2 Signals and Systems: Part I

Solutions to
Recommended Problems

S2.1

S2.2

(a)

(b)

We need to use the relations @ = 2xf, where f is frequency in hertz, and
T = 2x/w, where T is the fundamental period. Thus, T = 1/f.

1) =—=—-—=-Hz, T=

Note that the frequency and period are independent of the delay 7, and the
phase 0,.

We first simplify:
cos(w(t + 1) + 0) = cos(wt + wr + 0)

Note that wr + 6 could also be considered a phase term for a delay of zero.
Thus, if w, = ©, and w,7, + 0, = w,r, + 0, + 27k for any integer k, y(¢) = x(t)
for all t.
. ™ iy
)] W, = Wy, w7, + 0, =2mr, wy7y+0y=§(1)—§=0+21rk

Thus, z(t) = y(t) for all ¢.
(ii) Since w, # w,, we conclude that x(t) # y(t).
(i) @, =, w71+ 0 =50+ +i+ 2k

Thus, x(t) # y(t).

(a)

(b)

To find the period of a discrete-time signal is more complicated. We need the
smallest N such that QN = 2xk for some integer k > 0.

@ §N=2wk=>N=6, k=1

(ii) %”N= 2rk =N =8, k=2

(iii) 3N = 27k = There is no N such that N = 2xk, so x[n] is not periodic.

For discrete-time signals, if Q, = @, + 27k and Q,7, + 0, = Q,7, + 0, + 27k, then
x[n] = ylnl.
8w

(1) —g #* 3 + 2xk (the closest is k = —1), so x[n] # y[n]

3

(ii) . = Qp, ?’L—E(Z) 4+ —-=——7x+4 27k, k =1,s0x[n] = y[n]

S

4
Gii) 2, =9, D +i1=%0)+1+ 27k, k=0, x[rn]=yln]
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This is just a shift to the right by two units.
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Figure $2.3-1

x[4 — n] = x[—(n — 4)], so we flip about the n
to the right by 4.

= (0 axis and then shift
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Figure $2.3-2

(iii) «[2n] generates a new signal with x[n] for even values of n.

x[2n]
1
1
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Figure S2.3-3

(b) The difficulty arises when we try to evaluate x[n/2] at n = 1, for example (or
generally for n an odd integer). Since x[}] is not defined, the signal x[n/2] does

S2.3
(@) ()
(i)
not exist.
S2.4

By definition a signal is even if and only if x(t) = x(—1t) or x[r] = x[—n], while a
signal is odd if and only if x(t) = —x(—t) or x[r] = —x[—n].

(a) Since x(t) is symmetric about ¢ = 0, x(¢) is even.

(b) It is readily seen that x(t) # x(—t) for all t, and x(t) # —x(—t) for all ¢; thus
x(t) is neither even nor odd.

(¢) Since x(t) = —x(—t), (t) is odd in this case.
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(d) Here x[n] seems like an odd signal at first glance. However, note that x[n] =
—x[—mn] evaluated at = = 0 implies that x[0] = —x[0] or 2[0] = 0. The analo-
gous result applies to continuous-time signals. The signal is therefore neither
even nor odd.

(e) In similar manner to part (a), we deduce that x[n] is even.

() x[n]is odd.

(a) Let Evi{x[n]} = x[n] and Od{x[n]} = x,[n]. Since x[n] = y[n] for n = 0 and
x[n] = x[—n], z[n] must be as shown in Figure S2.5-1.

x,[n] 26
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Figure S2.5-1

Since x,[n] = y[n] for n < 0 and x,[n] = —a,[—n], along with the property that
x,[0] = 0, x,[n] is as shown in Figure S2.5-2.
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Figure S2.5-2

Finally, from the definition of Ev{x{n]} and Od{x[n]}, we see that x[rn] = x[n] +
x,[n). Thus, x[n] is as shown in Figure S2.5-3.

x[n] ¢ ¢ ¢ ¢2
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Figure $2.5-3
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(b) In order for w[n] to equal 0 for » < 0, Od{w[n]} must be given as in Figure

S52.5-4.
od{w(n]} 1
—4 =3 -2 -1
L & : L 2 n
0o 1 2 3 4
—1
Figure S2.5-4
Thus, w[n] is as in Figure S2.5-5.
w(n] 29 o ¢ ?
*—o—o * n
-3 -2-1 0 1 2 3 4
Figure S2.5-56
S2.6
(a) For @ = —4, o" is as shown in Figure S2.6-1.
x[n] 1
1
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Figure S2.6-1

(b) We need to find a 8 such that e”* = (—e™")". Expressing —1 as e¢’", we find
e’ = (e"e )" or 8=—1+jr

Note that any 8 = —1 + jx + j2xk for k an integer will also satisfy the preced-
ing equation.



(c) Re{e(—l+j1r)t} |

Im{e(— 1 +j1r)t}

Since cos #n = (—1)" and sin 7n = 0, Re{x(t)} and Im{y(t)} for t an integer are

t=n

t=n

= ¢ "Re{e’™} = e " cos mn,

= ¢ "Im{e’™"} = e " sinmn
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shown in Figures $2.6-2 and S2.6-3, respectively.

S2.7

Re{e(—l +j'71’)rl} 1

—€é

Figure §2.6-2

Im[e(—l +j7‘()n}
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Figure S2.6-3

First we use the relation (1 + 7) = V/2e"/* to yield
x(t) = V2 - \/§ej«/4ejf/4e(—l+j2,>z = git/2g(~1+i2m

(a) Re{x(t)} = 2e ‘Re{e’"/?e’*") = 2e™* cos<

T
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1rt+2)

AN Refx (t))
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Figure S2.7-1
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(b) Im{x(t)) = 2¢ ‘Im{e’™'?e’*") = 2¢™* sin(27rt + g)

Ne Im{x (1)}
~N

~,2 envelope is 2e ¢
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Figure S2.7-2

(c) Note that x(t + 2) + z*(t + 2) = 2Re{x(t + 2)}. So the signal is a shifted
version of the signal in part (a).

AN x(r+2)+x*(t+2)
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Figure S2.7-3

S2.8

(a) We just need to recognize that « = 3/a and C = 2 and use the formula for S,
N = 6.

3 6
5 3 n 1- E
ol -
=T
a
(b) This requires a little manipulation. Let m = n — 2. Then

ibn ibm+2 bzib b21_b5
n=2 - m=0 - m=0 - 1 - b
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(¢) We need to recognize that (9** = ($)". Thus,

0 2n . n
Z(g) =Z(g) = 11—:; since

n=0 n=0

4
= <1
9‘

S2.9
(a) The sum x(t) + y(t) will be periodic if there exist integers n and k such that
nT, = kT,, that is, if x(t) and y(t) have a common (possibly not fundamental)
period. The fundamental period of the combined signal will be nT, for the small-
est allowable n.
(b) Similarly, x[n] + y[nr] will be periodic if there exist integers » and k such that
nN, = kN,. But such integers always exist, a trivial example being n = N, and
k = N,. So the sum is always periodic with period nN, for n the smallest allow-
able integer.
(c) We first decompose x(¢) and y(t) into sums of exponentials. Thus,
1 ) 1 ) ej(]6wl/3) e—j(lﬁnl/S)
1) = = ef7t/3) Z p—i2wt/3) —_
x(1) 5 e + 5 e + 7 ; ,
ejft e—jxt
) = = —
y() 57 2
Multiplying x(t) and y(t), we get
| 1 i 1 . 1 A
2(t) = — 61(51/3)1 —_ e*1(1/3)t + — eJ(vr/3)t —_ — p—J(5m/3)
=7 4j 4j 45 ¢
1 . 1 . 1 1 .
R 63(191/3” L, J(13%/3)t o Jj(13x/t = ,—j(197%/3)t
5 + 5 e + 5 e e
We see that all complex exponentials are powers of e’"/**, Thus, the funda-
mental period is 27 /(7/3) = 6 s.
S2.10

(a) Let Z x[n] = S. Define m = —n and substitute

S xl-ml=— > x[m]

m= — m=—o0

since x[m] is odd. But the preceding sum equals —S§. Thus, S = —§,or S = 0.
(b) Let y[n] = x\[n]xyn]. Then y[—n] = x,|—n]x[—n]. But x[—n] = —x,[n] and
x[—mn] = xy[n]. Thus, y[—n] = —x,[n]xn] = —y[rn]. So y[n] is odd.
(¢) Recall that x[n] = x,[n] + x[n]. Then

Y Anl= Y (xfn]+ z[n])’

= > 2qn]+2 ) zlnlxin]l+ Y ain]

But from part (b), x[n]x,[n] is an odd signal. Thus, using part (a) we find that
the second sum is zero, proving the assertion.



Signals and Systems
S2-8

(d) The steps are analogous to parts (a)-(c). Briefly,

@»n S

L:wxa(t) dt = J:_w x,(—7) dr

— f x(r)dr = —S, or §S=0, wherer = —t¢
(i) y(t) = 2,(t)x(t),
y(_t) = xo(_t)xe(_t) = '—xo(t)xe(t)
= —y(t), y(t)isodd
(iii) f x¥(t)dt = f (x(t) + z2,(t)) dt

= J: xXt)dt + 2]_2 x (t)x (t)dt + .[_Z x(t)dt,

while 2 [* x,(t)x,(t) dt = 0

S2.11

(@) z[n] = e/“"" = ¢2™T/Ts For x[n] = x[n + N], we need

x[n + N] =ej21(n+N)T/To =ej[21rn(T/Ta) + 2eN(T/To)l — ej21rnT/T0

The two sides of the equation will be equal only if 2aN(T/T,) = 2xk for some
integer k. Therefore, T/T, must be a rational number.

(b) The fundamental period of x[n] is the smallest N such that N(T/T,) = N(p/q)
= k. The smallest N such that Np has a divisor g is the least common multiple
(LCM) of p and q, divided by p. Thus,

N=MR. D e that k = LMP. D
p
The fundamental frequency is 2«/N, but n = (kT,)/T. Thus,
g=2r_2T _1 g

= — oT
N -wr, kT T Tomp. ¢

(¢) We need to find a value of m such that x[n + N] = x(nT + mT,). Therefore,
N = m(T,/T), where m(T,/T) must be an integer, or m(q/p) must be an integer.
Thus, mg = LCM(p, q), m = LCM(p, 9)/q.
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