
Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure TRANSFER (debit_account, credit_account, amount)
GET (dbdata, debit_account)
dbdata ← dbdata - amount
PUT (dbdata, debit_account)
GET (crdata, credit_account)
crdata← crdata + amount
PUT (crdata, credit_account)

Principles of Computer System Design © Saltzer & Kaashoek 2009

Human user
generating
requests

Calendar
Program

hardware

Java
Interpreter

Interface

Calendar manager
layer interface

Java language

layer interface

Machine language

layer interface

Typical instruction

across this interface

Add new event on
February 27

nextch = instring[j];

add R1,R2

Principles of Computer System Design © Saltzer & Kaashoek 2009

All-or-nothing atomicity

A sequence of steps is an all-or-nothing action if, from the point of view of its
invoker, the sequence always either

completes,
or

aborts in such a way that it appears that the sequence had never been
undertaken in the first place. That is, it backs out.

Principles of Computer System Design © Saltzer & Kaashoek 2009

Before-or-after atomicity

Concurrent actions have the before-or-after property if their effect from the point of
view of their invokers is the same as if the actions occurred either completely before
or completely after one another.

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure TRANSFER (reference debit_account, reference credit_account, amount)
debit_account ← debit_account - amount
credit_account ← credit_account + amount

TRANSFER (A, B, $10)

TRANSFER (B, C, $25)

Principles of Computer System Design © Saltzer & Kaashoek 2009

Thread #2 (debit_account is B)Thread #1 (credit_account is B)
1–1 READ B 2–1 READ B

. . . .

. .
1–2 WRITE B 2–2 WRITE B

correct result: time
case 1: Thread #1:

Thread #2:
READ B

Value of B: 100

WRITE B

110
READ B WRITE B

85

case 2: Thread #1:

Value of B: 100
Thread #2: READ B

75
WRITE B

READ B WRITE B

85

wrong results:
Thread #1:
Thread #2:

READ B

Value of B: 100

case 3:
READ B

WRITE B
WRITE B

110 75

case 4: Thread #1:
Thread #2:

READ B

Value of B: 100
READ B WRITE B

WRITE B

75 110

case 5: Thread #1:
Thread #2:
Value of B: 100

READ B
READ B WRITE B

WRITE B
110 75

case 6: Thread #1:
Thread #2:
Value of B: 100

READ B
READ B

WRITE B
WRITE B

75 110
Principles of Computer System Design © Saltzer & Kaashoek 2009

old system
state new system

state
 action

action #3

action #1

old system
state

new system
stateaction #2

Principles of Computer System Design © Saltzer & Kaashoek 2009

old system
state

final
state

C

final
state

B

final
state

AAA
#1

AA #2 AA#3

AA#3

AA
#2

AA #2 AA#3 AA#1

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure AUDIT()
sum ← 0
for each W ← in bank.accounts
sum ← sum + W.balance

if (sum ≠ 0) call for investigation

// TRANSFER, in thread 1

debit_account ← debit_account - amount
…
credit_account ← credit_account + amount

// in thread 2

…
AUDIT()
…

Principles of Computer System Design © Saltzer & Kaashoek 2009

Atomicity

An action is atomic if there is no way for a higher layer to discover the internal

structure of its implementation.

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure ALMOST_ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)
CAREFUL_PUT (data, all_or_nothing_sector.S1)
CAREFUL_PUT (data, all_or_nothing_sector.S2) // Commit point.
CAREFUL_PUT (data, all_or_nothing_sector.S3)

procedure ALL_OR_NOTHING_GET (reference data, all_or_nothing_sector)
CAREFUL_GET (data1, all_or_nothing_sector.S1)
CAREFUL_GET (data2, all_or_nothing_sector.S2)
CAREFUL_GET (data3, all_or_nothing_sector.S3)
if data1 = data2 then data ← data1 // Return new value.
else data ← data3 // Return old value.

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)
CHECK_AND_REPAIR (all_or_nothing_sector)
ALMOST_ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)

procedure CHECK_AND_REPAIR (all_or_nothing_sector)// Ensure copies match.
CAREFUL_GET (data1, all_or_nothing_sector.S1)
CAREFUL_GET (data2, all_or_nothing_sector.S2)
CAREFUL_GET (data3, all_or_nothing_sector.S3)
if (data1 = data2) and (data2 = data3) return // State 1 or 7, no repair
if (data1 = data2)

CAREFUL_PUT (data1, all_or_nothing_sector.S3) return // State 5 or 6.
if (data2 = data3)

CAREFUL_PUT (data2, all_or_nothing_sector.S1) return // State 2 or 3.
CAREFUL_PUT (data1, all_or_nothing_sector.S2) // State 4, go to state 5
CAREFUL_PUT (data1, all_or_nothing_sector.S3) // State 5, go to state 7

data state: 1 2 3 4 5 6 7

sector S1 old bad new new new new new
sector S2 old old old bad new new new
sector S3 old old old old old bad new

Principles of Computer System Design © Saltzer & Kaashoek 2009

begin all-or-nothing action

___ } arbitrary sequence of
___ lower-layer actions

end all-or-nothing action

Principles of Computer System Design © Saltzer & Kaashoek 2009

}
first step of all-or-nothing action

Pre-commit discipline: can back out,
leaving no trace

Commit point

} Post-commit discipline: completion is inevitable

last step of all-or-nothing action

Principles of Computer System Design © Saltzer & Kaashoek 2009

The golden rule of atomicity

Never modify the only copy!

Principles of Computer System Design © Saltzer & Kaashoek 2009

1614112295207Variable A:

History of earlier versions Tentative
next version

Current version

Principles of Computer System Design © Saltzer & Kaashoek 2009

All-or-nothing Journal Storage System

Cell Storage
System

– catalogs

– versions

– outcome
records

Journal

READ

WRITE

ALLOCATE

DEALLOCATE

Storage
Manager

NEW_ACTION

READ_CURRENT_VALUE

WRITE_NEW_VALUE

COMMIT

ABORT

Principles of Computer System Design © Saltzer & Kaashoek 2009

all-or-nothing
action
commits

non-existent

committed

discarded

aborted

pending

new all-or-nothing

action is

created all-or-nothing

action outcome record
aborts state no longer

of any interest

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure NEW_ACTION ()
id ← NEW_OUTCOME_RECORD ()
id.outcome_record.state ← PENDING

return id

procedure COMMIT (reference id)
id.outcome_record.state ← COMMITTED

procedure ABORT (reference id)
id.outcome_record.state ← ABORTED

Principles of Computer System Design © Saltzer & Kaashoek 2009

Object A

7

03

pending1794:aborted1423:1101: committed

1101 1423 1794all-or-nothing
action id:

751524value:

outcome

records

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure READ_CURRENT_VALUE (data_id, caller_id)
starting at end of data_id repeat until beginning

v ← previous version of data_id // Get next older version
a ← v.action_id // Identify the action a that created it
s ← a.outcome_record.state // Check action a’s outcome record
if s = COMMITTED then

return v.value
else skip v // Continue backward search

signal (“Tried to read an uninitialized variable!”)

procedure WRITE_NEW_VALUE (reference data_id, new_value, caller_id)
if caller_id.outcome_record.state = PENDING

append new version v to data_id
v.value ← new_value
v.action_id ← caller_id

else signal (“Tried to write outside of an all-or-nothing action!”)

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure TRANSFER (reference debit_account, reference credit_account, amount)
my_id ← NEW_ACTION ()
xvalue ← READ_CURRENT_VALUE (debit_account, my_id)
xvalue ← xvalue - amount
WRITE_NEW_VALUE (debit_account, xvalue, my_id)
yvalue ← READ_CURRENT_VALUE (credit_account, my_id)
yvalue ← yvalue + amount
WRITE_NEW_VALUE (credit_account, yvalue, my_id)
if xvalue > 0 then

COMMIT (my_id)
else

ABORT (my_id)

signal(“Negative transfers are not allowed.”)

Principles of Computer System Design © Saltzer & Kaashoek 2009

Journal Storage

Log

WRITE_NEW_VALUE

install current
end of log

Cell

Storage

log

READ_CURRENT_VALUE

Principles of Computer System Design © Saltzer & Kaashoek 2009

Volatile storage Non-volatile storage

In-memory database:

Ordinary database:

High-performance

database:

log

log

Application
program

Application
program

Application
program

cell
storage

cell
storage

log
cell

storage
cache

Principles of Computer System Design © Saltzer & Kaashoek 2009

Write-ahead-log protocol

Log the update before installing it.

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure TRANSFER (debit_account, credit_account, amount)

my_id ← LOG (BEGIN_TRANSACTION)
dbvalue.old ← GET (debit_account)
dbvalue.new ← dbvalue.old - amount
crvalue.old ← GET (credit_account, my_id)
crvalue.new ← crvalue.old + amount
LOG (CHANGE, my_id,

“PUT (debit_account, dbvalue.new)”,
“PUT (debit_account, dbvalue.old)”)

LOG (CHANGE, my_id,
“PUT (credit_account, crvalue.new)”
“PUT (credit_account, crvalue.old)”)

PUT (debit_account, dbvalue.new)
PUT (credit_account, crvalue.new)
if dbvalue.new > 0 then

//redo action
//undo action

//redo action
//undo action
// install
// install

LOG (OUTCOME, COMMIT, my_id)
else

LOG (OUTCOME, ABORT, my_id)
signal(“Action not allowed. Would make debit account negative.”)

LOG (END_TRANSACTION, my_id)

Principles of Computer System Design © Saltzer & Kaashoek 2009

…

CHANGEtype: type: OUTCOME type: CHANGE

action_id: 9979 action_id: 9974 action_id: 9979
redo_action: status: COMMITTED redo_action:

PUT(debit_account, $90) PUT(credit_account, $40)

undo_action: undo_action:
PUT(debit_account, $120) PUT(credit_account, $10)

older log records newer log records

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure ABORT (action_id)
 starting at end of log repeat until beginning

log_record ← previous record of log
if log_record.id = action_id then

if (log_record.type = OUTCOME)
then signal (“Can’t abort an already completed action.”)

if (log_record.type = CHANGE)
then perform undo_action of log_record

if (log_record.type = BEGIN)

then break repeat

LOG (action_id, OUTCOME, ABORTED) // Block future undos.
LOG (action_id, END)

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure RECOVER ()// Recovery procedure for a volatile, in-memory database.
winners ← NULL

starting at end of log repeat until beginning
log_record ← previous record of log
if (log_record.type = OUTCOME)

then winners ← winners + log_record // Set addition.

starting at beginning of log repeat until end

log_record ← next record of log

if (log_record.type= CHANGE)

and (outcome_record ← find (log_record.action_id) in winners)
and (outcome_record.status = COMMITTED) then
perform log_record.redo_action

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure RECOVER ()// Recovery procedure for non-volatile cell memory
completeds ← NULL

losers ← NULL

starting at end of log repeat until beginning
log_record ← previous record of log
if (log_record.type = END)

then completeds ← completeds + log_record // Set addition.
if (log_record.action_id is not in completeds) then

losers ← losers + log_record // Add if not already in set.
if (log_record.type = CHANGE) then

perform log_record.undo_action

starting at beginning of log repeat until end

log_record ← next record of log

if (log_record.type = CHANGE)

and (log_record.action_id.status = COMMITTED) then
perform log_record.redo_action

for each log_record in losers do
log (log_record.action_id, END) // Show action completed.

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure RECOVER () // Recovery procedure for rollback recovery.
completeds ← NULL

losers ← NULL

starting at end of log repeat until beginning // Perform undo scan.
log_record ← previous record of log
if (log_record.type = OUTCOME)

then completeds ← completeds + log_record // Set addition.
if (log_record.action_id is not in completeds) then

losers ← losers + log_record // New loser.
if (log_record.type = CHANGE) then

perform log_record.undo_action

for each log_record in losers do
log (log_record.action_id, OUTCOME, ABORT) // Block future undos.

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure BEGIN_TRANSACTION ()
id ← NEW_OUTCOME_RECORD (PENDING) // Create, initialize, assign id.
previous_id ← id – 1
wait until previous_id.outcome_record.state ≠ PENDING

return id

Principles of Computer System Design © Saltzer & Kaashoek 2009

Object value of object at end of transaction
1 2 3 4 5 6

A

B

C

D

outcome
record
state

Committed Committed Committed Aborted Committed Pending

transaction 1: initialize all accounts to 0
2: transfer 10 from B to A
3: transfer 4 from C to B
4: transfer 2 from D to A (aborts)
5: transfer 6 from B to C
6: transfer 10 from A to B

-12

+2

0

-2-6

-4

+12

-2

+10

-10

0

0

0

0

Principles of Computer System Design © Saltzer & Kaashoek 2009

+12

-12 -2

+2

-6

-4

+10

-10

-2

0

0

0

0

1
Object

2
Value of object at end of transaction

3 4 5 6 7

A +10 +12 0 0

B -6 -2

C 0 -4 +2 +2

D 0 0 -2 -2 -2

OUTCOME

record Committed Committed Committed Aborted Committed Pending Pending
state

Unchanged value

Changed value

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure READ_CURRENT_VALUE (data_id, this_transaction_id)
starting at end of data_id repeat until beginning

v ← previous version of data_id
last_modifier ← v.action_id
if last_modifier ≥ this_transaction_id then skip v // Keep searching
wait until (last_modifier.outcome_record.state ≠ PENDING)
if (last_modifier.outcome_record.state = COMMITTED)

then return v.state
else skip v // Resume search

signal (“Tried to read an uninitialized variable”)

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure NEW_VERSION (reference data_id, this_transaction_id)
if this_transaction_id.outcome_record.mark_state = MARKED then

signal (“Tried to create new version after announcing mark point!”)
append new version v to data_id
v.value ← NULL

v.action_id ← transaction_id

procedure WRITE_VALUE (reference data_id, new_value, this_transaction_id)
starting at end of data_id repeat until beginning

v ← previous version of data_id

if v.action_id = this_transaction_id

v.value ← new_value
return

signal (“Tried to write without creating new version!”))

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure BEGIN_TRANSACTION ()
id ← NEW_OUTCOME_RECORD (PENDING)
previous_id ← id - 1
wait until (previous_id.outcome_record.mark_state = MARKED)

or (previous_id.outcome_record.state ≠ PENDING)

return id

procedure NEW_OUTCOME_RECORD (starting_state)
ACQUIRE (outcome_record_lock) // Make this a before-or-after action.
id ← TICKET (outcome_record_sequencer)
allocate id.outcome_record
id.outcome_record.state ← starting_state
id.outcome_record.mark_state ← NULL

RELEASE (outcome_record_lock)
return id

procedure MARK_POINT_ANNOUNCE (reference this_transaction_id)
this_transaction_id.outcome_record.mark_state ← MARKED

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure TRANSFER (reference debit_account, reference credit_account,
amount)

my_id ← BEGIN_TRANSACTION ()
NEW_VERSION (debit_account, my_id)
NEW_VERSION (credit_account, my_id)
MARK_POINT_ANNOUNCE (my_id);
xvalue ← READ_CURRENT_VALUE (debit_account, my_id)
xvalue ← xvalue - amount
WRITE_VALUE (debit_account, xvalue, my_id)
yvalue ← READ_CURRENT_VALUE (credit_account, my_id)
yvalue ← yvalue + amount
WRITE_VALUE (credit_account, yvalue, my_id)
if xvalue > 0 then

COMMIT (my_id)
else

ABORT (my_id)

signal(“Negative transfers are not allowed.”)

Principles of Computer System Design © Saltzer & Kaashoek 2009

Value of object at end of transaction

1 2 3

A

B

C

D

0

0

+10

-6 -12

0

-2

HWM=2 HWM=6

HWM=5HWM=2 HWM=6

HWM=7

-10
HWM=3

0 -4
HWM=3 HWM=5

0 -2
HWM=4

Committed Committed Committed

Outcome state record

Conflict: Must abort!

4 5 6 7

+12 +2

HWM=7 -4

+2

Aborted Committed Pending Pending

HWM= High-water mark

Conflict

Changed value

Principles of Computer System Design © Saltzer & Kaashoek 2009

 procedure READ_CURRENT_VALUE (reference data_id, value, caller_id)
 starting at end of data_id repeat until beginning

v ← previous version of data_id

if v.action_id ≥ caller_id then skip v

examine v.action_id.outcome_record

if PENDING then

WAIT for v.action_id to COMMIT or ABORT

if COMMITTED then

v.high_water_mark ← max(v.high_water_mark, caller_id)
return v.value

else skip v // Continue backward search
signal (“Tried to read an uninitialized variable!”)

Principles of Computer System Design © Saltzer & Kaashoek 2009

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure NEW_VERSION (reference data_id, caller_id)
if (caller_id < data_id.high_water_mark) // Conflict with later reader.
or (caller_id < (LATEST_VERSION[data_id].action_id)) // Blind write conflict.
then ABORT this transaction and terminate this thread
add new version v at end of data_id
v.value ← 0
v.action_id ← caller_id

procedure WRITE_VALUE (reference data_id, new_value, caller_id)
locate version v of data_id.history such that v.action_id = caller_id

(if not found, signal (“Tried to write without creating new version!”))
v.value ← new_value

instruction architectural physical

register register
 0

n R5 42

n + 1 R4 61

n + 2 R5 29

127three entries in the reorder buffer
physical register file

with 128 registers

n R5 ← R4 × R2 // Write a result in register five.

n + 1 R4 ← R5 + R1 // Use result in register five.

n + 2 R5 ← READ (117492) // Write content of a memory cell in register five.

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure PAY_INTEREST (reference account)
if account.balance > 0 then

interest = account.balance * 0.05
TRANSFER (bank, account, interest)

else
interest = account.balance * 0.15
TRANSFER (account, bank, interest)

procedure MONTH_END_INTEREST:()
for A ← each customer_account do

PAY_INTEREST (A)

Principles of Computer System Design © Saltzer & Kaashoek 2009

MONTH_END_INTEREST

outcome:
superior:

PENDING

none

outcome:
superior:

PAY_INTEREST2 (2nd invocation)
PENDING

MONTH_END_INTEREST

OK for TRANSFER2

to read?

PAY_INTEREST1 (1st invocation)

outcome:
superior:

COMMITTED

MONTH_END_INTEREST

TRANSFER2

outcome:
superior:

PENDING

PAY_INTEREST2

TRANSFER1

outcome:
superior:

COMMITTED

PAY_INTEREST1

creator: TRANSFER1

newest version of
account bank

Principles of Computer System Design © Saltzer & Kaashoek 2009

From: Alice
To: Bob
Re: my transaction 91

if (Charles does Y and Dawn does Z) then do X, please.

Principles of Computer System Design © Saltzer & Kaashoek 2009

From:Alice
To: Bob
Re: my transaction 271

Please do X as part of my transaction.

From:Bob
To: Alice
Re: your transaction 271

My part X is ready to commit.

Two-phase-commit message #1:

From:Alice
To: Bob
Re: my transaction 271

PREPARE to commit X.

Two-phase-commit message #2:

From:Bob
To:Alice
Re: your transaction 271

I am PREPARED to commit my part. Have you decided to commit yet?

Two-phase-commit message #3

From:Alice
To:Bob
Re: my transaction 271

My transaction committed. Thanks for your help.

Principles of Computer System Design © Saltzer & Kaashoek 2009

Coordinator Worker Worker Worker
Alice Bob Charles Dawn

PREPARE X

PREPARE Y

PREPARE Z

Bob is PREPARED

Charles is PREPARED
Dawn is PREPARED

COMMIT

COMMIT

COMMIT

Time

log BEGIN

log

log BEGIN

log PREPARED

log COMMITTED

COMMITTED

Principles of Computer System Design © Saltzer & Kaashoek 2009

From:Julius Caesar
To:Titus Labienus
Date:11 January

I propose to cross the Rubicon and attack at dawn tomorrow. OK?

From:Titus Labienus
To:Julius Caesar;
Date:11 January

Agreed, dawn on the 12th.

or From:Titus Labienus
To: Julius Caesar
Date:11 January

No. I am awaiting
reinforcements from Gaul.

From:Julius Caesar
To:Titus Labienus
Date:11 January

The die is cast.

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure ALL_OR_NOTHING_DURABLE_GET (reference data, atomic_sector)
ds ← CAREFUL_GET (data, atomic_sector.D0)
if ds = BAD then

ds ← CAREFUL_GET (data, atomic_sector.D1)

return ds

procedure ALL_OR_NOTHING_DURABLE_PUT (new_data, atomic_sector)
SALVAGE(atomic_sector)
ds ← CAREFUL_PUT (new_data, atomic_sector.D0)
ds ← CAREFUL_PUT (new_data, atomic_sector.D1)
return ds

procedure SALVAGE(atomic_sector) //Run this program every Td seconds.
ds0 ← CAREFUL_GET (data0, atomic_sector.D0)
ds1 ← CAREFUL_GET (data1, atomic_sector.D1)
if ds0 = BAD then

CAREFUL_PUT (data1, atomic_sector.D0)

else if ds1 = BAD then

CAREFUL_PUT (data0, atomic_sector.D1)

if data0 ≠ data1 then

CAREFUL_PUT (data0, atomic_sector.D1)

D0: data0 D1 : data1

Principles of Computer System Design © Saltzer & Kaashoek 2009

