1 Introduction

Solutions to
Recommended Problems

S1.1

(a) Using Euler’s formula,

e/t = cos = + 7 sin
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Since z = e/,

Re{z} = éRe
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(b) Similarly,
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Im{z} = Elm > +J

(¢) The magnitude of z is the product of the magnitudes of 3 and ¢//*. However,
|3] = 4 while || = 1 for all 6. Thus,

lz] = 13| = [3lle”™*| =31 =
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(d) The argument of z is the sum of the arguments of 3 and ¢’*/*. Since <} = 0 and
<e’ = g for all 6,
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(e) The complex conjugate of 2 is the product of the complex conjugates of 3 and
e’™/*. Since ¥* = { and (¢®)* = ¢ ¥ for all 6,

z* - (%ejx/4)* = %*(ejw/tl)* = %e—j1/4
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4z = <I(%e”“) = o+ g =0+ 7=

(f) 2 + 2*is given by
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2+ 2= Ee”’/“ + -z-e‘f”/4 =——(5 — =cos
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Alternatively,
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S1.2

(a) Express z as 2 = ¢ + jQ, where Re{z} = ¢ and Im{z} = Q. Recall that 2* is the
complex conjugate of 2, or 2* = ¢ — jQ. Then
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(b) Similarly,

z—2 (+jO—(c—jO 0+2Q
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S1.3
(a) Euler’s relation states that ¢’ = cos § + j sin 0. Therefore, e ¥ = cos(—0) +
7 sin (—0). But, cos (—8) = cos 6§ and sin (—8) = —sin §. Thus, e = cos § —
J sin 8. Substituting,
e’ + e (cosf +jsinf) + (cosf —jsinf) 2cosh
5 = B = 2 = cos 0
(b) Similarly,
e’ — e (cosf +jsinf) — (cosf —jsinf) 2jsing _ 0o
2j 27 2;
S1.4

(a) (i) We first find the complex conjugate of 2 = r¢’’. From Euler’s relation,
re’ = r cos 6 + jr sin § = z. Thus,

2*=7rcosf —jrsinfd = rcosf + jr (—sin 6)
But cos 8§ = cos (—#) and —sin § = sin (—#§). Thus,
2* = rcos (—0) + jrsin (—6) = re ™
(i) 2% = (re”)? = r¥e)’ = r’e’®
(iii) jz = e’/*re’® = rel’t /¥

(iv) =z2* = (re®)(re ) = r2%/®" =% . 1

2z re” . .
(V) z—* = o 5 = 31(0+0) = e]Zo
1 1
(Vi) i S 1

(b) From part (a), we directly plot the result in Figure S1.4-1, noting that for z =
re”, r is the radial distance to the origin and 6 is the angle counterclockwise
subtended by the vector with the positive real axis.
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Figure S1.4-1
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Figure S1.4-2
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Figure S1.4-4

Im {z}

_4_J0
zz¥ = e
| :

Re{z}

' >
4
9

Figure S1.4-5
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Figure S1.4-6
(vi)
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Figure S1.4-7

S1.5

This problem shows a useful manipulation. Multiply by e */*/%2¢ 72 = 1, yielding

e+ja/2e—ja/2(1 _— eja) = eja/2(e—ja/2 _— eja/Z)
Now we note that 25 sin (—x) = —2j sinx = ¢™* — ¢”. Therefore,
1 — e/ = ¢#/2 (—2]’ sin 2)
2
Finally, we convert —j to complex exponential notation, —j = e ~7*/2. Thus,
1 — e = e[ 262 sin 2 | = 2 sin = gllte=/2
2 2

S1.6

There are three things a linear scaling of the form x(at + b) can do: (i) reverse
direction = a is negative; (ii) stretch or compress the time axis = |a| # 1; (iii) time
shifting = b # 0.



(a) This is just a time reversal.

Introduction / Solutions

x(—t)

Figure S1.6-1
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Note: Amplitude remains the same. Also, reversal occurs about ¢t = 0.

(b) This is a shift in time. At ¢ = —2, the vertical portion occurs.

x(t+2)

Figure S1.6-2
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(¢) A scaling by a factor of 2 occurs as well as a time shift.

x(2t+2)
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Figure S1.6-3

Note: a > 1 induces a compression.

(d) All three effects are combined in this linear scaling.

x(1—3¢t)
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Figure S1.6-4




Signals and Systems
S1-6

S1.7

This should be a review of calculus.

a

a
(a) jo e 2 di = —%e‘z‘ ) - _,%e—za _ [_%6—2(0)]

=1 _1,-2
=3 2€

(b) jz e ¥dt=—4e*

oo}

= lim (—j§e~*) + ¢ 7°®

2 t—

Therefore,

f e dt=0+3eCt=14e"
2
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