Area All-or-nothing atomicity Before-or-after atomicity

database management updating more than one record records shared between threads

hardware architecture handling interrupts and exceptions register renaming

operating systems supervisor call interface printer queue

software engineering handling faults in layers bounded buffer

Principles of Computer System Design © Saltzer & Kaashoek 2009

procedure TRANSFER (debit_account, credit_account, amount)
GET (dbdata, debit_account)

dbdata < dbdata - amount
PUT (dbdata, debit_account)

GET (crdata, credit_account)
crdata<— crdata + amount
PUT (crdata, credit_account)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

Human user
generating
requests

_____+_____

Calendar
Program

____+____

Java
Interpreter

_____+_____

hardware

Interface

Typical instruction
across this interface

Calendar manager
layer interface

Java language
layer interface

Machine language
layer interface

Add new event on
February 27

nextch = instring]j];

add R1,R2

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (o) ATl

All-or-nothing atomicity

A sequence of steps is an all-or-nothing action it, from the point of view of its
invoker, the sequence always either

completes,

or
aborts in such a way that it appears that the sequence had never been

undertaken in the first place. That is, it backs out.

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

Before-or-after atomicity

Concurrent actions have the before-or-after property if their effect from the point of
view of their invokers is the same as if the actions occurred either completely before
or completely after one another.

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure TRANSFER (reference debit_account, reference credit_account, amount)
debit _account < debit _account - amount
credit_account < credit_account + amount

TRANSFER (A, B, $10)

TRANSFER (B, C, $25)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

Thread #1 (credit_account is B) Thread #2 (debit_account is B)
1-—1 READ B 2—1 READ B

1-2 WRITE B 22 WRITE B

correct result: time —»

case 1: Thread #1: REaAD B — WRITE B
Thread #2: READ B —™— WRITE B —

Value of B: 100 110 85

Thread #1: READ B —™— WRITE B —
Thread #2: READ B —— WRITE B
Value of B: 100 75 85

wrong results:

case 3: Thread #1: READ B WRITE B
Thread #2: WRITE B —
Value of B: 100 110 75

Thread #1: READ B WRITE B —
Thread #2: WRITE B
Value of B: 100 75 110

Thread #1: READ B —— WRITE B
Thread #2: WRITE B —

Value of B: 110 75

Thread #1: WRITE B —

Thread #2: WRITE B
Value of B: 75 110

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

old SyStem action

state new system

state

action #1

new system
state

action #3

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

old system
state

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure AUDIT()
sum < 0
for each W < in bank.accounts
sum <— sum + W.balance
iIf (sum # 0) call for investigation

// TRANSFER, in thread 1 // in thread 2

debit_account < debit_account - amount
AUDIT()

credit_account < credit _account + amount

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

Atomicity

An action is atomic if there is no way for a higher layer to discover the internal

structure of its implementation.

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure ALMOST_ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)
CAREFUL_PUT (data, all_or_nothing _sector.S1)
CAREFUL_PUT (data, all_or_nothing_sector.S2) // Commit point.
CAREFUL_PUT (data, all_or_nothing_sector.S3)

procedure ALL_OR_NOTHING_GET (reference data, all_or_nothing_sector)

CAREFUL_GET (datal, all_or_nothing_sector.S51)

CAREFUL_GET (dataZ2, all_or_nothing_sector.S2)

CAREFUL_GET (data3, all_or_nothing_sector.S3)

if datal = data? then data < datal // Return new value.
else data < data3 // Return old value.

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)
CHECK_AND_REPAIR (all_or_nothing_sector)
ALMOST_ALL_OR_NOTHING_ PUT (data, all_or_nothing_sector)

procedure CHECK_AND_REPAIR (all_or_nothing_sector)// Ensure copies match.
CAREFUL_GET (datal, all_or_nothing_sector.51)
CAREFUL_GET (dataZ2, all_or_nothing_sector.52)
CAREFUL_GET (data3, all_or_nothing_sector.53)
if (datal = data?) and (data?2 = data3) return // State 1 or 7, no repair
iIf (datal = data?2)
CAREFUL_PUT (datal, all_or_nothing_sector.S3) return // State 5 or 6.

if (data2 = data3)

CAREFUL_PUT (dataZ2, all_or_nothing_sector.S51) return // State 2 or 3.
CAREFUL_PUT (datal, all_or_nothing_sector.S52) // State 4, go to state 5
CAREFUL_PUT (datal, all_or_nothing_sector.53) // State 5, go to state 7

data state: 1 4 6

sector S1 old new new new
sector S2 old bad new new
sector S3 old old old bad

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

begin all-or-nothing action

\

> arbitrary sequence of
lower-layer actions

_
end all-or-nothing action

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

first step of all-or-nothing action

Pre-commit discipline: can back out,
leaving no trace

Commit point

Post-commit discipline: completion is inevitable

last step of all-or-nothing action

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

The golden rule of atomicity

Never modify the only copy!

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

Variable A: 112 14

Tentative
next version

History of earlier versions

~

Current version

Principles of Computer System Design © Saltzer & Kaashoek 2009 [() =T

All-or-nothing Journal Storage System

Cell Storage

NEW_ACTION —
System

>

READ__CURRENT_VALUE —

g

— catalogs
Journal
WRITE_NEW_VALUE — Storage

Manager ALLOCATE — versions

e

COMMIT — — outcome
DEALLOCATE records

e

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

all-or-nothing

action
commits y committed \

pending discarded

non-existent

.. > o
new all-or-nothing / aborted .
action I1s / I

created all-or-nothing
action outcome record

aborts state no longer
of any interest

Principles of Computer System Design © Saltzer & Kaashoek 2009 [(c) BTN

procedure NEW_ACTION ()
id <= NEW_OUTCOME_RECORD ()
id.outcome_record.state <— PENDING
return id

procedure coMMIT (reference id)
id.outcome_record.state <— COMMITTED

procedure ABORT (reference id)
id.outcome record.state < ABORTED

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

Object A ~ <

N\

\

value:

all-or-nothing L3
action id:

1 42£borte> @

outcome
records

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure READ_CURRENT_VALUE (data_id, caller_id)
starting at end of data_id repeat until beginning
v <— previous version of data_id // Get next older version
a < v.action_id // Identify the action a that created it
S < a.outcome_record.state // Check action a’s outcome record
if s = COMMITTED then
return v.value
else skip v // Continue backward search
signal ("Tried to read an uninitialized variable!”)

procedure WRITE_NEW_VALUE (reference data_id, new_value, caller_id)
if caller_id.outcome_record.state = PENDING
append new version v to data _id
v.value < new_value
v.action_id < caller_id

else signal ("Tried to write outside of an all-or-nothing action!”)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure TRANSFER (reference debit_account, reference credit_account, amount)
my _id <= NEW_ACTION ()
xvalue <— READ_CURRENT_VALUE (debit_account, my_id)
xvalue < xvalue - amount
WRITE_NEW_VALUE (debit_account, xvalue, my_id)

yvalue < READ_CURRENT_VALUE (credit_account, my_id)
yvalue < yvalue + amount

WRITE_NEW_VALUE (credit_account, yvalue, my_id)
if xvalue > 0 then

COMMIT (my_id)
else
ABORT (my_id)
signal("Negative transfers are not allowed.”)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

Journal Storage

log / A\

) \
Install ~ current

end of log

Log

WRITE_NEW_VALUE

Cell
Storage

[

READ__ CURRENT_VALUE

Principles of Computer System Design © Saltzer & Kaashoek 2009 [() =T

Volatile storage Non-volatile storage

In-memory database: |Application
program cell
storage

(o]0

Ordinary database: [Application
program cell

storage

High-performance Application

: rogram cell
database: prog storage

Principles of Computer System Design © Saltzer & Kaashoek 2009 [(co) REN=TM

Write-ahead-log protocol

Log the update before installing it.

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

procedure TRANSFER (debit_account, credit_account, amount)
my _id < LOG (BEGIN_TRANSACTION)
dbvalue.old < GET (debit_account)
dbvalue.new <— dbvalue.old - amount
crvalue.old < GET (credit_account, my_id)
crvalue.new < crvalue.old + amount
LOG (CHANGE, my_id,
“PUT (debit_account, dbvalue.new)”, //redo action
“pUT (debit_account, dbvalue.old)”) //undo action
LOG (CHANGE, my_id,
“pUT (credit_account, crvalue.new)” //redo action
“PUT (credit_account, crvalue.old)”) //undo action
PUT (debit_account, dbvalue.new) // install
PUT (credit_account, crvalue.new) // install
if dbvalue.new > 0 then
LOG (OUTCOME, COMMIT, my_id)
else
LOG (OUTCOME, ABORT, my_id)
signal(“Action not allowed. Would make debit account negative.”)
LOG (END_TRANSACTION, my_id)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

type: CHANGE type: OUTCOME type: CHANGE

action_id: 9979 action_id: 9974 action_id: 9979

status: COMMITTED

redo_action: redo_action:

PUT(debit_account, $90) PUT(credit_account, $40)

undo_action: undo_action:
PUT(debit_account, $120) PUT(credit_account, $1 01

<—older log records newer log records ——>

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure ABORT (action_id)
starting at end of /og repeat until beginning
log_record < previous record of /og
if log_record.id = action_id then
if (/log_record.type = OUTCOME)
then signal ("Can't abort an already completed action.”)

if (Jog_record.type = CHANGE)
then perform undo_action of log_record
if (log_record.type = BEGIN)
then break repeat
LOG (action_id, OUTCOME, ABORTED) // Block future undos.
LOG (action_id, END)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure RECOVER ()// Recovery procedure for a volatile, in-memory database.
winners <— NULL
starting at end of /og repeat until beginning
log_record < previous record of /og
if (log_record.type = OUTCOME)
then winners < winners + log_record // Set addition.

starting at beginning of /og repeat until end
log_record < next record of /og
iIf (log_record.type= CHANGE)
and (outcome_record < find (log_record.action_id) in winners)
and (outcome_record.status = COMMITTED) then
perform /og_record.redo_action

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure RECOVER ()// Recovery procedure for non-volatile cell memory
completeds < NULL
losers < NULL
starting at end of /og repeat until beginning
log_record < previous record of /og
if (log_record.type = END)
then completeds < completeds + log_record // Set addition.
if (log_record.action_id is not in completeds) then
losers < losers + log_record // Add if not already in set.
if (log_record.type = CHANGE) then
perform /og record.undo_action

starting at beginning of /og repeat until end
log_record < next record of /og
if (log_record.type = CHANGE)
and (/og_record.action_id.status = COMMITTED) then
perform /og_record.redo_action

for each /og record in losers do
log (/og_record.action_id, END) // Show action completed.

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure RECOVER () // Recovery procedure for rollback recovery.
completeds < NULL
losers <— NULL
starting at end of /og repeat until beginning // Perform undo scan.
log_record < previous record of /og
if (log_record.type = OUTCOME)
then completeds < completeds + log_record // Set addition.
if (log_record.action_id is not in completeds) then
losers < losers + log_record // New loser.
if (log_record.type = CHANGE) then
perform /og_record.undo_action

for each /og_record in losers do
log (/log_record.action_id, OUTCOME, ABORT) // Block future undos.

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure BEGIN_TRANSACTION ()

id <= NEW_OUTCOME_RECORD (PENDING) // Create, initialize, assign id.
previous_id < id - 1

wait until previous_id.outcome_record.state # PENDING
return id

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

value of object at end of transaction

2 3 4

outcome
retCC;rd Committed 1Committed! Committed | Aborted 1Committed
State | | | | I |

transaction : initialize all accounts to O
: transfer 10 from Bto A
: transfer 4 from C to B
: transfer 2 from D to A (aborts)
: transfer 6 from B to C
: transfer 10 from A to B

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

Value of object at end of transaction
4 5

r-—=-21"
I I
P12
| I |

-12

| 0 — -4

| F - |

bl o 071 0

™ | L o — Jd

Committed Committed Committed Aborted Committed Pending Pending

OUTCOME

record
state

Unchanged value

Changed value

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure READ_CURRENT_VALUE (data_id, this_transaction_id)
starting at end of data_id repeat until beginning
v < previous version of data_id
last_modifier < v.action_id
if last_modifier = this_transaction_id then skip v // Keep searching

wait until (/ast_modifier.outcome_record.state # PENDING)
if (/last_modifier.outcome_record.state = COMMITTED)

then return v.state
else skip v // Resume search

signal ("Tried to read an uninitialized variable”)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure NEW_VERSION (reference data_id, this_transaction_id)
iIf this_transaction_id.outcome_record.mark_state = MARKED then
signal ("Tried to create new version after announcing mark point!”)
append new version v to data_id
v.value < NULL
v.action_id < transaction_id

procedure WRITE_VALUE (reference data id, new_value, this_transaction_id)
starting at end of data_id repeat until beginning
v < previous version of data_id
iIf v.action_id = this_transaction_id
v.value < new_value
return
signal ("Tried to write without creating new version!”))

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure BEGIN_TRANSACTION ()
id <= NEW_OUTCOME_RECORD (PENDING)
previous_id < id - 1
wait until (previous_id.outcome_record.mark_state = MARKED)

or (previous_id.outcome_record.state # PENDING)
return id

procedure NEW_OUTCOME_RECORD (starting_state)
ACQUIRE (outcome_record_lock) // Make this a before-or-after action.
id <— TICKET (outcome_record_sequencer)
allocate /d.outcome_record
id.outcome_record.state < starting_state
id.outcome_record.mark_state < NULL
RELEASE (outcome_record_lock)
return id

procedure MARK_POINT_ANNOUNCE (reference this_transaction_id)
this_transaction_id.outcome_record.mark_state < MARKED

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

procedure TRANSFER (reference debit_account, reference credit_account,

amount)
my_id <— BEGIN_TRANSACTION ()

NEW_VERSION (debit_account, my_id)
NEW_VERSION (credit_account, my_id)
MARK_POINT_ANNOUNCE (my_id);
xvalue < READ__CURRENT_VALUE (debit_account, my_id)
xvalue < xvalue - amount
WRITE_VALUE (debit_account, xvalue, my_id)
yvalue < READ_CURRENT_VALUE (credit_account, my_id)
yvalue < yvalue + amount
WRITE_VALUE (credit_account, yvalue, my_id)
if xvalue > 0 then
COMMIT (my_id)
else
ABORT (my_id)
signhal("Negative transfers are not allowed.”)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

Value of object at end of transaction
2 3 4 7

r—=—1

+10 ' +12] 40
HWM=2 i.;_.i HWM=7

-10 ‘-6
HWM=2 [HWM=3 HWM=5

-4
HWM=3

HWM=7] -4

Aborted Committed Pending Pending

Outcome state record

HWM= High-water mark
Conflict: Must abort! | I Conflict

I I
L — — J

Changed value

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

procedure READ_CURRENT_VALUE (reference data_id, value, caller_id)
starting at end of data_id repeat until beginning
v <— previous version of data_id
iIf v.action_id = caller_id then skip v
examine v.action_id.outcome_record
if PENDING then

WAIT for v.action_id to COMMIT or ABORT
if coMMITTED then
v.high_water_mark < max(v.high_water_mark, caller_id)
return v.value
else skip v // Continue backward search
signal ("Tried to read an uninitialized variable!”)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure NEW_VERSION (reference data_id, caller_id)
if (caller_id < data_id.high_water_mark) // Conflict with later reader.
or (caller_id < (LATEST_VERSION[data_id].action_id)) // Blind write conflict.
then ABORT this transaction and terminate this thread
add new version v at end of data_id
v.value < 0
v.action id < caller _id

procedure WRITE_VALUE (reference data_id, new_value, caller_id)
locate version v of data_id.history such that v.action_id = caller_id

(if not found, signal ("Tried to write without creating new version!”))
v.value < new _value

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

architectural physical
register register

r

—

instruction

R5 42

R4 61

R5 29 —

r

127

three entries in the reorder buffer

physical register file
with 128 registers

n R5 < R4 x R2 // Write a result in register five.
n+1R4 < R5+R1 // Use result in register five.
n + 2 R5 < READ (117492) // Write content of a memory cell in register five.

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure PAY_INTEREST (reference account)
if account.balance > 0 then
interest = account.balance * 0.05
TRANSFER (bank, account, interest)
else
interest = account.balance * 0.15
TRANSFER (account, bank, interest)

procedure MONTH_END_INTEREST:()
for A <— each customer_account do
PAY _INTEREST (A)

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

PAY_INTERESTy (15t jnvocation)

MONTH_END_INTEREST

outcome: PENDING

superior: none

PAY_INTEREST2 (2nd invgcation)

outcome:

superior:

COMMITTED

outcome:

MONTH_END_INTERES Superior:

TRANSFER4

PENDING

MONTH_END_ INTERE

TRANSFER»

outcome:

superior:

COMMITTED

PAY_INTEREST,

outcome:

J superior:

PENDING /

PAY_INTEREST,

creator: TRANSFERy

newest version of
account bank

OK for TRANSFER 5
to read?

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

From: Alice
To: Bob
Re: my transaction 91

if (Charles does Y and Dawn does Z) then do X, please.

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

From:Alice
To: Bob
Re: my transaction 271

Please do X as part of my transaction.

From:Bob
To: Alice
Re: your transaction 271

My part X is ready to commit.

Two-phase-commit message #1:

From:Alice
To: Bob
Re: my transaction 271

PREPARE to commit X.

Two-phase-commit message #2:

From:Bob
To:Alice
Re: your transaction 271

I am PREPARED to commit my part. Have you decided to commit yet?

Two-phase-commit message #3

From:Alice
To:Bob
Re: my transaction 271

My transaction committed. Thanks for your help.

Principles of Computer System Design © Saltzer & Kaashoek 2009 | (c<) AT

Coordinator
Alice

log BEGIN

COMMITTED

\w‘

Bob is PREPARED

l0g /

%

Worker
Bob

v

// log PREPARED

arlles is PREPARED

/ Dawn IS PREPARED

—

Worker
Charles

PREPARE Z
log BEGIN

%‘
Y v

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

log COMMITTED

From:Julius Caesar
To:Titus Labienus

Date:11 January
I propose to cross the Rubicon and attack at dawn tomorrow. OK?

From:Titus Labienus or From:Titus Labienus
To:Julius Caesar; To: Julius Caesar
Date:11 January Date:11 January

Agreed, dawn on the 12th. No. I am awaiting
reinforcements from Gaul.

From:Julius Caesar
To:Titus Labienus
Date:11 January

The die is cast.

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

procedure ALL_OR_NOTHING_DURABLE_GET (reference data, atomic_sector)
ds < CAREFUL__GET (data, atomic_sector.DQ)
if ds = BAD then
ds < CAREFUL_GET (data, atomic_sector.D1)
return ds

procedure ALL_OR_NOTHING_DURABLE_PUT (new_data, atomic_sector)
SALVAGE(atomic_sector)
ds < CAREFUL_PUT (new_data, atomic_sector.DO0)
ds <— CAREFUL_PUT (new_data, atomic_sector.D1)
return ds

procedure SALVAGE (atomic_sector) //Run this program every T4 seconds.
ds0 < CAREFUL_GET (data0, atomic_sector.DO0)
dsl < CAREFUL_GET (datal, atomic_sector.D1)
if dsO = BaD then
CAREFUL_PUT (datal, atomic_sector.DOQ)
else if ds1 = BAD then
CAREFUL_PUT (data0, atomic_sector.D1)
if dataO + datal then
CAREFUL_PUT (data0, atomic_sector.D1)

Dy: datag Dy : data,

Principles of Computer System Design © Saltzer & Kaashoek 2009 |(c) Ba=IM

