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Overview 
Construction of reliable systems from unreliable components is one of the most impor­
tant applications of modularity. There are, in principle, three basic steps to building 
reliable systems: 

1. 	Error detection: discovering that there is an error in a data value or control signal. 
Error detection is accomplished with the help of redundancy, extra information 
that can verify correctness. 

2. 	Error containment: limiting how far the effects of an error propagate. Error 
containment comes from careful application of modularity. When discussing 
reliability, a module is usually taken to be the unit that fails independently of other 
such units. It is also usually the unit of repair and replacement. 

3. 	Error masking: ensuring correct operation despite the error. Error masking is 
accomplished by providing enough additional redundancy that it is possible to 
discover correct, or at least acceptably close, values of the erroneous data or control 
signal. When masking involves changing incorrect values to correct ones, it is 
usually called error correction. 

Since these three steps can overlap in practice, one sometimes finds a single error-han­
dling mechanism that merges two or even all three of the steps. 

In earlier chapters each of these ideas has already appeared in specialized forms: 

• 	A primary purpose of enforced modularity, as provided by client/server 
architecture, virtual memory, and threads, is error containment. 
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• 	Network links typically use error detection to identify and discard damaged 
frames. 

• 	Some end-to-end protocols time out and resend lost data segments, thus 
masking the loss. 

• 	 Routing algorithms find their way around links that fail, masking those failures. 
• 	Some real-time applications fill in missing data by interpolation or repetition, 

thus masking loss. 

and, as we will see in Chapter 11[on-line], secure systems use a technique called defense 
in depth both to contain and to mask errors in individual protection mechanisms. In this 
chapter we explore systematic application of these techniques to more general problems, 
as well as learn about both their power and their limitations. 

8.1 Faults, Failures, and Fault Tolerant Design 

8.1.1 Faults, Failures, and Modules 

Before getting into the techniques of constructing reliable systems, let us distinguish 
between concepts and give them separate labels. In ordinary English discourse, the three 
words “fault,” “failure,” and “error” are used more or less interchangeably or at least with 
strongly overlapping meanings. In discussing reliable systems, we assign these terms to 
distinct formal concepts. The distinction involves modularity. Although common 
English usage occasionally intrudes, the distinctions are worth maintaining in technical 
settings. 

A fault is an underlying defect, imperfection, or flaw that has the potential to cause 
problems, whether it actually has, has not, or ever will. A weak area in the casing of a tire 
is an example of a fault. Even though the casing has not actually cracked yet, the fault is 
lurking. If the casing cracks, the tire blows out, and the car careens off a cliff, the resulting 
crash is a failure. (That definition of the term “failure” by example is too informal; we 
will give a more careful definition in a moment.) One fault that underlies the failure is 
the weak spot in the tire casing. Other faults, such as an inattentive driver and lack of a 
guard rail, may also contribute to the failure. 

Experience suggests that faults are commonplace in computer systems. Faults come 
from many different sources: software, hardware, design, implementation, operations, 
and the environment of the system. Here are some typical examples: 

• 	 Software fault: A programming mistake, such as placing a less-than sign where 
there should be a less-than-or-equal sign. This fault may never have caused any 
trouble because the combination of events that requires the equality case to be 
handled correctly has not yet occurred. Or, perhaps it is the reason that the system 
crashes twice a day. If so, those crashes are failures. 
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• 	 Hardware fault: A gate whose output is stuck at the value ZERO. Until something 
depends on the gate correctly producing the output value ONE, nothing goes wrong. 
If you publish a paper with an incorrect sum that was calculated by this gate, a 
failure has occurred. Furthermore, the paper now contains a fault that may lead 
some reader to do something that causes a failure elsewhere. 

• 	 Design fault: A miscalculation that has led to installing too little memory in a 
telephone switch. It may be months or years until the first time that the presented 
load is great enough that the switch actually begins failing to accept calls that its 
specification says it should be able to handle. 

• 	 Implementation fault: Installing less memory than the design called for. In this 
case the failure may be identical to the one in the previous example of a design 
fault, but the fault itself is different. 

• 	 Operations fault: The operator responsible for running the weekly payroll ran the 
payroll program twice last Friday. Even though the operator shredded the extra 
checks, this fault has probably filled the payroll database with errors such as wrong 
values for year-to-date tax payments. 

• 	 Environment fault: Lightning strikes a power line, causing a voltage surge. The 
computer is still running, but a register that was being updated at that instant now 
has several bits in error. Environment faults come in all sizes, from bacteria 
contaminating ink-jet printer cartridges to a storm surge washing an entire 
building out to sea. 

Some of these examples suggest that a fault may either be latent, meaning that it isn’t 
affecting anything right now, or active. When a fault is active, wrong results appear in 
data values or control signals. These wrong results are errors. If one has a formal specifi­
cation for the design of a module, an error would show up as a violation of some assertion 
or invariant of the specification. The violation means that either the formal specification 
is wrong (for example, someone didn’t articulate all of the assumptions) or a module that 
this component depends on did not meet its own specification. Unfortunately, formal 
specifications are rare in practice, so discovery of errors is more likely to be somewhat ad 
hoc. 

If an error is not detected and masked, the module probably does not perform to its 
specification. Not producing the intended result at an interface is the formal definition 
of a failure. Thus, the distinction between fault and failure is closely tied to modularity 
and the building of systems out of well-defined subsystems. In a system built of sub­
systems, the failure of a subsystem is a fault from the point of view of the larger subsystem 
that contains it. That fault may cause an error that leads to the failure of the larger sub­
system, unless the larger subsystem anticipates the possibility of the first one failing, 
detects the resulting error, and masks it. Thus, if you notice that you have a flat tire, you 
have detected an error caused by failure of a subsystem you depend on. If you miss an 
appointment because of the flat tire, the person you intended to meet notices a failure of 
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a larger subsystem. If you change to a spare tire in time to get to the appointment, you 
have masked the error within your subsystem. Fault tolerance thus consists of noticing 
active faults and component subsystem failures and doing something helpful in response. 

One such helpful response is error containment, which is another close relative of 
modularity and the building of systems out of subsystems. When an active fault causes 
an error in a subsystem, it may be difficult to confine the effects of that error to just a 
portion of the subsystem. On the other hand, one should expect that, as seen from out­
side that subsystem, the only effects will be at the specified interfaces of the subsystem. 
In consequence, the boundary adopted for error containment is usually the boundary of 
the smallest subsystem inside which the error occurred. From the point of view of the 
next higher-level subsystem, the subsystem with the error may contain the error in one 
of four ways: 

1. 	Mask the error, so the higher-level subsystem does not realize that anything went 
wrong. One can think of failure as falling off a cliff and masking as a way of 
providing some separation from the edge. 

2. 	Detect and report the error at its interface, producing what is called a fail-fast 
design. Fail-fast subsystems simplify the job of detection and masking for the next 
higher-level subsystem. If a fail-fast module correctly reports that its output is 
questionable, it has actually met its specification, so it has not failed. (Fail-fast 
modules can still fail, for example by not noticing their own errors.) 

3. 	Immediately stop dead, thereby hoping to limit propagation of bad values, a 
technique known as fail-stop. Fail-stop subsystems require that the higher-level 
subsystem take some additional measure to discover the failure, for example by 
setting a timer and responding to its expiration. A problem with fail-stop design is 
that it can be difficult to distinguish a stopped subsystem from one that is merely 
running more slowly than expected. This problem is particularly acute in 
asynchronous systems. 

4. 	Do nothing, simply failing without warning. At the interface, the error may have 
contaminated any or all output values. (Informally called a “crash” or perhaps “fail­
thud”.) 

Another useful distinction is that of transient versus persistent faults. A transient fault, 
also known as a single-event upset, is temporary, triggered by some passing external event 
such as lightning striking a power line or a cosmic ray passing through a chip. It is usually 
possible to mask an error caused by a transient fault by trying the operation again. An 
error that is successfully masked by retry is known as a soft error. A persistent fault contin­
ues to produce errors, no matter how many times one retries, and the corresponding 
errors are called hard errors. An intermittent fault is a persistent fault that is active only 
occasionally, for example, when the noise level is higher than usual but still within spec­
ifications. Finally, it is sometimes useful to talk about latency, which in reliability 
terminology is the time between when a fault causes an error and when the error is 
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detected or causes the module to fail. Latency can be an important parameter because 
some error-detection and error-masking mechanisms depend on there being at most a 
small fixed number of errors—often just one—at a time. If the error latency is large, 
there may be time for a second error to occur before the first one is detected and masked, 
in which case masking of the first error may not succeed. Also, a large error latency gives 
time for the error to propagate and may thus complicate containment. 

Using this terminology, an improperly fabricated stuck-at-ZERO bit in a memory chip 
is a persistent fault: whenever the bit should contain a ONE the fault is active and the value 
of the bit is in error; at times when the bit is supposed to contain a ZERO, the fault is latent. 
If the chip is a component of a fault tolerant memory module, the module design prob­
ably includes an error-correction code that prevents that error from turning into a failure 
of the module. If a passing cosmic ray flips another bit in the same chip, a transient fault 
has caused that bit also to be in error, but the same error-correction code may still be able 
to prevent this error from turning into a module failure. On the other hand, if the error-
correction code can handle only single-bit errors, the combination of the persistent and 
the transient fault might lead the module to produce wrong data across its interface, a 
failure of the module. If someone were then to test the module by storing new data in it 
and reading it back, the test would probably not reveal a failure because the transient 
fault does not affect the new data. Because simple input/output testing does not reveal 
successfully masked errors, a fault tolerant module design should always include some 
way to report that the module masked an error. If it does not, the user of the module may 
not realize that persistent errors are accumulating but hidden. 

8.1.2 The Fault-Tolerance Design Process 

One way to design a reliable system would be to build it entirely of components that are 
individually so reliable that their chance of failure can be neglected. This technique is 
known as fault avoidance. Unfortunately, it is hard to apply this technique to every com­
ponent of a large system. In addition, the sheer number of components may defeat the 
strategy. If all N of the components of a system must work, the probability of any one 
component failing is p, and component failures are independent of one another, then the 
probability that the system works is (1 – p)N . No matter how small p may be, there is 
some value of N beyond which this probability becomes too small for the system to be 
useful. 

The alternative is to apply various techniques that are known collectively by the name 
fault tolerance. The remainder of this chapter describes several such techniques that are 
the elements of an overall design process for building reliable systems from unreliable 
components. Here is an overview of the fault-tolerance design process: 

1. Begin to develop a fault-tolerance model, as described in Section 8.3: 

• Identify every potential fault. 
• Estimate the risk of each fault, as described in Section 8.2. 
• Where the risk is too high, design methods to detect the resulting errors. 
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2. 	Apply modularity to contain the damage from the high-risk errors. 

3. 	Design and implement procedures that can mask the detected errors, using the
 
techniques described in Section 8.4:
 

• 	 Temporal redundancy. Retry the operation, using the same components. 
• 	 Spatial redundancy. Have different components do the operation. 

4. 	Update the fault-tolerance model to account for those improvements. 

5. 	Iterate the design and the model until the probability of untolerated faults is low
 
enough that it is acceptable. 
 

6. 	Observe the system in the field: 

• 	 Check logs of how many errors the system is successfully masking. (Always keep
 
track of the distance to the edge of the cliff.)
 

• 	 Perform postmortems on failures and identify all of the reasons for each failure. 

7. 	Use the logs of masked faults and the postmortem reports about failures to revise
 
and improve the fault-tolerance model and reiterate the design.
 

The fault-tolerance design process includes some subjective steps, for example, decid­
ing that a risk of failure is “unacceptably high” or that the “probability of an untolerated 
fault is low enough that it is acceptable.” It is at these points that different application 
requirements can lead to radically different approaches to achieving reliability. A per­
sonal computer may be designed with no redundant components, the computer system 
for a small business is likely to make periodic backup copies of most of its data and store 
the backup copies at another site, and some space-flight guidance systems use five com­
pletely redundant computers designed by at least two independent vendors. The 
decisions required involve trade-offs between the cost of failure and the cost of imple­
menting fault tolerance. These decisions can blend into decisions involving business 
models and risk management. In some cases it may be appropriate to opt for a nontech­
nical solution, for example, deliberately accepting an increased risk of failure and 
covering that risk with insurance. 

The fault-tolerance design process can be described as a safety-net approach to system 
design. The safety-net approach involves application of some familiar design principles 
and also some not previously encountered. It starts with a new design principle: 

Be explicit 

Get all of the assumptions out on the table. 

The primary purpose of creating a fault-tolerance model is to expose and document the 
assumptions and articulate them explicitly. The designer needs to have these assump­
tions not only for the initial design, but also in order to respond to field reports of 
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unexpected failures. Unexpected failures represent omissions or violations of the 
assumptions. 

Assuming that you won’t get it right the first time, the second design principle of the 
safety-net approach is the familiar design for iteration. It is difficult or impossible to antic­
ipate all of the ways that things can go wrong. Moreover, when working with a fast-
changing technology it can be hard to estimate probabilities of failure in components and 
in their organization, especially when the organization is controlled by software. For 
these reasons, a fault tolerant design must include feedback about actual error rates, eval­
uation of that feedback, and update of the design as field experience is gained. These two 
principles interact: to act on the feedback requires having a fault tolerance model that is 
explicit about reliability assumptions. 

The third design principle of the safety-net approach is also familiar: the safety margin 
principle, described near the end of Section 1.3.2. An essential part of a fault tolerant 
design is to monitor how often errors are masked. When fault tolerant systems fail, it is 
usually not because they had inadequate fault tolerance, but because the number of fail­
ures grew unnoticed until the fault tolerance of the design was exceeded. The key 
requirement is that the system log all failures and that someone pay attention to the logs. 
The biggest difficulty to overcome in applying this principle is that it is hard to motivate 
people to expend effort checking something that seems to be working. 

The fourth design principle of the safety-net approach came up in the introduction 
to the study of systems; it shows up here in the instruction to identify all of the causes of 
each failure: keep digging. Complex systems fail for complex reasons. When a failure of a 
system that is supposed to be reliable does occur, always look beyond the first, obvious 
cause. It is nearly always the case that there are actually several contributing causes and 
that there was something about the mind set of the designer that allowed each of those 
causes to creep in to the design. 

Finally, complexity increases the chances of mistakes, so it is an enemy of reliability. 
The fifth design principle embodied in the safety-net approach is to adopt sweeping sim­
plifications. This principle does not show up explicitly in the description of the fault-
tolerance design process, but it will appear several times as we go into more detail. 

The safety-net approach is applicable not just to fault tolerant design. Chapter 11[on­
line] will show that the safety-net approach is used in an even more rigorous form in 
designing systems that must protect information from malicious actions. 

8.2 Measures of Reliability and Failure Tolerance 

8.2.1 Availability and Mean Time to Failure 

A useful model of a system or a system component, from a reliability point of view, is 
that it operates correctly for some period of time and then it fails. The time to failure 
(TTF) is thus a measure of interest, and it is something that we would like to be able to 
predict. If a higher-level module does not mask the failure and the failure is persistent, 

Saltzer & Kaashoek Ch. 8, p. 8 June 24, 2009 12:24 am 



8.2 Measures of Reliability and Failure Tolerance 8–9
 

the system cannot be used until it is repaired, perhaps by replacing the failed component, 
so we are equally interested in the time to repair (TTR). If we observe a system through 
N run–fail–repair cycles and observe in each cycle i the values of TTFi and TTRi, we can 
calculate the fraction of time it operated properly, a useful measure known as availability: 

time system was runningAvailability = -------------------------------------------------------------------------------------------­
time system should have been running 

N 

∑ TTFi 

i = 1= ---------------------------------------------- Eq. 8–1N 

∑ (TTFi + TTRi) 

i = 1 

By separating the denominator of the availability expression into two sums and dividing 
each by N (the number of observed failures) we obtain two time averages that are fre­
quently reported as operational statistics: the mean time to failure (MTTF) and the mean 
time to repair (MTTR): 

N N 

MTTF = ---1 - ∑ TTFi MTTR = ---1 - ∑ TTRi Eq. 8–2
N Ni = 1 i = 1 

The sum of these two statistics is usually called the mean time between failures (MTBF). 
Thus availability can be variously described as 

MTTF MTTF MTBF – MTTRAvailability = ---------------- = --------------------------------------- = --------------------------------------- Eq. 8–3MTBF MTTF + MTTR MTBF 

In some situations, it is more useful to measure the fraction of time that the system is not 
working, known as its down time: 

MTTRDown time = (1 – Availability) = ---------------- Eq. 8–4
MTBF 

One thing that the definition of down time makes clear is that MTTR and MTBF are 
in some sense equally important. One can reduce down time either by reducing MTTR 
or by increasing MTBF. 

Components are often repaired by simply replacing them with new ones. When failed 
components are discarded rather than fixed and returned to service, it is common to use 
a slightly different method to measure MTTF. The method is to place a batch of N com­
ponents in service in different systems (or in what is hoped to be an equivalent test 
environment), run them until they have all failed, and use the set of failure times as the 
TTFi in equation 8–2. This procedure substitutes an ensemble average for the time aver­
age. We could use this same procedure on components that are not usually discarded 
when they fail, in the hope of determining their MTTF more quickly, but we might 
obtain a different value for the MTTF. Some failure processes do have the property that 
the ensemble average is the same as the time average (processes with this property are 
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called ergodic), but other failure processes do not. For example, the repair itself may cause 
wear, tear, and disruption to other parts of the system, in which case each successive sys­
tem failure might on average occur sooner than did the previous one. If that is the case, 
an MTTF calculated from an ensemble-average measurement might be too optimistic. 

As we have defined them, availability, MTTF, MTTR, and MTBF are backward-
looking measures. They are used for two distinct purposes: (1) for evaluating how the 
system is doing (compared, for example, with predictions made when the system was 
designed) and (2) for predicting how the system will behave in the future. The first pur­
pose is concrete and well defined. The second requires that one take on faith that samples 
from the past provide an adequate predictor of the future, which can be a risky assump­
tion. There are other problems associated with these measures. While MTTR can usually 
be measured in the field, the more reliable a component or system the longer it takes to 
evaluate its MTTF, so that measure is often not directly available. Instead, it is common 
to use and measure proxies to estimate its value. The quality of the resulting estimate of 
availability then depends on the quality of the proxy. 

A typical 3.5-inch magnetic disk comes with a reliability specification of 300,000 
hours “MTTF”, which is about 34 years. Since the company quoting this number has 
probably not been in business that long, it is apparent that whatever they are calling 
“MTTF” is not the same as either the time-average or the ensemble-average MTTF that 
we just defined. It is actually a quite different statistic, which is why we put quotes 
around its name. Sometimes this “MTTF” is a theoretical prediction obtained by mod­
eling the ways that the components of the disk might be expected to fail and calculating 
an expected time to failure. 

A more likely possibility is that the manufacturer measured this “MTTF” by running 
an array of disks simultaneously for a much shorter time and counting the number of 
failures. For example, suppose the manufacturer ran 1,000 disks for 3,000 hours (about 
four months) each, and during that time 10 of the disks failed. The observed failure rate 
of this sample is 1 failure for every 300,000 hours of operation. The next step is to invert 
the failure rate to obtain 300,000 hours of operation per failure and then quote this num­
ber as the “MTTF”. But the relation between this sample observation of failure rate and 
the real MTTF is problematic. If the failure process were memoryless (meaning that the 
failure rate is independent of time; Section 8.2.2, below, explores this idea more thor­
oughly), we would have the special case in which the MTTF really is the inverse of the 
failure rate. A good clue that the disk failure process is not memoryless is that the disk 
specification may also mention an “expected operational lifetime” of only 5 years. That 
statistic is probably the real MTTF—though even that may be a prediction based on 
modeling rather than a measured ensemble average. An appropriate re-interpretation of 
the 34-year “MTTF” statistic is to invert it and identify the result as a short-term failure 
rate that applies only within the expected operational lifetime. The paragraph discussing 
equation 8–9 on page 8–13 describes a fallacy that sometimes leads to miscalculation of 
statistics such as the MTTF. 

Magnetic disks, light bulbs, and many other components exhibit a time-varying sta­
tistical failure rate known as a bathtub curve, illustrated in Figure 8.1 and defined more 
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carefully in Section 8.2.2, below. When components come off the production line, a cer­
tain fraction fail almost immediately because of gross manufacturing defects. Those 
components that survive this initial period usually run for a long time with a relatively 
uniform failure rate. Eventually, accumulated wear and tear cause the failure rate to 
increase again, often quite rapidly, producing a failure rate plot that resembles the shape 
of a bathtub. 

Several other suggestive and colorful terms describe these phenomena. Components 
that fail early are said to be subject to infant mortality, and those that fail near the end of 
their expected lifetimes are said to burn out. Manufacturers sometimes burn in such com­
ponents by running them for a while before shipping, with the intent of identifying and 
discarding the ones that would otherwise fail immediately upon being placed in service. 
When a vendor quotes an “expected operational lifetime,” it is probably the mean time 
to failure of those components that survive burn in, while the much larger “MTTF” 
number is probably the inverse of the observed failure rate at the lowest point of the bath­
tub. (The published numbers also sometimes depend on the outcome of a debate 
between the legal department and the marketing department, but that gets us into a dif­
ferent topic.) A chip manufacturer describes the fraction of components that survive the 
burn-in period as the yield of the production line. Component manufacturers usually 
exhibit a phenomenon known informally as a learning curve, which simply means that 
the first components coming out of a new production line tend to have more failures 
than later ones. The reason is that manufacturers design for iteration: upon seeing and 
analyzing failures in the early production batches, the production line designer figures 
out how to refine the manufacturing process to reduce the infant mortality rate. 

One job of the system designer is to exploit the nonuniform failure rates predicted by 
the bathtub and learning curves. For example, a conservative designer exploits the learn­
ing curve by avoiding the latest generation of hard disks in favor of slightly older designs 
that have accumulated more field experience. One can usually rely on other designers 
who may be concerned more about cost or performance than availability to shake out the 
bugs in the newest generation of disks. 

conditional 
failure rate, 

h(t) 

time, t 

FIGURE 8.1 

A bathtub curve, showing how the conditional failure rate of a component changes with time. 
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The 34-year “MTTF” disk drive specification may seem like public relations puffery 
in the face of the specification of a 5-year expected operational lifetime, but these two 
numbers actually are useful as a measure of the nonuniformity of the failure rate. This 
nonuniformity is also susceptible to exploitation, depending on the operation plan. If the 
operation plan puts the component in a system such as a satellite, in which it will run 
until it fails, the designer would base system availability and reliability estimates on the 
5-year figure. On the other hand, the designer of a ground-based storage system, mindful 
that the 5-year operational lifetime identifies the point where the conditional failure rate 
starts to climb rapidly at the far end of the bathtub curve, might include a plan to replace 
perfectly good hard disks before burn-out begins to dominate the failure rate—in this 
case, perhaps every 3 years. Since one can arrange to do scheduled replacement at conve­
nient times, for example, when the system is down for another reason, or perhaps even 
without bringing the system down, the designer can minimize the effect on system avail­
ability. The manufacturer’s 34-year “MTTF”, which is probably the inverse of the 
observed failure rate at the lowest point of the bathtub curve, then can be used as an esti­
mate of the expected rate of unplanned replacements, although experience suggests that 
this specification may be a bit optimistic. Scheduled replacements are an example of pre­
ventive maintenance, which is active intervention intended to increase the mean time to 
failure of a module or system and thus improve availability. 

For some components, observed failure rates are so low that MTTF is estimated by 
accelerated aging. This technique involves making an educated guess about what the 
dominant underlying cause of failure will be and then amplifying that cause. For exam­
ple, it is conjectured that failures in recordable Compact Disks are heat-related. A typical 
test scenario is to store batches of recorded CDs at various elevated temperatures for sev­
eral months, periodically bringing them out to test them and count how many have 
failed. One then plots these failure rates versus temperature and extrapolates to estimate 
what the failure rate would have been at room temperature. Again making the assump­
tion that the failure process is memoryless, that failure rate is then inverted to produce 
an MTTF. Published MTTFs of 100 years or more have been obtained this way. If the 
dominant fault mechanism turns out to be something else (such as bacteria munching 
on the plastic coating) or if after 50 years the failure process turns out not to be memo­
ryless after all, an estimate from an accelerated aging study may be far wide of the mark. 
A designer must use such estimates with caution and understanding of the assumptions 
that went into them. 

Availability is sometimes discussed by counting the number of nines in the numerical 
representation of the availability measure. Thus a system that is up and running 99.9% 
of the time is said to have 3-nines availability. Measuring by nines is often used in mar­
keting because it sounds impressive. A more meaningful number is usually obtained by 
calculating the corresponding down time. A 3-nines system can be down nearly 1.5 min­
utes per day or 8 hours per year, a 5-nines system 5 minutes per year, and a 7-nines 
system only 3 seconds per year. Another problem with measuring by nines is that it tells 
only about availability, without any information about MTTF. One 3-nines system may 
have a brief failure every day, while a different 3-nines system may have a single eight 
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hour outage once a year. Depending on the application, the difference between those two 
systems could be important. Any single measure should always be suspect. 

Finally, availability can be a more fine-grained concept. Some systems are designed 
so that when they fail, some functions (for example, the ability to read data) remain avail­
able, while others (the ability to make changes to the data) are not. Systems that continue 
to provide partial service in the face of failure are called fail-soft, a concept defined more 
carefully in Section 8.3. 

8.2.2 Reliability Functions 

The bathtub curve expresses the conditional failure rate h(t) of a module, defined to be 
the probability that the module fails between time t and time t + dt, given that the com­
ponent is still working at time t. The conditional failure rate is only one of several closely 
related ways of describing the failure characteristics of a component, module, or system. 
The reliability, R, of a module is defined to be 

the module has not yet failed at time t, given that ⎞R t( ) = Pr	⎛
⎝ the module was operating at time 0 ⎠ 

Eq. 8–5 

and the unconditional failure rate f(t) is defined to be 

f t( ) = Pr(module fails between t and t + dt)	 Eq. 8–6 

(The bathtub curve and these two reliability functions are three ways of presenting the 
same information. If you are rusty on probability, a brief reminder of how they are 
related appears in Sidebar 8.1.) Once f(t) is at hand, one can directly calculate the 
MTTF: 

∞ 

MTTF =	 ∫ t ⋅ f t( )dt Eq. 8–7 
0 

One must keep in mind that this MTTF is predicted from the failure rate function f(t), 
in contrast to the MTTF of eq. 8–2, which is the result of a field measurement. The two 
MTTFs will be the same only if the failure model embodied in f(t) is accurate. 

Some components exhibit relatively uniform failure rates, at least for the lifetime of 
the system of which they are a part. For these components the conditional failure rate, 
rather than resembling a bathtub, is a straight horizontal line, and the reliability function 
becomes a simple declining exponential: 

⎛ t ⎞– ----------------
R t( )  = e ⎝MTTF⎠ Eq. 8–8 

This reliability function is said to be memoryless, which simply means that the conditional 
failure rate is independent of how long the component has been operating. Memoryless 
failure processes have the nice property that the conditional failure rate is the inverse of 
the MTTF. 

Unfortunately, as we saw in the case of the disks with the 34-year “MTTF”, this prop­
erty is sometimes misappropriated to quote an MTTF for a component whose 
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Sidebar 8.1:  Reliability functions The failure rate function, the reliability function, and the 
bathtub curve (which in probability texts is called the conditional failure rate function, and 
which in operations research texts is called the hazard function) are actually three 
mathematically related ways of describing the same information. The failure rate function, f(t) 
as defined in equation 8–6, is a probability density function, which is everywhere non-negative 
and whose integral over all time is 1. Integrating the failure rate function from the time the 
component was created (conventionally taken to be t = 0) to the present time yields 

F(t) is the cumulative probability that the component has failed by time t. The cumulative 
probability that the component has not failed is the probability that it is still operating at time 
t given that it was operating at time 0, which is exactly the definition of the reliability function, 
R(t). That is, 

The bathtub curve of Figure 8.1 reports the conditional probability h(t) that a failure occurs 
between t and t + dt, given that the component was operating at time t. By the definition of 
conditional probability, the conditional failure rate function is thus 

F t( )  f t( )  td 
0 

t 

∫= 

R t( )  1 F t( )–= 

h t( )  f t( )  
R t( )  
----------= 

conditional failure rate does change with time. This misappropriation starts with a fal­
lacy: an assumption that the MTTF, as defined in eq. 8–7, can be calculated by inverting 
the measured failure rate. The fallacy arises because in general, 

E(1 ⁄ t) ≠ 1 ⁄ E t( )  Eq. 8–9 
That is, the expected value of the inverse is not equal to the inverse of the expected value, 
except in certain special cases. The important special case in which they are equal is the 
memoryless distribution of eq. 8–8. When a random process is memoryless, calculations 
and measurements are so much simpler that designers sometimes forget that the same 
simplicity does not apply everywhere. 

Just as availability is sometimes expressed in an oversimplified way by counting the 
number of nines in its numerical representation, reliability in component manufacturing 
is sometimes expressed in an oversimplified way by counting standard deviations in the 
observed distribution of some component parameter, such as the maximum propagation 
time of a gate. The usual symbol for standard deviation is the Greek letter σ (sigma), and 
a normal distribution has a standard deviation of 1.0, so saying that a component has 
“4.5 σ reliability” is a shorthand way of saying that the production line controls varia­
tions in that parameter well enough that the specified tolerance is 4.5 standard deviations 
away from the mean value, as illustrated in Figure 8.2. Suppose, for example, that a pro-
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duction line is manufacturing gates that are specified to have a mean propagation time 
of 10 nanoseconds and a maximum propagation time of 11.8 nanoseconds with 4.5 σ 
reliability. The difference between the mean and the maximum, 1.8 nanoseconds, is the 
tolerance. For that tolerance to be 4.5 σ, σ would have to be no more than 0.4 nanosec­
onds. To meet the specification, the production line designer would measure the actual 
propagation times of production line samples and, if the observed variance is greater than 
0.4 ns, look for ways to reduce the variance to that level. 

Another way of interpreting “4.5 σ reliability” is to calculate the expected fraction of 
components that are outside the specified tolerance. That fraction is the integral of one 
tail of the normal distribution from 4.5 to ∞, which is about 3.4 × 10–6 , so in our exam­
ple no more than 3.4 out of each million gates manufactured would have delays greater 
than 11.8 nanoseconds. Unfortunately, this measure describes only the failure rate of the 
production line, it does not say anything about the failure rate of the component after it 
is installed in a system. 

A currently popular quality control method, known as “Six Sigma”, is an application 
of two of our design principles to the manufacturing process. The idea is to use measure­
ment, feedback, and iteration (design for iteration: “you won’t get it right the first time”) 
to reduce the variance (the robustness principle: “be strict on outputs”) of production-line 
manufacturing. The “Six Sigma” label is somewhat misleading because in the application 
of the method, the number 6 is allocated to deal with two quite different effects. The 
method sets a target of controlling the production line variance to the level of 4.5 σ, just 
as in the gate example of Figure 8.2. The remaining 1.5 σ is the amount that the mean 
output value is allowed to drift away from its original specification over the life of the 

4.5 s 

–1 1 2 3 4  5 6  7s 

9.6 10.0 10.4 10.8 11.2 11.6 12.0 12.4 12.8 ns 

11.8 ns 

FIGURE 8.2 

The normal probability density function applied to production of gates that are specified to have 
mean propagation time of 10 nanoseconds and maximum propagation time of 11.8 nanosec­
onds. The upper numbers on the horizontal axis measure the distance from the mean in units 
of the standard deviation, σ. The lower numbers depict the corresponding propagation times. 
The integral of the tail from 4.5 σ to ∞ is so small that it is not visible in this figure. 
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production line. So even though the production line may start 6 σ away from the toler­
ance limit, after it has been operating for a while one may find that the failure rate has 
drifted upward to the same 3.4 in a million calculated for the 4.5 σ case. 

In manufacturing quality control literature, these applications of the two design prin­
ciples are known as Taguchi methods, after their popularizer, Genichi Taguchi. 

8.2.3 Measuring Fault Tolerance 

It is sometimes useful to have a quantitative measure of the fault tolerance of a system. 
One common measure, sometimes called the failure tolerance, is the number of failures 
of its components that a system can tolerate without itself failing. Although this label 
could be ambiguous, it is usually clear from context that a measure is being discussed. 
Thus a memory system that includes single-error correction (Section 8.4 describes how 
error correction works) has a failure tolerance of one bit. 

When a failure occurs, the remaining failure tolerance of the system goes down. The 
remaining failure tolerance is an important thing to monitor during operation of the sys­
tem because it shows how close the system as a whole is to failure. One of the most 
common system design mistakes is to add fault tolerance but not include any monitoring 
to see how much of the fault tolerance has been used up, thus ignoring the safety margin 
principle. When systems that are nominally fault tolerant do fail, later analysis invariably 
discloses that there were several failures that the system successfully masked but that 
somehow were never reported and thus were never repaired. Eventually, the total num­
ber of failures exceeded the designed failure tolerance of the system. 

Failure tolerance is actually a single number in only the simplest situations. Some­
times it is better described as a vector, or even as a matrix showing the specific 
combinations of different kinds of failures that the system is designed to tolerate. For 
example, an electric power company might say that it can tolerate the failure of up to 
15% of its generating capacity, at the same time as the downing of up to two of its main 
transmission lines. 

8.3 Tolerating Active Faults 

8.3.1 Responding to Active Faults 

In dealing with active faults, the designer of a module can provide one of several 
responses: 

• 	 Do nothing. The error becomes a failure of the module, and the larger system or 
subsystem of which it is a component inherits the responsibilities both of 
discovering and of handling the problem. The designer of the larger subsystem 
then must choose which of these responses to provide. In a system with several 
layers of modules, failures may be passed up through more than one layer before 
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being discovered and handled. As the number of do-nothing layers increases, 
containment generally becomes more and more difficult. 

• 	 Be fail-fast. The module reports at its interface that something has gone wrong. 
This response also turns the problem over to the designer of the next higher-level 
system, but in a more graceful way. Example: when an Ethernet transceiver detects 
a collision on a frame it is sending, it stops sending as quickly as possible, 
broadcasts a brief jamming signal to ensure that all network participants quickly 
realize that there was a collision, and it reports the collision to the next higher level, 
usually a hardware module of which the transceiver is a component, so that the 
higher level can consider resending that frame. 

• 	 Be fail-safe. The module transforms any value or values that are incorrect to values 
that are known to be acceptable, even if not right or optimal. An example is a 
digital traffic light controller that, when it detects a failure in its sequencer, 
switches to a blinking red light in all directions. Chapter 11[on-line] discusses 
systems that provide security. In the event of a failure in a secure system, the safest 
thing to do is usually to block all access. A fail-safe module designed to do that is 
said to be fail-secure. 

• 	 Be fail-soft. The system continues to operate correctly with respect to some 
predictably degraded subset of its specifications, perhaps with some features 
missing or with lower performance. For example, an airplane with three engines 
can continue to fly safely, albeit more slowly and with less maneuverability, if one 
engine fails. A file system that is partitioned into five parts, stored on five different 
small hard disks, can continue to provide access to 80% of the data when one of 
the disks fails, in contrast to a file system that employs a single disk five times as 
large. 

• 	 Mask the error. Any value or values that are incorrect are made right and the 
module meets it specification as if the error had not occurred. 

We will concentrate on masking errors because the techniques used for that purpose can 
be applied, often in simpler form, to achieving a fail-fast, fail-safe, or fail-soft system. 

As a general rule, one can design algorithms and procedures to cope only with spe­
cific, anticipated faults. Further, an algorithm or procedure can be expected to cope only 
with faults that are actually detected. In most cases, the only workable way to detect a 
fault is by noticing an incorrect value or control signal; that is, by detecting an error. 
Thus when trying to determine if a system design has adequate fault tolerance, it is help­
ful to classify errors as follows: 

• 	 A detectable error is one that can be detected reliably. If a detection procedure is 
in place and the error occurs, the system discovers it with near certainty and it 
becomes a detected error. 

Saltzer & Kaashoek Ch. 8, p. 17	 June 24, 2009 12:24 am 



error 

8–18 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable 

• 	 A maskable error is one for which it is possible to devise a procedure to recover 
correctness. If a masking procedure is in place and the error occurs, is detected, 
and is masked, the error is said to be tolerated. 

• 	 Conversely, 	 an untolerated error is one that is undetectable, undetected, 
unmaskable, or unmasked. 

An untolerated error usually leads to a
 
failure of the system. (“Usually,” because
 
we could get lucky and still produce a cor-


undetectable detectablerect output, either because the error values	 errorerror
didn’t actually matter under the current
 
conditions, or some measure intended to
 
mask a different error incidentally masks undetected
 detected 

errorthis one, too.) This classification of errors is error 

illustrated in Figure 8.3. 
A subtle consequence of the concept of unmaskable maskable 

a maskable error is that there must be a error error 
well-defined boundary around that part of
 
the system state that might be in error. The
 

unmasked maskedmasking procedure must restore all of that error error 
erroneous state to correctness, using infor­
mation that has not been corrupted by the 
error. The real meaning of detectable, then, untolerated tolerated 
is that the error is discovered before its con- error error 

sequences have propagated beyond some FIGURE 8.3 
specified boundary. The designer usually 
chooses this boundary to coincide with that Classification of errors. Arrows lead from a 

of some module and designs that module to category to mutually exclusive subcatego­
ries. For example, unmasked errors include 

be fail-fast (that is, it detects and reports its both unmaskable errors and maskable errors 
 
own errors). The system of which the mod- that the designer decides not to mask.
 
ule is a component then becomes
 
responsible for masking the failure of the module.
 

8.3.2 Fault Tolerance Models 

The distinctions among detectable, detected, maskable, and tolerated errors allow us to 
specify for a system a fault tolerance model, one of the components of the fault tolerance 
design process described in Section 8.1.2, as follows: 

1. 	Analyze the system and categorize possible error events into those that can be 
reliably detected and those that cannot. At this stage, detectable or not, all errors 
are untolerated. 
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2. 	For each undetectable error, evaluate the probability of its occurrence. If that 
probability is not negligible, modify the system design in whatever way necessary 
to make the error reliably detectable. 

3. 	For each detectable error, implement a detection procedure and reclassify the 
module in which it is detected as fail-fast. 

4. 	For each detectable error try to devise a way of masking it. If there is a way, 
reclassify this error as a maskable error. 

5. 	For each maskable error, evaluate its probability of occurrence, the cost of failure, 
and the cost of the masking method devised in the previous step. If the evaluation 
indicates it is worthwhile, implement the masking method and reclassify this error 
as a tolerated error. 

When finished developing such a model, the designer should have a useful fault tol­
erance specification for the system. Some errors, which have negligible probability of 
occurrence or for which a masking measure would be too expensive, are identified as 
untolerated. When those errors occur the system fails, leaving its users to cope with the 
result. Other errors have specified recovery algorithms, and when those occur the system 
should continue to run correctly. A review of the system recovery strategy can now focus 
separately on two distinct questions: 

• 	 Is the designer’s list of potential error events complete, and is the assessment of 
the probability of each error realistic? 

• 	Is the designer’s set of algorithms, procedures, and implementations that are 
supposed to detect and mask the anticipated errors complete and correct? 

These two questions are different. The first is a question of models of the real world. 
It addresses an issue of experience and judgment about real-world probabilities and 
whether all real-world modes of failure have been discovered or some have gone unno­
ticed. Two different engineers, with different real-world experiences, may reasonably 
disagree on such judgments—they may have different models of the real world. The eval­
uation of modes of failure and of probabilities is a point at which a designer may easily 
go astray because such judgments must be based not on theory but on experience in the 
field, either personally acquired by the designer or learned from the experience of others. 
A new technology, or an old technology placed in a new environment, is likely to create 
surprises. A wrong judgment can lead to wasted effort devising detection and masking 
algorithms that will rarely be invoked rather than the ones that are really needed. On the 
other hand, if the needed experience is not available, all is not lost: the iteration part of 
the design process is explicitly intended to provide that experience. 

The second question is more abstract and also more absolutely answerable, in that an 
argument for correctness (unless it is hopelessly complicated) or a counterexample to that 
argument should be something that everyone can agree on. In system design, it is helpful 
to follow design procedures that distinctly separate these classes of questions. When 
someone questions a reliability feature, the designer can first ask, “Are you questioning 
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the correctness of my recovery algorithm or are you questioning my model of what may 
fail?” and thereby properly focus the discussion or argument. 

Creating a fault tolerance model also lays the groundwork for the iteration part of the 
fault tolerance design process. If a system in the field begins to fail more often than 
expected, or completely unexpected failures occur, analysis of those failures can be com­
pared with the fault tolerance model to discover what has gone wrong. By again asking 
the two questions marked with bullets above, the model allows the designer to distin­
guish between, on the one hand, failure probability predictions being proven wrong by 
field experience, and on the other, inadequate or misimplemented masking procedures. 
With this information the designer can work out appropriate adjustments to the model 
and the corresponding changes needed for the system. 

Iteration and review of fault tolerance models is also important to keep them up to 
date in the light of technology changes. For example, the Network File System described 
in Section 4.4 was first deployed using a local area network, where packet loss errors are 
rare and may even be masked by the link layer. When later users deployed it on larger 
networks, where lost packets are more common, it became necessary to revise its fault 
tolerance model and add additional error detection in the form of end-to-end check-
sums. The processor time required to calculate and check those checksums caused some 
performance loss, which is why its designers did not originally include checksums. But 
loss of data integrity outweighed loss of performance and the designers reversed the 
trade-off. 

To illustrate, an example of a fault tolerance model applied to a popular kind of mem­
ory devices, RAM, appears in Section 8.7. This fault tolerance model employs error 
detection and masking techniques that are described below in Section 8.4 of this chapter, 
so the reader may prefer to delay detailed study of that section until completing Section 
8.4. 

8.4 Systematically Applying Redundancy 
The designer of an analog system typically masks small errors by specifying design toler­
ances known as margins, which are amounts by which the specification is better than 
necessary for correct operation under normal conditions. In contrast, the designer of a 
digital system both detects and masks errors of all kinds by adding redundancy, either in 
time or in space. When an error is thought to be transient, as when a packet is lost in a 
data communication network, one method of masking is to resend it, an example of 
redundancy in time. When an error is likely to be persistent, as in a failure in reading bits 
from the surface of a disk, the usual method of masking is with spatial redundancy, hav­
ing another component provide another copy of the information or control signal. 
Redundancy can be applied either in cleverly small quantities or by brute force, and both 
techniques may be used in different parts of the same system. 
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8.4.1 Coding: Incremental Redundancy 

The most common form of incremental redundancy, known as forward error correction, 
consists of clever coding of data values. With data that has not been encoded to tolerate 
errors, a change in the value of one bit may transform one legitimate data value into 
another legitimate data value. Encoding for errors involves choosing as the representa­
tion of legitimate data values only some of the total number of possible bit patterns, 
being careful that the patterns chosen for legitimate data values all have the property that 
to transform any one of them to any other, more than one bit must change. The smallest 
number of bits that must change to transform one legitimate pattern into another is 
known as the Hamming distance between those two patterns. The Hamming distance is 
named after Richard Hamming, who first investigated this class of codes. Thus the 
patterns 

100101
 
000111
 

have a Hamming distance of 2 because the upper pattern can be transformed into the 
lower pattern by flipping the values of two bits, the first bit and the fifth bit. Data fields 
that have not been coded for errors might have a Hamming distance as small as 1. Codes 
that can detect or correct errors have a minimum Hamming distance between any two 
legitimate data patterns of 2 or more. The Hamming distance of a code is the minimum 
Hamming distance between any pair of legitimate patterns of the code. One can calcu­
late the Hamming distance between two patterns, A and B, by counting the number of 
ONEs in A ⊕ B , where ⊕ is the exclusive OR (XOR) operator. 

Suppose we create an encoding in which the Hamming distance between every pair 
of legitimate data patterns is 2. Then, if one bit changes accidentally, since no legitimate 
data item can have that pattern, we can detect that something went wrong, but it is not 
possible to figure out what the original data pattern was. Thus, if the two patterns above 
were two members of the code and the first bit of the upper pattern were flipped from 
ONE to ZERO, there is no way to tell that the result, 000101, is not the result of flipping the 
fifth bit of the lower pattern. 

Next, suppose that we instead create an encoding in which the Hamming distance of 
the code is 3 or more. Here are two patterns from such a code; bits 1, 2, and 5 are 
different: 

100101
 
010111
 

Now, a one-bit change will always transform a legitimate data pattern into an incor­
rect data pattern that is still at least 2 bits distant from any other legitimate pattern but 
only 1 bit distant from the original pattern. A decoder that receives a pattern with a one-
bit error can inspect the Hamming distances between the received pattern and nearby 
legitimate patterns and by choosing the nearest legitimate pattern correct the error. If 2 
bits change, this error-correction procedure will still identify a corrected data value, but 
it will choose the wrong one. If we expect 2-bit errors to happen often, we could choose 
the code patterns so that the Hamming distance is 4, in which case the code can correct 
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1-bit errors and detect 2-bit errors. But a 3-bit error would look just like a 1-bit error in 
some other code pattern, so it would decode to a wrong value. More generally, if the 
Hamming distance of a code is d, a little analysis reveals that one can detect d – 1 errors 
and correct (d – 1) ⁄ 2 errors. The reason that this form of redundancy is named 
“forward” error correction is that the creator of the data performs the coding before stor­
ing or transmitting it, and anyone can later decode the data without appealing to the 
creator. (Chapter 7[on-line] described the technique of asking the sender of a lost frame, 
packet, or message to retransmit it. That technique goes by the name of backward error 
correction.) 

The systematic construction of forward error-detection and error-correction codes is 
a large field of study, which we do not intend to explore. However, two specific examples 
of commonly encountered codes are worth examining. 

The first example is a simple parity 
check on a 2-bit value, in which the parity 
bit is the XOR of the 2 data bits. The coded 110 010 

pattern is 3 bits long, so there are 23 = 8 
possible patterns for this 3-bit quantity, 

100only 4 of which represent legitimate data. 
As illustrated in Figure 8.4, the 4 “correct” 
patterns have the property that changing 
any single bit transforms the word into one 

101 001
of the 4 illegal patterns. To transform the
 
coded quantity into another legal pattern,
 
at least 2 bits must change (in other words, FIGURE 8.4
 

the Hamming distance of this code is 2). Patterns for a simple parity-check code.
 
The conclusion is that a simple parity Each line connects patterns that differ in 
 
check can detect any single error, but it only one bit; bold-face patterns are the 
 

doesn’t have enough information to cor- legitimate ones.
 

rect errors.
 
The second example, in Figure 8.5, shows a forward error-correction code that can 

correct 1-bit errors in a 4-bit data value, by encoding the 4 bits into 7-bit words. In this 
code, bits P7, P6, P5, and P3 carry the data, while bits P4, P2, and P1 are calculated from 
the data bits. (This out-of-order numbering scheme creates a multidimensional binary 
coordinate system with a use that will be evident in a moment.) We could analyze this 
code to determine its Hamming distance, but we can also observe that three extra bits 
can carry exactly enough information to distinguish 8 cases: no error, an error in bit 1, 
an error in bit 2, … or an error in bit 7. Thus, it is not surprising that an error-correction 
code can be created. This code calculates bits P1, P2, and P4 as follows: 

P1 = P7 ⊕ P5 ⊕ P3
 
P2 = P7 ⊕ P6 ⊕ P3
 
P4 = P7 ⊕ P6 ⊕ P5
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Now, suppose that the array of bits P1 through P7 is sent across a network and noise 
causes bit P5 to flip. If the recipient recalculates P1, P2, and P4, the recalculated values 
of P1 and P4 will be different from the received bits P1 and P4. The recipient then writes 
P4 P2 P1 in order, representing the troubled bits as ONEs and untroubled bits as ZEROs, and 
notices that their binary value is 1012 = 5 , the position of the flipped bit. In this code, 
whenever there is a one-bit error, the troubled parity bits directly identify the bit to cor­
rect. (That was the reason for the out-of-order bit-numbering scheme, which created a 
3-dimensional coordinate system for locating an erroneous bit.) 

The use of 3 check bits for 4 data bits suggests that an error-correction code may not 
be efficient, but in fact the apparent inefficiency of this example is only because it is so 
small. Extending the same reasoning, one can, for example, provide single-error correc­
tion for 56 data bits using 7 check bits in a 63-bit code word. 

In both of these examples of coding, the assumed threat to integrity is that an uni­
dentified bit out of a group may be in error. Forward error correction can also be effective 
against other threats. A different threat, called erasure, is also common in digital systems. 
An erasure occurs when the value of a particular, identified bit of a group is unintelligible 
or perhaps even completely missing. Since we know which bit is in question, the simple 
parity-check code, in which the parity bit is the XOR of the other bits, becomes a forward 
error correction code. The unavailable bit can be reconstructed simply by calculating the 
XOR of the unerased bits. Returning to the example of Figure 8.4, if we find a pattern in 
which the first and last bits have values 0 and 1 respectively, but the middle bit is illegible, 
the only possibilities are 001 and 011. Since 001 is not a legitimate code pattern, the 
original pattern must have been 011. The simple parity check allows correction of only 
a single erasure. If there is a threat of multiple erasures, a more complex coding scheme 
is needed. Suppose, for example, we have 4 bits to protect, and they are coded as in Fig­
ure 8.5. In that case, if as many as 3 bits are erased, the remaining 4 bits are sufficient to 
reconstruct the values of the 3 that are missing. 

Since erasure, in the form of lost packets, is a threat in a best-effort packet network, 
this same scheme of forward error correction is applicable. One might, for example, send 
four numbered, identical-length packets of data followed by a parity packet that contains 

bit P7 P6 P5 P4 P3 P2 P1 

Choose P1 so XOR of every other bit (P7 ⊕ P5 ⊕ P3 ⊕ P1) is 0 ⊕ ⊕ ⊕ ⊕ 

Choose P2 so XOR of every other pair (P7 ⊕ P6 ⊕P3 ⊕ P2) is 0 ⊕ ⊕ ⊕ ⊕ 

Choose P4 so XOR of every other four (P7 ⊕ P6 ⊕ P5 ⊕P4) is 0 ⊕ ⊕ ⊕ ⊕ 

FIGURE 8.5 

A single-error-correction code. In the table, the symbol ⊕ marks the bits that participate in the 
calculation of one of the redundant bits.The payload bits are P7, P6, P5, and P3, and the redun­
dant bits are P4, P2, and P1. The “every other” notes describe a 3-dimensional coordinate 
system that can locate an erroneous bit. 
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as its payload the bit-by-bit XOR of the payloads of the previous four. (That is, the first bit 
of the parity packet is the XOR of the first bit of each of the other four packets; the second 
bits are treated similarly, etc.) Although the parity packet adds 25% to the network load, 
as long as any four of the five packets make it through, the receiving side can reconstruct 
all of the payload data perfectly without having to ask for a retransmission. If the network 
is so unreliable that more than one packet out of five typically gets lost, then one might 
send seven packets, of which four contain useful data and the remaining three are calcu­
lated using the formulas of Figure 8.5. (Using the numbering scheme of that figure, the 
payload of packet 4, for example, would consist of the XOR of the payloads of packets 7, 
6, and 5.) Now, if any four of the seven packets make it through, the receiving end can 
reconstruct the data. 

Forward error correction is especially useful in broadcast protocols, where the exist­
ence of a large number of recipients, each of which may miss different frames, packets, 
or stream segments, makes the alternative of backward error correction by requesting 
retransmission unattractive. Forward error correction is also useful when controlling jit­
ter in stream transmission because it eliminates the round-trip delay that would be 
required in requesting retransmission of missing stream segments. Finally, forward error 
correction is usually the only way to control errors when communication is one-way or 
round-trip delays are so long that requesting retransmission is impractical, for example, 
when communicating with a deep-space probe. On the other hand, using forward error 
correction to replace lost packets may have the side effect of interfering with congestion 
control techniques in which an overloaded packet forwarder tries to signal the sender to 
slow down by discarding an occasional packet. 

Another application of forward error correction to counter erasure is in storing data 
on magnetic disks. The threat in this case is that an entire disk drive may fail, for example 
because of a disk head crash. Assuming that the failure occurs long after the data was orig­
inally written, this example illustrates one-way communication in which backward error 
correction (asking the original writer to write the data again) is not usually an option. 
One response is to use a RAID array (see Section 2.1.1.4) in a configuration known as 
RAID 4. In this configuration, one might use an array of five disks, with four of the disks 
containing application data and each sector of the fifth disk containing the bit-by-bit XOR 

of the corresponding sectors of the first four. If any of the five disks fails, its identity will 
quickly be discovered because disks are usually designed to be fail-fast and report failures 
at their interface. After replacing the failed disk, one can restore its contents by reading 
the other four disks and calculating, sector by sector, the XOR of their data (see exercise 
8.9). To maintain this strategy, whenever anyone updates a data sector, the RAID 4 sys­
tem must also update the corresponding sector of the parity disk, as shown in Figure 8.6. 
That figure makes it apparent that, in RAID 4, forward error correction has an identifi­
able read and write performance cost, in addition to the obvious increase in the amount 
of disk space used. Since loss of data can be devastating, there is considerable interest in 
RAID, and much ingenuity has been devoted to devising ways of minimizing the perfor­
mance penalty. 
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Although it is an important and widely used technique, successfully applying incre­
mental redundancy to achieve error detection and correction is harder than one might 
expect. The first case study of Section 8.8 provides several useful lessons on this point. 

In addition, there are some situations where incremental redundancy does not seem 
to be applicable. For example, there have been efforts to devise error-correction codes for 
numerical values with the property that the coding is preserved when the values are pro­
cessed by an adder or a multiplier. While it is not too hard to invent schemes that allow 
a limited form of error detection (for example, one can verify that residues are consistent, 
using analogues of casting out nines, which school children use to check their arith­
metic), these efforts have not yet led to any generally applicable techniques. The only 
scheme that has been found to systematically protect data during arithmetic processing 
is massive redundancy, which is our next topic. 

8.4.2 Replication: Massive Redundancy 

In designing a bridge or a skyscraper, a civil engineer masks uncertainties in the strength 
of materials and other parameters by specifying components that are 5 or 10 times as 
strong as minimally required. The method is heavy-handed, but simple and effective. 

new sector 

data 1 

data 2 

data 3 

data 4 

parity 

old sector 

data 1 

data 2 

data 3 

data 4 

parity
parity ⊕ old ⊕ new 

FIGURE 8.6 

Update of a sector on disk 2 of a five-disk RAID 4 system. The old parity sector contains 
parity ← data 1 ⊕ data 2 ⊕ data 3 ⊕ data 4. To construct a new parity sector that includes the 
new data 2, one could read the corresponding sectors of data 1, data 3, and data 4 and per­
form three more XORs. But a faster way is to read just the old parity sector and the old data 2 
sector and compute the new parity sector as 

new parity ← old parity ⊕ old data 2 ⊕ new data 2 
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The corresponding way of building a reliable system out of unreliable discrete compo­
nents is to acquire multiple copies of each component. Identical multiple copies are 
called replicas, and the technique is called replication. There is more to it than just making 
copies: one must also devise a plan to arrange or interconnect the replicas so that a failure 
in one replica is automatically masked with the help of the ones that don’t fail. For exam­
ple, if one is concerned about the possibility that a diode may fail by either shorting out 
or creating an open circuit, one can set up a network of four diodes as in Figure 8.7, cre­
ating what we might call a “superdiode”. This interconnection scheme, known as a quad 
component, was developed by Claude E. Shannon and Edward F. Moore in the 1950s as 
a way of increasing the reliability of relays in telephone systems. It can also be used with 
resistors and capacitors in circuits that can tolerate a modest range of component values. 
This particular superdiode can tolerate a single short circuit and a single open circuit in 
any two component diodes, and it can also tolerate certain other multiple failures, such 
as open circuits in both upper diodes plus a short circuit in one of the lower diodes. If 
the bridging connection of the figure is added, the superdiode can tolerate additional 
multiple open-circuit failures (such as one upper diode and one lower diode), but it will 
be less tolerant of certain short-circuit failures (such as one left diode and one right 
diode). 

A serious problem with this superdiode is that it masks failures silently. There is no 
easy way to determine how much failure tolerance remains in the system. 

8.4.3 Voting 

Although there have been attempts to extend quad-component methods to digital logic, 
the intricacy of the required interconnections grows much too rapidly. Fortunately, there 
is a systematic alternative that takes advantage of the static discipline and level regenera­
tion that are inherent properties of digital logic. In addition, it has the nice feature that 
it can be applied at any level of module, from a single gate on up to an entire computer. 
The technique is to substitute in place of a single module a set of replicas of that same 
module, all operating in parallel with the same inputs, and compare their outputs with a 
device known as a voter. This basic strategy is called N-modular redundancy, or NMR. 
When N has the value 3 the strategy is called triple-modular redundancy, abbreviated 
TMR. When other values are used for N the strategy is named by replacing the N of 
NMR with the number, as in 5MR. The combination of N replicas of some module and 

FIGURE 8.7 

A quad-component superdiode.
 
The dotted line represents an 
 
optional bridging connection, 
 
which allows the superdiode to 
 
tolerate a different set of failures, 
 
as described in the text.
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the voting system is sometimes called a supermodule. Several different schemes exist for 
interconnection and voting, only a few of which we explore here. 

The simplest scheme, called fail-vote, consists of NMR with a majority voter. One 
assembles N replicas of the module and a voter that consists of an N-way comparator and 
some counting logic. If a majority of the replicas agree on the result, the voter accepts 
that result and passes it along to the next system component. If any replicas disagree with 
the majority, the voter may in addition raise an alert, calling for repair of the replicas that 
were in the minority. If there is no majority, the voter signals that the supermodule has 
failed. In failure-tolerance terms, a triply-redundant fail-vote supermodule can mask the 
failure of any one replica, and it is fail-fast if any two replicas fail in different ways. 

If the reliability, as was defined in Section 8.2.2, of a single replica module is R and 
the underlying fault mechanisms are independent, a TMR fail-vote supermodule will 
operate correctly if all 3 modules are working (with reliability R3 ) or if 1 module has 
failed and the other 2 are working (with reliability R2(1 – R) ). Since a single-module 
failure can happen in 3 different ways, the reliability of the supermodule is the sum, 

3 2 2 3
Rsupermodule = R + 3R – = 3R – 2R(1 R) Eq. 8–10 

but the supermodule is not always fail-fast. If two replicas fail in exactly the same way, 
the voter will accept the erroneous result and, unfortunately, call for repair of the one 
correctly operating replica. This outcome is not as unlikely as it sounds because several 
replicas that went through the same design and production process may have exactly the 
same set of design or manufacturing faults. This problem can arise despite the indepen­
dence assumption used in calculating the probability of correct operation. That 
calculation assumes only that the probability that different replicas produce correct 
answers be independent; it assumes nothing about the probability of producing specific 
wrong answers. Without more information about the probability of specific errors and 
their correlations the only thing we can say about the probability that an incorrect result 
will be accepted by the voter is that it is not more than 

(1–Rsupermodule) = (1 3– R2 + 2R3) 

These calculations assume that the voter is perfectly reliable. Rather than trying to 
create perfect voters, the obvious thing to do is replicate them, too. In fact, everything— 
modules, inputs, outputs, sensors, actuators, etc.—should be replicated, and the final 
vote should be taken by the client of the system. Thus, three-engine airplanes vote with 
their propellers: when one engine fails, the two that continue to operate overpower the 
inoperative one. On the input side, the pilot’s hand presses forward on three separate 
throttle levers. A fully replicated TMR supermodule is shown in Figure 8.8. With this 
interconnection arrangement, any measurement or estimate of the reliability, R, of a 
component module should include the corresponding voter. It is actually customary 
(and more logical) to consider a voter to be a component of the next module in the chain 
rather than, as the diagram suggests, the previous module. This fully replicated design is 
sometimes described as recursive. 
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The numerical effect of fail-vote TMR is impressive. If the reliability of a single mod­
ule at time T is 0.999, equation 8–10 says that the reliability of a fail-vote TMR 
supermodule at that same time is 0.999997. TMR has reduced the probability of failure 
from one in a thousand to three in a million. This analysis explains why airplanes 
intended to fly across the ocean have more than one engine. Suppose that the rate of 
engine failures is such that a single-engine plane would fail to complete one out of a thou­
sand trans-Atlantic flights. Suppose also that a 3-engine plane can continue flying as long 
as any 2 engines are operating, but it is too heavy to fly with only 1 engine. In 3 flights 
out of a thousand, one of the three engines will fail, but if engine failures are indepen­
dent, in 999 out of each thousand first-engine failures, the remaining 2 engines allow the 
plane to limp home successfully. 

Although TMR has greatly improved reliability, it has not made a comparable impact 
on MTTF. In fact, the MTTF of a fail-vote TMR supermodule can be smaller than the 
MTTF of the original, single-replica module. The exact effect depends on the failure 
process of the replicas, so for illustration consider a memoryless failure process, not 
because it is realistic but because it is mathematically tractable. Suppose that airplane 
engines have an MTTF of 6,000 hours, they fail independently, the mechanism of 
engine failure is memoryless, and (since this is a fail-vote design) we need at least 2 oper­
ating engines to get home. When flying with three engines, the plane accumulates 6,000 
hours of engine running time in only 2,000 hours of flying time, so from the point of 
view of the airplane as a whole, 2,000 hours is the expected time to the first engine fail­
ure. While flying with the remaining two engines, it will take another 3,000 flying hours 
to accumulate 6,000 more engine hours. Because the failure process is memoryless we 
can calculate the MTTF of the 3-engine plane by adding: 

Mean time to first failure 2000 hours (three engines) 
Mean time from first to second failure 3000 hours (two engines) 
Total mean time to system failure 5000 hours 

Thus the mean time to system failure is less than the 6,000 hour MTTF of a single 
engine. What is going on here is that we have actually sacrificed long-term reliability in 
order to enhance short-term reliability. Figure 8.9 illustrates the reliability of our hypo-

FIGURE 8.8 

Triple-modular 
redundant super-
module, with three 
inputs, three voters, 
and three outputs. 

M1 

M2 

M3 
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V3 
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thetical airplane during its 6 hours of flight, which amounts to only 0.001 of the single-
engine MTTF—the mission time is very short compared with the MTTF and the reli­
ability is far higher. Figure 8.10 shows the same curve, but for flight times that are 
comparable with the MTTF. In this region, if the plane tried to keep flying for 8000 
hours (about 1.4 times the single-engine MTTF), a single-engine plane would fail to 
complete the flight in 3 out of 4 tries, but the 3-engine plane would fail to complete the 
flight in 5 out of 6 tries. (One should be wary of these calculations because the assump­
tions of independence and memoryless operation may not be met in practice. Sidebar 8.2 
elaborates.) 
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FIGURE 8.9 

Reliability with triple modular redundancy, for mission times much less than the MTTF of 6,000 
hours. The vertical dotted line represents a six-hour flight. 
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FIGURE 8.10 

Reliability with triple modular redundancy, for mission times comparable to the MTTF of 6,000 
hours. The two vertical dotted lines represent mission times of 6,000 hours (left) and 8,400 
hours (right). 
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Sidebar 8.2:  Risks of manipulating MTTFs The apparently casual manipulation of MTTFs 
in Sections 8.4.3 and 8.4.4 is justified by assumptions of independence of failures and 
memoryless processes. But one can trip up by blindly applying this approach without 
understanding its limitations. To see how, consider a computer system that has been observed 
for several years to have a hardware crash an average of every 2 weeks and a software crash an 
average of every 6 weeks. The operator does not repair the system, but simply restarts it and 
hopes for the best. The composite MTTF is 1.5 weeks, determined most easily by considering 
what happens if we run the system for, say, 60 weeks. During that time we expect to see 

10 software failures 
30 hardware failures 

40 system failures in 60 weeks —> 1.5 weeks between failure 

New hardware is installed, identical to the old except that it never fails. The MTTF should 
jump to 6 weeks because the only remaining failures are software, right? 

Perhaps—but only if the software failure process is independent of the hardware failure process. 

Suppose the software failure occurs because there is a bug (fault) in a clock-updating procedure: 
The bug always crashes the system exactly 420 hours (2 1/2 weeks) after it is started—if it gets 
a chance to run that long. The old hardware was causing crashes so often that the software bug 
only occasionally had a chance to do its thing—only about once every 6 weeks. Most of the 
time, the recovery from a hardware failure, which requires restarting the system, had the side 
effect of resetting the process that triggered the software bug. So, when the new hardware is 
installed, the system has an MTTF of only 2.5 weeks, much less than hoped. 

MTTF's are useful, but one must be careful to understand what assumptions go into their 
measurement and use. 

If we had assumed that the plane could limp home with just one engine, the MTTF 
would have increased, rather than decreased, but only modestly. Replication provides a 
dramatic improvement in reliability for missions of duration short compared with the 
MTTF, but the MTTF itself changes much less. We can verify this claim with a little 
more analysis, again assuming memoryless failure processes to make the mathematics 
tractable. Suppose we have an NMR system with the property that it somehow continues 
to be useful as long as at least one replica is still working. (This system requires using fail-
fast replicas and a cleverer voter, as described in Section 8.4.4 below.) If a single replica 
has an MTTFreplica = 1, there are N independent replicas, and the failure process is mem­
oryless, the expected time until the first failure is MTTFreplica/N, the expected time from 
then until the second failure is MTTFreplica/(N – 1), etc., and the expected time until the 
system of N replicas fails is the sum of these times, 

MTTFsystem = + ⁄ + 1 3 ⁄ N) Eq. 8–111 1 2 ⁄ + …(1
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which for large N is approximately ln(N). As we add to the cost by adding more replicas, 
MTTFsystem grows disappointingly slowly—proportional to the logarithm of the cost. To 
multiply the MTTFsystem by K, the number of replicas required is eK —the cost grows 
exponentially. The significant conclusion is that in systems for which the mission time is 
long compared with MTTFreplica, simple replication escalates the cost while providing little 
benefit. On the other hand, there is a way of making replication effective for long mis­
sions, too. The method is to enhance replication by adding repair. 

8.4.4 Repair 

Let us return now to a fail-vote TMR supermodule (that is, it requires that at least two 
replicas be working) in which the voter has just noticed that one of the three replicas is 
producing results that disagree with the other two. Since the voter is in a position to 
report which replica has failed, suppose that it passes such a report along to a repair per­
son who immediately examines the failing replica and either fixes or replaces it. For this 
approach, the mean time to repair (MTTR) measure becomes of interest. The super-
module fails if either the second or third replica fails before the repair to the first one can 
be completed. Our intuition is that if the MTTR is small compared with the combined 
MTTF of the other two replicas, the chance that the supermodule fails will be similarly 
small. 

The exact effect on chances of supermodule failure depends on the shape of the reli­
ability function of the replicas. In the case where the failure and repair processes are both 
memoryless, the effect is easy to calculate. Since the rate of failure of 1 replica is 1/MTTF, 
the rate of failure of 2 replicas is 2/MTTF. If the repair time is short compared with 
MTTF the probability of a failure of 1 of the 2 remaining replicas while waiting a time 
T for repair of the one that failed is approximately 2T/MTTF. Since the mean time to 
repair is MTTR, we have 

2 × MTTRPr( supermodule fails while waiting for repair) = ------------------------- Eq. 8–12
MTTF 

Continuing our airplane example and temporarily suspending disbelief, suppose that 
during a long flight we send a mechanic out on the airplane’s wing to replace a failed 
engine. If the replacement takes 1 hour, the chance that one of the other two engines fails 
during that hour is approximately 1/3000. Moreover, once the replacement is complete, 
we expect to fly another 2000 hours until the next engine failure. Assuming further that 
the mechanic is carrying an unlimited supply of replacement engines, completing a 
10,000 hour flight—or even a longer one—becomes plausible. The general formula for 
the MTTF of a fail-vote TMR supermodule with memoryless failure and repair processes 
is (this formula comes out of the analysis of continuous-transition birth-and-death 
Markov processes, an advanced probability technique that is beyond our scope): 

2
MTTFreplica MTTFreplica (MTTFreplica)

MTTFsupermodule = -------------------------------- × ----------------------------------------- = ----------------------------------------- Eq. 8–13
3 2 × MTTRreplica 6 × MTTRreplica 
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Thus, our 3-engine plane with hypothetical in-flight repair has an MTTF of 6 million 
hours, an enormous improvement over the 6000 hours of a single-engine plane. This 
equation can be interpreted as saying that, compared with an unreplicated module, the 
MTTF has been reduced by the usual factor of 3 because there are 3 replicas, but at the 
same time the availability of repair has increased the MTTF by a factor equal to the ratio 
of the MTTF of the remaining 2 engines to the MTTR. 

Replacing an airplane engine in flight may be a fanciful idea, but replacing a magnetic 
disk in a computer system on the ground is quite reasonable. Suppose that we store 3 
replicas of a set of data on 3 independent hard disks, each of which has an MTTF of 5 
years (using as the MTTF the expected operational lifetime, not the “MTTF” derived 
from the short-term failure rate). Suppose also, that if a disk fails, we can locate, install, 
and copy the data to a replacement disk in an average of 10 hours. In that case, by eq. 
8–13, the MTTF of the data is 

(MTTFreplica)
2 

(5 years)
2 

----------------------------------------- = --------------------------------------------------------------------------------- = 3650 years Eq. 8–14
6 × MTTRreplica 6 ⋅ (10 hours) ⁄ (8760 hours/year) 

In effect, redundancy plus repair has reduced the probability of failure of this supermod­
ule to such a small value that for all practical purposes, failure can be neglected and the 
supermodule can operate indefinitely. 

Before running out to start a company that sells superbly reliable disk-storage sys­
tems, it would be wise to review some of the overly optimistic assumptions we made in 
getting that estimate of the MTTF, most of which are not likely to be true in the real 
world: 

• 	 Disks fail independently. A batch of real world disks may all come from the same 
vendor, where they acquired the same set of design and manufacturing faults. Or, 
they may all be in the same machine room, where a single earthquake—which 
probably has an MTTF of less than 3,650 years—may damage all three. 

• 	 Disk failures are memoryless. Real-world disks follow a bathtub curve. If, when disk 
#1 fails, disk #2 has already been in service for three years, disk #2 no longer has 
an expected operational lifetime of 5 years, so the chance of a second failure while 
waiting for repair is higher than the formula assumes. Furthermore, when disk #1 
is replaced, its chances of failing are probably higher than usual for the first few 
weeks. 

• 	 Repair is also a memoryless process. In the real world, if we stock enough spares that 
we run out only once every 10 years and have to wait for a shipment from the 
factory, but doing a replacement happens to run us out of stock today, we will 
probably still be out of stock tomorrow and the next day. 

• 	 Repair is done flawlessly. A repair person may replace the wrong disk, forget to copy 
the data to the new disk, or install a disk that hasn’t passed burn-in and fails in the 
first hour. 
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Each of these concerns acts to reduce the reliability below what might be expected from 
our overly simple analysis. Nevertheless, NMR with repair remains a useful technique, 
and in Chapter 10[on-line] we will see ways in which it can be applied to disk storage. 

One of the most powerful applications of NMR is in the masking of transient errors. 
When a transient error occurs in one replica, the NMR voter immediately masks it. 
Because the error is transient, the subsequent behavior of the supermodule is as if repair 
happened by the next operation cycle. The numerical result is little short of extraordi­
nary. For example, consider a processor arithmetic logic unit (ALU) with a 1 gigahertz 
clock and which is triply replicated with voters checking its output at the end of each 
clock cycle. In equation 8–13 we have MTTRreplica = 1 (in this application, equation 
8–13 is only an approximation because the time to repair is a constant rather than the 
result of a memoryless process), and MTTFsupermodule = (MTTFreplica)2 ⁄ 6 
cycles. If MTTFreplica is 1010 cycles (1 error in 10 billion cycles, which at this clock speed 
means one error every 10 seconds), MTTFsupermodule is 1020 ⁄ 6 cycles, about 500 years. 
TMR has taken three ALUs that were for practical use nearly worthless and created a 
super-ALU that is almost infallible. 

The reason things seem so good is that we are evaluating the chance that two transient 
errors occur in the same operation cycle. If transient errors really are independent, that 
chance is small. This effect is powerful, but the leverage works in both directions, thereby 
creating a potential hazard: it is especially important to keep track of the rate at which 
transient errors actually occur. If they are happening, say, 20 times as often as hoped, 
MTTFsupermodule will be 1/400 of the original prediction—the super-ALU is likely to fail 
once per year. That may still be acceptable for some applications, but it is a big change. 
Also, as usual, the assumption of independence is absolutely critical. If all the ALUs came 
from the same production line, it seems likely that they will have at least some faults in 
common, in which case the super-ALU may be just as worthless as the individual ALUs. 

Several variations on the simple fail-vote structure appear in practice: 

• 	 Purging. In an NMR design with a voter, whenever the voter detects that one 
replica disagrees with the majority, the voter calls for its repair and in addition 
marks that replica DOWN and ignores its output until hearing that it has been 
repaired. This technique doesn’t add anything to a TMR design, but with higher 
levels of replication, as long as replicas fail one at a time and any two replicas 
continue to operate correctly, the supermodule works. 

• 	 Pair-and-compare. Create a fail-fast module by taking two replicas, giving them the 
same inputs, and connecting a simple comparator to their outputs. As long as the 
comparator reports that the two replicas of a pair agree, the next stage of the system 
accepts the output. If the comparator detects a disagreement, it reports that the 
module has failed. The major attraction of pair-and-compare is that it can be used 
to create fail-fast modules starting with easily available commercial, off-the-shelf 
components, rather than commissioning specialized fail-fast versions. Special 
high-reliability components typically have a cost that is much higher than off-the­
shelf designs, for two reasons. First, since they take more time to design and test, 
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the ones that are available are typically of an older, more expensive technology. 
Second, they are usually low-volume products that cannot take advantage of 
economies of large-scale production. These considerations also conspire to 
produce long delivery cycles, making it harder to keep spares in stock. An 
important aspect of using standard, high-volume, low-cost components is that one 
can afford to keep a stock of spares, which in turn means that MTTR can be made 
small: just replace a failing replica with a spare (the popular term for this approach 
is pair-and-spare) and do the actual diagnosis and repair at leisure. 

• 	 NMR with fail-fast replicas. If each of the replicas is itself a fail-fast design (perhaps 
using pair-and-compare internally), then a voter can restrict its attention to the 
outputs of only those replicas that claim to be producing good results and ignore 
those that are reporting that their outputs are questionable. With this organization, 
a TMR system can continue to operate even if 2 of its 3 replicas have failed, since 
the 1 remaining replica is presumably checking its own results. An NMR system 
with repair and constructed of fail-fast replicas is so robust that it is unusual to find 
examples for which N is greater than 2. 

Figure 8.11 compares the ability to continue operating until repair arrives of 5MR 
designs that use fail-vote, purging, and fail-fast replicas. The observant reader will note 
that this chart can be deemed guilty of a misleading comparison, since it claims that the 
5MR system continues working when only one fail-fast replica is still running. But if that 
fail-fast replica is actually a pair-and-compare module, it might be more accurate to say 
that there are two still-working replicas at that point. 

Another technique that takes advantage of repair, can improve availability, and can 
degrade gracefully (in other words, it can be fail-soft) is called partition. If there is a 
choice of purchasing a system that has either one fast processor or two slower processors, 
the two-processor system has the virtue that when one of its processors fails, the system 
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Failure points of three different 5MR supermodule designs, if repair does not happen in time. 
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can continue to operate with half of its usual capacity until someone can repair the failed 
processor. An electric power company, rather than installing a single generator of capac­
ity K megawatts, may install N generators of capacity K/N megawatts each. 

When equivalent modules can easily share a load, partition can extend to what is 
called N + 1 redundancy. Suppose a system has a load that would require the capacity of 
N equivalent modules. The designer partitions the load across N + 1 or more modules. 
Then, if any one of the modules fails, the system can carry on at full capacity until the 
failed module can be repaired. 

N + 1 redundancy is most applicable to modules that are completely interchangeable, 
can be dynamically allocated, and are not used as storage devices. Examples are proces­
sors, dial-up modems, airplanes, and electric generators. Thus, one extra airplane located 
at a busy hub can mask the failure of any single plane in an airline’s fleet. When modules 
are not completely equivalent (for example, electric generators come in a range of capac­
ities, but can still be interconnected to share load), the design must ensure that the spare 
capacity is greater than the capacity of the largest individual module. For devices that 
provide storage, such as a hard disk, it is also possible to apply partition and N + 1 redun­
dancy with the same goals, but it requires a greater level of organization to preserve the 
stored contents when a failure occurs, for example by using RAID, as was described in 
Section 8.4.1, or some more general replica management system such as those discussed 
in Section 10.3.7. 

For some applications an occasional interruption of availability is acceptable, while in 
others every interruption causes a major problem. When repair is part of the fault toler­
ance plan, it is sometimes possible, with extra care and added complexity, to design a 
system to provide continuous operation. Adding this feature requires that when failures 
occur, one can quickly identify the failing component, remove it from the system, repair 
it, and reinstall it (or a replacement part) all without halting operation of the system. The 
design required for continuous operation of computer hardware involves connecting and 
disconnecting cables and turning off power to some components but not others, without 
damaging anything. When hardware is designed to allow connection and disconnection 
from a system that continues to operate, it is said to allow hot swap. 

In a computer system, continuous operation also has significant implications for the 
software. Configuration management software must anticipate hot swap so that it can 
stop using hardware components that are about to be disconnected, as well as discover 
newly attached components and put them to work. In addition, maintaining state is a 
challenge. If there are periodic consistency checks on data, those checks (and repairs to 
data when the checks reveal inconsistencies) must be designed to work correctly even 
though the system is in operation and the data is perhaps being read and updated by 
other users at the same time. 

Overall, continuous operation is not a feature that should be casually added to a list 
of system requirements. When someone suggests it, it may be helpful to point out that 
it is much like trying to keep an airplane flying indefinitely. Many large systems that 
appear to provide continuous operation are actually designed to stop occasionally for 
maintenance. 
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8.5 Applying Redundancy to Software and Data 
The examples of redundancy and replication in the previous sections all involve hard­
ware. A seemingly obvious next step is to apply the same techniques to software and to 
data. In the case of software the goal is to reduce the impact of programming errors, while 
in the case of data the goal is to reduce the impact of any kind of hardware, software, or 
operational error that might affect its integrity. This section begins the exploration of 
several applicable techniques: N-version programming, valid construction, and building 
a firewall to separate stored state into two categories: state whose integrity must be pre­
served and state that can casually be abandoned because it is easy to reconstruct. 

8.5.1 Tolerating Software Faults 

Simply running three copies of the same buggy program is likely to produce three iden­
tical incorrect results. NMR requires independence among the replicas, so the designer 
needs a way of introducing that independence. An example of a way of introducing inde­
pendence is found in the replication strategy for the root name servers of the Internet 
Domain Name System (DNS, described in Section 4.4). Over the years, slightly differ­
ent implementations of the DNS software have evolved for different operating systems, 
so the root name server replicas intentionally employ these different implementations to 
reduce the risk of replicated errors. 

To try to harness this idea more systematically, one can commission several teams of 
programmers and ask each team to write a complete version of an application according 
to a single set of specifications. Then, run these several versions in parallel and compare 
their outputs. The hope is that the inevitable programming errors in the different ver­
sions will be independent and voting will produce a reliable system. Experiments with 
this technique, known as N-version programming, suggest that the necessary indepen­
dence is hard to achieve. Different programmers may be trained in similar enough ways 
that they make the same mistakes. Use of the same implementation language may 
encourage the same errors. Ambiguities in the specification may be misinterpreted in the 
same way by more than one team and the specification itself may contain errors. Finally, 
it is hard to write a specification in enough detail that the outputs of different implemen­
tations can be expected to be bit-for-bit identical. The result is that after much effort, the 
technique may still mask only a certain class of bugs and leave others unmasked. Never­
theless, there are reports that N-version programming has been used, apparently with 
success, in at least two safety-critical aerospace systems, the flight control system of the 
Boeing 777 aircraft (with N = 3) and the on-board control system for the Space Shuttle 
(with N = 2). 

Incidentally, the strategy of employing multiple design teams can also be applied to 
hardware replicas, with a goal of increasing the independence of the replicas by reducing 
the chance of replicated design errors and systematic manufacturing defects. 

Much of software engineering is devoted to a different approach: devising specifica­
tion and programming techniques that avoid faults in the first place and test techniques 
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that systematically root out faults so that they can be repaired once and for all before 
deploying the software. This approach, sometimes called valid construction, can dramat­
ically reduce the number of software faults in a delivered system, but because it is difficult 
both to completely specify and to completely test a system, some faults inevitably remain. 
Valid construction is based on the observation that software, unlike hardware, is not sub­
ject to wear and tear, so if it is once made correct, it should stay that way. Unfortunately, 
this observation can turn out to be wishful thinking, first because it is hard to make soft­
ware correct, and second because it is nearly always necessary to make changes after 
installing a program because the requirements, the environment surrounding the pro­
gram, or both, have changed. There is thus a potential for tension between valid 
construction and the principle that one should design for iteration. 

Worse, later maintainers and reworkers often do not have a complete understanding 
of the ground rules that went into the original design, so their work is likely to introduce 
new faults for which the original designers did not anticipate providing tests. Even if the 
original design is completely understood, when a system is modified to add features that 
were not originally planned, the original ground rules may be subjected to some violence. 
Software faults more easily creep into areas that lack systematic design. 

8.5.2 Tolerating Software (and other) Faults by Separating State 

Designers of reliable systems usually assume that, despite the best efforts of programmers 
there will always be a residue of software faults, just as there is also always a residue of 
hardware, operation, and environment faults. The response is to develop a strategy for 
tolerating all of them. Software adds the complication that the current state of a running 
program tends to be widely distributed. Parts of that state may be in non-volatile storage, 
while other parts are in temporary variables held in volatile memory locations, processor 
registers, and kernel tables. This wide distribution of state makes containment of errors 
problematic. As a result, when an error occurs, any strategy that involves stopping some 
collection of running threads, tinkering to repair the current state (perhaps at the same 
time replacing a buggy program module), and then resuming the stopped threads is usu­
ally unrealistic. 

In the face of these observations, a programming discipline has proven to be effective: 
systematically divide the current state of a running program into two mutually exclusive 
categories and separate the two categories with a firewall. The two categories are: 

• State that the system can safely abandon in the event of a failure. 
• State whose integrity the system should preserve despite failure. 

Upon detecting a failure, the plan becomes to abandon all state in the first category 
and instead concentrate just on maintaining the integrity of the data in the second cate­
gory. An important part of the strategy is an important sweeping simplification: classify 
the state of running threads (that is, the thread table, stacks, and registers) as abandon-
able. When a failure occurs, the system abandons the thread or threads that were running 
at the time and instead expects a restart procedure, the system operator, or the individual 
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user to start a new set of threads with a clean slate. The new thread or threads can then, 
working with only the data found in the second category, verify the integrity of that data 
and return to normal operation. The primary challenge then becomes to build a firewall 
that can protect the integrity of the second category of data despite the failure. 

The designer can base a natural firewall on the common implementations of volatile 
(e.g., CMOS memory) and non-volatile (e.g., magnetic disk) storage. As it happens, 
writing to non-volatile storage usually involves mechanical movement such as rotation 
of a disk platter, so most transfers move large blocks of data to a limited region of 
addresses, using a GET/PUT interface. On the other hand, volatile storage technologies typ­
ically provide a READ/WRITE interface that allows rapid-fire writes to memory addresses 
chosen at random, so failures that originate in or propagate to software tend to quickly 
and untraceably corrupt random-access data. By the time an error is detected the soft­
ware may thus have already damaged a large and unidentifiable part of the data in volatile 
memory. The GET/PUT interface instead acts as a bottleneck on the rate of spread of data 
corruption. The goal can be succinctly stated: to detect failures and stop the system 
before it reaches the next PUT operation, thus making the volatile storage medium the 
error containment boundary. It is only incidental that volatile storage usually has a 
READ/WRITE interface, while non-volatile storage usually has a GET/PUT interface, but 
because that is usually true it becomes a convenient way to implement and describe the 
firewall. 

This technique is widely used in systems whose primary purpose is to manage long-
lived data. In those systems, two aspects are involved: 

• 	 Prepare for failure by recognizing that all state in volatile memory devices can 
vanish at any instant, without warning. When it does vanish, automatically launch 
new threads that start by restoring the data in non-volatile storage to a consistent, 
easily described state. The techniques to do this restoration are called recovery. 
Doing recovery systematically involves atomicity, which is explored in Chapter 
9[on-line]. 

• 	 Protect the data in non-volatile storage using replication, thus creating the class of 
storage known as durable storage. Replicating data can be a straightforward 
application of redundancy, so we will begin the topic in this chapter. However, 
there are more effective designs that make use of atomicity and geographical 
separation of replicas, so we will revisit durability in Chapter 10[on-line]. 

When the volatile storage medium is CMOS RAM and the non-volatile storage 
medium is magnetic disk, following this programming discipline is relatively straightfor­
ward because the distinctively different interfaces make it easy to remember where to 
place data. But when a one-level store is in use, giving the appearance of random access 
to all storage, or the non-volatile medium is flash memory, which allows fast random 
access, it may be necessary for the designer to explicitly specify both the firewall mecha­
nism and which data items are to reside on each side of the firewall. 
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A good example of the firewall strategy can be found in most implementations of 
Internet Domain Name System servers. In a typical implementation the server stores the 
authoritative name records for its domain on magnetic disk, and copies those records 
into volatile CMOS memory either at system startup or the first time it needs a particular 
record. If the server fails for any reason, it simply abandons the volatile memory and 
restarts. In some implementations, the firewall is reinforced by not having any PUT oper­
ations in the running name server. Instead, the service updates the authoritative name 
records using a separate program that runs when the name server is off-line. 

In addition to employing independent software implementations and a firewall 
between categories of data, DNS also protects against environmental faults by employing 
geographical separation of its replicas, a topic that is explored more deeply in Section 
10.3[on-line]. The three techniques taken together make DNS quite fault tolerant. 

8.5.3 Durability and Durable Storage 

For the discipline just described to work, we need to make the result of a PUT operation 
durable. But first we must understand just what “durable” means. Durability is a speci­
fication of how long the result of an action must be preserved after the action completes. 
One must be realistic in specifying durability because there is no such thing as perfectly 
durable storage in which the data will be remembered forever. However, by choosing 
enough genuinely independent replicas, and with enough care in management, one can 
meet any reasonable requirement. 

Durability specifications can be roughly divided into four categories, according to the 
length of time that the application requires that data survive. Although there are no 
bright dividing lines, as one moves from one category to the next the techniques used to 
achieve durability tend to change. 

• 	 Durability no longer than the lifetime of the thread that created the data. For this case, 
it is usually adequate to place the data in volatile memory. 

For example, an action such as moving the gearshift may require changing the oper­
ating parameters of an automobile engine. The result must be reliably remembered, but 
only until the next shift of gears or the driver switches the engine off. 

The operations performed by calls to the kernel of an operating system provide 
another example. The CHDIR procedure of the UNIX kernel (see Table 2.1 in Section 2.5.1) 
changes the working directory of the currently running process. The kernel state variable 
that holds the name of the current working directory is a value in volatile RAM that does 
not need to survive longer than this process. 

For a third example, the registers and cache of a hardware processor usually provide 
just the first category of durability. If there is a failure, the plan is to abandon those values 
along with the contents of volatile memory, so there is no need for a higher level of 
durability. 

• 	 Durability for times short compared with the expected operational lifetime of non­
volatile storage media such as magnetic disk or flash memory. A designer typically 
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implements this category of durability by writing one copy of the data in the non­
volatile storage medium. 

Returning to the automotive example, there may be operating parameters such as 
engine timing that, once calibrated, should be durable at least until the next tune-up, not 
just for the life of one engine use session. Data stored in a cache that writes through to a 
non-volatile medium has about this level of durability. As a third example, a remote pro­
cedure call protocol that identifies duplicate messages by recording nonces might write 
old nonce values (see Section 7.5.3) to a non-volatile storage medium, knowing that the 
real goal is not to remember the nonces forever, but rather to make sure that the nonce 
record outlasts the longest retry timer of any client. Finally, text editors and word-pro­
cessing systems typically write temporary copies on magnetic disk of the material 
currently being edited so that if there is a system crash or power failure the user does not 
have to repeat the entire editing session. These temporary copies need to survive only 
until the end of the current editing session. 

• 	 Durability for times comparable to the expected operational lifetime of non-volatile 
storage media. Because actual non-volatile media lifetimes vary quite a bit around 
the expected lifetime, implementation generally involves placing replicas of the 
data on independent instances of the non-volatile media. 

This category of durability is the one that is usually called durable storage and it is the 
category for which the next section of this chapter develops techniques for implementa­
tion. Users typically expect files stored in their file systems and data managed by a 
database management system to have this level of durability. Section 10.3[on-line] revis­
its the problem of creating durable storage when replicas are geographically separated. 

• 	 Durability for many multiples of the expected operational lifetime of non-volatile 
storage media. 

This highest level of durability is known as preservation, and is the specialty of archi­
vists. In addition to making replicas and keeping careful records, it involves copying data 
from one non-volatile medium to another before the first one deteriorates or becomes 
obsolete. Preservation also involves (sometimes heroic) measures to preserve the ability 
to correctly interpret idiosyncratic formats created by software that has long since 
become obsolete. Although important, it is a separate topic, so preservation is not dis­
cussed any further here. 

8.5.4 Magnetic Disk Fault Tolerance 

In principle, durable storage can be constructed starting with almost any storage 
medium, but it is most straightforward to use non-volatile devices. Magnetic disks (see 
Sidebar 2.8) are widely used as the basis for durable storage because of their low cost, 
large capacity and non-volatility—they retain their memory when power is turned off or 
is accidentally disconnected. Even if power is lost during a write operation, at most a 
small block of data surrounding the physical location that was being written is lost, and 
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disks can be designed with enough internal power storage and data buffering to avoid 
even that loss. In its raw form, a magnetic disk is remarkably reliable, but it can still fail 
in various ways and much of the complexity in the design of disk systems consists of 
masking these failures. 

Conventionally, magnetic disk systems are designed in three nested layers. The inner­
most layer is the spinning disk itself, which provides what we will call raw storage. The 
next layer is a combination of hardware and firmware of the disk controller that provides 
for detecting the failures in the raw storage layer; it creates fail-fast storage. Finally, the 
hard disk firmware adds a third layer that takes advantage of the detection features of the 
second layer to create a substantially more reliable storage system, known as careful stor­
age. Most disk systems stop there, but high-availability systems add a fourth layer to 
create durable storage. This section develops a disk failure model and explores error mask­
ing techniques for all four layers. 

In early disk designs, the disk controller presented more or less the raw disk interface, 
and the fail-fast and careful layers were implemented in a software component of the 
operating system called the disk driver. Over the decades, first the fail-fast layer and more 
recently part or all of the careful layer of disk storage have migrated into the firmware of 
the disk controller to create what is known in the trade as a “hard drive”. A hard drive 
usually includes a RAM buffer to hold a copy of the data going to and from the disk, 
both to avoid the need to match the data rate to and from the disk head with the data 
rate to and from the system memory and also to simplify retries when errors occur. RAID 
systems, which provide a form of durable storage, generally are implemented as an addi­
tional hardware layer that incorporates mass-market hard drives. One reason for this 
move of error masking from the operating system into the disk controller is that as com­
putational power has gotten cheaper, the incremental cost of a more elaborate firmware 
design has dropped. A second reason may explain the obvious contrast with the lack of 
enthusiasm for memory parity checking hardware that is mentioned in Section 8.8.1. A 
transient memory error is all but indistinguishable from a program error, so the hardware 
vendor is not likely to be blamed for it. On the other hand, most disk errors have an obvi­
ous source, and hard errors are not transient. Because blame is easy to place, disk vendors 
have a strong motivation to include error masking in their designs. 

8.5.4.1 Magnetic Disk Fault Modes 
Sidebar 2.8 described the physical design of the magnetic disk, including platters, mag­
netic material, read/write heads, seek arms, tracks, cylinders, and sectors, but it did not 
make any mention of disk reliability. There are several considerations: 

• 	Disks are high precision devices made to close tolerances. Defects in 
manufacturing a recording surface typically show up in the field as a sector that 
does not reliably record data. Such defects are a source of hard errors. Deterioration 
of the surface of a platter with age can cause a previously good sector to fail. Such 
loss is known as decay and, since any data previously recorded there is lost forever, 
decay is another example of hard error. 
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• 	 Since a disk is mechanical, it is subject to wear and tear. Although a modern disk 
is a sealed unit, deterioration of its component materials as they age can create 
dust. The dust particles can settle on a magnetic surface, where they may interfere 
either with reading or writing. If interference is detected, then re-reading or re­
writing that area of the surface, perhaps after jiggling the seek arm back and forth, 
may succeed in getting past the interference, so the fault may be transient. Another 
source of transient faults is electrical noise spikes. Because disk errors caused by 
transient faults can be masked by retry, they fall in the category of soft errors. 

• 	 If a running disk is bumped, the shock may cause a head to hit the surface of a 
spinning platter, causing what is known as a head crash. A head crash not only may 
damage the head and destroy the data at the location of impact, it also creates a 
cloud of dust that interferes with the operation of heads on other platters. A head 
crash generally results in several sectors decaying simultaneously. A set of sectors 
that tend to all fail together is known as a decay set. A decay set may be quite large, 
for example all the sectors on one drive or on one disk platter. 

• 	As electronic components in the disk controller age, clock timing and signal 
detection circuits can go out of tolerance, causing previously good data to become 
unreadable, or bad data to be written, either intermittently or permanently. In 
consequence, electronic component tolerance problems can appear either as soft or 
hard errors. 

• 	 The mechanical positioning systems that move the seek arm and that keep track 
of the rotational position of the disk platter can fail in such a way that the heads 
read or write the wrong track or sector within a track. This kind of fault is known 
as a seek error. 

8.5.4.2 System Faults 
In addition to failures within the disk subsystem, there are at least two threats to the 
integrity of the data on a disk that arise from outside the disk subsystem: 

• 	 If the power fails in the middle of a disk write, the sector being written may end 
up being only partly updated. After the power is restored and the system restarts, 
the next reader of that sector may find that the sector begins with the new data, 
but ends with the previous data. 

• 	 If the operating system fails during the time that the disk is writing, the data being 
written could be affected, even if the disk is perfect and the rest of the system is 
fail-fast. The reason is that all the contents of volatile memory, including the disk 
buffer, are inside the fail-fast error containment boundary and thus at risk of 
damage when the system fails. As a result, the disk channel may correctly write on 
the disk what it reads out of the disk buffer in memory, but the faltering operating 
system may have accidentally corrupted the contents of that buffer after the 
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application called PUT. In such cases, the data that ends up on the disk will be 
corrupted, but there is no sure way in which the disk subsystem can detect the 
problem. 

8.5.4.3 Raw Disk Storage 
Our goal is to devise systematic procedures to mask as many of these different faults as 
possible. We start with a model of disk operation from a programmer’s point of view. 
The raw disk has, at least conceptually, a relatively simple interface: There is an operation 
to seek to a (numbered) track, an operation that writes data on the track and an operation 
that reads data from the track. The failure model is simple: all errors arising from the fail­
ures just described are untolerated. (In the procedure descriptions, arguments are call-by­
reference, and GET operations read from the disk into the argument named data.) 
The raw disk layer implements these storage access procedures and failure tolerance 
model: 

RAW_SEEK (track) // Move read/write head into position.
 
RAW_PUT (data) // Write entire track.
 
RAW_GET (data) // Read entire track.
 

• 	 error-free operation: RAW_SEEK moves the seek arm to position track. RAW_GET 

returns whatever was most recently written by RAW_PUT at position track. 
• 	 untolerated error: On any given attempt to read from or write to a disk, dust 

particles on the surface of the disk or a temporarily high noise level may cause 
data to be read or written incorrectly. (soft error) 

• 	 untolerated error: A spot on the disk may be defective, so all attempts to write to 
any track that crosses that spot will be written incorrectly. (hard error) 

• 	untolerated error: Information previously written correctly may decay, so 
RAW_GET returns incorrect data. (hard error) 

• 	untolerated error: When asked to read data from or write data to a specified 
track, a disk may correctly read or write the data, but on the wrong track. (seek 
error) 

• 	 untolerated error: The power fails during a RAW_PUT with the result that only the 
first part of data ends up being written on track. The remainder of track may 
contain older data. 

• 	 untolerated error: The operating system crashes during a RAW_PUT and scribbles 
over the disk buffer in volatile storage, so RAW_PUT writes corrupted data on one 
track of the disk. 

8.5.4.4 Fail-Fast Disk Storage 
The fail-fast layer is the place where the electronics and microcode of the disk controller 
divide the raw disk track into sectors. Each sector is relatively small, individually pro­
tected with an error-detection code, and includes in addition to a fixed-sized space for 
data a sector and track number. The error-detection code enables the disk controller to 
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return a status code on FAIL_FAST_GET that tells whether a sector read correctly or incor­
rectly, and the sector and track numbers enable the disk controller to verify that the seek 
ended up on the correct track. The FAIL_FAST_PUT procedure not only writes the data, but 
it verifies that the write was successful by reading the newly written sector on the next 
rotation and comparing it with the data still in the write buffer. The sector thus becomes 
the minimum unit of reading and writing, and the disk address becomes the pair {track, 
sector_number}. For performance enhancement, some systems allow the caller to bypass 
the verification step of FAIL_FAST_PUT. When the client chooses this bypass, write failures 
become indistinguishable from decay events. 

There is always a possibility that the data on a sector is corrupted in such a way that 
the error-detection code accidentally verifies. For completeness, we will identify that case 
as an untolerated error, but point out that the error-detection code should be powerful 
enough that the probability of this outcome is negligible. 
The fail-fast layer implements these storage access procedures and failure tolerance 
model: 

status ← FAIL_FAST_SEEK (track)
 
status ← FAIL_FAST_PUT (data, sector_number)
 
status ← FAIL_FAST_GET (data, sector_number)
 

• 	 error-free operation: FAIL_FAST_SEEK moves the seek arm to track. FAIL_FAST_GET 

returns whatever was most recently written by FAIL_FAST_PUT at sector_number on 
track and returns status = OK. 

• 	 detected error: FAIL_FAST_GET reads the data, checks the error-detection code and 
finds that it does not verify. The cause may a soft error, a hard error due to 
decay, or a hard error because there is a bad spot on the disk and the invoker of a 
previous FAIL_FAST_PUT chose to bypass verification. FAIL_FAST_GET does not 
attempt to distinguish these cases; it simply reports the error by returning 
status = BAD. 

• 	 detected error: FAIL_FAST_PUT writes the data, on the next rotation reads it back, 
checks the error-detection code, finds that it does not verify, and reports the 
error by returning status = BAD. 

• 	 detected error: FAIL_FAST_SEEK moves the seek arm, reads the permanent track 
number in the first sector that comes by, discovers that it does not match the 
requested track number (or that the sector checksum does not verify), and 
reports the error by returning status = BAD. 

• 	 detected error: The caller of FAIL_FAST_PUT tells it to bypass the verification step, 
so FAIL_FAST_PUT always reports status = OK even if the sector was not written 
correctly. But a later caller of FAIL_FAST_GET that requests that sector should detect 
any such error. 

• 	 detected error: The power fails during a FAIL_FAST_PUT with the result that only 
the first part of data ends up being written on sector. The remainder of sector 

may contain older data. Any later call of FAIL_FAST_GET for that sector should 
discover that the sector checksum fails to verify and will thus return status = BAD. 
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Many (but not all) disks are designed to mask this class of failure by maintaining 
a reserve of power that is sufficient to complete any current sector write, in 
which case loss of power would be a tolerated failure. 

• 	untolerated error: The operating system crashes during a FAIL_FAST_PUT and 
scribbles over the disk buffer in volatile storage, so FAIL_FAST_PUT writes corrupted 
data on one sector of the disk. 

• 	 untolerated error: The data of some sector decays in a way that is undetectable— 
the checksum accidentally verifies. (Probability should be negligible.) 

8.5.4.5 Careful Disk Storage 
The fail-fast disk layer detects but does not mask errors. It leaves masking to the careful 
disk layer, which is also usually implemented in the firmware of the disk controller. The 
careful layer checks the value of status following each disk SEEK, GET and PUT operation, 
retrying the operation several times if necessary, a procedure that usually recovers from 
seek errors and soft errors caused by dust particles or a temporarily elevated noise level. 
Some disk controllers seek to a different track and back in an effort to dislodge the dust. 
The careful storage layer implements these storage procedures and failure tolerance 
model: 

status ← CAREFUL_SEEK (track) 
 
status ← CAREFUL_PUT (data, sector_number) 
 
status ← CAREFUL_GET (data, sector_number)
 

• 	 error-free operation: CAREFUL_SEEK moves the seek arm to track. CAREFUL_GET 

returns whatever was most recently written by CAREFUL_PUT at sector_number on 
track. All three return status = OK. 

• 	 tolerated error: Soft read, write, or seek error. CAREFUL_SEEK, CAREFUL_GET and 
CAREFUL_PUT mask these errors by repeatedly retrying the operation until the fail-
fast layer stops detecting an error, returning with status = OK. The careful storage 
layer counts the retries, and if the retry count exceeds some limit, it gives up and 
declares the problem to be a hard error. 

• 	 detected error: Hard error. The careful storage layer distinguishes hard from soft 
errors by their persistence through several attempts to read, write, or seek, and 
reports them to the caller by setting status = BAD. (But also see the note on 
revectoring below.) 

• 	 detected error: The power fails during a CAREFUL_PUT with the result that only the 
first part of data ends up being written on sector. The remainder of sector may 
contain older data. Any later call of CAREFUL_GET for that sector should discover 
that the sector checksum fails to verify and will thus return status = BAD. 
(Assuming that the fail-fast layer does not tolerate power failures.) 

• 	 untolerated error: Crash corrupts data. The system crashes during CAREFUL_PUT and 
corrupts the disk buffer in volatile memory, so CAREFUL_PUT correctly writes to the 
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disk sector the corrupted data in that buffer. The sector checksum of the fail-fast 
layer cannot detect this case. 

• 	 untolerated error: The data of some sector decays in a way that is undetectable— 
the checksum accidentally verifies. (Probability should be negligible) 

Figure 8.12 exhibits algorithms for CAREFUL_GET and CAREFUL_PUT. The procedure 
CAREFUL_GET, by repeatedly reading any data with status = BAD, masks soft read errors. 
Similarly, CAREFUL_PUT retries repeatedly if the verification done by FAIL_FAST_PUT fails, 
thereby masking soft write errors, whatever their source. 

The careful layer of most disk controller designs includes one more feature: if 
CAREFUL_PUT detects a hard error while writing a sector, it may instead write the data on a 
spare sector elsewhere on the same disk and add an entry to an internal disk mapping 
table so that future GETs and PUTs that specify that sector instead use the spare. This mech­
anism is called revectoring, and most disk designs allocate a batch of spare sectors for this 
purpose. The spares are not usually counted in the advertised disk capacity, but the man­
ufacturer’s advertising department does not usually ignore the resulting increase in the 
expected operational lifetime of the disk. For clarity of the discussion we omit that 
feature. 

As indicated in the failure tolerance analysis, there are still two modes of failure that 
remain unmasked: a crash during CAREFUL_PUT may undetectably corrupt one disk sector, 
and a hard error arising from a bad spot on the disk or a decay event may detectably cor­
rupt any number of disk sectors. 

8.5.4.6 Durable Storage: RAID 1 
For durability, the additional requirement is to mask decay events, which the careful 
storage layer only detects. The primary technique is that the PUT procedure should write 
several replicas of the data, taking care to place the replicas on different physical devices 
with the hope that the probability of disk decay in one replica is independent of the prob­

1 procedure CAREFUL_GET (data, sector_number) 
2 for i from 1 to NTRIES do 
3 if FAIL_FAST_GET (data, sector_number) = OK then 
4 return OK 

5 return BAD 

6 procedure CAREFUL_PUT (data, sector_number) 
7 for i from 1 to NTRIES do 
8 if FAIL_FAST_PUT (data, sector_number) = OK then 
9 return OK 

10 return BAD 

FIGURE 8.12 

Procedures that implement careful disk storage. 
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ability of disk decay in the next one, and the number of replicas is large enough that when 
a disk fails there is enough time to replace it before all the other replicas fail. Disk system 
designers call these replicas mirrors. A carefully designed replica strategy can create stor­
age that guards against premature disk failure and that is durable enough to substantially 
exceed the expected operational lifetime of any single physical disk. Errors on reading are 
detected by the fail-fast layer, so it is not usually necessary to read more than one copy 
unless that copy turns out to be bad. Since disk operations may involve more than one 
replica, the track and sector numbers are sometimes encoded into a virtual sector number 
and the durable storage layer automatically performs any needed seeks. 
The durable storage layer implements these storage access procedures and failure toler­
ance model: 

status ← DURABLE_PUT (data, virtual_sector_number) 
 
status ← DURABLE_GET (data, virtual_sector_number)
 

• 	 error-free operation: DURABLE_GET returns whatever was most recently written by 
DURABLE_PUT at virtual_sector_number with status = OK. 

• 	 tolerated error: Hard errors reported by the careful storage layer are masked by 
reading from one of the other replicas. The result is that the operation completes 
with status = OK. 

• 	 untolerated error: A decay event occurs on the same sector of all the replicas, and 
the operation completes with status = BAD. 

• 	untolerated error: The operating system crashes during a DURABLE_PUT and 
scribbles over the disk buffer in volatile storage, so DURABLE_PUT writes corrupted 
data on all mirror copies of that sector. 

• 	 untolerated error: The data of some sector decays in a way that is undetectable— 
the checksum accidentally verifies. (Probability should be negligible) 

In this accounting there is no mention of soft errors or of positioning errors because they 
were all masked by a lower layer. 

One configuration of RAID (see Section 2.1.1.4), known as “RAID 1”, implements 
exactly this form of durable storage. RAID 1 consists of a tightly-managed array of iden­
tical replica disks in which DURABLE_PUT  (data, sector_number) writes data at the same 
sector_number of each disk and DURABLE_GET reads from whichever replica copy has the 
smallest expected latency, which includes queuing time, seek time, and rotation time. 
With RAID, the decay set is usually taken to be an entire hard disk. If one of the disks 
fails, the next DURABLE_GET that tries to read from that disk will detect the failure, mask it 
by reading from another replica, and put out a call for repair. Repair consists of first 
replacing the disk that failed and then copying all of the disk sectors from one of the 
other replica disks. 

8.5.4.7 Improving on RAID 1 
Even with RAID 1, an untolerated error can occur if a rarely-used sector decays, and 
before that decay is noticed all other copies of that same sector also decay. When there is 
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finally a call for that sector, all fail to read and the data is lost. A closely related scenario 
is that a sector decays and is eventually noticed, but the other copies of that same sector 
decay before repair of the first one is completed. One way to reduce the chances of these 
outcomes is to implement a clerk that periodically reads all replicas of every sector, to 
check for decay. If CAREFUL_GET reports that a replica of a sector is unreadable at one of 
these periodic checks, the clerk immediately rewrites that replica from a good one. If the 
rewrite fails, the clerk calls for immediate revectoring of that sector or, if the number of 
revectorings is rapidly growing, replacement of the decay set to which the sector belongs. 
The period between these checks should be short enough that the probability that all rep­
licas have decayed since the previous check is negligible. By analyzing the statistics of 
experience for similar disk systems, the designer chooses such a period, Td. This 
approach leads to the following failure tolerance model: 

status ← MORE_DURABLE_PUT (data, virtual_sector_number) 
status ← MORE_DURABLE_GET (data, virtual_sector_number) 

• 	 error-free operation: MORE_DURABLE_GET returns whatever was most recently 
written by MORE_DURABLE_PUT at virtual_sector_number with status = OK 

• 	 tolerated error: Hard errors reported by the careful storage layer are masked by 
reading from one of the other replicas. The result is that the operation completes 
with status = OK. 

• 	 tolerated error: data of a single decay set decays, is discovered by the clerk, and is 
repaired, all within Td seconds of the decay event. 

• 	untolerated error: The operating system crashes during a DURABLE_PUT and 
scribbles over the disk buffer in volatile storage, so DURABLE_PUT writes corrupted 
data on all mirror copies of that sector. 

• 	untolerated error: all decay sets fail within 	Td seconds. (With a conservative 
choice of Td, the probability of this event should be negligible.) 

• 	 untolerated error: The data of some sector decays in a way that is undetectable— 
the checksum accidentally verifies. (With a good quality checksum, the 
probability of this event should be negligible.) 

A somewhat less effective alternative to running a clerk that periodically verifies integ­
rity of the data is to notice that the bathtub curve of Figure 8.1 applies to magnetic disks, 
and simply adopt a policy of systematically replacing the individual disks of the RAID 
array well before they reach the point where their conditional failure rate is predicted to 
start climbing. This alternative is not as effective for two reasons: First, it does not catch 
and repair random decay events, which instead accumulate. Second, it provides no warn­
ing if the actual operational lifetime is shorter than predicted (for example, if one 
happens to have acquired a bad batch of disks). 
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8.5.4.8 Detecting Errors Caused by System Crashes 
With the addition of a clerk to watch for 
decay, there is now just one remaining Sidebar 8.3: Are disk system checksums a 

untolerated error that has a significant wasted effort? From the adjacent 

probability: the hard error created by an paragraph, an end-to-end argument suggests 

operating system crash during CAREFUL_PUT. that an end-to-end checksum is always 

Since that scenario corrupts the data needed to protect data on its way to and 

before the disk subsystem sees it, the disk from the disk subsystem, and that the fail-

subsystem has no way of either detecting fast checksum performed inside the disk 

or masking this error. Help is needed from 
system thus may not be essential. 

outside the disk subsystem—either the However, the disk system checksum cleanly 

operating system or the application. The subcontracts one rather specialized job: 

usual approach is that either the system or, correcting burst errors of the storage 

even better, the application program, cal- medium. In addition, the disk system 

culates and includes an end-to-end checksum provides a handle for disk-layer 

checksum with the data before initiating erasure code implementations such as RAID, 

the disk write. Any program that later as was described in Section 8.4.1. Thus the 

reads the data verifies that the stored disk system checksum, though superficially 

checksum matches the recalculated check- redundant, actually turns out to be quite 

sum of the data. The end-to-end useful.
 

checksum thus monitors the integrity of
 
the data as it passes through the operating system buffers and also while it resides in the
 
disk subsystem.
 

The end-to-end checksum allows only detecting this class of error. Masking is another 
matter—it involves a technique called recovery, which is one of the topics of the next 
chapter. 

Table 8.1 summarizes where failure tolerance is implemented in the several disk lay­
ers. The hope is that the remaining untolerated failures are so rare that they can be 
neglected. If they are not, the number of replicas could be increased until the probability 
of untolerated failures is negligible. 

8.5.4.9 Still More Threats to Durability 
The various procedures described above create storage that is durable in the face of indi­
vidual disk decay but not in the face of other threats to data integrity. For example, if the 
power fails in the middle of a MORE_DURABLE_PUT, some replicas may contain old versions 
of the data, some may contain new versions, and some may contain corrupted data, so it 
is not at all obvious how MORE_DURABLE_GET should go about meeting its specification. 
The solution is to make MORE_DURABLE_PUT atomic, which is one of the topics of Chapter 
9[on-line]. 

RAID systems usually specify that a successful return from a PUT confirms that writing 
of all of the mirror replicas was successful. That specification in turn usually requires that 
the multiple disks be physically co-located, which in turn creates a threat that a single 
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physical disaster—fire, earthquake, flood, civil disturbance, etc.—might damage or 
destroy all of the replicas. 

Since magnetic disks are quite reliable in the short term, a different strategy is to write 
only one replica at the time that MORE_DURABLE_PUT is invoked and write the remaining 
replicas at a later time. Assuming there are no inopportune failures in the short run, the 
results gradually become more durable as more replicas are written. Replica writes that 
are separated in time are less likely to have replicated failures because they can be sepa­
rated in physical location, use different disk driver software, or be written to completely 
different media such as magnetic tape. On the other hand, separating replica writes in 
time increases the risk of inconsistency among the replicas. Implementing storage that 
has durability that is substantially beyond that of RAID 1 and MORE_DURABLE_PUT/GET 

generally involves use of geographically separated replicas and systematic mechanisms to 
keep those replicas coordinated, a challenge that Chapter 10[on-line] discusses in depth. 

Perhaps the most serious threat to durability is that although different storage systems 
have employed each of the failure detection and masking techniques discussed in this sec­
tion, it is all too common to discover that a typical off-the-shelf personal computer file 

raw layer 
fail-fast 
layer 

careful 
layer 

durable 
layer 

more durable 
layer 

soft read, write, or seek 
error 

failure detected masked 

hard read, write error failure detected detected masked 

power failure interrupts 
a write 

failure detected detected masked 

single data decay failure detected detected masked 

multiple data decay 
spaced in time 

failure detected detected detected masked 

multiple data decay 
within Td 

failure detected detected detected failure* 

undetectable decay failure failure failure failure failure* 

system crash corrupts 
write buffer 

failure failure failure failure detected 

Table 8.1:  Summary of disk failure tolerance models. Each entry shows the effect of this error at the 
interface between the named layer and the next higher layer. With careful design, the probability of 
the two failures marked with an asterisk should be negligible. Masking of corruption caused by system 
crashes is discussed in Chapter 9[on-line] 
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system has been designed using an overly simple disk failure model and thus misses 
some—or even many—straightforward failure masking opportunities. 

8.6 Wrapping up Reliability 

8.6.1 Design Strategies and Design Principles 

Standing back from the maze of detail about redundancy, we can identify and abstract 
three particularly effective design strategies: 

• 	 N-modular redundancy is a simple but powerful tool for masking failures and 
increasing availability, and it can be used at any convenient level of granularity. 

• 	 Fail-fast modules provide a sweeping simplification of the problem of containing 
errors. When containment can be described simply, reasoning about fault 
tolerance becomes easier. 

• 	 Pair-and-compare allows fail-fast modules to be constructed from commercial, 
off-the-shelf components. 

Standing back still further, it is apparent that several general design principles are 
directly applicable to fault tolerance. In the formulation of the fault-tolerance design pro­
cess in Section 8.1.2, we invoked be explicit, design for iteration. keep digging, and the 
safety margin principle, and in exploring different fault tolerance techniques we have seen 
several examples of adopt sweeping simplifications. One additional design principle that 
applies to fault tolerance (and also, as we will see in Chapter 11[on-line], to security) 
comes from experience, as documented in the case studies of Section 8.8: 

Avoid rarely used components 

Deterioration and corruption accumulate unnoticed—until the next use. 

Whereas redundancy can provide masking of errors, redundant components that are 
used only when failures occur are much more likely to cause trouble than redundant 
components that are regularly exercised in normal operation. The reason is that failures 
in regularly exercised components are likely to be immediately noticed and fixed. Fail­
ures in unused components may not be noticed until a failure somewhere else happens. 
But then there are two failures, which may violate the design assumptions of the masking 
plan. This observation is especially true for software, where rarely-used recovery proce­
dures often accumulate unnoticed bugs and incompatibilities as other parts of the system 
evolve. The alternative of periodic testing of rarely-used components to lower their fail­
ure latency is a band-aid that rarely works well. 

In applying these design principles, it is important to consider the threats, the conse­
quences, the environment, and the application. Some faults are more likely than others, 
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some failures are more disruptive than others, and different techniques may be appropri­
ate in different environments. A computer-controlled radiation therapy machine, a deep-
space probe, a telephone switch, and an airline reservation system all need fault tolerance, 
but in quite different forms. The radiation therapy machine should emphasize fault 
detection and fail-fast design, to avoid injuring patients. Masking faults may actually be 
a mistake. It is likely to be safer to stop, find their cause, and fix them before continuing 
operation. The deep-space probe, once the mission begins, needs to concentrate on fail­
ure masking to ensure mission success. The telephone switch needs many nines of 
availability because customers expect to always receive a dial tone, but if it occasionally 
disconnects one ongoing call, that customer will simply redial without thinking much 
about it. Users of the airline reservation system might tolerate short gaps in availability, 
but the durability of its storage system is vital. At the other extreme, most people find 
that a digital watch has an MTTF that is long compared with the time until the watch 
is misplaced, becomes obsolete, goes out of style, or is discarded. Consequently, no pro­
vision for either error masking or repair is really needed. Some applications have built-in 
redundancy that a designer can exploit. In a video stream, it is usually possible to mask 
the loss of a single video frame by just repeating the previous frame. 

8.6.2 How about the End-to-End Argument? 

There is a potential tension between error masking and an end-to-end argument. An end-
to-end argument suggests that a subsystem need not do anything about errors and should 
not do anything that might compromise other goals such as low latency, high through­
put, or low cost. The subsystem should instead let the higher layer system of which it is 
a component take care of the problem because only the higher layer knows whether or 
not the error matters and what is the best course of action to take. 

There are two counter arguments to that line of reasoning: 

• 	 Ignoring an error allows it to propagate, thus contradicting the modularity goal of 
error containment. This observation points out an important distinction between 
error detection and error masking. Error detection and containment must be 
performed where the error happens, so that the error does not propagate wildly. 
Error masking, in contrast, presents a design choice: masking can be done locally 
or the error can be handled by reporting it at the interface (that is, by making the 
module design fail-fast) and allowing the next higher layer to decide what masking 
action—if any—to take. 

• 	 The lower layer may know the nature of the error well enough that it can mask it 
far more efficiently than the upper layer. The specialized burst error correction 
codes used on DVDs come to mind. They are designed specifically to mask errors 
caused by scratches and dust particles, rather than random bit-flips. So we have a 
trade-off between the cost of masking the fault locally and the cost of letting the 
error propagate and handling it in a higher layer. 
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These two points interact: When an error propagates it can contaminate otherwise 
correct data, which can increase the cost of masking and perhaps even render masking 
impossible. The result is that when the cost is small, error masking is usually done locally. 
(That is assuming that masking is done at all. Many personal computer designs omit 
memory error masking. Section 8.8.1 discusses some of the reasons for this design 
decision.) 

A closely related observation is that when a lower layer masks a fault it is important 
that it also report the event to a higher layer, so that the higher layer can keep track of 
how much masking is going on and thus how much failure tolerance there remains. 
Reporting to a higher layer is a key aspect of the safety margin principle. 

8.6.3 A Caution on the Use of Reliability Calculations 

Reliability calculations seem to be exceptionally vulnerable to the garbage-in, garbage-
out syndrome. It is all too common that calculations of mean time to failure are under­
mined because the probabilistic models are not supported by good statistics on the failure 
rate of the components, by measures of the actual load on the system or its components, 
or by accurate assessment of independence between components. 

For computer systems, back-of-the-envelope calculations are often more than suffi­
cient because they are usually at least as accurate as the available input data, which tends 
to be rendered obsolete by rapid technology change. Numbers predicted by formula can 
generate a false sense of confidence. This argument is much weaker for technologies that 
tend to be stable (for example, production lines that manufacture glass bottles). So reli­
ability analysis is not a waste of time, but one must be cautious in applying its methods 
to computer systems. 

8.6.4 Where to Learn More about Reliable Systems 

Our treatment of fault tolerance has explored only the first layer of fundamental con­
cepts. There is much more to the subject. For example, we have not considered another 
class of fault that combines the considerations of fault tolerance with those of security: 
faults caused by inconsistent, perhaps even malevolent, behavior. These faults have the 
characteristic they generate inconsistent error values, possibly error values that are specif­
ically designed by an attacker to confuse or confound fault tolerance measures. These 
faults are called Byzantine faults, recalling the reputation of ancient Byzantium for mali­
cious politics. Here is a typical Byzantine fault: suppose that an evil spirit occupies one 
of the three replicas of a TMR system, waits for one of the other replicas to fail, and then 
adjusts its own output to be identical to the incorrect output of the failed replica. A voter 
accepts this incorrect result and the error propagates beyond the intended containment 
boundary. In another kind of Byzantine fault, a faulty replica in an NMR system sends 
different result values to each of the voters that are monitoring its output. Malevolence 
is not required—any fault that is not anticipated by a fault detection mechanism can pro­
duce Byzantine behavior. There has recently been considerable attention to techniques 
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that can tolerate Byzantine faults. Because the tolerance algorithms can be quite com­
plex, we defer the topic to advanced study. 

We also have not explored the full range of reliability techniques that one might 
encounter in practice. For an example that has not yet been mentioned, Sidebar 8.4 
describes the heartbeat, a popular technique for detecting failures of active processes. 

This chapter has oversimplified some ideas. For example, the definition of availability 
proposed in Section 8.2 of this chapter is too simple to adequately characterize many 
large systems. If a bank has hundreds of automatic teller machines, there will probably 
always be a few teller machines that are not working at any instant. For this case, an avail­
ability measure based on the percentage of transactions completed within a specified 
response time would probably be more appropriate. 

A rapidly moving but in-depth discussion of fault tolerance can be found in Chapter 
3 of the book Transaction Processing: Concepts and Techniques, by Jim Gray and Andreas 
Reuter. A broader treatment, with case studies, can be found in the book Reliable Com­
puter Systems: Design and Evaluation, by Daniel P. Siewiorek and Robert S. Swarz. 
Byzantine faults are an area of ongoing research and development, and the best source is 
current professional literature. 

This chapter has concentrated on general techniques for achieving reliability that are 
applicable to hardware, software, and complete systems. Looking ahead, Chapters 9[on­
line] and 10[on-line] revisit reliability in the context of specific software techniques that 
permit reconstruction of stored state following a failure when there are several concur­
rent activities. Chapter 11[on-line], on securing systems against malicious attack, 
introduces a redundancy scheme known as defense in depth that can help both to contain 
and to mask errors in the design or implementation of individual security mechanisms. 

Sidebar 8.4:  Detecting failures with heartbeats.  An activity such as a Web server is usually 
intended to keep running indefinitely. If it fails (perhaps by crashing) its clients may notice that 
it has stopped responding, but clients are not typically in a position to restart the server. 
Something more systematic is needed to detect the failure and initiate recovery. One helpful 
technique is to program the thread that should be performing the activity to send a periodic 
signal to another thread (or a message to a monitoring service) that says, in effect, “I'm still 
OK”. The periodic signal is known as a heartbeat and the observing thread or service is known 
as a watchdog. 

The watchdog service sets a timer, and on receipt of a heartbeat message it restarts the timer. If 
the timer ever expires, the watchdog assumes that the monitored service has gotten into trouble 
and it initiates recovery. One limitation of this technique is that if the monitored service fails 
in such a way that the only thing it does is send heartbeat signals, the failure will go undetected. 

As with all fixed timers, choosing a good heartbeat interval is an engineering challenge. Setting 
the interval too short wastes resources sending and responding to heartbeat signals. Setting the 
interval too long delays detection of failures. Since detection is a prerequisite to repair, a long 
heartbeat interval increases MTTR and thus reduces availability. 
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8.7 Application: A Fault Tolerance Model for CMOS RAM 
This section develops a fault tolerance model for words of CMOS random access mem­
ory, first without and then with a simple error-correction code, comparing the 
probability of error in the two cases. 

CMOS RAM is both low in cost and extraordinarily reliable, so much so that error 
masking is often not implemented in mass production systems such as television sets and 
personal computers. But some systems, for example life-support, air traffic control, or 
banking systems, cannot afford to take unnecessary risks. Such systems usually employ 
the same low-cost memory technology but add incremental redundancy. 

A common failure of CMOS RAM is that noise intermittently causes a single bit to 
read or write incorrectly. If intermittent noise affected only reads, then it might be suf­
ficient to detect the error and retry the read. But the possibility of errors on writes 
suggests using a forward error-correction code. 

We start with a fault tolerance model that applies when reading a word from memory 
without error correction. The model assumes that errors in different bits are independent 
and it assigns p as the (presumably small) probability that any individual bit is in error. 
The notation O(pn) means terms involving pn and higher, presumably negligible, pow­
ers. Here are the possibilities and their associated probabilities: 

Fault tolerance model for raw CMOS random access memory 

probability 

error-free case: all 32 bits are correct 1 – p( )32 = 1 O  p( )– 

errors: 

untolerated: one bit is in error: 32p 1( – p)31 = O p( )  

untolerated: two bits are in error: (31 ⋅ 32 ⁄ 30 O p22)p2(1 – p) = ( )  

untolerated: three or more bits are in error: 

(30 ⋅ 31 ⋅ 32 ⁄ ⋅ p3(1 – p) + p = ( )3 2) 29 + … 32 O p3 

The coefficients 32 , (31 ⋅ 32) ⁄ 2 , etc., arise by counting the number of ways that one, 
two, etc., bits could be in error. 

Suppose now that the 32-bit block of memory is encoded using a code of Hamming 
distance 3, as described in Section 8.4.1. Such a code allows any single-bit error to be 
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corrected and any double-bit error to be detected. After applying the decoding algo­
rithm, the fault tolerance model changes to: 

Fault tolerance model for CMOS memory with error correction 

probability 

error-free case: all 32 bits are correct 1 – p)32 = 1 O( )p( – 

errors: 

tolerated: one bit corrected: 32p(1 – p)31 = O( )p 

detected: two bits are in error: 31 ⋅ 32 ⁄ 2)p2(1 – p)30 = O p2( ( )  

untolerated: three or more bits are in error: 

(30 ⋅ 31 ⋅ 32 ⁄ ⋅ p 1 – p) + p = ( )3 2) 3( 29 + … 32 O p3 

The interesting change is in the probability that the decoded value is correct. That prob­
ability is the sum of the probabilities that there were no errors and that there was one, 
tolerated error: 

Prob(decoded value is correct) = (1 – p)32 + 32p(1 – p)31 

= ( – 31 ⋅ 32 ⁄ 2) + … + (32p + 31 ⋅1 32p + ( p2 )

= ( – ( ))1 O p2

The decoding algorithm has thus eliminated the errors that have probability of order p. 
It has not eliminated the two-bit errors, which have probability of order p2, but for two-
bit errors the algorithm is fail-fast, so a higher-level procedure has an opportunity to 
recover, perhaps by requesting retransmission of the data. The code is not helpful if there 
are errors in three or more bits, which situation has probability of order p3, but presum­
ably the designer has determined that probabilities of that order are negligible. If they are 
not, the designer should adopt a more powerful error-correction code. 

With this model in mind, one can review the two design questions suggested on page 
8–19. The first question is whether the estimate of bit error probability is realistic and if 
it is realistic to suppose that multiple bit errors are statistically independent of one 
another. (Error independence appeared in the analysis in the claim that the probability 
of an n-bit error has the order of the nth power of the probability of a one-bit error.) 
Those questions concern the real world and the accuracy of the designer’s model of it. 
For example, this failure model doesn’t consider power failures, which might take all the 
bits out at once, or a driver logic error that might take out all of the even-numbered bits. 
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It also ignores the possibility of faults that lead to errors in the logic of the error-correc­
tion circuitry itself. 

The second question is whether the coding algorithm actually corrects all one-bit 
errors and detects all two-bit errors. That question is explored by examining the mathe­
matical structure of the error-correction code and is quite independent of anybody’s 
estimate or measurement of real-world failure types and rates. There are many off-the­
shelf coding algorithms that have been thoroughly analyzed and for which the answer is 
yes. 

8.8 War Stories: Fault Tolerant Systems that Failed 

8.8.1 Adventures with Error Correction* 

The designers of the computer systems at the Xerox Palo Alto Research Center in the 
early 1970s encountered a series of experiences with error-detecting and error-correcting 
memory systems. From these experiences follow several lessons, some of which are far 
from intuitive, and all of which still apply several decades later. 

MAXC. One of the first projects undertaken in the newly-created Computer Systems 
Laboratory was to build a time-sharing computer system, named MAXC. A brand new 
1024-bit memory chip, the Intel 1103, had just appeared on the market, and it promised 
to be a compact and economical choice for the main memory of the computer. But since 
the new chip had unknown reliability characteristics, the MAXC designers implemented 
the memory system using a few extra bits for each 36-bit word, in the form of a single-
error-correction, double-error-detection code. 

Experience with the memory in MAXC was favorable. The memory was solidly reli­
able—so solid that no errors in the memory system were ever reported. 

The Alto.  When the time came to design the Alto personal workstation, the same Intel 
memory chips still appeared to be the preferred component. Because these chips had per­
formed so reliably in MAXC, the designers of the Alto memory decided to relax a little, 
omitting error correction. But, they were still conservative enough to provide error detec­
tion, in the form of one parity bit for each 16-bit word of memory. 

This design choice seemed to be a winner because the Alto memory systems also per­
formed flawlessly, at least for the first several months. Then, mysteriously, the operating 
system began to report frequent memory-parity failures. 

Some background: the Alto started life with an operating system and applications that 
used a simple typewriter-style interface. The display was managed with a character-by­
character teletype emulator. But the purpose of the Alto was to experiment with better 

* These experiences were reported by Butler Lampson, one of the designers of the MAXC computer 
and the Alto personal workstations at Xerox Palo Alto Research Center. 
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things. One of the first steps in that direction was to implement the first what-you-see­
is-what-you-get editor, named Bravo. Bravo took full advantage of the bit-map display, 
filling it not only with text, but also with lines, buttons, and icons. About half the mem­
ory system was devoted to display memory. Curiously, the installation of Bravo 
coincided with the onset of memory parity errors. 

It turned out that the Intel 1103 chips were pattern-sensitive—certain read/write 
sequences of particular bit patterns could cause trouble, probably because those pattern 
sequences created noise levels somewhere on the chip that systematically exceeded some 
critical threshold. The Bravo editor's display management was the first application that 
generated enough different patterns to have an appreciable probability of causing a parity 
error. It did so, frequently. 

Lesson 8.8.1a: There is no such thing as a small change in a large system. A new piece of soft­
ware can bring down a piece of hardware that is thought to be working perfectly. You are 
never quite sure just how close to the edge of the cliff you are standing. 

Lesson 8.8.1b: Experience is a primary source of information about failures. It is nearly impos­
sible, without specific prior experience, to predict what kinds of failures you will encounter in 
the field. 

Back to MAXC.  This circumstance led to a more careful review of the situation on 
MAXC. MAXC, being a heavily used server, would be expected to encounter at least 
some of this pattern sensitivity. It was discovered that although the error-correction cir­
cuits had been designed to report both corrected errors and uncorrectable errors, the 
software logged only uncorrectable errors and corrected errors were being ignored. When 
logging of corrected errors was implemented, it turned out that the MAXC's Intel 1103's 
were actually failing occasionally, and the error-correction circuitry was busily setting 
things right. 

Lesson 8.8.1c: Whenever systems implement automatic error masking, it is important to fol­
low the safety margin principle, by tracking how often errors are successfully masked. Without 
this information, one has no way of knowing whether the system is operating with a large or 
small safety margin for additional errors. Otherwise, despite the attempt to put some guaran­
teed space between yourself and the edge of the cliff, you may be standing on the edge again. 

The Alto 2. In 1975, it was time to design a follow-on workstation, the Alto 2. A new 
generation of memory chips, this time with 4096 bits, was now available. Since it took 
up much less space and promised to be cheaper, this new chip looked attractive, but 
again there was no experience with its reliability. The Alto 2 designers, having been made 
wary by the pattern sensitivity of the previous generation chips, again resorted to a single-
error-correction, double-error-detection code in the memory system. 

Once again, the memory system performed flawlessly. The cards passed their accep­
tance tests and went into service. In service, not only were no double-bit errors detected, 
only rarely were single-bit errors being corrected. The initial conclusion was that the chip 
vendors had worked the bugs out and these chips were really good. 
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About two years later, someone discovered an implementation mistake. In one quad­
rant of each memory card, neither error correction nor error detection was actually 
working. All computations done using memory in the misimplemented quadrant were 
completely unprotected from memory errors. 

Lesson 8.8.1d: Never assume that the hardware actually does what it says in the specifications. 
Lesson 8.8.1e: It is harder than it looks to test the fault tolerance features of a fault tolerant 
system. 

One might conclude that the intrinsic memory chip reliability had improved substan­
tially—so much that it was no longer necessary to take heroic measures to achieve system 
reliability. Certainly the chips were better, but they weren't perfect. The other effect here 
is that errors often don't lead to failures. In particular, a wrong bit retrieved from mem­
ory does not necessarily lead to an observed failure. In many cases a wrong bit doesn't 
matter; in other cases it does but no one notices; in still other cases, the failure is blamed 
on something else. 

Lesson 8.8.1f: Just because it seems to be working doesn't mean that it actually is. 

The bottom line.  One of the designers of MAXC and the Altos, Butler Lampson, sug­
gests that the possibility that a failure is blamed on something else can be viewed as an 
opportunity, and it may be one of the reasons that PC manufacturers often do not pro­
vide memory parity checking hardware. First, the chips are good enough that errors are 
rare. Second, if you provide parity checks, consider who will be blamed when the parity 
circuits report trouble: the hardware vendor. Omitting the parity checks probably leads 
to occasional random behavior, but occasional random behavior is indistinguishable 
from software error and is usually blamed on the software. 

Lesson 8.8.1g (in Lampson's words): “Beauty is in the eye of the beholder. The various parties 
involved in the decisions about how much failure detection and recovery to implement do not 
always have the same interests.” 

8.8.2 Risks of Rarely-Used Procedures: The National Archives 

The National Archives and Record Administration of the United States government has 
the responsibility, among other things, of advising the rest of the government how to 
preserve electronic records such as e-mail messages for posterity. Quite separate from that 
responsibility, the organization also operates an e-mail system at its Washington, D.C. 
headquarters for a staff of about 125 people and about 10,000 messages a month pass 
through this system. To ensure that no messages are lost, it arranged with an outside con­
tractor to perform daily incremental backups and to make periodic complete backups of 
its e-mail files. On the chance that something may go wrong, the system has audit logs 
that track actions regarding incoming and outgoing mail as well as maintenance on files. 

Over the weekend of June 18–21, 1999, the e-mail records for the previous four 
months (an estimated 43,000 messages) disappeared. No one has any idea what went 
wrong—the files may have been deleted by a disgruntled employee or a runaway house-
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cleaning program, or the loss may have been caused by a wayward system bug. In any 
case, on Monday morning when people came to work, they found that the files were 
missing. 

On investigation, the system managers reported that the audit logs had been turned 
off because they were reducing system performance, so there were no clues available to 
diagnose what went wrong. Moreover, since the contractor’s employees had never gotten 
around to actually performing the backup part of the contract, there were no backup 
copies. It had not occurred to the staff of the Archives to verify the existence of the 
backup copies, much less to test them to see if they could actually be restored. They 
assumed that since the contract required it, the work was being done. 

The contractor’s project manager and the employee responsible for making backups 
were immediately replaced. The Assistant Archivist reports that backup systems have 
now been beefed up to guard against another mishap, but he added that the safest way 
to save important messages is to print them out.* 

Lesson 8.8.2: Avoid rarely used components. Rarely used failure-tolerance mechanisms, 
such as restoration from backup copies, must be tested periodically. If they are not, there is not 
much chance that they will work when an emergency arises. Fire drills (in this case performing 
a restoration of all files from a backup copy) seem disruptive and expensive, but they are not 
nearly as disruptive and expensive as the discovery, too late, that the backup system isn’t really 
operating. Even better, design the system so that all the components are exposed to day-to-day 
use, so that failures can be noticed before they cause real trouble. 

8.8.3 Non-independent Replicas and Backhoe Fade 

In Eagan, Minnesota, Northwest airlines operated a computer system, named World-
Flight, that managed the Northwest flight dispatching database, provided weight-and­
balance calculations for pilots, and managed e-mail communications between the dis­
patch center and all Northwest airplanes. It also provided data to other systems that 
managed passenger check-in and the airline’s Web site. Since many of these functions 
involved communications, Northwest contracted with U.S. West, the local telephone 
company at that time, to provide these communications in the form of fiber-optic links 
to airports that Northwest serves, to government agencies such as the Weather Bureau 
and the Federal Aviation Administration, and to the Internet. Because these links were 
vital, Northwest paid U.S. West extra to provide each primary link with a backup sec­
ondary link. If a primary link to a site failed, the network control computers 
automatically switched over to the secondary link to that site. 

At 2:05 p.m. on March 23, 2000, all communications to and from WorldFlight 
dropped out simultaneously. A contractor who was boring a tunnel (for fiber optic lines 
for a different telephone company) at the nearby intersection of Lone Oak and Pilot 
Knob roads accidentally bored through a conduit containing six cables carrying the U.S. 

* George Lardner Jr. “Archives Loses 43,000 E-Mails; officials can't explain summer erasure; 
backup system failed.” The Washington Post, Thursday, January 6, 2000, page A17. 
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West fiber-optic and copper lines. In a tongue-in-cheek analogy to the fading in and out 
of long-distance radio signals, this kind of communications disruption is known in the 
trade as “backhoe fade.” WorldFlight immediately switched from the primary links to 
the secondary links, only to find that they were not working, either. It seems that the pri­
mary and secondary links were routed through the same conduit, and both were severed. 

Pilots resorted to manual procedures for calculating weight and balance, and radio 
links were used by flight dispatchers in place of the electronic message system, but about 
125 of Northwest’s 1700 flights had to be cancelled because of the disruption, about the 
same number that are cancelled when a major snowstorm hits one of Northwest’s hubs. 
Much of the ensuing media coverage concentrated on whether or not the contractor had 
followed “dig-safe” procedures that are intended to prevent such mistakes. But a news 
release from Northwest at 5:15 p.m. blamed the problem entirely on U.S. West. “For 
such contingencies, U.S. West provides to Northwest a complete redundancy plan. The 
U.S. West redundancy plan also failed.”* 

In a similar incident, the ARPAnet, a predecessor to the Internet, had seven separate 
trunk lines connecting routers in New England to routers elsewhere in the United States. 
All the trunk lines were purchased from a single long-distance carrier, AT&T. On 
December 12, 1986, all seven trunk lines went down simultaneously when a contractor 
accidentally severed a single fiber-optic cable running from White Plains, New York to 
Newark, New Jersey.† 

A complication for communications customers who recognize this problem and 
request information about the physical location of their communication links is that, in 
the name of security, communications companies sometimes refuse to reveal it. 

Lesson 8.8.3: The calculation of mean time to failure of a redundant system depends critically 
on the assumption that failures of the replicas are independent. If they aren’t independent, 
then the replication may be a waste of effort and money, while producing a false complacency. 
This incident also illustrates why it can be difficult to test fault tolerance measures properly. 
What appears to be redundancy at one level of abstraction turns out not to be redundant at a 
lower level of abstraction. 

8.8.4 Human Error May Be the Biggest Risk 

Telehouse was an East London “telecommunications hotel”, a seven story building hous­
ing communications equipment for about 100 customers, including most British 
Internet companies, many British and international telephone companies, and dozens of 
financial institutions. It was designed to be one of the most secure buildings in Europe, 
safe against “fire, flooding, bombs, and sabotage”. Accordingly, Telehouse had extensive 
protection against power failure, including two independent connections to the national 

* Tony Kennedy. “Cut cable causes cancellations, delays for Northwest Airlines.” Minneapolis Star 
Tribune, March 22, 2000. 

† Peter G. Neumann. Computer Related Risks (Addison-Wesley, New York, 1995), page 14. 

Saltzer & Kaashoek Ch. 8, p. 61 June 24, 2009 12:24 am 



8–62 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable 

electric power grid, a room full of batteries, and two diesel generators, along with systems 
to detect failures in supply and automatically cut over from one backup system to the 
next, as needed. 

On May 8, 1997, all the computer systems went off line for lack of power. According 
to Robert Bannington, financial director of Telehouse, “It was due to human error.” 
That is, someone pulled the wrong switch. The automatic power supply cutover proce­
dures did not trigger because they were designed to deploy on failure of the outside 
power supply, and the sensors correctly observed that the outside power supply was 
intact.* 

Lesson 8.8.4a: The first step in designing a fault tolerant system is to identify each potential 
fault and evaluate the risk that it will happen. People are part of the system, and mistakes 
made by authorized operators are typically a bigger threat to reliability than trees falling on 
power lines. 

Anecdotes concerning failures of backup power supply systems seem to be common. 
Here is a typical report of an experience in a Newark, New Jersey, hospital operating 
room that was equipped with three backup generators: “On August 14, 2003, at 4:10pm 
EST, a widespread power grid failure caused our hospital to suffer a total OR power loss, 
regaining partial power in 4 hours and total restoration 12 hours later... When the 
backup generators initially came on-line, all ORs were running as usual. Within 20 min­
utes, one parallel-linked generator caught fire from an oil leak. After being subjected to 
twice its rated load, the second in-line generator quickly shut down... Hospital engineer­
ing, attempting load-reduction to the single surviving generator, switched many hospital 
circuit breakers off. Main power was interrupted to the OR.”† 

Lesson 8.8.4b: A backup generator is another example of a rarely used component that may 
not have been maintained properly. The last two sentences of that report reemphasize Lesson 
8.8.4a. 

For yet another example, the M.I.T. Information Services and Technology staff 
posted the following system services notice on April 2, 2004: “We suffered a power fail­
ure in W92 shortly before 11AM this morning. Most services should be restored now, 
but some are still being recovered. Please check back here for more information as it 
becomes available.” A later posting reported: “Shortly after 10AM Friday morning the 
routine test of the W92 backup generator was started. Unknown to us was that the tran­
sition of the computer room load from commercial power to the backup generator 
resulted in a power surge within the computer room's Uninterruptable [sic] Power Sup­
ply (UPS). This destroyed an internal surge protector, which started to smolder. Shortly 
before 11AM the smoldering protector triggered the VESDA® smoke sensing system 

* Robert Uhlig. “Engineer pulls plug on secure bunker.” Electronic Telegraph, (9 May 1997). 

† Ian E. Kirk, M.D. and Peter L. Fine, M.D. “Operating by Flashlight: Power Failure and Safety 
Lessons from the August, 2003 Blackout.” Abstracts of the Annual Meeting of the American Society of 
Anesthesiologists, October 2005. 
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within the computer room. This sensor triggered the fire alarm, and as a safety precau­
tion forced an emergency power down of the entire computer room.”* 

Lesson 8.8.4c: A failure masking system not only can fail, it can cause a bigger failure than 
the one it is intended to mask. 

8.8.5 Introducing a Single Point of Failure 

“[Rabbi Israel Meir HaCohen Kagan described] a real-life situation in his town of Radin, 
Poland. He lived at the time when the town first purchased an electrical generator and 
wired all the houses and courtyards with electric lighting. One evening something broke 
within the machine, and darkness descended upon all of the houses and streets, and even 
in the synagogue. 

“So he pointed out that before they had electricity, every house had a kerosene light— 
and if in one particular house the kerosene ran out, or the wick burnt away, or the glass 
broke, that only that one house would be dark. But when everyone is dependent upon 
one machine, darkness spreads over the entire city if it breaks for any reason.”† 

Lesson 8.8.5: Centralization may provide economies of scale, but it can also reduce robust­
ness—a single failure can interfere with many unrelated activities. This phenomenon is 
commonly known as introducing a single point of failure. By carefully adding redundancy to 
a centralized design one may be able to restore some of the lost robustness but it takes planning 
and adds to the cost. 

8.8.6 Multiple Failures: The SOHO Mission Interruption 

“Contact with the SOlar Heliospheric Observatory (SOHO) spacecraft was lost in the 
early morning hours of June 25, 1998, Eastern Daylight Time (EDT), during a planned 
period of calibrations, maneuvers, and spacecraft reconfigurations. Prior to this the 
SOHO operations team had concluded two years of extremely successful science 
operations. 

“…The Board finds that the loss of the SOHO spacecraft was a direct result of oper­
ational errors, a failure to adequately monitor spacecraft status, and an erroneous 
decision which disabled part of the on-board autonomous failure detection. Further, fol­
lowing the occurrence of the emergency situation, the Board finds that insufficient time 
was taken by the operations team to fully assess the spacecraft status prior to initiating 
recovery operations. The Board discovered that a number of factors contributed to the 
circumstances that allowed the direct causes to occur.”‡ 

* Private internal communication. 

† Chofetz Chaim (the Rabbi Israel Meir HaCohen Kagan of Radin), paraphrased by Rabbi Yaakov 
Menken, in a discussion of lessons from the Torah in Project Genesis Lifeline. 
<http://www.torah.org/learning/lifeline/5758/reeh.html>. Suggested by David 
Karger. 

Saltzer & Kaashoek Ch. 8, p. 63 June 24, 2009 12:24 am 

<http://www.torah.org/learning/lifeline/5758/reeh.html>


8–64 CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable 
 

In a tour-de-force of the keep digging principle, the report of the investigating board 
quoted above identified five distinct direct causes of the loss: two software errors, a design 
feature that unintentionally amplified the effect of one of the software errors, an incor­
rect diagnosis by the ground staff, and a violated design assumption. It then goes on to 
identify three indirect causes in the spacecraft design process: lack of change control, 
missing risk analysis for changes, and insufficient communication of changes, and then 
three indirect causes in operations procedures: failure to follow planned procedures, to 
evaluate secondary telemetry data, and to question telemetry discrepancies. 

Lesson 8.8.6: Complex systems fail for complex reasons. In systems engineered for reliability, 
it usually takes several component failures to cause a system failure. Unfortunately, when some 
of the components are people, multiple failures are all too common. 

Exercises 

8.1 	 Failures are 

A. Faults that are latent. 
B. Errors that are contained within a module. 
C. 	 Errors that propagate out of a module. 
D. 	 Faults that turn into errors. 

1999–3–01 

8.2 	 Ben Bitdiddle has been asked to perform a deterministic computation to calculate 
the orbit of a near-Earth asteroid for the next 500 years, to find out whether or not 
the asteroid will hit the Earth. The calculation will take roughly two years to 
complete, and Ben wants be be sure that the result will be correct. He buys 30 
identical computers and runs the same program with the same inputs on all of them. 
Once each hour the software pauses long enough to write all intermediate results to 
a hard disk on that computer. When the computers return their results at the end 

‡ Massimo Trella and Michael Greenfield. Final Report of the SOHO Mission Interruption Joint 
NASA/ESA Investigation Board (August 31, 1998). National Aeronautics and Space Administration 
and European Space Agency. 
<http://sohowww.nascom.nasa.gov/whatsnew/SOHO_final_report.html>
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of the two years, a voter selects the majority answer. Which of the following failures 
can this scheme tolerate, assuming the voter works correctly? 

A. 	 The software carrying out the deterministic computation has a bug in it, causing the 
program to compute the wrong answer for certain inputs. 

B. 	 Over the course of the two years, cosmic rays corrupt data stored in memory at twelve 
of the computers, causing them to return incorrect results. 

C. 	 Over the course of the two years, on 24 different days the power fails in the computer 
room. When the power comes back on, each computer reboots and then continues 
its computation, starting with the state it finds on its hard disk. 

2006–2–3 

8.3 	 Ben Bitdiddle has seven smoke detectors installed in various places in his house. 
Since the fire department charges $100 for responding to a false alarm, Ben has 
connected the outputs of the smoke detectors to a simple majority voter, which in 
turn can activate an automatic dialer that calls the fire department. Ben returns 
home one day to find his house on fire, and the fire department has not been called. 
There is smoke at every smoke detector. What did Ben do wrong? 

A. 	 He should have used fail-fast smoke detectors. 
B. 	 He should have used a voter that ignores failed inputs from fail-fast sources. 
C. 	 He should have used a voter that ignores non-active inputs. 
D. 	 He should have done both A and B. 
E. 	 He should have done both Aand C. 

1997–0–01 

8.4 	 You will be flying home from a job interview in Silicon Valley. Your travel agent 
gives you the following choice of flights: 

A. 	 Flight A uses a plane whose mean time to failure (MTTF) is believed to be 6,000 
hours. With this plane, the flight is scheduled to take 6 hours. 

B. 	 Flight B uses a plane whose MTTF is believed to be 5,000 hours. With this plane, 
the flight takes 5 hours. 

The agent assures you that both planes’ failures occur according to memoryless 
random processes (not a “bathtub” curve). Assuming that model, which flight 
should you choose to minimize the chance of your plane failing during the flight? 

2005–2–5 

8.5 	 (Note: solving this problem is best done with use of probability through the level 
of Markov chains.) You are designing a computer system to control the power grid 
for the Northeastern United States. If your system goes down, the lights go out and 
civil disorder—riots, looting, fires, etc.—will ensue. Thus, you have set a goal of 
having a system MTTF of at least 100 years (about 106 hours). For hardware you 
are constrained to use a building block computer that has a MTTF of 1000 hours 
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and a MTTR of 1 hour. Assuming that the building blocks are fail-fast, memoryless, 
and fail independently of one another, how can you arrange to meet your goal? 

1995–3–1a 

8.6 	 The town council wants to implement a municipal network to connect the local 
area networks in the library, the town hall, and the school. They want to minimize 
the chance that any building is completely disconnected from the others. They are 
considering two network topologies: 

1. “Daisy Chain”	 2. “Fully connected” 

Each link in the network has a failure probability of p. 

8.6a. What is the probability that the daisy chain network is connecting all the buildings? 

8.6b. 	What is the probability that the fully connected network is connecting all the 
buildings? 

8.6c. The town council has a limited budget, with which it can buy either a daisy chain 
network with two high reliability links (p = .000001), or a fully connected network 
with three low-reliability links (p = .0001). Which should they purchase? 

1985–0–1 

8.7 Figure 8.11 shows the failure points of three different 5MR supermodule designs, 
if repair does not happen in time. Draw the corresponding figure for the same three 
different TMR supermodule designs. 

2001–3–05 

8.8 	 An astronomer calculating the trajectory of Pluto has a program that requires the 
execution of 1013  machine operations. The fastest processor available in the lab 
runs only 109  operations per second and, unfortunately, has a probability of failing 
on any one operation of 10–12 . (The failure process is memoryless.) The good 
news is that the processor is fail-fast, so when a failure occurs it stops dead in its 
tracks and starts ringing a bell. The bad news is that when it fails, it loses all state, 
so whatever it was doing is lost, and has to be started over from the beginning. 

Seeing that in practical terms, the program needs to run for about 3 hours, and the 
machine has an MTTF of only 1/10 of that time, Louis Reasoner and Ben Bitdiddle 
have proposed two ways to organize the computation: 
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• 	 Louis says run it from the beginning and hope for the best. If the machine fails, 
just try again; keep trying till the calculation successfully completes. 

• 	Ben suggests dividing the calculation into ten equal-length segments; if the 
calculation gets to the end of a segment, it writes its state out to the disk. When 
a failure occurs, restart from the last state saved on the disk. 

Saving state and restart both take zero time. What is the ratio of the expected time 
to complete the calculation under the two strategies? 

Warning: A straightforward solution to this problem involves advanced probability 
techniques. 

1976–0–3 

8.9 	 Draw a figure, similar to that of Figure 8.6, that shows the recovery procedure for 
one sector of a 5-disk RAID 4 system when disk 2 fails and is replaced. 

2005–0–1 

8.10 	 Louis Reasoner has just read an advertisement for a RAID controller that provides 
a choice of two configurations. According to the advertisement, the first 
configuration is exactly the RAID 4 system described in Section 8.4.1. The 
advertisement goes on to say that the configuration called RAID 5 has just one 
difference: in an N-disk configuration, the parity block, rather than being written 
on disk N, is written on the disk number (1 + sector_address modulo N). Thus, for 
example, in a five-disk system, the parity block for sector 18 would be on disk 4 
(because 1 + (18 modulo 5) = 4), while the parity block for sector 19 would be on 
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disk 5 (because 1 + (19 modulo 5) = 5). Louis is hoping you can help him 
understand why this idea might be a good one.

 8.10a. RAID 5 has the advantage over RAID 4 that 

A. It tolerates single-drive failures. 
B. Read performance in the absence of errors is enhanced. 
C. 	 Write performance in the absence of errors is enhanced. 
D. 	 Locating data on the drives is easier. 
E. Allocating space on the drives is easier. 
F. It requires less disk space. 
G. 	 There’s no real advantage, its just another advertising gimmick. 

1997–3–01 

8.10b. Is there any workload for which RAID 4 has better write performance than RAID 
5? 

2000–3–01 

8.10c. Louis is also wondering about whether he might be better off using a RAID 1 
system (see Section 8.5.4.6). How does the number of disks required compare 
between RAID 1 and RAID 5? 

1998–3–01

 8.10d. Which of RAID 1 and RAID 5 has better performance for a workload consisting 
of small reads and small writes? 

2000–3–01 

8.11 	 A system administrator notices that a file service disk is failing for two unrelated 
reasons. Once every 30 days, on average, vibration due to nearby construction 
breaks the disk’s arm. Once every 60 days, on average, a power surge destroys the 
disk’s electronics. The system administrator fixes the disk instantly each time it fails. 
The two failure modes are independent of each other, and independent of the age 
of the disk. What is the mean time to failure of the disk? 

2002–3–01 

Additional exercises relating to Chapter 8 can be found in problem sets 26 through 28. 

Saltzer & Kaashoek Ch. 8, p. 68	 June 24, 2009 12:24 am 



CHAPTERGlossary for Chapter 8
 

active fault—A fault that is currently causing an error. Compare with latent fault. [Ch. 8] 

availability—A measure of the time that a system was actually usable, as a fraction of the 
time that it was intended to be usable. Compare with its complement, down time. [Ch.
 8] 

backward error correction—A technique for correcting errors in which the source of the 
data or control signal applies enough redundancy to allow errors to be detected and, if 
an error does occur, that source is asked to redo the calculation or repeat the 
transmission. Compare with forward error correction. [Ch. 8] 

Byzantine fault—A fault that generates inconsistent errors (perhaps maliciously) that can 
confuse or disrupt fault tolerance or security mechanisms. [Ch. 8] 

close-to-open consistency—A consistency model for file operations. When a thread opens 
a file and performs several write operations, all of the modifications weill be visible to 
concurrent threads only after the first thread closes the file.  [Ch. 4] 

coheerence—See read/write coherence or cache coherence. 

continuous operation—An availability goal, that a system be capable of running 
indefinitely. The primary requirement of continuous operation is that it must be possible 
to perform repair and maintenance without stopping the system. [Ch. 8] 

decay set—A set of storage blocks, words, tracks, or other physical groupings, in which all 
members of the set may spontaneously fail together, but independently of any other 
decay set. [Ch. 8] 

detectable error—An error or class of errors for which a reliable detection plan can be 
devised. An error that is not detectable usually leads to a failure, unless some mechanism 
that is intended to mask some other error accidentally happens to mask the undetectable 
error. Compare with maskable error and tolerated error. [Ch. 8] 

down time—A measure of the time that a system was not usable, as a fraction of the time 
that it was intended to be usable. Compare with its complement, availability. [Ch. 8] 

durable storage—Storage with the property that it (ideally) is decay-free, so it never fails 
to return on a GET the data that was stored by a previously successful PUT. Since that ideal 
is impossibly strict, in practice, storage is considered durable when the probability of 
failure is sufficiently low that the application can tolerate it. Durability is thus an 
application-defined specification of how long the results of an action, once completed, 
must be preserved. Durable is distinct from non-volatile, which describes storage that 
maintains its memory while the power is off, but may still have an intolerable probability 
of decay. The term persistent is sometimes used as a synonym for durable, as explained in 
Sidebar 2.7, but to minimize confusion this text avoids that usage. [Ch. 8] 

erasure—An error in a string of bits, bytes, or groups of bits in which an identified bit, byte, 
8–69
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or group of bits is missing or has indeterminate value. [Ch. 8] 

ergodic—A property of some time-dependent probabilistic processes: that the (usually 
easier to measure) ensemble average of some parameter measured over a set of elements 
subject to the process is the same as the time average of that parameter of any single 
element of the ensemble. [Ch. 8] 

error—Informally, a label for an incorrect data value or control signal caused by an active 
fault. If there is a complete formal specification for the internal design of a module, an 
error is a violation of some assertion or invariant of the specification. An error in a 
module is not identical to a failure of that module, but if an error is not masked, it may 
lead to a failure of the module. [Ch. 8] 

error containment—Limiting how far the effects of an error propagate. A module is 
normally designed to contain errors in such a way that the effects of an error appear in a 
predictable way at the module’s interface. [Ch. 8] 

error correction—A scheme to set to the correct value a data value or control signal that is 
in error. Compare with error detection. [Ch. 8] 

error detection—A scheme to discover that a data value or control signal is in error. 
Compare with error correction. [Ch. 8] 

fail-fast—Describes a system or module design that contains detected errors by reporting 
at its interface that its output may be incorrect. Compare with fail-stop. [Ch. 8] 

fail-safe—Describes a system design that detects incorrect data values or control signals and 
forces them to values that, even if not correct, are known to allow the system to continue 
operating safely.  [Ch. 8] 

fail-secure—Describes an application of fail-safe design to information protection: a failure 
is guaranteed not to allow unauthorized access to protected information. In early work 
on fault tolerance, this term was also occasionally used as a synonym for fail-fast. [Ch. 8] 

fail-soft—Describes a design in which the system specification allows errors to be masked 
by degrading performance or disabling some functions in a predictable manner. [Ch. 8] 

fail-stop—Describes a system or module design that contains detected errors by stopping 
the system or module as soon as possible. Compare with fail-fast, which does not require 
other modules to take additional action, such as setting a timer, to detect the failure. 
[Ch. 8] 

fail-vote—Describes an N-modular redundancy system with a majority voter. [Ch. 8] 

failure—The outcome when a component or system does not produce the intended result 
at its interface. Compare with fault. [Ch. 8] 

failure tolerance—A measure of the ability of a system to mask active faults and continue 
operating correctly. A typical measure counts the number of contained components that 
can fail without causing the system to fail. [Ch. 8] 

fault—A defect in materials, design, or implementation that may (or may not) cause an 
error and lead to a failure. (Compare with failure.) [Ch. 8] 
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fault avoidance—A strategy to design and implement a component with a probability of 
faults that is so low that it can be neglected. When applied to software, fault avoidance 
is sometimes called valid construction. [Ch. 8] 

fault tolerance—A set of techniques that involve noticing active faults and lower-level 
subsystem failures and masking them, rather than allowing the resulting errors to 
propagate. [Ch. 8] 

forward error correction—A technique for controlling errors in which enough 
redundancy to correct anticipated errors is applied before an error occurs. Forward error 
correction is particularly applicable when the original source of the data value or control 
signal will not be available to recalculate or resend it. Compare with backward error 
correction. [Ch. 8] 

Hamming distance—in an encoding system, the number of bits in an element of a code 
that would have to change to transform it into a different element of the code. The 
Hamming distance of a code is the minimum Hamming distance between any pair of 
elements of the code. [Ch. 8] 

hot swap—To replace modules in a system while the system continues to provide service. 
[Ch. 8] 

intermittent fault—A persistent fault that is active only occasionally. Compare with 
transient fault. [Ch. 8] 

latency—As used in reliability, the time between when a fault becomes active and when the 
module in which the fault occurred either fails or detects the resulting error. [Ch. 8] 

latent fault—A fault that is not currently causing an error. Compare with active fault. [Ch.
 8] 

margin—The amount by which a specification is better than necessary for correct 
operation. The purpose of designing with margins is to mask some errors. [Ch. 8] 

maskable error—An error or class of errors that is detectable and for which a systematic 
recovery strategy can in principle be devised. Compare with detectable error and tolerated 
error. [Ch. 8] 

masking—As used in reliability, containing an error within a module in such a way that 
the module meets its specifications as if the error had not occurred. [Ch. 8] 

mean time between failures (MTBF)—The sum of MTTF and MTTR for the same 
component or system. [Ch. 8] 

mean time to failure (MTTF)—The expected time that a component or system will 
operate continuously without failing. “Time” is sometimes measured in cycles of 
operation. [Ch. 8] 

mean time to repair (MTTR)—The expected time to replace or repair a component or 
system that has failed. The term is sometimes written as “mean time to restore service”, 
but it is still abbreviated MTTR. [Ch. 8] 

memoryless—A property of some time-dependent probabilistic processes, that the 
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probability of what happens next does not depend on what has happened before. [Ch.
 8] 

mirror—(n.) One of a set of replicas that is created or updated synchronously. Compare 
with primary copy and backup copy. Sometimes used as a verb, as in “Let’s mirror that data 
by making three replicas.” [Ch. 8] 

N + 1 redundancy—When a load can be handled by sharing it among N equivalent 
modules, the technique of installing N + 1 or more of the modules, so that if one fails 
the remaining modules can continue to handle the full load while the one that failed is 
being repaired. [Ch. 8] 

N-modular redundancy (NMR)—A redundancy technique that involves supplying 
identical inputs to N equivalent modules and connecting the outputs to one or more 
voters. [Ch. 8] 

N-version programming—The software version of N-modular redundancy. N different 
teams each independently write a program from its specifications. The programs then 
run in parallel, and voters compare their outputs. [Ch. 8] 

page fault—See missing-page exception. 

pair-and-compare—A method for constructing fail-fast modules from modules that do 
not have that property, by connecting the inputs of two replicas of the module together 
and connecting their outputs to a comparator. When one repairs a failed pair-and­
compare module by replacing the entire two-replica module with a spare, rather than 
identifying and replacing the replica that failed, the method is called pair-and-spare. 
[Ch. 8] 

pair-and-spare—See pair-and-compare. 

partition—To divide a job up and assign it to different physical devices, with the intent 
that a failure of one device does not prevent the entire job from being done. [Ch. 8] 

persistent fault—A fault that cannot be masked by retry. Compare with transient fault and 
intermittent fault. [Ch. 8] 

prepaging—An optimization for a multilevel memory manager in which the manager 
predicts which pages might be  needed and brings them into the primary memory before 
the application demands them. Compare with demand algorithm. 

presented load—See offered load. 

preventive maintenance—Active intervention intended to increase the mean time to 
failure of a module or system and thus improve its reliability and availability. [Ch. 8] 

purging—A technique used in some N-modular redundancy designs, in which the voter 
ignores the output of any replica that, at some time in the past, disagreed with several 
others. [Ch. 8] 

redundancy—Extra information added to detect or correct errors in data or control signals. 
[Ch. 8] 

reliability—A statistical measure, the probability that a system is still operating at time t, 
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given that it was operating at some earlier time t0. [Ch. 8] 

repair—An active intervention to fix or replace a module that has been identified as failing, 
preferably before the system of which it is a part fails. [Ch. 8] 

replica—1. One of several identical modules that, when presented with the same inputs, is 
expected to produce the same output. 2. One of several identical copies of a set of data. 
[Ch. 8] 

replication—The technique of using multiple replicas to achieve fault tolerance. [Ch. 8] 

single-event upset—A synonym for transient fault. [Ch. 8] 

soft state—State of a running program that the program can easily reconstruct if it becomes 
necessary to abruptly terminate and restart the program. [Ch. 8] 

supermodule—A set of replicated modules interconnected in such a way that it acts like a 
single module. [Ch. 8] 

tolerated error—An error or class of errors that is both detectable and maskable, and for 
which a systematic recovery procedure has been implemented. Compare with detectable 
error, maskable error, and untolerated error. [Ch. 8] 

transient fault—A fault that is temporary and for which retry of the putatively failed 
component has a high probability of finding that it is okay. Sometimes called a single-
event upset. Compare with persistent fault and intermittent fault. [Ch. 8] 

triple-modular redundancy (TMR)—N-modular redundancy with N = 3. [Ch. 8] 

untolerated error—An error or class of errors that is undetectable, unmaskable, or 
unmasked and therefore can be expected to lead to a failure. Compare with detectable
 
error, maskable error, and tolerated error. [Ch. 8]
 

valid construction—The term used by software designers for fault avoidance. [Ch. 8] 

voter—A device used in some NMR designs to compare the output of several nominally 
identical replicas that all have the same input. [Ch. 8] 
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