 + sin t)x(t)is stable.
(b) If |x(t)| <M, |x2(2t)| < M and |y(t)| < M. Therefore, y(t) = x(2t) is stable.

@@ If |x[k]] = M, |y[r]] = M - "1, which is unbounded. Therefore, y[n] =
2" x[k] is not stable.
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S3.7

(a) Since H is an integrator, H™! must be a differentiator.

-1 _ da(t)

H™: y(t) = T

G: y(t) = x(2t)

G y(t) = x(t/2)

(b)
z2(t)— F1  p—x()
z(t) —»{ G~! > H! | x()

Figure S3.7

Solutions to
Optional Problems

S3.8

(@) zx(t) = x,(t) — x,(t — 2)

."2(’) =) ([) - yl(’ - 2)
2+
L ] | I
) I
1 2 3 4
—2 4+
Figure S3.8-1

S3-7
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(b) x3(t) = 2,(t) + 2, (t + 1)

y; @O =y, Oty @+ 1)

-

Figure S3.8-2

@Dx@W)=ult—1)—ult—2)

1N

1 W

Figure S3.8-3

y(@)y=e=U-Du(t — 1) +u(—t)+e= =2 u(t — 2) —u(l — 9

(d) yin] = 3y,[n] — 2y n] + 2y4n]

®3 3
2
1
4. P 4 y . -
=3 —2 —1 0 1 2 3
¢ 2
—4 @
Figure S3.8-4
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(@) yin] = y\n] + y\[n — 1]

yaln] |
1
-0 - 9 n
0 1 2 3 4 5
Figure S3.8-5
yin] = yin + 1]
1
\ 4 * @ & L 2 n
—1 0 1 2 3 4
Figure S3.8-6

(f) From linearity,
y(t) = = + 6 cos(2t) — 47 cos(5t) + Ve cos(6t),

1L+
xo(t) = =) (—tH"
? 1+ ¢ ,;,

So yu(t) = 1 — cos(2t) + cos(4t) — cos(6t) + cos(8t).

S3.9

(a) (D) The system is linear because

> laxy(t) + bx(D)(t — nT)

n=—o0

a ) ()t —nT)+b Y ()6t — nT)

aTlx ()] + bT[xy(t)]

(ii) The system is not time-invariant. For example, let x,(t) = sin(2xt/T).
The corresponding output y,(t) = 0. Now let us shift the input x,(t) by

w/2 to get
£) = si 2t N LANE cos 2wt
X, (t) = sin T 5] = (o} T

Now the output

Tlax,(t) + bxy(t))

Yut) = f 6(t—nT)aéyl(t+g>=0

n=—00
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o0

() y(t) = Y (2)(t — nT)
= > cos(2rt)é(t — nT)
cos(2mt)
/—1
} /I\ t
0 \/ | \
2
Figure S$3.9-1
»()
Al 1
T=1
| t
0 . )
2
Figure S3.9-2
y()
1 1
_1
2
T ¢
0 1 1
—1
Figure S3.9-3
(@)
| Al 1
2
PY ° . t
0 l 1
—1

Figure S3.9-4
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y(t)
r=—;lt”fi;,f11= :
T | 1
yft)
=y JTHTe r
: ‘H“ : !

(©) y(t) = > e'cos(2rt)d(t — nT)

n=-—oo

elcos(2mr)

el __ —
=TT 3
\v 1 \/
1
2
Figure S3.9-7
y()

t

1

r2f—

Figure S3.9-8

ol 4+
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y()
1| ! t :
1 i | 3 ,
I _ell2 l _G32
Figure S3.9-9
| y(1)
T=2 1 e 3
4 l 1 2 f 2
@ * @ 0 L —9 t
’ _el/2 l _e3/2
Figure S3.9-10

Figure S$3.9-11

Figure S3.9-12

$3.10

(a) True. To see that the system is linear, write
ya(t) = To[T: [2()]] & Tl (D),
T\[ax,(t) + bxy(2)] = aTy[x\(8)] + bT\[x(2)]
= TTilax,(t) + bx()]] = TdaT\[x\(2)] + bTi[x,(2)]]
= aTy[T\[x(D)]] + bT[T\[22(t)]]
= aT[x,(t)] + bT[x,(t)]




Signals and Systems: Part II / Solutions

We see that the system is time-invariant from

TT\lx(t — D] = Tly,(t — T)]
=yt — 1),
Tx(t — D] =yt —T)

(b) False. Two nonlinear systems in cascade can be linear, as shown in Figure S3.10.
The overall system is identity, which is a linear system.

X (t) ———{ Reciprocal | Reciprocal — y (1) =x(1)

Figure S3.10

(©) y[n] = 2[2n] = w[2n] + $w[2n — 1] + jw[2n — 2]
= x[n] + {x[n — 1]
The system is linear and time-invariant.

(d) y[n] = 2[—n] = aw[—n — 1] + bw[—n] + cw[—n + 1]
ax[n + 1] + bx[n] + cx[n — 1]

(i) The overall system is linear and time-invariant for any choice of a, b,

and c.
(i) a=c
(iii) a=0
S3.11
(a) y[n] = x[n] + x[n — 1] = T{z[r]]. The system is linear because
Tlax,[n] + bxn]] = ax,[rn] + axn — 1] + bxy[n] + bxyn — 1]
= aTlx\[n]] + bTlxdn — 1]]
The system is time-invariant because
y[n] = x[n] + x[n — 1] = Tlx[n]],
Tlz[rn — N]J} = 2[n — N] + x[n — 1 — N]
= yln — N]
(b) The system is linear, shown by similar steps to those in part (a). It is not
time-invariant because
Tlx[n — N]} = x[n — N] + x[n — N — 1] + x[0]
# yln — Nl =x[n — N} +x[n — N — 1] + 2[—N]
S3.12

(a) To show that causality implies the statement, suppose

x,(t) — y.(1) (input x,(t) results in output y,(1)),
X3(t) = Yo(t),
where y,(t) and y.(t) depend on x,(t) and x,(t) for t < t,. By linearity,

x,(t) — x5(t) = y,(1) — yao(t)

S§3-13
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If 2,(2) = () for t < t,, then y,(t) = yu(t) for t < t,. Hence, if 2(t) = 0 for
t <tyy(t) =0"~Ffort <t,.

() y() = 2()x(t + 1),
x(t) =0 fort<t, = y() =0, fort < t,

This is a nonlinear, noncausal system.

(c) y(t) = x(t) + 1is a nonlinear, causal system.

(d) We want to show the equivalence of the following two statements:
Statement 1 (S1): The system is invertible.

Statement 2 (S2): The only input that produces the output y[n] = 0 for all » is
x[n] = 0 for all n.

To show the equivalence, we will show that

S2 false = S1 false and
S1 false = S2 false

S2 false = S1 false: Let x[n] # 0 produce y[n] = 0. Then cx[n]= y[n] = 0.

S1 false = S2 false: Letx, = y, and x, = y,. If x, # x, but ¥y, = y,, then
X, —Z, #0buty, —y, = 0.

(e) y[r] = x¥n] is nonlinear and not invertible.
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