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procedure TRANSFER (debit_account, credit_account, amount) 
GET (dbdata, debit_account) 
dbdata ← dbdata - amount 
PUT (dbdata, debit_account) 
GET (crdata, credit_account) 
crdata← crdata + amount 
PUT (crdata, credit_account) 
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All-or-nothing atomicity


A sequence of steps is an all-or-nothing action if, from the point of view of its 
invoker, the sequence always either 

completes, 
or 

aborts in such a way that it appears that the sequence had never been 
undertaken in the first place. That is, it backs out. 
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Before-or-after atomicity


Concurrent actions have the before-or-after property if their effect from the point of 
view of their invokers is the same as if the actions occurred either completely before 
or completely after one another. 
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procedure TRANSFER (reference debit_account, reference credit_account, amount) 
debit_account ← debit_account - amount 
credit_account ← credit_account + amount 

TRANSFER (A, B, $10) 

TRANSFER (B, C, $25) 
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Thread #2 (debit_account is B)Thread #1 (credit_account is B)
1–1 READ B 2–1 READ B 

. . . . 

. .
1–2 WRITE B 2–2 WRITE B 

correct result: time 
case 1: Thread #1: 

Thread #2: 
READ B 

Value of B: 100 

WRITE B 

110 
READ B WRITE B 

85 

case 2: Thread #1: 

Value of B: 100 
Thread #2: READ B 

75 
WRITE B 

READ B WRITE B 

85 

wrong results: 
Thread #1: 
Thread #2: 

READ B 

Value of B: 100 

case 3: 
READ B 

WRITE B 
WRITE B 

110 75 

case 4: Thread #1: 
Thread #2: 

READ B 

Value of B: 100 
READ B WRITE B 

WRITE B 

75 110 

case 5: Thread #1: 
Thread #2: 
Value of B: 100 

READ B 
READ B WRITE B 

WRITE B 
110 75 

case 6: Thread #1: 
Thread #2: 
Value of B: 100 

READ B 
READ B 

WRITE B 
WRITE B 

75 110 
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procedure AUDIT() 
sum ← 0 
for each W ← in bank.accounts 
sum ← sum + W.balance 

if (sum ≠ 0) call for investigation 

// TRANSFER, in thread 1 

debit_account ← debit_account - amount 
… 
credit_account ← credit_account + amount 

// in thread 2 

… 
AUDIT() 
… 
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Atomicity


An action is atomic if there is no way for a higher layer to discover the internal 

structure of its implementation.
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procedure ALMOST_ALL_OR_NOTHING_PUT (data, all_or_nothing_sector) 
CAREFUL_PUT (data, all_or_nothing_sector.S1) 
CAREFUL_PUT (data, all_or_nothing_sector.S2) // Commit point. 
CAREFUL_PUT (data, all_or_nothing_sector.S3) 

procedure ALL_OR_NOTHING_GET (reference data, all_or_nothing_sector) 
CAREFUL_GET (data1, all_or_nothing_sector.S1) 
CAREFUL_GET (data2, all_or_nothing_sector.S2) 
CAREFUL_GET (data3, all_or_nothing_sector.S3) 
if data1 = data2 then data ← data1 // Return new value. 
else data ← data3 // Return old value. 
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procedure ALL_OR_NOTHING_PUT (data, all_or_nothing_sector) 
CHECK_AND_REPAIR (all_or_nothing_sector) 
ALMOST_ALL_OR_NOTHING_PUT (data, all_or_nothing_sector) 

procedure CHECK_AND_REPAIR (all_or_nothing_sector)// Ensure copies match. 
CAREFUL_GET (data1, all_or_nothing_sector.S1) 
CAREFUL_GET (data2, all_or_nothing_sector.S2) 
CAREFUL_GET (data3, all_or_nothing_sector.S3) 
if (data1 = data2) and (data2 = data3) return // State 1 or 7, no repair 
if (data1 = data2) 

CAREFUL_PUT (data1, all_or_nothing_sector.S3) return // State 5 or 6. 
if (data2 = data3) 

CAREFUL_PUT (data2, all_or_nothing_sector.S1) return // State 2 or 3. 
CAREFUL_PUT (data1, all_or_nothing_sector.S2) // State 4, go to state 5 
CAREFUL_PUT (data1, all_or_nothing_sector.S3) // State 5, go to state 7 

data state: 1 2  3  4  5  6  7 

sector S1 old bad new new new new new 
sector S2 old old old bad new new new 
sector S3 old old old old old bad new 
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___ 
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___ 
___ 

} Post-commit discipline: completion is inevitable 

last step of all-or-nothing action 

___ 

___ 

___ 
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The golden rule of atomicity


Never modify the only copy!
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procedure NEW_ACTION () 
id ← NEW_OUTCOME_RECORD () 
id.outcome_record.state ← PENDING 

return id 

procedure COMMIT (reference id) 
id.outcome_record.state ← COMMITTED 

procedure ABORT (reference id) 
id.outcome_record.state ← ABORTED 
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procedure READ_CURRENT_VALUE (data_id, caller_id) 
starting at end of data_id repeat until beginning 

v ← previous version of data_id // Get next older version 
a ← v.action_id // Identify the action a that created it 
s ← a.outcome_record.state // Check action a’s outcome record 
if s = COMMITTED then 

return v.value 
else skip v // Continue backward search 

signal (“Tried to read an uninitialized variable!”) 

procedure WRITE_NEW_VALUE (reference data_id, new_value, caller_id) 
if caller_id.outcome_record.state = PENDING 

append new version v to data_id 
v.value ← new_value 
v.action_id ← caller_id 

else signal (“Tried to write outside of an all-or-nothing action!”) 
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procedure TRANSFER (reference debit_account, reference credit_account, amount) 
my_id ← NEW_ACTION () 
xvalue ← READ_CURRENT_VALUE (debit_account, my_id) 
xvalue ← xvalue - amount 
WRITE_NEW_VALUE (debit_account, xvalue, my_id) 
yvalue ← READ_CURRENT_VALUE (credit_account, my_id) 
yvalue ← yvalue + amount 
WRITE_NEW_VALUE (credit_account, yvalue, my_id) 
if xvalue > 0 then 

COMMIT (my_id) 
else 

ABORT (my_id)

signal(“Negative transfers are not allowed.”)
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Write-ahead-log protocol


Log the update before installing it.
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procedure TRANSFER (debit_account, credit_account, amount)

my_id ← LOG (BEGIN_TRANSACTION) 
dbvalue.old ← GET (debit_account) 
dbvalue.new ← dbvalue.old - amount 
crvalue.old ← GET (credit_account, my_id) 
crvalue.new ← crvalue.old + amount 
LOG (CHANGE, my_id, 

“PUT (debit_account, dbvalue.new)”, 
“PUT (debit_account, dbvalue.old)” ) 

LOG ( CHANGE, my_id, 
“PUT (credit_account, crvalue.new)” 
“PUT (credit_account, crvalue.old)”) 

PUT (debit_account, dbvalue.new) 
PUT (credit_account, crvalue.new) 
if dbvalue.new > 0 then 

//redo action 
//undo action 

//redo action 
//undo action 
// install 
// install 

LOG ( OUTCOME, COMMIT, my_id) 
else 

LOG (OUTCOME, ABORT, my_id) 
signal(“Action not allowed. Would make debit account negative.”) 

LOG (END_TRANSACTION, my_id) 
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…


CHANGEtype: type: OUTCOME type: CHANGE 

action_id: 9979 action_id: 9974 action_id: 9979 
redo_action: status: COMMITTED redo_action: 

PUT(debit_account, $90) PUT(credit_account, $40) 

undo_action: undo_action: 
PUT(debit_account, $120) PUT(credit_account, $10) 

older log records newer log records
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procedure ABORT (action_id)
 starting at end of log repeat until beginning 

log_record ← previous record of log 
if log_record.id = action_id then 

if (log_record.type = OUTCOME) 
then signal (“Can’t abort an already completed action.”) 

if (log_record.type = CHANGE) 
then perform undo_action of log_record


if (log_record.type = BEGIN) 

then break repeat 

LOG (action_id, OUTCOME, ABORTED)  // Block future undos. 
LOG (action_id, END) 
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procedure RECOVER ()// Recovery procedure for a volatile, in-memory database. 
winners ← NULL 

starting at end of log repeat until beginning 
log_record ← previous record of log 
if (log_record.type = OUTCOME) 

then winners ← winners + log_record // Set addition. 

starting at beginning of log repeat until end

log_record ← next record of log

if (log_record.type= CHANGE)


and (outcome_record ← find (log_record.action_id) in winners) 
and (outcome_record.status = COMMITTED) then 
perform log_record.redo_action 
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procedure RECOVER ()// Recovery procedure for non-volatile cell memory 
completeds ← NULL 

losers ← NULL 

starting at end of log repeat until beginning 
log_record ← previous record of log 
if (log_record.type = END) 

then completeds ← completeds + log_record // Set addition. 
if (log_record.action_id is not in completeds) then 

losers ← losers + log_record // Add if not already in set. 
if (log_record.type = CHANGE) then 

perform log_record.undo_action 

starting at beginning of log repeat until end

log_record ← next record of log

if (log_record.type = CHANGE)


and (log_record.action_id.status = COMMITTED) then 
perform log_record.redo_action 

for each log_record in losers do 
log (log_record.action_id, END) // Show action completed. 
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procedure RECOVER () // Recovery procedure for rollback recovery. 
completeds ← NULL 

losers ← NULL 

starting at end of log repeat until beginning // Perform undo scan. 
log_record ← previous record of log 
if (log_record.type = OUTCOME) 

then completeds ← completeds + log_record // Set addition. 
if (log_record.action_id is not in completeds) then 

losers ← losers + log_record // New loser. 
if (log_record.type = CHANGE) then 

perform log_record.undo_action 

for each log_record in losers do 
log (log_record.action_id, OUTCOME, ABORT) // Block future undos. 
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procedure BEGIN_TRANSACTION () 
id ← NEW_OUTCOME_RECORD (PENDING) // Create, initialize, assign id. 
previous_id ← id – 1 
wait until previous_id.outcome_record.state ≠ PENDING 

return id 
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Object value of object at end of transaction 
1 2 3 4 5 6 

A 

B 

C 

D 

outcome 
record 
state 

Committed Committed Committed Aborted Committed Pending 

transaction 1: initialize all accounts to 0 
2: transfer 10 from B to A 
3: transfer 4 from C to B 
4: transfer 2 from D to A (aborts) 
5: transfer 6 from B to C 
6: transfer 10 from A to B 

-12 

+2 

0 

-2-6 

-4 

+12 

-2 

+10 

-10 

0 

0 

0 

0 
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+12 

-12 -2 

+2 

-6 

-4 

+10 

-10 

-2 

0 

0 

0 

0 

1
Object 

2 
Value of object at end of transaction

3 4 5 6 7 

A +10 +12 0 0 

B -6 -2 

C 0 -4 +2 +2 

D 0 0 -2 -2 -2 

OUTCOME 

record Committed Committed Committed Aborted Committed Pending Pending 
state 

Unchanged value 

Changed value 
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procedure READ_CURRENT_VALUE (data_id, this_transaction_id) 
starting at end of data_id repeat until beginning 

v ← previous version of data_id 
last_modifier ← v.action_id 
if last_modifier ≥ this_transaction_id then skip v // Keep searching 
wait until (last_modifier.outcome_record.state ≠ PENDING) 
if (last_modifier.outcome_record.state = COMMITTED) 

then return v.state 
else skip v // Resume search 

signal (“Tried to read an uninitialized variable”) 
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procedure NEW_VERSION (reference data_id, this_transaction_id) 
if this_transaction_id.outcome_record.mark_state = MARKED then 

signal (“Tried to create new version after announcing mark point!”) 
append new version v to data_id 
v.value ← NULL 

v.action_id ← transaction_id 

procedure WRITE_VALUE (reference data_id, new_value, this_transaction_id) 
starting at end of data_id repeat until beginning


v ← previous version of data_id

if v.action_id = this_transaction_id 


v.value ← new_value 
return


signal (“Tried to write without creating new version!”))
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procedure BEGIN_TRANSACTION () 
id ← NEW_OUTCOME_RECORD (PENDING) 
previous_id ← id - 1 
wait until (previous_id.outcome_record.mark_state = MARKED) 

or (previous_id.outcome_record.state ≠ PENDING)

return id


procedure NEW_OUTCOME_RECORD (starting_state) 
ACQUIRE (outcome_record_lock) // Make this a before-or-after action. 
id ← TICKET (outcome_record_sequencer) 
allocate id.outcome_record 
id.outcome_record.state ← starting_state 
id.outcome_record.mark_state ← NULL 

RELEASE (outcome_record_lock) 
return id 

procedure MARK_POINT_ANNOUNCE (reference this_transaction_id) 
this_transaction_id.outcome_record.mark_state ← MARKED 
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procedure TRANSFER (reference debit_account, reference credit_account, 
amount) 

my_id ← BEGIN_TRANSACTION () 
NEW_VERSION (debit_account, my_id) 
NEW_VERSION (credit_account, my_id) 
MARK_POINT_ANNOUNCE (my_id); 
xvalue ← READ_CURRENT_VALUE (debit_account, my_id) 
xvalue ← xvalue - amount 
WRITE_VALUE (debit_account, xvalue, my_id) 
yvalue ← READ_CURRENT_VALUE (credit_account, my_id) 
yvalue ← yvalue + amount 
WRITE_VALUE (credit_account, yvalue, my_id) 
if xvalue > 0 then 

COMMIT (my_id) 
else 

ABORT (my_id)

signal(“Negative transfers are not allowed.”)
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 procedure READ_CURRENT_VALUE (reference data_id, value, caller_id)
 starting at end of data_id repeat until beginning


v ← previous version of data_id

if v.action_id ≥ caller_id then skip v

examine v.action_id.outcome_record


if PENDING then

WAIT for v.action_id to COMMIT or ABORT


if COMMITTED then

v.high_water_mark ← max(v.high_water_mark, caller_id) 
return v.value 

else skip v // Continue backward search 
signal (“Tried to read an uninitialized variable!”) 
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procedure NEW_VERSION (reference data_id, caller_id)
if (caller_id < data_id.high_water_mark) // Conflict with later reader.
or (caller_id < (LATEST_VERSION[data_id].action_id)) // Blind write conflict.
then ABORT this transaction and terminate this thread
add new version v at end of data_id
v.value ← 0
v.action_id ← caller_id

procedure WRITE_VALUE (reference data_id, new_value, caller_id)
locate version v of data_id.history such that v.action_id = caller_id

(if not found, signal (“Tried to write without creating new version!”))
v.value ← new_value



instruction architectural physical

register register
 0 

n R5 42 

n + 1 R4 61 

n + 2 R5 29 

127three entries in the reorder buffer 
physical register file

with 128 registers 

n R5 ← R4 ×  R2 // Write a result in register five.

n + 1 R4 ← R5 + R1 // Use result in register five.

n + 2 R5 ← READ (117492) // Write content of a memory cell in register five.
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procedure PAY_INTEREST (reference account) 
if account.balance > 0 then 

interest = account.balance * 0.05 
TRANSFER (bank, account, interest) 

else 
interest = account.balance * 0.15 
TRANSFER (account, bank, interest) 

procedure MONTH_END_INTEREST:() 
for A ← each customer_account do 

PAY_INTEREST (A) 

Principles of Computer System Design © Saltzer & Kaashoek 2009




MONTH_END_INTEREST
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From: Alice 
To: Bob 
Re: my transaction 91 

if (Charles does Y and Dawn does Z) then do X, please. 
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From:Alice 
To: Bob 
Re: my transaction 271 

Please do X as part of my transaction. 

From:Bob 
To: Alice 
Re: your transaction 271 

My part X is ready to commit. 

Two-phase-commit message #1: 

From:Alice 
To: Bob 
Re: my transaction 271 

PREPARE to commit X. 

Two-phase-commit message #2: 

From:Bob 
To:Alice 
Re: your transaction 271 

I am PREPARED to commit my part. Have you decided to commit yet? 

Two-phase-commit message #3 

From:Alice 
To:Bob 
Re: my transaction 271 

My transaction committed. Thanks for your help. 
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Coordinator Worker Worker Worker 
Alice Bob Charles Dawn 

PREPARE X 

PREPARE Y 

PREPARE Z 

Bob is PREPARED 

Charles is PREPARED 
Dawn is PREPARED 

COMMIT 

COMMIT 

COMMIT 

Time 

log BEGIN 

log 

log BEGIN 

log PREPARED 

log COMMITTED 

COMMITTED 
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From:Julius Caesar 
To:Titus Labienus 
Date:11 January 

I propose to cross the Rubicon and attack at dawn tomorrow. OK? 

From:Titus Labienus 
To:Julius Caesar; 
Date:11 January 

Agreed, dawn on the 12th. 

or From:Titus Labienus 
To: Julius Caesar 
Date:11 January 

No. I am awaiting 
reinforcements from Gaul. 

From:Julius Caesar 
To:Titus Labienus 
Date:11 January 

The die is cast. 
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procedure ALL_OR_NOTHING_DURABLE_GET (reference data, atomic_sector) 
ds ← CAREFUL_GET (data, atomic_sector.D0) 
if ds = BAD then 

ds ← CAREFUL_GET (data, atomic_sector.D1)

return ds


procedure ALL_OR_NOTHING_DURABLE_PUT (new_data, atomic_sector) 
SALVAGE(atomic_sector) 
ds ← CAREFUL_PUT (new_data, atomic_sector.D0) 
ds ← CAREFUL_PUT (new_data, atomic_sector.D1) 
return ds 

procedure SALVAGE(atomic_sector) //Run this program every Td seconds. 
ds0 ← CAREFUL_GET (data0, atomic_sector.D0) 
ds1 ← CAREFUL_GET (data1, atomic_sector.D1) 
if ds0 = BAD then 

CAREFUL_PUT (data1, atomic_sector.D0)

else if ds1 = BAD then


CAREFUL_PUT (data0, atomic_sector.D1)

if data0 ≠ data1 then


CAREFUL_PUT (data0, atomic_sector.D1)


D0: data0 D1 : data1 
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