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10–2 CHAPTER 10 Consistency
 

Overview 
The previous chapter developed all-or-nothing atomicity and before-or-after atomicity, two 
properties that define a transaction. This chapter introduces or revisits several applica­
tions that can make use of transactions. Section 10.1 introduces constraints and discusses 
how transactions can be used to maintain invariants and implement memory models that 
provide interface consistency. Sections 10.2 and 10.3 develop techniques used in two dif­
ferent application areas, caching and geographically distributed replication, to achieve 
higher performance and greater durability, respectively. Section 10.4 discusses reconcili­
ation, which is a way of restoring the constraint that replicas be identical if their contents 
should drift apart. Finally, Section 10.5 considers some perspectives relating to Chapters 
9[on-line] and 10. 

10.1 Constraints and Interface Consistency 
One common use for transactions is to maintain constraints. A constraint is an applica­
tion-defined requirement that every update to a collection of data preserve some 
specified invariant. Different applications can have quite different constraints. Here are 
some typical constraints that a designer might encounter: 

• 	 Table management: The variable that tells the number of entries should equal 
the number of entries actually in the table. 

• 	Double-linked list management: The forward pointer in a list cell, A, should 
refer a list cell whose back pointer refers to A. 

• 	 Disk storage management: Every disk sector should be assigned either to the free 
list or to exactly one file. 

• 	 Display management: The pixels on the screen should match the description in 
the display list. 

• 	Replica management: A majority (or perhaps all) of the replicas of the data 
should be identical. 

• 	 Banking: The sum of the balances of all credit accounts should equal the sum of 
the balances of all debit accounts. 

• 	 Process control: At least one of the valves on the boiler should always be open. 

As was seen in Chapter 9[on-line], maintaining a constraint over data within a single file 
can be relatively straightforward, for example by creating a shadow copy. Maintaining 
constraints across data that is stored in several files is harder, and that is one of the pri­
mary uses of transactions. Finally, two-phase commit allows maintaining a constraint 
that involves geographically separated files despite the hazards of communication. 

A constraint usually involves more than one variable data item, in which case an 
update action by nature must be composite—it requires several steps. In the midst of 
those steps, the data will temporarily be inconsistent. In other words, there will be times 
when the data violates the invariant. During those times, there is a question about what 
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to do if someone—another thread or another client—asks to read the data. This question 
is one of interface, rather than of internal operation, and it reopens the discussion of 
memory coherence and data consistency models introduced in Section 2.1.1.1. Different 
designers have developed several data consistency models to deal with this inevitable tem­
porary inconsistency. In this chapter we consider two of those models: strict consistency 
and eventual consistency. 

The first model, strict consistency, hides the constraint violation behind modular 
boundaries. Strict consistency means that actions outside the transaction performing the 
update will never see data that is inconsistent with the invariant. Since strict consistency 
is an interface concept, it depends on actions honoring abstractions, for example by using 
only the intended reading and writing operations. Thus, for a cache, read/write coher­
ence is a strict consistency specification: “The result of a READ of a named object is always 
the value that was provided by the most recent WRITE to that object”. This specification 
does not demand that the replica in the cache always be identical to the replica in the 
backing store, it requires only that the cache deliver data at its interface that meets the 
specification. 

Applications can maintain strict consistency by using transactions. If an action is all-
or-nothing, the application can maintain the outward appearance of consistency despite 
failures, and if an action is before-or-after, the application can maintain the outward 
appearance of consistency despite the existence of other actions concurrently reading or 
updating the same data. Designers generally strive for strict consistency in any situation 
where inconsistent results can cause confusion, such as in a multiprocessor system, and 
in situations where mistakes can have serious negative consequences, for example in 
banking and safety-critical systems. Section 9.1.6 mentioned two other consistency 
models, sequential consistency and external time consistency. Both are examples of strict 
consistency. 

The second, more lightweight, way of dealing with temporary inconsistency is called 
eventual consistency. Eventual consistency means that after a data update the constraint 
may not hold until some unspecified time in the future. An observer may, using the stan­
dard interfaces, discover that the invariant is violated, and different observers may even 
see different results. But the system is designed so that once updates stop occurring, it 
will make a best effort drive toward the invariant. 

Eventual consistency is employed in situations where performance or availability is a 
high priority and temporary inconsistency is tolerable and can be easily ignored. For 
example, suppose a Web browser is to display a page from a distant service. The page has 
both a few paragraphs of text and several associated images. The browser obtains the text 
immediately, but it will take some time to download the images. The invariant is that 
the appearance on the screen should match the Web page specification. If the browser 
renders the text paragraphs first and fills in the images as they arrive, the human reader 
finds that behavior not only acceptable, but perhaps preferable to staring at the previous 
screen until the new one is completely ready. When a person can say, “Oh, I see what is 
happening,” eventual consistency is usually acceptable, and in cases such as the Web 
browser it can even improve human engineering. For a second example, if a librarian cat-
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alogs a new book and places it on the shelf, but the public version of the library catalog 
doesn't include the new book until the next day, there is an observable inconsistency, but 
most library patrons would find it tolerable and not particularly surprising. 

Eventual consistency is sometimes used in replica management because it allows for 
relatively loose coupling among the replicas, thus taking advantage of independent fail­
ure. In some applications, continuous service is a higher priority than always-consistent 
answers. If a replica server crashes in the middle of an update, the other replicas may be 
able to continue to provide service, even though some may have been updated and some 
may have not. In contrast, a strict consistency algorithm may have to refuse to provide 
service until a crashed replica site recovers, rather than taking a risk of exposing an 
inconsistency. 

The remaining sections of this chapter explore several examples of strict and eventual 
consistency in action. A cache can be designed to provide either strict or eventual consis­
tency; Section 10.2 provides the details. The Internet Domain Name System, described 
in Section 4.4 and revisited in Section 10.2.2, relies on eventual consistency in updating 
its caches, with the result that it can on occasion give inconsistent answers. Similarly, for 
the geographically replicated durable storage of Section 10.3 a designer can choose either 
a strict or an eventual consistency model. When replicas are maintained on devices that 
are only occasionally connected, eventual consistency may be the only choice, in which 
case reconciliation, the topic of Section 10.4, drives occasionally connected replicas 
toward eventual consistency. The reader should be aware that these examples do not pro­
vide a comprehensive overview of consistency; instead they are intended primarily to 
create awareness of the issues involved by illustrating a few of the many possible designs. 

10.2 Cache Coherence 

10.2.1 Coherence, Replication, and Consistency in a Cache 

Chapter 6 described the cache as an example of a multilevel memory system. A cache can 
also be thought of as a replication system whose primary goal is performance, rather than 
reliability. An invariant for a cache is that the replica of every data item in the primary 
store (that is, the cache) should be identical to the corresponding replica in the secondary 
memory. Since the primary and secondary stores usually have different latencies, when 
an action updates a data value, the replica in the primary store will temporarily be incon­
sistent with the one in the secondary memory. How well the multilevel memory system 
hides that inconsistency is the question. 

A cache can be designed to provide either strict or eventual consistency. Since a cache, 
together with its backing store, is a memory system, a typical interface specification is 
that it provide read/write coherence, as defined in Section 2.1.1.1, for the entire name 
space of the cache: 
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• 	 The result of a read of a named object is always the value of the most recent write 
to that object. 

Read/write coherence is thus a specification that the cache provide strict consistency. 
A write-through cache provides strict consistency for its clients in a straightforward 

way: it does not acknowledge that a write is complete until it finishes updating both the 
primary and secondary memory replicas. Unfortunately, the delay involved in waiting 
for the write-through to finish can be a performance bottleneck, so write-through caches 
are not popular. 

A non-write-through cache acknowledges that a write is complete as soon as the cache 
manager updates the primary replica, in the cache. The thread that performed the write 
can go about its business expecting that the cache manager will eventually update the sec­
ondary memory replica and the invariant will once again hold. Meanwhile, if that same 
thread reads the same data object by sending a READ request to the cache, it will receive 
the updated value from the cache, even if the cache manager has not yet restored the 
invariant. Thus, because the cache manager masks the inconsistency, a non-write­
through cache can still provide strict consistency. 

On the other hand, if there is more than one cache, or other threads can read directly 
from the secondary storage device, the designer must take additional measures to ensure 
that other threads cannot discover the violated constraint. If a concurrent thread reads a 
modified data object via the same cache, the cache will deliver the modified version, and 
thus maintain strict consistency. But if a concurrent thread reads the modified data 
object directly from secondary memory, the result will depend on whether or not the 
cache manager has done the secondary memory update. If the second thread has its own 
cache, even a write-through design may not maintain consistency because updating the 
secondary memory does not affect a potential replica hiding in the second thread’s cache. 
Nevertheless, all is not lost. There are at least three ways to regain consistency, two of 
which provide strict consistency, when there are multiple caches. 

10.2.2 Eventual Consistency with Timer Expiration 

The Internet Domain Name System, whose basic operation was described in Section 4.4, 
provides an example of an eventual consistency cache that does not meet the read/write 
coherence specification. When a client calls on a DNS server to do a recursive name 
lookup, if the DNS server is successful in resolving the name it caches a copy of the 
answer as well as any intermediate answers that it received. Suppose that a client asks 
some local name server to resolve the name ginger.pedantic.edu. In the course of 
doing so, the local name server might accumulate the following name records in its 
cache: 

names.edu 198.41.0.4 name server for .edu 
ns.pedantic.edu 128.32.25.19 name server for .pedantic.edu 
ginger.pedantic.edu 128.32.247.24 target host name 
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If the client then asks for thyme.pedantic.edu the local name server will be able to use 
the cached record for ns.pedantic.edu to directly ask that name server, without having 
to go back up to the root to find names.edu and thence to names.edu to find 
ns.pedantic.edu. 

Now, suppose that a network manager at Pedantic University changes the Internet 
address of ginger.pedantic.edu to 128.32.201.15. At some point the manager 
updates the authoritative record stored in the name server ns.pedantic.edu. The prob­
lem is that local DNS caches anywhere in the Internet may still contain the old record 
of the address of ginger.pedantic.edu. DNS deals with this inconsistency by limiting 
the lifetime of a cached name record. Recall that every name server record comes with an 
expiration time, known as the time-to-live (TTL) that can range from seconds to months. 
A typical time-to-live is one hour; it is measured from the moment that the local name 
server receives the record. So, until the expiration time, the local cache will be inconsis­
tent with the authoritative version at Pedantic University. The system will eventually 
reconcile this inconsistency. When the time-to-live of that record expires, the local name 
server will handle any further requests for the name ginger.pedantic.edu by asking 
ns.pedantic.edu for a new name record. That new name record will contain the new, 
updated address. So this system provides eventual consistency. 

There are two different actions that the network manager at Pedantic University 
might take to make sure that the inconsistency is not an inconvenience. First, the net­
work manager may temporarily reconfigure the network layer of ginger.pedantic.edu 
to advertise both the old and the new Internet addresses, and then modify the authori­
tative DNS record to show the new address. After an hour has passed, all cached DNS 
records of the old address will have expired, and ginger.pedantic.edu can be recon-
figured again, this time to stop advertising the old address. Alternatively, the network 
manager may have realized this change is coming, so a few hours in advance he or she 
modifies just the time-to-live of the authoritative DNS record, say to five minutes, with­
out changing the Internet address. After an hour passes, all cached DNS records of this 
address will have expired, and any currently cached record will expire in five minutes or 
less. The manager now changes both the Internet address of the machine and also the 
authoritative DNS record of that address, and within a few minutes everyone in the 
Internet will be able to find the new address. Anyone who tries to use an old, cached, 
address will receive no response. But a retry a few minutes later will succeed, so from the 
point of view of a network client the outcome is similar to the case in which gin­
ger.pedantic.edu crashes and restarts—for a few minutes the server is non-responsive. 

There is a good reason for designing DNS to provide eventual, rather than strict, con­
sistency, and for not requiring read/write coherence. Replicas of individual name records 
may potentially be cached in any name server anywhere in the Internet—there are thou­
sands, perhaps even millions of such caches. Alerting every name server that might have 
cached the record that the Internet address of ginger.pedantic.edu changed would be 
a huge effort, yet most of those caches probably don’t actually have a copy of this partic­
ular record. Furthermore, it turns out not to be that important because, as described in 
the previous paragraph, a network manager can easily mask any temporary inconsistency 
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by configuring address advertisement or adjusting the time-to-live. Eventual consistency 
with expiration is an efficient strategy for this job. 

10.2.3 Obtaining Strict Consistency with a Fluorescent Marking Pen 

In certain special situations, it is possible to regain strict consistency, and thus read/write 
coherence, despite the existence of multiple, private caches: If only a few variables are 
actually both shared and writable, mark just those variables with a fluorescent marking 
pen. The meaning of the mark is “don't cache me”. When someone reads a marked vari­
able, the cache manager retrieves it from secondary memory and delivers it to the client, 
but does not place a replica in the cache. Similarly, when a client writes a marked vari­
able, the cache manager notices the mark in secondary memory and does not keep a copy 
in the cache. This scheme erodes the performance-enhancing value of the cache, so it 
would not work well if most variables have don’t-cache-me marks. 

The World Wide Web uses this scheme for Web pages that may be different each 
time they are read. When a client asks a Web server for a page that the server has marked 
“don’t cache me”, the server adds to the header of that page a flag that instructs the 
browser and any intermediaries not to cache that page. 

The Java language includes a slightly different, though closely related, concept, 
intended to provide read/write coherence despite the presence of caches, variables in reg­
isters, and reordering of instructions, all of which can compromise strict consistency 
when there is concurrency. The Java memory model allows the programmer to declare a 
variable to be volatile. This declaration tells the compiler to take whatever actions (such 
as writing registers back to memory, flushing caches, and blocking any instruction reor­
dering features of the processor) might be needed to ensure read/write coherence for the 
volatile variable within the actual memory model of the underlying system. Where the 
fluorescent marking pen marks a variable for special treatment by the memory system, 
the volatile declaration marks a variable for special treatment by the interpreter. 

10.2.4 Obtaining Strict Consistency with the Snoopy Cache 

The basic idea of most cache coherence schemes is to somehow invalidate cache entries 
whenever they become inconsistent with the authoritative replica. One situation where 
a designer can use this idea is when several processors share the same secondary memory. 
If the processors could also share the cache, there would be no problem. But a shared 
cache tends to reduce performance, in two ways. First, to minimize latency the designer 
would prefer to integrate the cache with the processor, but a shared cache eliminates that 
option. Second, there must be some mechanism that arbitrates access to the shared cache 
by concurrent processors. That arbitration mechanism must enforce waits that increase 
access latency even more. Since the main point of a processor cache is to reduce latency, 
each processor usually has at least a small private cache. 

Making the private cache write-through would ensure that the replica in secondary 
memory tracks the replica in the private cache. But write-through does not update any 
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replicas that may be in the private caches of other processors, so by itself it doesn’t pro­
vide read/write coherence. We need to add some way of telling those processors to 
invalidate any replicas their caches hold. 

A naive approach would be to run a wire from each processor to the others and specify 
that whenever a processor writes to memory, it should send a signal on this wire. The 
other processors should, when they see the signal, assume that something in their cache 
has changed and, not knowing exactly what, invalidate everything their cache currently 
holds. Once all caches have been invalidated, the first processor can then confirm com­
pletion of its own write. This scheme would work, but it would have a disastrous effect 
on the cache hit rate. If 20% of processor data references are write operations, each pro­
cessor will receive signals to invalidate the cache roughly every fifth data reference by each 
other processor. There would not be much point in having a big cache, since it would 
rarely have a chance to hold more than half a dozen valid entries. 

To avoid invalidating the entire cache, a better idea would be to somehow commu­
nicate to the other caches the specific address that is being updated. To rapidly transmit 
an entire memory address in hardware could require adding a lot of wires. The trick is to 
realize that there is already a set of wires in place that can do this job: the memory bus. 
One designs each private cache to actively monitor the memory bus. If the cache notices 
that anyone else is doing a write operation via the memory bus, it grabs the memory 
address from the bus and invalidates any copy of data it has that corresponds to that 
address. A slightly more clever design will also grab the data value from the bus as it goes 
by and update, rather than invalidate, its copy of that data. These are two variations on 
what is called the snoopy cache  [Suggestions for Further Reading 10.1.1]—each cache is 
snooping on bus activity. Figure 10.1 illustrates the snoopy cache. 

The registers of the various processors constitute a separate concern because they may 
also contain copies of variables that were in a cache at the time a variable in the cache was 
invalidated or updated. When a program loads a shared variable into a register, it should 
be aware that it is shared, and provide coordination, for example through the use of 
locks, to ensure that no other processor can change (and thus invalidate) a variable that 
this processor is holding in a register. Locks themselves generally are implemented using 
write-through, to ensure that cached copies do not compromise the single-acquire 
protocol. 

A small cottage industry has grown up around optimizations of cache coherence pro­
tocols for multiprocessor systems both with and without buses, and different designers 
have invented many quite clever speed-up tricks, especially with respect to locks. Before 
undertaking a multiprocessor cache design, a prospective processor architect should 
review the extensive literature of the area. A good place to start is with Chapter 8 of Com­
puter Architecture: A Quantitative Approach, by Hennessy and Patterson [Suggestions for 
Further Reading 1.1.1]. 
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10.3 Durable Storage Revisited: Widely Separated Replicas 

10.3.1 Durable Storage and the Durability Mantra 

Chapter 8[on-line] demonstrated how to create durable storage using a technique called 
mirroring, and Section 9.7[on-line] showed how to give the mirrored replicas the all-or­
nothing property when reading and writing. Mirroring is characterized by writing the 
replicas synchronously—that is, waiting for all or a majority of the replicas to be written 
before going on to the next action. The replicas themselves are called mirrors, and they 
are usually created on a physical unit basis. For example, one common RAID configura­
tion uses multiple disks, on each of which the same data is written to the same numbered 
sector, and a write operation is not considered complete until enough mirror copies have 
been successfully written. 

Mirroring helps protect against internal failures of individual disks, but it is not a 
magic bullet. If the application or operating system damages the data before writing it, 
all the replicas will suffer the same damage. Also, as shown in the fault tolerance analyses 
in the previous two chapters, certain classes of disk failure can obscure discovery that a 
replica was not written successfully. Finally, there is a concern for where the mirrors are 
physically located. 

Placing replicas at the same physical location does not provide much protection 
against the threat of environmental faults, such as fire or earthquake. Having them all 

Secondary
Memory 

Processor A 

Cache 

bus 

1 
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Processor B 

Cache 

Processor C 

Cache 

FIGURE 10.1 

A configuration for which a snoopy cache can restore strict consistency and read/write coher­
ence. When processor A writes to memory (arrow 1), its write-through cache immediately 
updates secondary memory using the next available bus cycle (arrow 2). The caches for pro­
cessors B and C monitor (“snoop on”) the bus address lines, and if they notice a bus write cycle 
for an address they have cached, they update (or at least invalidate) their replica of the con­
tents of that address (arrow 3). 
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under the same administrative control does not provide much protection against admin­
istrative bungling. To protect against these threats, the designer uses a powerful design 
principle: 

The durability mantra 

Multiple copies, widely separated and independently administered…
 
Multiple copies, widely separated and independently administered…
 

Sidebar 4.5 referred to Ross Anderson’s Eternity Service, a system that makes use of this 
design principle. Another formulation of the durability mantra is “lots of copies keep 
stuff safe” [Suggestions for Further Reading 10.2.3]. The idea is not new: “…let us save 
what remains; not by vaults and locks which fence them from the public eye and use in 
consigning them to the waste of time, but by such a multiplication of copies, as shall 
place them beyond the reach of accident.”* 

The first step in applying this design principle is to separate the replicas geographi­
cally. The problem with separation is that communication with distant points has high 
latency and is also inherently unreliable. Both of those considerations make it problem­
atic to write the replicas synchronously. When replicas are made asynchronously, one of 
the replicas (usually the first replica to be written) is identified as the primary copy, and 
the site that writes it is called the master. The remaining replicas are called backup copies, 
and the sites that write them are called slaves. 

The constraint usually specified for replicas is that they should be identical. But when 
replicas are written at different times, there will be instants when they are not identical; 
that is, they violate the specified constraint. If a system failure occurs during one of those 
instants, violation of the constraint can complicate recovery because it may not be clear 
which replicas are authoritative. One way to regain some simplicity is to organize the 
writing of the replicas in a way understandable to the application, such as file-by-file or 
record-by-record, rather than in units of physical storage such as disk sector-by-sector. 
That way, if a failure does occur during replica writing, it is easier to characterize the state 
of the replica: some files (or records) of the replica are up to date, some are old, the one 
that was being written may be damaged, and the application can do any further recovery 
as needed. Writing replicas in a way understandable to the application is known as mak­
ing logical copies, to contrast it with the physical copies usually associated with mirrors. 
Logical copying has the same attractions as logical locking, and also some of the perfor­
mance disadvantages, because more software layers must be involved and it may require 
more disk seek arm movement. 

In practice, replication schemes can be surprisingly complicated. The primary reason 
is that the purpose of replication is to suppress unintended changes to the data caused by 
random decay. But decay suppression also complicates intended changes, since one must 

* Letter from Thomas Jefferson to the publisher and historian Ebenezer Hazard, February 18, 
1791. Library of Congress, The Thomas Jefferson Papers Series 1. General Correspondence. 1651-1827. 
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now update more than one copy, while being prepared for the possibility of a failure in 
the midst of that update. In addition, if updates are frequent, the protocols to perform 
update must not only be correct and robust, they must also be efficient. Since multiple 
replicas can usually be read and written concurrently, it is possible to take advantage of 
that possibility to enhance overall system performance. But performance enhancement 
can then become a complicating requirement of its own, one that interacts strongly with 
a requirement for strict consistency. 

10.3.2 Replicated State Machines 

Data replicas require a management plan. If the data is written exactly once and never 
again changed, the management plan can be fairly straightforward: make several copies, 
put them in different places so they will not all be subject to the same environmental 
faults, and develop algorithms for reading the data that can cope with loss of, disconnec­
tion from, and decay of data elements at some sites. 

Unfortunately, most real world data need to be updated, at least occasionally, and 
update greatly complicates management of the replicas. Fortunately, there exists an eas­
ily-described, systematic technique to ensure correct management. Unfortunately, it is 
surprisingly hard to meet all the conditions needed to make it work. 

The systematic technique is a sweeping simplification known as the replicated state 
machine. The idea is to identify the data with the state of a finite state machine whose 
inputs are the updates to be made to the data, and whose operation is to make the appro­
priate changes to the data, as illustrated in Figure 10.2. To maintain identical data 
replicas, co-locate with each of those replicas a replica of the state machine, and send the 
same inputs to each state machine. Since the state of a finite state machine is at all times 
determined by its prior state and its inputs, the data of the various replicas will, in prin­
ciple, perfectly match one another. 

The concept is sound, but four real-world considerations conspire to make this 
method harder than it looks: 

1. 	All of the state machine replicas must receive the same inputs, in the same order. 
Agreeing on the values and order of the inputs at separated sites is known as 
achieving consensus. Achieving consensus among sites that do not have a common 
clock, that can crash independently, and that are separated by a best-effort 
communication network is a project in itself. Consensus has received much 
attention from theorists, who begin by defining its core essence, known as the 
consensus problem: to achieve agreement on a single binary value. There are various 
algorithms and protocols designed to solve this problem under specified 
conditions, as well as proofs that with certain kinds of failures consensus is 
impossible to reach. When conditions permit solving the core consensus problem, 
a designer can then apply bootstrapping to come to agreement on the complete set 
of values and order of inputs to a set of replicated state machines. 
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2. 	All of the data replicas (in Figure 10.2, the “prior state”) must be identical. The 
problem is that random decay events can cause the data replicas to drift apart, and 
updates that occur when they have drifted can cause them to drift further apart. 
So there needs to be a plan to check for this drift and correct it. The mechanism 
that identifies such differences and corrects them is known as reconciliation. 

3. 	The replicated state machines must also be identical. This requirement is harder 
to achieve than it might at first appear. Even if all the sites run copies of the same 
program, the operating environment surrounding that program may affect its 
behavior, and there can be transient faults that affect the operation of individual 
state machines differently. Since the result is again that the data replicas drift apart, 
the same reconciliation mechanism that fights decay may be able to handle this 
problem. 

4. 	To the extent that the replicated state machines really are identical, they will 
contain identical implementation faults. Updates that cause the faults to produce 
errors in the data will damage all the replicas identically, and reconciliation can 
neither detect nor correct the errors. 

update
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FIGURE 10.2 

Replicated state machines. If N identical state machines that all have the same prior state 
receive and perform the same update requests in the same order, then all N of the machines 
will enter the same new state. 
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The good news is that the replicated state machine scheme not only is systematic, but 
it lends itself to modularization. One module can implement the consensus-achieving 
algorithm; a second set of modules, the state machines, can perform the actual updates; 
and a third module responsible for reconciliation can periodically review the data replicas 
to verify that they are identical and, if necessary, initiate repairs to keep them that way. 

10.3.3 Shortcuts to Meet more Modest Requirements 

The replicated state machine method is systematic, elegant, and modular, but its imple­
mentation requirements are severe. At the other end of the spectrum, some applications 
can get along with a much simpler method: implement just a single state machine. The 
idea is to carry out all updates at one replica site, generating a new version of the database 
at that site, and then somehow bring the other replicas into line. The simplest, brute 
force scheme is to send a copy of this new version of the data to each of the other replica 
sites, completely replacing their previous copies. This scheme is a particularly simple 
example of master/slave replication. One of the things that makes it simple is that there 
is no need for consultation among sites; the master decides what to do and the slaves just 
follow along. 

The single state machine with brute force copies works well if: 

• 	 The data need to be updated only occasionally. 

• 	 The database is small enough that it is practical to retransmit it in its entirety. 

• 	There is no urgency to make updates available, so the master can accumulate 
updates and perform them in batches. 

• 	 The application can get along with temporary inconsistency among the various 
replicas. Requiring clients to read from the master replica is one way to mask the 
temporary inconsistency. On the other hand if, for improved performance, clients 
are allowed to read from any available replica, then during an update a client 
reading data from a replica that has received the update may receive different 
answers from another client reading data from a different replica to which the 
update hasn’t propagated yet. 

This method is subject to data decay, just as is the replicated state machine, but the 
effects of decay are different. Undetected decay of the master replica can lead to a disaster 
in which the decay is propagated to the slave replicas. On the other hand, since update 
installs a complete new copy of the data at each slave site, it incidentally blows away any 
accumulated decay errors in slave replicas, so if update is frequent, it is usually not nec­
essary to provide reconciliation. If updates are so infrequent that replica decay is a hazard, 
the master can simply do an occasional dummy update with unchanged data to reconcile 
the replicas. 

The main defect of the single state machine is that even though data access can be 
fault tolerant—if one replica goes down, the others may still available for reading—data 
update is not: if the primary site fails, no updates are possible until that failure is detected 
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and repaired. Worse, if the primary site fails while in the middle of sending out an 
update, the replicas may remain inconsistent until the primary site recovers. This whole 
approach doesn't work well for some applications, such as a large database with a require­
ment for strict consistency and a performance goal that can be met only by allowing 
concurrent reading of the replicas. 

Despite these problems, the simplicity is attractive, and in practice many designers try 
to get away with some variant of the single state machine method, typically tuned up 
with one or more enhancements: 

• 	 The master site can distribute just those parts of the database that changed (the 
updates are known as “deltas” or “diffs”) to the replicas. Each replica site must then 
run an engine that can correctly update the database using the information in the 
deltas. This scheme moves back across the spectrum in the direction of the 
replicated state machine. Though it may produce a substantial performance gain, 
such a design can end up with the disadvantages of both the single and the 
replicated state machines. 

• 	 Devise methods to reduce the size of the time window during which replicas may 
appear inconsistent to reading clients. For example, the master could hold the new 
version of the database in a shadow copy, and ask the slave sites to do the same, 
until all replicas of the new version have been successfully distributed. Then, short 
messages can tell the slave sites to make the shadow file the active database. (This 
model should be familiar: a similar idea was used in the design of the two-phase 
commit protocol described in Chapter 9[on-line].) 

• 	If the database is large, partition it into small regions, each of which can be 
updated independently. Section 10.3.7, below, explores this idea in more depth. 
(The Internet Domain Name System is for the most part managed as a large 
number of small, replicated partitions.) 

• 	 Assign a different master to each partition, to distribute the updating work more 
evenly and increase availability of update. 

• 	 Add fault tolerance for data update when a master site fails by using a consensus 
algorithm to choose a new master site. 

• 	 If the application is one in which the data is insensitive to the order of updates, 
implement a replicated state machine without a consensus algorithm. This idea 
can be useful if the only kind of update is to add new records to the data and the 
records are identified by their contents, rather than by their order of arrival. 
Members of a workgroup collaborating by e-mail typically see messages from other 
group members this way. Different users may find that received messages appear 
in different orders, and may even occasionally see one member answer a question 
that another member apparently hasn’t yet asked, but if the e-mail system is 
working correctly, eventually everyone sees every message. 
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• 	 The master site can distribute just its update log to the replica sites. The replica 
sites can then run REDO on the log entries to bring their database copies up to date. 
Or, the replica site might just maintain a complete log replica rather than the 
database itself. In the case of a disaster at the master site, one of the log replicas can 
then be used to reconstruct the database. 

This list just touches the surface. There seem to be an unlimited number of variations 
in application-dependent ways of doing replication. 

10.3.4 Maintaining Data Integrity 

In updating a replica, many things can go wrong: data records can be damaged or even 
completely lost track of in memory buffers of the sending or receiving systems, transmis­
sion can introduce errors, and operators or administrators can make blunders, to name 
just some of the added threats to data integrity. The durability mantra suggests imposing 
physical and administrative separation of replicas to make threats to their integrity more 
independent, but the threats still exist. 

The obvious way to counter these threats to data integrity is to apply the method sug­
gested on page 9–94 to counter spontaneous data decay: plan to periodically compare 
replicas, doing so often enough that it is unlikely that all of the replicas have deteriorated. 
However, when replicas are not physically adjacent this obvious method has the draw­
back that bit-by-bit comparison requires transmission of a complete copy of the data 
from one replica site to another, an activity that can be time-consuming and possibly 
expensive. 

An alternative and less costly method that can be equally effective is to calculate a wit­
ness of the contents of a replica and transmit just that witness from one site to another. 
The usual form for a witness is a hash value that is calculated over the content of the rep­
lica, thus attesting to that content. By choosing a good hash algorithm (for example, a 
cryptographic quality hash such as described in Sidebar 11.7) and making the witness 
sufficiently long, the probability that a damaged replica will have a hash value that 
matches the witness can be made arbitrarily small. A witness can thus stand in for a rep­
lica for purposes of confirming data integrity or detecting its loss. 

The idea of using witnesses to confirm or detect loss of data integrity can be applied 
in many ways. We have already seen checksums used in communications, both for end-
to-end integrity verification (page 7–31) and in the link layer (page 7–40); checksums 
can be thought of as weak witnesses. For another example of the use of witnesses, a file 
system might calculate a separate witness for each newly written file, and store a copy of 
the witness in the directory entry for the file. When later reading the file, the system can 
recalculate the hash and compare the result with the previously stored witness to verify 
the integrity of the data in the file. Two sites that are supposed to be maintaining replicas 
of the file system can verify that they are identical by exchanging and comparing lists of 
witnesses. In Chapter 11[on-line] we will see that by separately protecting a witness one 
can also counter threats to data integrity that are posed by an adversary. 
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10.3.5 Replica Reading and Majorities 

So far, we have explored various methods of creating replicas, but not how to use them. 
The simplest plan, with a master/slave system, is to direct all client read and write 
requests to the primary copy located at the master site, and treat the slave replicas exclu­
sively as backups whose only use is to restore the integrity of a damaged master copy. 
What makes this plan simple is that the master site is in a good position to keep track of 
the ordering of read and write requests, and thus enforce a strict consistency specification 
such as the usual one for memory coherence: that a read should return the result of the 
most recent write. 

A common enhancement to a replica system, intended to increase availability for read 
requests, is to allow reads to be directed to any replica, so that the data continues to be 
available even when the master site is down. In addition to improving availability, this 
enhancement may also have a performance advantage, since the several replicas can prob­
ably provide service to different clients at the same time. Unfortunately, the 
enhancement has the complication that there will be instants during update when the 
several replicas are not identical, so different readers may obtain different results, a vio­
lation of the strict consistency specification. To restore strict consistency, some 
mechanism that ensures before-or-after atomicity between reads and updates would be 
needed, and that before-or-after atomicity mechanism will probably erode some of the 
increased availability and performance. 

Both the simple and the enhanced schemes consult only one replica site, so loss of 
data integrity, for example from decay, must be detected using just information local to 
that site, perhaps with the help of a witness stored at the replica site. Neither scheme 
takes advantage of the data content of the other replicas to verify integrity. A more expen­
sive, but more reliable, way to verify integrity is for the client to also obtain a second copy 
(or a witness) from a different replica site. If the copy (or witness) from another site 
matches the data (or a just-calculated hash of the data) of the first site, confidence in the 
integrity of the data can be quite high. This idea can be carried further to obtain copies 
or witnesses from several of the replicas, and compare them. Even when there are dis­
agreements, if a majority of the replicas or witnesses agree, the client can still accept the 
data with confidence, and might in addition report a need for reconciliation. 

Some systems push the majority idea further by introducing the concept of a quorum. 
Rather than simply “more than half the replicas”, one can define separate read and write 
quorums, Qr and Qw, that have the property that Qr + Qw > Nreplicas. This scheme 
declares a write to be confirmed after writing to at least a write quorum, Qw, of replicas 
(while the system continues to try to propagate the write to the remaining replicas), and 
a read to be successful if at least a read quorum, Qr, agree on the data or witness value. 
By varying Qr and Qw, one can configure such a system to bias availability in favor of 
either reads or writes in the face of multiple replica outages. In these terms, the enhanced 
availability scheme described above is one for which Qw = Nreplicas and Qr = 1. 

Alternatively, one might run an Nreplicas = 5 system with a rule that requires that all 
updates be made to at least Qw = 4 of the replicas and that reads locate at least Qr = 2 
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replicas that agree. This choice biases availability modestly in favor of reading: a success­
ful write requires that at least 4 of the 5 replicas be available, while a read will succeed if 
only 2 of the replicas are available and agree, and agreement of 2 is ensured if any 3 are 
available. Or, one might set Qw = 2 and Qr = 4. That configuration would allow some­
one doing an update to receive confirmation that the update has been accomplished if 
any two replicas are available for update, but reading would then have to wait at least 
until the update gets propagated to two more replicas. With this configuration, write 
availability should be high but read availability might be quite low. 

In practice, quorums can actually be quite a bit more complicated. The algorithm as 
described enhances durability and allows adjusting read versus write availability, but it 
does not provide either before-or-after or all-or-nothing atomicity, both of which are 
likely to be required to maintain strict consistency if there is either write concurrency or 
a significant risk of system crashes. Consider, for example, the system for which 
Nreplicas = 5, Qw = 4, and Qr = 2. If an updater is at work and has successfully updated 
two of the replicas, one reader could read the two replicas already written by the updater 
while another reader might read two of the replicas that the updater hasn’t gotten to yet. 
Both readers would believe they had found a consistent set of replicas, but the read/write 
coherence specification has not been met. Similarly, with the same system parameters, if 
an updater crashes after updating two of replicas, a second updater might come along and 
begin updating a different two of the replicas and then crash. That scenario would leave 
a muddled set of replicas in which one reader could read the replicas written by the first 
updater while another reader might read the replicas written by the second updater. 

Thus a practical quorum scheme requires some additional before-or-after atomicity 
mechanism that serializes writes and ensures that no write begins until the previous write 
has sufficiently propagated to ensure coherence. The complexity of the mechanism 
depends on the exact system configuration. If all reading and updating originates at a sin­
gle site, a simple sequencer at that site can provide the needed atomicity. If read requests 
can come from many different sources but all updates originate at a single site, the updat­
ing site can associate a version number with each data update and reading sites can check 
the version numbers to ensure that they have read the newest consistent set. If updates 
can originate from many sites, a protocol that provides a distributed sequencer imple­
mentation might be used for atomicity. Performance maximization usually is another 
complicating consideration. The interested reader should consult the professional litera­
ture, which describes many (sometimes quite complex) schemes for providing 
serialization of quorum replica systems. All of these mechanisms are specialized solutions 
to the generic problem of achieving atomicity across multiple sites, which was discussed 
at the end of Chapter 9[on-line]. 

10.3.6 Backup 

Probably the most widely used replication technique for durable storage that is based on 
a single state machine is to periodically make backup copies of a complete file system on 
an independent, removable medium such as magnetic tape, writable video disk (DVD), 
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or removable hard disk. Since the medium is removable, one can make the copy locally 
and introduce geographic separation later. If a disk fails and must be replaced, its con­
tents can be restored from the most recent removable medium replica. Removable media 
are relatively cheap, so it is not necessary to recycle previous backup copies immediately. 
Older backup copies can serve an additional purpose, as protection against human error 
by acting as archives of the data at various earlier times, allowing retrieval of old data 
values. 

The major downside of this technique is that it may take quite a bit of time to make 
a complete backup copy of a large storage system. For this reason, refinements such as 
incremental backup (copy only files changed since the last backup) and partial backup 
(don’t copy files that can be easily reconstructed from other files) are often implemented. 
These techniques reduce the time spent making copies, but they introduce operational 
complexity, especially at restoration time. 

A second problem is that if updates to the data are going on at the same time as 
backup copying, the backup copy may not be a snapshot at any single instant—it may 
show some results of a multi-file update but not others. If internal consistency is impor­
tant, either updates must be deferred during backup or some other scheme, such as 
logging updates, must be devised. Since complexity also tends to reduce reliability, the 
designer must use caution when going in this direction. 

It is worth repeating that the success of data replication depends on the independence 
of failures of the copies, and it can be difficult to assess correctly the amount of indepen­
dence between replicas. To the extent that they are designed by the same designer and 
are modified by the same software, replicas may be subject to the same design or imple­
mentation faults. It is folk wisdom among system designers that the biggest hazard for a 
replicated system is replicated failures. For example, a programming error in a replicated 
state machine may cause all of the data replicas to become identically corrupted. In addi­
tion, there is more to achieving durable storage than just replication. Because a thread 
can fail at a time when some invariant on the data is not satisfied, additional techniques 
are needed to recover the data. 

Complexity can also interfere with success of a backup system. Another piece of folk 
wisdom is that the more elaborate the backup system, the less likely that it actually works. 
Most experienced computer users can tell tales of the day that the disk crashed, and for 
some reason the backup copy did not include the most important files. (But the tale usu­
ally ends with a story that the owner of those files didn’t trust the backup system, and 
was able to restore those important files from an ad hoc copy he or she made 
independently.) 

10.3.7 Partitioning Data 

A quite different approach to tolerating failures of storage media is to simply partition 
the data, thereby making the system somewhat fail-soft. In a typical design, one would 
divide a large collection of data into several parts, each of about the same size, and place 
each part on a different physical device. Failure of any one of the devices then compro-
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mises availability of only one part of the entire set of data. For some applications this 
approach can be useful, easy to arrange and manage, easy to explain to users, and inex­
pensive. Another reason that partition is appealing is that access to storage is often a 
bottleneck. Partition can allow concurrent access to different parts of the data, an impor­
tant consideration in high-performance applications such as popular Web servers. 

Replication can be combined with partition. Each partition of the data might itself 
be replicated, with the replicas placed on different storage devices, and each storage 
device can contain replicas of several of the different partitions. This strategy ensures 
continued availability if any single storage device fails, and at the same time an appropri­
ate choice of configuration can preserve the performance-enhancing feature of partition. 

10.4 Reconciliation 
A typical constraint for replicas is that a majority of them be identical. Unfortunately, 
various events can cause them to become different: data of a replica can decay, a repli­
cated state machine may experience an error, an update algorithm that has a goal of 
eventual consistency may be interrupted before it reaches its goal, an administrator of a 
replica site may modify a file in a way that fails to respect the replication protocol, or a 
user may want to make an update at a time when some replicas are disconnected from 
the network. In all of these cases, a need arises for an after-the-fact procedure to discover 
the differences in the data and to recover consistency. This procedure, called reconcilia­
tion, makes the replicas identical again. 

Although reconciliation is a straightforward concept in principle, in practice three 
things conspire to make it more complicated than one might hope: 

1. 	For large bodies of data, the most straightforward methods (e.g., compare all the 
bits) are expensive, so performance enhancements dominate, and complicate, the 
algorithms. 

2. 	A system crash during a reconciliation can leave a body of data in worse shape than 
if no reconciliation had taken place. The reconciliation procedure itself must be 
resilient against failures and system crashes. 

3. 	During reconciliation, one may discover conflicts, which are cases where different 
replicas have been modified in inconsistent ways. And in addition to files decaying, 
decay may also strike records kept by the reconciliation system itself. 

One way to simplify thinking about reconciliation is to decompose it into two dis­
tinct modular components: 

1. 	Detecting differences among the replicas. 

2. 	Resolving the differences so that all the replicas become identical. 
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At the outset, every difference represents a potential conflict. Depending on how much 
the reconciliation algorithm knows about the semantics of the replicas, it may be able to 
algorithmically resolve many of the differences, leaving a smaller set of harder-to-handle 
conflicts. The remaining conflicts generally require more understanding of the semantics 
of the data, and ultimately may require a decision to be made on the part of a person. To 
illustrate this decomposition, the next section examines one widely-implemented recon­
ciliation application, known as occasionally connected operation, in some detail. 

10.4.1 Occasionally Connected Operation 

A common application for reconciliation arises when a person has both a desktop com­
puter and a laptop computer, and needs to work with the same files on both computers. 
The desktop computer is at home or in an office, while the laptop travels from place to 
place, and because the laptop is often not network-connected, changes made to a file on 
one of the two computers can not be automatically reflected in the replica of that file on 
the other. This scenario is called occasionally connected operation. Moreover, while the 
laptop is disconnected files may change on either the desktop or the laptop (for example, 
the desktop computer may pick up new incoming mail or do an automatic system update 
while the owner is traveling with the laptop and editing a report). We are thus dealing 
with a problem of concurrent update to multiple replicas. 

Recall from the discussion on page 9–63 that there are both pessimistic and optimis­
tic concurrency control methods. Either method can be applied to occasionally 
connected replicas: 

• 	 Pessimistic: Before disconnecting, identify all of the files that might be needed in 
work on the laptop computer and mark them as “checked out” on the desktop 
computer. The file system on the desktop computer then blocks any attempts to 
modify checked-out files. A pessimistic scheme makes sense if the traveler can 
predict exactly which files the laptop should check out and it is likely that someone 
will also attempt to modify them at the desktop. 

• 	 Optimistic: Allow either computer to update any file and, the next time that the 
laptop is connected, detect and resolve any conflicting updates. An optimistic 
scheme makes sense if the traveler cannot predict which files will be needed while 
traveling and there is little chance of conflict anyway. 

Either way, when the two computers can again communicate, reconciliation of their 
replicas must take place. The same need for reconciliation applies to the handheld com­
puters known as “personal digital assistants” which may have replicas of calendars, 
address books, to-do lists, or databases filled with business cards. The popular term for 
this kind of reconciliation is “file synchronization”. We avoid using that term because 
“synchronization” has too many other meanings. 

The general outline of how to reconcile the replicas seems fairly simple: If a particular 
file changed on one computer but not on the other, the reconciliation procedure can 
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resolve the difference by simply copying the newer file to the other computer. In the pes­
simistic case that is all there is to it. If the optimistic scheme is being used, the same file 
may have changed on both computers. If so, that difference is a conflict and reconcilia­
tion requires more guidance to figure out how the resolve it. For the file application, both 
the detection step and the resolution step can be fairly simple. 

The most straightforward and accurate way to detect differences would be to read 
both copies of the file and compare their contents, bit by bit, with a record copy that was 
made at the time of the last reconciliation. If either file does not match the record copy, 
there is a difference; if both files fail to match the record copy, there is a conflict. But this 
approach would require maintaining a record copy of the entire file system as well as 
transmitting all of the data of at least one of the file systems to the place that holds the 
record copy. Thus there is an incentive to look for shortcuts. 

One shortcut is to use a witness in place of the record copy. The reconciliation algo­
rithm can then detect both differences and conflicts by calculating the current hash of a 
file and comparing it with a witness that was stored at the time of the previous reconcil­
iation. Since a witness is likely to be much smaller than the original file, it does not take 
much space to store and it is easy to transmit across a network for comparison. The same 
set of stored witnesses can also support a decay detector that runs in a low-priority thread, 
continually reading files, recalculating their hash values, and comparing them with the 
stored witnesses to see if anything has changed. 

Since witnesses require a lot of file reading and hash computation, a different shortcut 
is to just examine the time of last modification of every file on both computers, and com­
pare that with the time of last reconciliation. If either file has a newer modification 
timestamp, there is a difference, and if both have newer modification timestamps, there 
is a conflict. This shortcut is popular because most file systems maintain modification 
timestamps as part of the metadata associated with a file. One requirement of this short­
cut is that the timestamp have a resolution fine enough to ensure that every time a file is 
modified its timestamp increases. Unfortunately, modification timestamps are an 
approximation to witnesses that have several defects. First, the technique does not dis­
cover decay because decay events change file contents without updating modification 
times. Second, if someone modifies a file, then undoes the changes, perhaps because a 
transaction was aborted, the file will have a new timestamp and the reconciliation algo­
rithm will consider the file changed, even though it really hasn’t. Finally, the system 
clocks of disconnected computers may drift apart or users may reset system clocks to 
match their wristwatches (and some file systems allow the user to “adjust” the modifica­
tion timestamp on a file), so algorithms based on comparing timestamps may come to 
wrong conclusions as to which of two file versions is “newer”. The second defect affects 
performance rather than correctness, and the impact may be inconsequential, but the 
first and third defects can create serious correctness problems. 

A file system can provide a different kind of shortcut by maintaining a systemwide 
sequence number, known as a generation number. At some point when the replicas are 
known to be identical, both file systems record as part of the metadata of every file a start­
ing generation number, say zero, and they both set their current systemwide generation 
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numbers to one. Then, whenever a user modifies a file, the file system records in the 
metadata of that file the current generation number. When the reconciliation program 
next runs, by examining the generation numbers on each file it can easily determine 
whether either or both copies of a file were modified since the last reconciliation: if either 
copy of the file has the current generation number, there is a difference; if both copies of 
the file have the current generation number, there is a conflict. When the reconciliation 
is complete and the two replicas are again identical, the file systems both increase their 
current generation numbers by one in preparation for the next reconciliation. Genera­
tion numbers share two of the defects of modification timestamps. First, they do not 
allow discovery of decay, since decay events change file contents without updating gen­
eration numbers. Second, an aborted transaction can leave one or more files with a new 
generation number even though the file contents haven’t really changed. An additional 
problem that generation numbers do not share with modification timestamps is that 
implementation of generation numbers is likely to require modifying the file system. 

The resolution step usually starts with algorithmic handling of as many detected dif­
ferences as possible, leaving (one hopes) a short list of conflicts for the user to resolve 
manually. 

10.4.2 A Reconciliation Procedure 

To illustrate some of the issues involved in reconciliation, Figure 10.3 shows a file rec­
onciliation procedure named RECONCILE, which uses timestamps. To simplify the 
example, files have path names, but there are no directories. The procedure reconciles 
two sets of files, named left and right, which were previously reconciled at 
last_reconcile_time, which acts as a kind of generation number. The procedure assumes 
that the two sets of files were identical at that time, and its goal is to make the two sets 
identical again, by examining the modification timestamps recorded by the storage sys­
tems that hold the files. The function MODIFICATION_TIME(file) returns the time of the last 
modification to file. The copy operation, in addition to copying a file from one set to 
another, also copies the time of last modification, if necessary creating a file with the 
appropriate file name. 

RECONCILE operates as a transaction. To achieve all-or-nothing atomicity, RECONCILE is 
constructed to be idempotent; in addition, the copy operation must be atomic. To 
achieve before-or-after atomicity, RECONCILE must run by itself, without anyone else mak­
ing more changes to files while its executes, so it begins by quiescing all file activity, 
perhaps by setting a lock that prevents new files from being opened by anyone other than 
itself, and then waiting until all files opened by other threads have been closed. For dura­
bility, reconcile depends on the underlying file system. Its constraint is that when it exits, 
the two sets left and right are identical. 

RECONCILE prepares for reconciliation by reading from a dedicated disk sector the 
timestamp of the previous reconciliation and enumerating the names of the files on both 
sides. From the two enumerations, program lines 7 through 9 create three lists: 

• names of files that appear on both sides (common_list), 
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FIGURE 10.3 

1 procedure RECONCILE (reference left, reference right, 
2 reference last_reconcile_time) 
3 quiesce all activity on left and right // Shut down all file-using applications 
4 ALL_OR_NOTHING_GET (last_reconcile_time, reconcile_time_sector) 
5 left_list ← enumerate(left) 
6 right_list ← enumerate(right) 
7 common_list ← intersect(left_list, right_list) 
8 left_only_list ← remove members of common_list from left_list 
9 right_only_list ← remove members of common_list from right_list 
10 conflict_list ← NIL 

11 for each named_file in common_list do // Reconcile files found both sides 
12 left_new ← (MODIFICATION_TIME (left.named_file) > last_reconcile_time) 
13 right_new ← (MODIFICATION_TIME (right.named_file) > last_reconcile_time) 
14 if left_new and right_new then 
15 add named_file to conflict_list 
16 else if left_new then 
17 copy named_file from left to right 
18 else if right_new then 
19 copy named_file from right to left 
20 else if MODIFICATION_TIME (left.named_file) ≠ 
21 (MODIFICATION_TIME (right.named_file) 
22 then TERMINATE (“Something awful has happened.”) 

23 for each named_file in left_only_list do // Reconcile files found one side 
24 if MODIFICATION_TIME (left.named_file) > last_reconcile_time then 
25 copy named_file from left to right 
26 else 
27 delete left.named_file 
28 for each named_file in right_only_list do 
29 if MODIFICATION_TIME (right.named_file) > last_reconcile_time then 
30 copy named_file from right to left 
31 else 
32 delete right.named_file 

33 for each named_file in conflict_list do // Handle conflicts 
34 MANUALLY_RESOLVE (right.named_file, left.named_file) 
35 last_reconcile_time ← NOW () 
36 ALL_OR_NOTHING_PUT (last_reconcile_time, reconcile_time_sector) 
37 Allow activity to resume on left and right 

A simple reconciliation algorithm. 
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• names of files that appear only on the left (left_only_list), and 
• names of files that appear only on the right (right_only_list). 

These three lists drive the rest of the reconciliation. Line 10 creates an empty list named 
conflict_list, which will accumulate names of any files that it cannot algorithmically 
reconcile. 

Next, RECONCILE reviews every file in common_list. It starts, on lines 12 and 13, by 
checking timestamps to see whether either side has modified the file. If both sides have 
timestamps that are newer than the timestamp of the previous run of the reconciliation 
program, that indicates that both sides have modified the file, so it adds that file name 
to the list of conflicts. If only one side has a newer timestamp, it takes the modified ver­
sion to be the authoritative one and copies it to the other side. (Thus, this program does 
some difference resolution at the same time that it is doing difference detection. Com­
pletely modularizing these two steps would require two passes through the lists of files, 
and thereby reduce performance.) If both file timestamps are older than the timestamp 
of the previous run, it checks to make sure that the timestamps on both sides are identi­
cal. If they are not, that suggests that the two file systems were different at the end of the 
previous reconciliation, perhaps because something went wrong during that attempt to 
reconcile, so the program terminates with an error message rather than blundering for­
ward and taking a chance on irreparably messing up both file systems. 

Having handled the list of names of files found on both sides, RECONCILE then consid­
ers those files whose names it found on only one side. This situation can arise in three 
ways: 

1. one side deletes an old file, 

2. the other side creates a new file, or 

3. one side modifies a file that the other side deletes. 

The first case is easily identified by noticing that the side that still has the file has not 
modified it since the previous run of the reconciliation program. For this case RECONCILE 

deletes the remaining copy. The other two cases cannot, without keeping additional 
state, be distinguished from one another, so RECONCILE simply copies the file from one side 
to the other. A consequence of this choice is that a deleted file will silently reappear if the 
other side modified it after the previous invocation of RECONCILE. An alternative imple­
mentation would be to declare a conflict, and ask the user to decide whether to delete or 
copy the file. With that choice, every newly created file requires manual intervention at 
the next run of RECONCILE. Both implementations create some user annoyance. Eliminat­
ing the annoyance is possible but requires an algorithm that remembers additional, per-
file state between runs of RECONCILE. 

Having reconciled all the differences that could be resolved algorithmically, RECONCILE 

asks the user to resolve any remaining conflicts by manual intervention. When the user 
finishes, RECONCILE is ready to commit the transaction, which it does by recording the cur­
rent time in the dedicated disk sector, in line 36. It then allows file creation activity to 
resume, and it exits. The two sets of files are again identical. 
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10.4.3 Improvements 

There are several improvements that we could make to this simple reconciliation algo­
rithm to make it more user-friendly or comprehensive. As usual, each improvement adds 
complexity. Here are some examples: 

1. 	Rather than demanding that the user resolve all remaining conflicts on the spot, 
it would be possible to simply notify the user that there is a non-empty conflict list 
and let the user resolve those conflicts at leisure. The main complication this 
improvement adds is that the user is likely to be modifying files (and changing file 
modification timestamps) at the same time that other file activity is going on, 
including activity that may be generating new inconsistencies among the replicas. 
Changes that the user makes to resolve the conflicts may thus look like new 
conflicts next time the reconciliation program runs. A second complication is that 
there is no assurance that the user actually reconciles the conflicts; the conflict list 
may still be non-empty the next time that the reconciliation program runs, and it 
must take that possibility into account. A simple response could be for the 
program to start by checking the previous conflict list to see if it is empty, and if it 
is not asking the user to take care of it before proceeding. 

2. 	Some of the remaining conflicts may actually be algorithmically resolvable, with 
the help of an application program that understands the semantics and format of 
a particular file. Consider, for example, an appointment calendar application that 
stores the entire appointment book in a single file. If the user adds a 1 p.m. meeting 
to the desktop replica and a 4 p.m. meeting to the laptop replica, both files would 
have modification timestamps later than the previous reconciliation, so the 
reconciliation program would flag these files as a conflict. On the other hand, the 
calendar application program might be able to resolve the conflict by copying both 
meeting records to both files. What is needed is for the calendar application to 
perform the same kind of detection/resolution reconciliation we have already seen, 
but applied to individual appointment records rather than to the whole file. Any 
application that maintains suitable metadata (e.g. a record copy, witnesses, a 
generation number, or a timestamp showing when each entry in its database was 
last modified) can do such a record-by-record reconciliation. Of course, if the 
calendar application encounters two conflicting changes to the same appointment 
record, it probably would refer that conflict to the user for advice. The result of the 
application-specific reconciliation should be identical files on both replicas with 
identical modification timestamps. 

Application-specific reconciliation procedures have been designed for many differ­
ent specialized databases such as address books, to-do lists, and mailboxes; all that 
is required is that the program designer develop an appropriate reconciliation algo­
rithm. For convenience, it is helpful to integrate these application-specific 
procedures with the main reconciliation procedure. The usual method is for such 
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applications to register their reconciliation procedures, along with a list of files or 
file types that each reconciliation procedure can handle, with the main reconcilia­
tion program. The main reconciliation program then adds a step of reviewing its 
conflict list to see if there is an application-specific program available for each file. 
If there is, it invokes that program, rather than asking the user to resolve the 
conflict. 

3. 	As it stands, the reconciliation procedure enumerates only files. If it were to be 
applied to a file system that has directories, links, and file metadata other than file 
names and modification times, it might do some unexpected things. For example, 
the program would handle links badly, by creating a second copy of the linked file, 
rather than creating a link. Most reconciliation programs have substantial chunks 
of code devoted to detecting and resolving differences in directories and metadata. 
Because the semantics of the directory management operations are usually known 
to the writer of the reconciliation program, many differences between directories 
can be resolved algorithmically. However, there can still be a residue of conflicts 
that require user guidance to resolve, such as when a file named A has been created 
in a directory on one side and a different file named A has been created in the same 
directory on the other side. 

10.4.4 Clock Coordination 

This RECONCILE program is relatively fragile. It depends, for example, on the timestamps 
being accurate. If the two sets of files are managed by different computer systems with 
independent clocks, and someone sets the clock incorrectly on one side, the timestamps 
on that side will also be incorrect, with the result that RECONCILE may not notice a conflict, 
it may overwrite a new version of a file with an old version, it may delete a file that should 
not be deleted, or it may incorrectly revive a deleted file. For the same reason, RECONCILE 

must carefully preserve the variable last_reconcile_time from one run to the next. 
Some reconciliation programs try to minimize the possibility of accidental damage by 

reading the current clock value from both systems, noting the difference, and taking that 
difference into account. If the difference has not changed since the previous reconcilia­
tion, reconcile can simply add (or subtract, as appropriate) the time difference and 
proceed as usual. If the difference has changed, the amount of the change can be consid­
ered a delta of uncertainty; any file whose fate depends on that uncertainty is added to 
the list of conflicts for the user to resolve manually. 

10.5 Perspectives 
In [on-line] Chapters 9 and 10 we have gone into considerable depth on various aspects 
of atomicity and systematic approaches to providing it. At this point it is appropriate to 
stand back from the technical details and try to develop some perspective on how all 
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these ideas relate to the real world. The observations of this section are wide-ranging: his­
tory, trade-offs, and unexplored topics. Individually these observations appear somewhat 
disconnected, but in concert they may provide the reader with some preparation for the 
way that atomicity fits into the practical world of computer system design. 

10.5.1 History 

Systematic application of atomicity to recovery and to coordination is relatively recent. 
Ad hoc programming of concurrent activities has been common since the late 1950s, 
when machines such as the IBM 7030 (STRETCH) computer and the experimental 
TX–0 at M.I.T. used interrupts to keep I/O device driver programs running concur­
rently with the main computation. The first time-sharing systems (in the early 1960s) 
demonstrated the need to be more systematic in interrupt management, and many dif­
ferent semantic constructs were developed over the next decade to get a better grasp on 
coordination problems: Edsger Dijkstra’s semaphores, Per Brinch Hansen’s message 
buffers, David Reed and Raj Kanodia’s eventcounts, Nico Habermann’s path expres­
sions, and Anthony Hoare’s monitors are examples. A substantial literature grew up 
around these constructs, but a characteristic of all of them was a focus on properly coor­
dinating concurrent activities, each of which by itself was assumed to operate correctly. 
The possibility of failure and recovery of individual activities, and the consequences of 
such failure and recovery on coordination with other, concurrent activities, was not a 
focus of attention. Another characteristic of these constructs is that they resemble a 
machine language, providing low-level tools but little guidance in how to apply them. 

Failure recovery was not simply ignored in those early systems, but it was handled 
quite independently of coordination, again using ad hoc techniques. The early time­
sharing system implementers found that users required a kind of durable storage, in 
which files could be expected to survive intact in the face of system failures. To this end 
most time-sharing systems periodically made backup copies of on-line files, using mag­
netic tape as the backup medium. The more sophisticated systems developed 
incremental backup schemes, in which recently created or modified files were copied to 
tape on an hourly basis, producing an almost-up-to-date durability log. To reduce the 
possibility that a system crash might damage the on-line disk storage contents, salvager 
programs were developed to go through the disk contents and repair obvious and com­
mon kinds of damage. The user of a modern personal computer will recognize that some 
of these techniques are still in widespread use. 

These ad hoc techniques, though adequate for some uses, were not enough for design­
ers of serious database management systems. To meet their requirements, they developed 
the concept of a transaction, which initially was exactly an all-or-nothing action applied 
to a database. Recovery logging protocols thus developed in the database environment, 
and it was some time before it was recognized that recovery semantics had wider 
applicability. 

Within the database world, coordination was accomplished almost entirely by lock­
ing techniques that became more and more systematic and automatic, with the 
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realization that the definition of correctness for concurrent atomic actions involved get­
ting the same result as if those atomic actions had actually run one at a time in some serial 
order. The database world also contributed the concept of maintaining constraints or 
invariants among different data objects, and the word transaction came to mean an action 
that is both all-or-nothing and before-or-after and that can be used to maintain con­
straints and provide durability. The database world also developed systematic replication 
schemes, primarily to enhance reliability and availability, but also to enhance 
performance. 

The understanding of before-or-after atomicity, along with a requirement for hierar­
chical composition of programs, in turn led to the development of version history (also 
called temporal database or time domain addressing) systems. Version histories systemati­
cally provide both recovery and coordination with a single mechanism, and they simplify 
building big atomic actions out of several, independently developed, smaller ones. 

This text has reversed this order of development because the relatively simple version 
history is pedagogically more straightforward, while the higher complexity of the log­
ging/locking approach is easier to grasp after seeing why version histories work. Version 
histories are used in source code management systems and also in user interfaces that pro­
vide an UNDO button, but virtually all commercial database management systems use 
logs and locking in order to attain maximum performance. 

10.5.2 Trade-Offs 

An interesting set of trade-offs applies to techniques for coordinating concurrent activi­
ties. Figure 10.4 suggests that there is a spectrum of coordination possibilities, ranging 
from totally serialized actions on the left to complete absence of coordination on the 
right. Starting at the left, we can have great simplicity (for example by scheduling just 
one thread at a time) but admit no concurrency at all. Moving toward the right, the com­
plexity required to maintain correctness increases but so does the possibility of improved 
performance, since more and more concurrency is admitted. For example, the mark-
point and simple locking disciplines might lie more toward the left end of this spectrum 
while two-phase locking would be farther to the right. The solid curved line in the figure 
represents a boundary of increasing minimum complexity, below which that level of 
coordination complexity can no longer ensure correctness; outcomes that do not corre­
spond to any serial schedule of the same actions become possible. (For purposes of 
illustration, the figure shows the boundary line as a smooth increasing curve, but that is 
a gross oversimplification. At the first hint of concurrency, the complexity leaps upward.) 

Continuing to traverse the concurrency spectrum to the right, one passes a point, 
indicated by the dashed vertical line, beyond which correctness cannot be achieved no 
matter how clever or complex the coordination scheme. The closer one approaches this 
limit from the left, the higher the performance, but at the cost of higher complexity. All 
of the algorithms explored in [on-line] Chapters 9 and 10 are intended to operate to the 
left of the correctness limit, but we might inquire about the possibilities of working on 
the other side. Such a possibility is not as unthinkable as it might seem at first. If inter-
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ference between concurrent activities is rare, and the cost of an error is small, one might 
actually be willing to permit concurrent actions that can lead to certifiably wrong 
answers. Section 9.5.4[on-line] suggested that designers sometimes employ locking pro­
tocols that operate in this region. 

For example, in an inventory control system for a grocery store, if an occasional sale 
of a box of cornflakes goes unrecorded because two point-of-sale terminals tried to 
update the cornflakes inventory concurrently, the resulting slight overstatement of 
inventory may not be a serious problem. The grocery store must do occasional manual 
inventory anyway because other boxes of cornflakes are misplaced, damaged, and stolen, 
and employees sometimes enter wrong numbers when new boxes are delivered. This 
higher-layer data recovery mechanism will also correct any errors that creep in because 
of miscoordination in the inventory management system, so its designer might well 
decide to use a coordination technique that allows maximum concurrency, is simple, 
catches the most common miscoordination problems, but nevertheless operates below or 
to the right of the strict correctness line. A decision to operate a data management system 

Limit of 
high 

low 

complexity of 
coordination 
scheme correct 

coordination 

wrong answers 
miscoordination and 

none unconstrained 

limit of 
correctness despite 
unlimited complexity 

correctness 
for this much 
complexity 

subjective 

Amount of concurrent activity permitted 

FIGURE 10.4 

The trade-off among concurrency, complexity, and correctness. The choice of where in this 
chart to position a system design depends on the answers to two questions: 1) How frequently 
will concurrent activities actually interfere with one another? 2) How important are 100% cor­
rect results? If interference is rare, it is appropriate to design farther to the right. If correctness 
is not essential, it may be acceptable to design even to the right of the two correctness 
boundaries. 
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in a mode that allows such errors can be made on a rational basis. One would compare 
the rate at which the system loses track of inventory because of its own coordination 
errors with the rate at which it loses track because of outside, uncontrolled events. If the 
latter rate dominates, it is not necessary to press the computer system for better accuracy. 

Another plausible example of acceptable operation outside the correctness boundary 
is the calculation, by the Federal Reserve Bank, of the United States money supply. 
Although in principle one could program a two-phase locking protocol that includes 
every bank account in every bank that contains U.S. funds, the practical difficulty of 
accomplishing that task with thousands of independent banks distributed over a conti­
nent is formidable. Instead, the data is gathered without locking, with only loose 
coordination and it is almost certain that some funds are counted twice and other funds 
are overlooked. However, great precision is not essential in the result, so lack of perfect 
coordination among the many individual bank systems operating concurrently is 
acceptable. 

Although allowing incorrect coordination might appear usable only in obscure cases, 
it is actually applicable to a wider range of situations than one might guess. In almost all 
database management applications, the biggest cause of incorrect results is wrong input 
by human operators. Typically, stored data already has many defects before the transac­
tion programs of the database management system have a chance to “correctly” 
transform it. Thus the proper perspective is that operation outside of the correctness 
boundaries of Figure 10.4 merely adds to the rate of incorrectness of the database. We 
are making an end-to-end argument here: there may be little point in implementing 
heroic coordination correctness measures in a lower layer if the higher-layer user of our 
application makes other mistakes, and has procedures in place to correct them anyway. 

With that perspective, one can in principle balance heavy-handed but “correct” trans­
action coordination schemes against simpler techniques that can occasionally damage the 
data in limited ways. One piece of evidence that this approach is workable in practice is 
that many existing data management systems offer optional locking protocols called 
“cursor stability”, “read committed”, or “snapshot isolation”, all of which are demonstra­
bly incorrect in certain cases. However, the frequency of interacting update actions that 
actually produce wrong answers is low enough and the benefit in increased concurrency 
is high enough that users find the trade-off tolerable. The main problem with this 
approach is that no one has yet found a good way of characterizing (with the goal of lim­
iting) the errors that can result. If you can’t bound the maximum damage that could 
occur, then these techniques may be too risky. 

An obvious question is whether or not some similar strategy of operating beyond a 
correctness boundary applies to atomicity. Apparently not, at least in the area of instruc­
tion set design for central processors. Three generations of central processor designers (of 
the main frame processors of the 1950’s and 1960’s, the mini-computers of the 1970’s, 
and the one-chip microprocessors of the 1980’s) did not recognize the importance of all-
or-nothing atomicity in their initial design and were later forced to retrofit it into their 
architectures in order to accommodate the thread switching that accompanies multilevel 
memory management. 
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10.5.3 Directions for Further Study 

Chapters 9 and 10 have opened up only the first layer of study of atomicity, transactions, 
durability, replication, and consistency; there are thick books that explore the details. 
Among the things we have touched only lightly (or not at all) are distributed atomic 
actions, hierarchically composing programs with modules that use locks, the systematic 
use of loose or incorrect coordination, the systematic application of compensation, and 
the possibility of malicious participants. 

Implementing distributed atomic actions efficiently is a difficult problem for which 
there is a huge literature, with some schemes based on locking, others on timestamp-
based protocols or version histories, some on combining the two, and yet others with 
optimistic strategies. Each such scheme has a set of advantages and disadvantages with 
respect to performance, availability, durability, integrity, and consistency. No one 
scheme seems ready to dominate and new schemes appear regularly. 

Hierarchical composition—making larger atomic actions out of previously pro­
grammed smaller ones—interacts in an awkward way with locking as a before-or-after 
atomicity technique. The problem arises because locking protocols require a lock point 
for correctness. Creating an atomic action from two previously independent atomic 
actions is difficult because each separate atomic action has its own lock point, coinciding 
with its own commit point. But the higher-layer action must also have a lock point, sug­
gesting that the order of capture and release of locks in the constituent atomic action 
needs to be changed. Rearrangement of the order of lock capture and release contradicts 
the usual goal of modular composition, under which one assembles larger systems out of 
components without having to modify the components. To maintain modular compo­
sition, the lock manager needs to know that it is operating in an environment of 
hierarchical atomic actions. With this knowledge, it can, behind the scenes, systemati­
cally rearrange the order of lock release to match the requirements of the action nesting. 
For example, when a nested atomic action calls to release a lock, the lock manager can 
simply relabel that lock to show that it is held by the higher layer, not-yet-committed, 
atomic action in which this one is nested. A systematic discipline of passing locks up and 
down among nested atomic actions thus can preserve the goal of modular composition, 
but at a cost in complexity. 

Returning to the idea suggested by Figure 10.4, the possibility of designing a system 
that operates in the region of incorrectness is intriguing, but there is one major deterrent: 
one would like to specify, and thus limit, the nature of the errors that can be caused by 
miscoordination. This specification might be on the magnitude of errors, or their direc­
tion, or their cumulative effect, or something else. Systematic specification of tolerance 
of coordination errors is a topic that has not been seriously explored. 

Compensation is the way that one deals with miscoordination or with recovery in sit­
uations where rolling back an action invisibly cannot be accomplished. Compensation is 
performing a visible action that reverses all known effects of some earlier, visible action. 
For example, if a bank account was incorrectly debited, one might later credit it for the 
missing amount. The usefulness of compensation is limited by the extent to which one 
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can track down and reverse everything that has transpired since the action that needs 
reversal. In the case of the bank account, one might successfully discover that an interest 
payment on an incorrect balance should also be adjusted; it might be harder to reverse 
all the effects of a check that was bounced because the account balance was incorrectly 
too low. Apart from generalizations along the line of “one must track the flow of infor­
mation output of any action that is to be reversed” little is known about systematic 
compensation; it seems to be an application-dependent concept. If committing the 
transaction resulted in drilling a hole or firing a missile, compensation may not be an 
applicable concept. 

Finally, all of the before-or-after atomicity schemes we explored assume that the var­
ious participants are all trying to reach a consistent, correct result. Another area of study 
explores what happens if one or more of the workers in a multiple-site coordination task 
decides to mislead the others, for example by sending a message to one site reporting it 
has committed, while sending a message to another site reporting it has aborted. (This 
possibility is described colorfully as the Byzantine Generals’ problem.) The possibility of 
adversarial participants merges concerns of security with those of atomicity. The solu­
tions so far are based primarily on extension of the coordination and recovery protocols 
to allow achieving consensus in the face of adversarial behavior. There has been little 
overlap with the security mechanisms that will be studied in Chapter 11[on-line]. 

One reason for exploring this area of overlap between atomicity and security is the 
concern that undetected errors in communication links could simulate uncooperative 
behavior. A second reason is increasing interest in peer-to-peer network communication, 
which frequently involves large numbers of administratively independent participants 
who may, either accidentally or intentionally, engage in Byzantine behavior. Another 
possible source of Byzantine behavior could lie in outsourcing of responsibility for replica 
storage. 

Exercises 

10.1 	 You are developing a storage system for a application that demands unusually high 
reliability, so you have decided to use a three-replica durable storage scheme. You 
plan to use three ordinary disk drives D1, D2, and D3, and arrange that D2 and 
D3 store identical mirror copies of each block stored on D1. The disk drives are of 
a simple design that does not report read errors. That is, they just return data, 
whether or not it is valid. 

10.1a. 	You initially construct the application so that it writes a block of data to the same 
sector on all three drives concurrently. After a power failure occurs during the 
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middle of a write, you are unable to reconstruct the correct data for that sector. 
What is the problem?

   10.1b.  Describe a modification that solves this problem. 

10.1c. One day there is a really awful power glitch that crashes all three disks in such a 
way that each disk corrupts one random track. Fortunately, the system wasn’t 
writing any data at the time. Describe a procedure for reconstructing the data and 
explain any cases that your procedure cannot handle. 

1994–3–2 

10.2 	 What assumptions does the design of the RECONCILE procedure of Section 10.4.2 
make with respect to concurrent updates to different replicas of the same file? 

A. It assumes that these conflicts seldom happen. 
B. It assumes that these conflicts can be automatically detected. 
C. 	 It assumes that all conflicts can be automatically resolved later. 
D. 	 It assumes that these conflicts cannot happen. 

1999–3–04 

10.3 	 Mary uses RECONCILE to keep the files in her laptop computer coordinated with her 
desktop computer. However, she is getting annoyed.   While she is traveling, she 
works on her e-mail inbox, reading and deleting messages, and preparing replies, 
which go into an e-mail outbox. When she gets home, RECONCILE always tells her that 
there is a conflict with the inbox and outbox on her desktop because while she was 
gone the system added several new messages to the desktop inbox, and it dispatched 
and deleted any messages that were in the desktop outbox. Her mailer implements 
the inbox as a single file and the outbox as a single file. Ben suggests that Mary 
switch to a different mailer, one that implements the inbox and outbox as two 
directories, and places each incoming or outgoing message in a separate file. 
Assuming that no one but the mail system touches Mary's desktop mailboxes in her 
absence, which of the following is the most accurate description of the result? 

A. RECONCILE will still not be able to reconcile either the inbox or the outbox. 
B. RECONCILE will be able to reconcile the inbox but not the outbox. 
C. 	 RECONCILE will be able to reconcile the outbox but not the inbox. 
D. 	 RECONCILE will be able to reconcile both the inbox and the outbox. 

1997–0–03 

10.4 	 Which of the following statements are true of the RECONCILE program of Figure 
10.3? 
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10–34 CHAPTER 10 Consistency 

A. 	 If RECONCILE finds that the content of one copy of a file differs from the other copy of 
the same file, it indicates a conflict. 

B. 	 You create a file X with content "a" in file set 1, then create a file X with content "b" 
in file set 2. You then delete X from host 1, and run RECONCILE to synchronize the two 
file sets. After RECONCILE finishes you’ll see a file X with content "b" in file set 1. 

C. 	 If you accidentally reset RECONCILE’s variable named last_reconcile_time to 
midnight, January 1, 1900, you are likely to need to resolve many more conflicts 
when you next run RECONCILE than if you had preserved that variable. 

2008–3–2 

10.5 	 Here is a proposed invariant for a file reconciler such as the program RECONCILE of 
Figure 10.3: At every moment during a run of RECONCILE, every file has either its 
original contents, or its correct final contents. Which of the following statements is 
true about RECONCILE? 

A. 	 RECONCILE does not attempt to maintain this invariant. 
B. 	 RECONCILE maintains this invariant in all cases. 
C. 	 RECONCILE uses file creation time to determine the most recent version of a file. 
D. 	 If the two file sets are on different computers connected by a network, RECONCILE 

would have to send the content of one version of each file over the network to the 
other computer for comparison. 

Additional exercises relating to Chapter 10 can be found in problem sets 40 through 
42. 
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CHAPTERGlossary for Chapter 10
 

backup copy—Of a set of replicas that is not written or updated synchronously, one that 
is written later. Compare with primary copy and mirror. [Ch. 10] 

cache coherence—Read/write coherence for a multilevel memory system that has a cache. 
It is a specification that the cache provide strict consistency at its interface. [Ch. 10] 

close-to-open consistency—A consistency model for file operations. When a thread opens 
a file and performs several write operations, all of the modifications weill be visible to 
concurrent threads only after the first thread closes the file.  [Ch. 4] 

coheerence—See read/write coherence or cache coherence. 

consensus—Agreement at separated sites on a data value despite communication failures. 
[Ch. 10] 

consistency—A particular constraint on the memory model of a storage system that allows 
concurrency and uses replicas: that all readers see the same result. Also used in some 
professional literature as a synonym for coherence. [Ch. 10] 

constraint—An application-defined invariant on a set of data values or externally visible 
actions. Example: a requirement that the balances of all the accounts of a bank sum to 
zero, or a requirement that a majority of the copies of a set of data be identical. [Ch. 10] 

eventual consistency—A requirement that at some unspecified time following an update to 
a collection of data, if there are no more updates, the memory model for that collection 
will hold. [Ch. 10] 

fingerprint—Another term for a witness. [Ch. 10] 

incremental backup—A backup copy that contains only data that has changed since 
making the previous backup copy. [Ch. 10] 

invalidate—In a cache, to mark “do not use” or completely remove a cache entry because 
some event has occurred that may make the value associated with that entry incorrect. 
[Ch. 10] 

logical copy—A replica that is organized in a form determined by a higher layer. An 
example is a replica of a file system that is made by copying one file at a time. Analogous 
to logical locking. Compare with physical copy. [Ch. 10] 

master—In a multiple-site replication scheme, the site to which updates are directed. 
Compare with slave. [Ch. 10] 

page fault—See missing-page exception. 

pair-and-spare—See pair-and-compare. 

physical copy—A replica that is organized in a form determined by a lower layer. An 
example is a replica of a disk that is made by copying it sector by sector. Analogous to 
physical locking. Compare with logical copy. [Ch. 10] 

10–35
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prepaging—An optimization for a multilevel memory manager in which the manager 
predicts which pages might be  needed and brings them into the primary memory before 
the application demands them. Compare with demand algorithm. 

presented load—See offered load. 

primary copy—Of a set of replicas that are not written or updated synchronously, the one 
that is considered authoritative and, usually, written or updated first. (Compare with 
mirror and backup copy.) [Ch. 10] 

quorum—A partial set of replicas intended to improve availability. One defines a read 
quorum and a write quorum that intersect, with the goal that for correctness it is 
sufficient to read from a read quorum and write to a write quorum. [Ch. 10] 

reconciliation—A procedure that compares replicas that are intended to be identical and 
repairs any differences. [Ch. 10] 

replicated state machine—A method of performing an update to a set of replicas that 
involves sending the update request to each replica and performing it independently at 
each replica. [Ch. 10] 

slave—In a multiple-site replication scheme, a site that takes update requests from only the 
master site. Compare with master. [Ch. 10] 

snoopy cache—In a multiprocessor system with a bus and a cache in each processor, a 
cache design in which the cache actively monitors traffic on the bus to watch for events 
that invalidate cache entries. [Ch. 10] 

strict consistency—An interface requirement that temporary violation of a data invariant 
during an update never be visible outside of the action doing the update. One feature of 
the read/write coherence memory model is strict consistency. Sometimes called strong 
consistency. [Ch. 10] 

witness—A (usually cryptographically strong) hash value that attests to the content of a 
file. Another widely used term for this concept is fingerprint. [Ch. 10] 
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Design principles and hints appear in underlined italics. Procedure names appear in SMALL 

CAPS. Page numbers in bold face are in the chapter Glossary. 

A 
adopt sweeping simplifications  10–11 

B 
backup copy  10–10, 10–35 

C 
cache 

coherence  10–4, 10–35 
snoopy  10–8, 10–36 

close-to-open consistency  10–35 
coherence 

cache  10–4, 10–35 
compensation  10–31 
conflict  10–19 
consensus  10–11, 10–35 

the consensus problem  10–11 
consistency  10–35 

close-to-open  10–35 
eventual  10–3 
strict  10–3, 10–36 
strong (see consistency, strict) 

constraint  10–2, 10–35 
cursor stability  10–30 

D 
data integrity 

in storage  10–15 
design principles 

adopt sweeping simplifications  10–11 
durability mantra  10–10 
end-to-end argument  10–30 

Domain Name System 
eventual consistency in  10–5 

durability mantra  10–10 

E 
end-to-end argument  10–30 
eventual consistency  10–3, 10–35 

F 
fingerprint  10–35 

I 
incremental 

backup  10–18, 10–35 
invalidate  10–7, 10–35 

L 
logical 

copy  10–10, 10–35 

M 
master  10–10, 10–35 
mirror  10–9 

O 
occasionally connected  10–20 

P 
partition  10–18 
physical 

copy  10–10, 10–35 
prepaging  10–36 
primary 

copy  10–10, 10–36 

Q 
quorum  10–16, 10–36 

R 
reconciliation  10–12, 10–19, 10–36 10–37 
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replicated state machine  10–11, 10–36 

S 
single 

state machine  10–13 
slave  10–10, 10–36 
snoopy cache  10–8, 10–36 
stability 

cursor  10–30 
strict consistency  10–3, 10–36 
strong consistency (see strict consistency) 

T 
temporal 

database  10–28 
time domain addressing  10–28 
time-to-live  10–6 
TTL (see time-to-live) 

W 
witness  10–21, 10–36 
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