multiplexed link :

Boston Los Angeles

L1
AN
A |,
Switch Switch

N\
1 A R YE
shared switches L4

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

5,624 bit times

- g

\ | \

8-bit frame 8-bit frame 8-bit frame

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

Personal Computer service
A

multip@

link

data crosses this
link in bursts and

can tolerate variable delay

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

| B |

/N

Guidance 4000 bits 750 bits
iInformation

Principles of Computer System Design © Saltzer & Kaashoek 2009 [(c) BTN

@\ Packet
Switch

Workstation
at network
attachment

point A

Packet
Switch

Packet

Switch
3

Service at network
attachment

point B:
B

Packet
Switch

Principles of Computer System Design © Saltzer & Kaashoek 2009 [(c) BTN

< Mmaximum
average A tolerable delay

queuing
delay

|

|

|

|—
Utilization, r— & 100%

rmax

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (o) ATl

send request, —p

set timer \%A

response 1 —

receive response, =¥ X <
reset timer

send request, —> —

set timer \
request 2 X

«— overloaded
forwarder
discards

| request
— packet.

timer expires,

set new timer request 2
. response 2’
receive response,

reset timer

Principles of Computer System Design © Saltzer & Kaashoek 2009 __\ (@) BY-NC-5A |

A

send request,—» request 3
Set t|mer \
>€/ <«— overloaded forwarder

discards response 3

timer expires, > !

resend request,
set new timer request 3’ —® <«— duplicate arrives at B

receive responses—» y response 3’

reset timer

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

A
send request, —p» —

_ request 4
set timer \

response 4

timer expires, Y < packet containing response
resend =% —

request 4’ gets delayed
receive —» ¥

<€«— duplicate arrives at B
response, ,
reset timer response 4 <€— B sends response 4

receive —p»
duplicate

response

Principles of Computer System Design © Saltzer & Kaashoek 2009 [(co) REN=TM

Application characteristics

Continuous Bursts of data
stream (most

(e.g., interactive computer-to-
voice) computer data)

Response
to load
variations

Isochronous wastes (hard-edged)

(e.g., telephone good match . either accepts
’ capacity

network) or blocks call

Network
Type

(gradual)
variable latency 1 variable delay
upsets good match |2 discards data
application 3 rate adaptation

asynchronous
(e.g., Internet)

Principles of Computer System Design © Saltzer & Kaashoek 2009 [(c) BTN

Networks encounter a vast range of

Data rates

Propagation, transmission, queuing, and processing delays.
Loads

Numbers of users

Networks traverse hostile enviionments

Noise damages data
Links stop working

Best-effort networks have

Variable delays

Variable transmission rates
Discarded packets
Duplicate packets
Maximum packet length
Reordered delivery

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

result < FIRE (#, target, action) procedure FIRE (nmiss, where, react)

W ! A return result

\
Client stub \ v Service stub II :
|
Prepare | proc: FIRE request I response: Y
request 115, 55. 3 message. 7
message. ! | Call =~ acknowledgment
Sendto ' [. requested - : -
service , I ' procedure. type: string)
Wait for, type: string Prepare value: “destroyed

response. | value: “Lucifer” response L
message. p
Send to client. ~

type: integer

type: procedure
value: EVADE

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

Main program | <& - - - - application protocol - - - - | called procedure

v 1 Py

RPC client stub <& - - - - presentation protocol - - - - 9| RPC service stub

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

Main program | < - - - application protocol - - - - J|called procedure

fire\j/ ¢ | /[\ \l/(return)
(return) fire

RPC client stub [<& - - presentation protocol- = = = 9 | RPC service stuh

. send_
meiigd— eceive_ receive_A essage
9 message message
Service network
package - - - transport protocol - -- - §» | package

Client network

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

Layer One

Layer Two

Layer Three

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

LINK_SEND (pkt, link2) NETWORK_HANDLE
~

| . |

protocol

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

f DATA

NETWORK_SEND (segment, “1P”, nap_1197)

v

Network network Network

Layer protocol Layer

NT|DATA | SEND (packet, link5)

lINK_SEND (packet, link2) NETWORK_HANDLE
\ 4 _ \ 4

DATA

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

FIRE (7, “Lucifer”, evade) FIRE (7, “Lucifer”, evade)

End-to-End \ end-to-end End-to-End
YR b | B U eyt >

Layer
protocol (RI}’,C)

]

Network Network Network
Layer Layer Layer

o~ T i

Link
g Layer

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

The end-to-end argument

The application knows best.

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

File Transfer Program (end-to-end layer)
€— File transfer system
Gnutella (network layer)

Transport Protocol (end-to-end layer)

~ Internet

Internet Protocol (network layer)

[dialed connection (end-to-end layer)] € dial-up

_ - telephone
| telephone switch (network layer) | Fllnk network

physical wire (link layer) 1 layer)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

acknowledge

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure FRAME_TO_BIT (frame_data, length)
ones in_a row =20
for /i from 1 to /ength do // First send frame contents
SEND_BIT (frame_datali]);
if frame_datal[i] = 1 then
ones_in_a_row < onhes_in_a row + 1;
iIf ones_in_a row = 6 then

SEND_BIT (0); // Stuff a zero so that data doesn’t
ones_in_a_row < 0; // look like a framing marker

else
ones_in_a _row < 0;
forifrom 1l to 7 do // Now send framing marker.
SEND_BIT (1)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure BIT_TO_FRAME (rcvd_bit)
ones_in_a_row integer initially O
if ones _in_a row < 6 then
bits in_frame < bits _in_frame + 1
frame_data[bits_in_frame] < rcvd_bit
if rcvd _bit = 1 then ones in _a row < ones in_a row + 1
else ones in_ a row <0

else // This may be a seventh one-bit in a row, check it out.
if rcvd bit = 0 then
ones_in_a row < 0 // Stuffed bit, don't use it.
else // This is the end-of-frame marker
LINK_RECEIVE (frame_data, (bits_in_frame - 6), link_id)
bits_in_frame < 0O
ones_in_a row < 0

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

Network protocol

<@— Network Layer

Standard
protocol

High
robustness
protocol

EXB%}[g‘CeO”Ita' <@— Link Layer

Principles of Computer System Design © Saltzer & Kaashoek 2009 [() =T

Address Path

Internet : Appletalk Vector <
Protocol Rgrs&gjélgln Protocol Exchange Network Layer

Protocol

High -
Standard Experimental <@— Link Layer

robustness

protocol protocol

protocol

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

structure frame
structure checked contents
bit_string net_protocol // multiplexing parameter
bit_string payload // payload data
bit_string checksum

procedure LINK_SEND (data_buffer, link_identifier, link_protocol, network_protocol)

frame instance outgoing_frame

outgoing_frame.checked_contents.payload < data_buffer
outgoing_frame.checked _contents.net_protocol <— data_buffer.network_protocol
frame_length < LENGTH (data_buffer) + header_length
outgoing_frame.checksum < CHECKSUM (frame.checked_contents, frame_length)
sendproc < link_protocol[that_link.protocol] // Select link protocol.
sendproc (outgoing_frame, frame_length, link_identifier) // Send frame.

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure LINK_RECEIVE (received_frame, length, link_id)
frame instance received frame

If CHECKSUM (received_frame.checked_contents, length) =

received frame.checksum

then // Pass good packets up to next layer.
good_frame_count < good_frame_count + 1;

GIVE_TO_NETWORK_HANDLER (received_frame.checked contents.payload,
received_frame.checked contents.net_protocol);
else bad frame_count <— bad_frame_count + 1 // Just count damaged frame.

// Each network layer protocol handler must call SET_HANDLER before the first packet
// for that protocol arrives...

procedure seT_HANDLER (handler_procedure, handler_protocol)
net_handler[handler_protocol] < handler_procedure

procedure GIVE_TO_NETWORK_HANDLER (received_packet, network_protocol)
handler < net_handler[network_protocol]

if (handler + NULL) call handler(received _packet, network _protocol)
else unexpected protocol _count <— unexpected_protocol _count + 1

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

network
attachment
point

16

Knetwork

address

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

structure packet
bit_string source
bit_string destination
bit_string end _protocol
bit_string payload

procedure NETWORK__SEND (segment_buffer, destination,

network_protocol, end_protocol)
packet instance outgoing_packet

outgoing_packet.payload <— segment_buffer
outgoing_packet.end _protocol < end_protocol
outgoing_packet.source <— MY_NETWORK_ADDRESS
outgoing_packet.destination <— destination
NETWORK_HANDLE (outgoing_packet, net_protocol)

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

procedure NETWORK__HANDLE (net_packet, net_protocol)
packet instance net_packet
If net_packet.destination # MY_NETWORK_ADDRESS then
next_hop < LOOKUP (net_packet.destination, forwarding_table)

LINK_SEND (net_packet, next_hop, link_protocol, net_protocol)
else
GIVE_TO_END_LAYER (net_packet.payload,
net_packet.end_protocol, net_packet.source)

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

Segment presented to
the network layer

Packet presented to

the link layer

source &
destination

end

protocol

Frame ~
appearing

network
protocol

source &
destination

end

protocol

on the link

Example —=> [1111111

97142
55316 ’111111

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

source

destina’[ion2

D

1

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

?@7\1

source

des.tination2

7

destination link

A end-layer
all other 1

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

q Ot

source

des.’[ina’[ion:;2

7

destination

end-layer

XCTOTMMUO WX

Principles of Computer System Design © Saltzer & Kaashoek 2009 [(c) BTN

?@7\1

source

des.tination2

7

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

?@7\1

source

destination

(D ()

From A, From H, From J,
via link 1 via link 2: via link 3:

to path to path to path

A <> H <> J <>

Principles of Computer System Design © Saltzer & Kaashoek 2009 [(c) BTN

?@7\1

source

des.tination2

7

path vector forwarding table

to | path link

<A> 1
<> end-layer
<H> 2
<J> 3
<K> 4

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

?@7\1

source

destination

(D ()

From A, From H, From J, From K,
via link 1 via link 2: via link 3: via link 4:

to | path path t path path

<(I%> <D> <E>
<(C> <E>
<G> <G> :g;
<> <H>

<H>
<J> <>

<K> <K> ZJ:

—
@)

A <>
G | <G>

ACTOHOW

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

qO

source

@ﬁ

e

path vector

—
@)

path

AT OHTMMOOU>

<A>
<H, B>
<H, C>
<J, D>
<Jd, E>
<K, F>

<>

<H>

<J>
<K>

destination

P

forwarding table

link

—
@)

XCTOTMMOOWm>

Principles of Computer System Design © Saltzer & Kaashoek 2009 [(cc) AT

// Maintain routing and forwarding tables.

vector associative array // vector[d_addr] contains path to destination d_addr

neighbor_vector instance of vector // A path vector received from some neighbor

my_vector instance of vector // My current path vector.

addr associative array // addr[j] is the address of the network attachment
// point at the other end of link j.

// my_addr is address of my network attachment point.
// A path is a parsable list of addresses, e.qg. {a,b,c,d}

procedure main() // Initialize, then start advertising.
SET_TYPE_HANDLER (HANDLE_ADVERTISEMENT, exchange_protocol)
clear my_vector; // Listen for advertisements

do occasionally // and advertise my paths
for each jin /ink_ids do // to all of my neighbors.
status < SEND_PATH_VECTOR (j, my_addr, my_vector, exch_protocol)
if status # 0 then // If the link was down,

clear new_vector // forget about any paths
FLUSH_AND__REBUILD (J) // that start with that link.

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure HANDLE_ADVERTISEMENT (advt, link_id) // Called when an advt arrives.

addr[link_id] < GET_SOURCE (advt) // Extract neighbor’s address
neighbor_vector < GET_PATH_VECTOR (advt) // and path vector.

for each neighbor_vector.d_addr do // Look for better paths.
new_path <{addrllink_id], neighbor_vector[d_addr]} // Build potential path.

if my_addr is not in new_path then // Skip it if I'm in it.
if my_vector[d_addr] = NuLL) then // Is it a new destination?
my_vector[d_addr] < new_path // Yes, add this one.
else // Not new; if better, use it.
my_vector[d_addr] < SELECT_PATH (new_path, my_vector[d_addr])
FLUSH_AND_REBUILD (/ink_id)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure SELECT_PATH (new, old) // Decide if new path is better than old one.
if first_hop(new) = first_hop(old) then return new // Update any path we were
// already using.
else if length(new) = length(old) then return o/d // We know a shorter path, keep
else return new // OK, the new one looks better.

procedure FLUSH_AND_REBUILD (/link_id) // Flush out stale paths from this neighbor.
for each my_vector,d_addr
if first_hop(my_vector[d_addr]) = addr[link_id] and new_vector[d_addr] = NULL
then
delete my_vector[d_addr] // Delete paths that are not still advertised.
REBUILD_FORWARDING_TABLE (my_vector, addr) // Pass info to forwarder.

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

region R1

-
” \

Qe -

regi?)n R3

region R4

forwarding table in R1.B

region forwarding local forwarding
section section

to link to link

R1 local R1.A 1
R2 1 R1.B| end-layer
R3 1 R1.C 2

R4 3 R1.D 3

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

sender

— segment 1

send first segment

receive ACK,
send second segment

receive ACK,
send third segment

(repeat N times)

_>

ACK 1

receiver

o

—
W
—p» accept segment 2

N

ACK 2

————| 3 accept segment N

ACKN

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

sender

send segment1 —&

send segment2 —»
send segment3 —»

receive ACK1 &
receive ACK2 a—

(repeat N times)

receive ACK N, done. w—

receiver

segment 1
\
3

— <¢— acknowledge segment 1
ck 1

a - <«¢— acknowledge segment 2
M

«— acknowledge segment N

v

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

sender receiver

receive request,
. . “€— open a 4-segment
receive permission,

< window
send segment 1 -

send segment 2 —b»
send segment 3 —» buffer segment 1

-
send segment 4 — % buffer segment 2

receive ACK 1 buffer segment 3
receive ACK 2 buffer segment 4

receive ACK 3

receive ACK 4, finished processing
wait segments 1—4, reopen

the window

receive permission,
send segment 5

send segment 6
“__: bUffer Segment 5
. buffer segment 6

Principles of Computer System Design © Saltzer & Kaashoek 2009 [(c) BTN

unlimited resource

capacit
? of légl Ilm?{ed

resource

useful

work _ _ limited resource
done with no waste

____ congestion
y collapse

offered load P

Principles of Computer System Design © Saltzer & Kaashoek 2009 [(c) BTN

(E)hcate acknowledgment
eived

\ multiplicative
decrease

additive
Increase

<delay=>>

slow start,

| again

timér
expires,
] stop sending

\
slow start

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

leader destination source type data checksum
64 bits 48 bits 48 bits 16 bits 368 to 12,000 bits 32 bits

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

Station

|dentifier
(Ethernet

19 €—Address)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure ETHERNET_HANDLE (net_packet, length)
destination < net_packet.target_id
iIf destination = my_station_id or destination = BROADCAST_ID then
GIVE_TO_END_LAYER (net_packet.data,

net_packet.end_protocol,
net_packet.source_id)

else
ignore packet

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

f upper-layer network address

L

work
station

1

M

N

P

link identifier

Q

K

work
station

1

server

work
station

1

work

staticy
1

router

17 15 14 22

Ethernet

Ethernet station identifier

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

F upper-layer network address

link identifier
L M N P Q K

work work work work router
station station| [S€VEr| |[station staticy

1 1 1

Ethernet
Ethernet station identifier

internet Ethernet/
address station

enet/15
enet/18
enet/14

enet/22
enet/19
enet/19

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

upper-layer network address
V link identifier

L M N P Q K

work work work work router
station station| [S€VEr| |[station staticy
1 1 1

Ethernet
Ethernet station identifier

internet Ethernet/ internet Ethernet/
address | station address | station

M enet/15 M enet/15
E enet/19

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

