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Chapter 13

ELECTROMECHANICS
OF COMPRESSIBLE,

INVISCID FLUIDS

13.0 INTRODUCTION

In this chapter we introduce the additional law (conservation of energy)
and constituent relations necessary to describe mathematically a compressible,
inviscid fluid. This more general model is then used to study electromechanical
interactions. Attention is focused on the effects of compressibility on the
MHD machine analyzed in Chapter 12 and on how magnetic fields can affect
the propagation of longitudinal disturbances (sound waves) in a compressible
fluid.

13.1 INVISCID, COMPRESSIBLE FLUIDS

Cases of electromechanical coupling with fluids that have appreciable
compressibility are found in MHD systems which use ionized gases
as working fluids. We have chosen a perfect gas as our model of a compres-
sible fluid. Although alternative models can be used, the principal phenomena
that we shall study also occur in systems for which other models are appro-
priate.

It is a well-known fact that when work is done to compress a gas the
temperature increases. This is an indication that the mechanical work of
compression has been stored as internal (thermal) energy in the gas. The
strong coupling between thermal and mechanical energy in a gas will
necessitate the inclusion of the conservation of energy as one of the funda-
mental equations; and it will also require that we specify thermal and
mechanical equations of state as constituent relations for the fluid.

The compressible fluids we deal with will obey the conservation of mass as
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derived and discussed in Section 12.1.2. The differential form of the con-
servation of mass is (12.1.11)

D= - p(V. v), (13.1.1)
Dt

where (D/Dt) is the substantial derivative defined in (12.1.5)

D a
Dt = + (v V). (13.1.2)
Dt at

The integral form expressing conservation of mass is (12.1.8)

(pv. n) da = - pV. (13.1.3)

The surface S encloses the volume V and n is the outward-directed unit
normal vector.

The derivation of the conservation of momentum (Newton's second law)
in Section 12.1.3 was done without assuming that the mass density p was
constant. Consequently, the resulting equations are equally applicable to
compressible fluids. The differential form of the momentum equation is
(12.1.14)

DvP D F, (13.1.4)
Dt

where F is the force density applied to the fluid by all sources-mechanical,
gravity, and electrical. The integral form of the momentum equation is
(12.1.29)

V a(v) dv + pv(v - n) da = F dV, (13.1.5)

where the surface S encloses the volume V and n is the outward-directed unit
normal vector.

After deriving the conservation of energy equation for a compressible
fluid, we describe the appropriate constituent relations. These equations,
along with the conservation of mass, the conservation of momentum, and
appropriate boundary conditions, will allow us to solve problems in which
there is electromechanical coupling with compressible fluids.

13.1.1 Conservation of Energy

In accounting for the conservation of energy we are concerned only with
thermal and mechanical energy storage in a fluid. There will be energy input
to the fluid from electromechanical conversion. The Poynting theorem can
be written as a separate electromagnetic energy conservation equation; in
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this system, however, which is quasi-static electromagnetically, this is
unnecessary.

When a fluid is in motion, its kinetic energy density (joules per cubic
meter) is jpv2 and its kinetic energy per unit mass (joules per kilogram) is
1v0. This kinetic energy represents energy storage in the ordered or average
motion of fluid particles. In a gas the particles also have random motion.
The kinetic energy stored because of random motion is called thermal or
internal energy. The internal energy per unit mass (joules/kilogram) is
designated as u. The internal energy, like the velocity v, is an Eulerian
variable; thus the internal energy of the fluid in the vicinity of a point is
specified by the value of u at that point. The internal energy density (joules
per cubic meter) is pu. The total energy per unit mass (kinetic and thermal)
of the fluid at a point is (u + Iv2); the energy density at any point in space is
p(u + ½v2).

Consider now a volume V enclosed by the surface S with outward-directed
unit normal vector n. The conservation of energy for the fluid within the
volume is written

f p(u + ½v2) dV + p(u + ½v2)v. n da = [power input to fluid].

(13.1.6)

The first term on the left specifies the time rate of increase of energy stored
by thermal and kinetic energy in the fluid that occupies the volume V at the
instant of time in question. The second term on the left specifies the rate at
which thermal and kinetic energy is transported across the surface S and out
of the volume V. Thus the left side of (13.1.6) represents the energy that must
be supplied by the total power input to the fluid in the volume V. This power
input can be supplied by volume force densities, such as those of gravity and
of electromagnetic origin, by volume heat generation, such as joule losses
(J2/a) and viscous losses, by forces due to pressure that do work, and by
heat conduction and radiation. An inviscid fluid model is being used, and
viscous effects are ignored. Heat conduction and radiation will also be
ignored because they have very small effects in practical situations on the
electromechanical phenomena to be studied.

Before (13.1.6) can be specified in more detail and before a useful differential
form can be obtained it is necessary to use the physical properties of the fluid
to describe constituent relations.

13.1.2 Constituent Relations

A homogeneous, isotropic, compressible fluid at rest can sustain no shear
stresses. Moreover, an inviscid fluid in motion can sustain no shear stresses.

13.1.2
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Consequently, the mechanical stresses transmitted by an inviscid incom-
pressible fluid are always normal and compressive; thus we define a pressure
p exactly as we did in Section 12.1.4 with the result that the mechanical stress
tensor is (12.1.34)

Ti/~ -•m iP. (13.1.7)

The traction applied to a surface whose normal vector is n (12.1.37) is

Vm = -pn (13.1.8)

and the mechanical force density (12.1.39) is

Fmn = -Vp. (13.1.9)

We model the compressible fluid as a perfect gas. The mechanical equation
of state for a perfect gas is

p = pRT, (13.1.10)

where T is the temperature in degrees Kelvin and R is the gas constant for the
particular gas in question with units joules per kilogram-oK. The gas constant
R is obtained from the universal gas constant R a as follows. The universal
gas constant is

R, = 8.31 J/mole-oK. (13.1.11)

The gas constant R in mks units is obtained from

R= R, (13.1.12)
M

where M is the mass of one mole of the gas in kilograms. This is simply the
molecular weight multiplied by 10-3; for example, consider Argon, which
has a molecular weight of 39.9. The gas constant for Argon is thus

R - 8.31 208 J/kg- K. (13.1.13)
39.9 x 10-

Equation 13.1.10 is conventionally called a mechanical equation of state.
Because we must consider internal energy storage in the gas, we must also
specify a thermal equation of state that relates the internal energy storage to
the variables of the system.* For a perfect gas the internal energy is a function
of temperature alone and is conventionally expressed as

du = c, dT, (13.1.14)

where c,, is the specific heat capacity at constant volume with units joules
per kilogram-oK. Equation 13.1.14 is expressed in differential form because,

*For a more thorough discussion see, for instance, W. P. Allis and M. A. Herlin, Thermo-
dynamics and Statistical Mechanics, McGraw-Hill, New York, 1952, pp. 16-20 and 62-65.
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over the range of temperatures of interest to us, c, can be assumed constant;
but over a wider range of temperature c, is not constant and the variation
must be accounted for in evaluating internal energy. Our purpose of examin-
ing electromechanical interaction phenomena will be served adequately by
assuming that the specific heat capacity is constant.

Another specific heat capacity often useful and that we assume is constant
in our treatment is the specific heat capacity at constant pressure c,, which
is related to c, by the expression

c, = c, + R. (13.1.15)

Yet another useful parameter is the ratio of specific heat capacities

7 = - (13.1.16)
C'

In the ranges of temperature and pressure and for the gases of interest in
this treatment the specific heat capacities vary appreciably but the ratio of
specific heat capacities remain essentially constant.* Our assumption that
all three parameters are constant is adequate for describing the phenomena
resulting from electromechanical interactions.

Now that we have described the physical properties of inviscid, compres-
sible fluids by the constituent relations of (13.1.9), (13.1.10), and (13.1.14)
we shall recast the momentum and energy equations in more useful forms.
We are concerned primarily with pressure and electromagnetic forces and we
neglect the force of gravity.

The use of (13.1.9) for the mechanical force density in (13.1.4) yields the
momentum equation in the form

Dv
p- =-Vp + Fe, (13.1.17)

Dt

where FC is the force density of electrical origin. To rewrite the integral form
of the momentum equation we use

f--Vp dV = -- pn da (13.1.18)

to write (13.1.5) in the form

a(v) dV + pv(v n)da = -pnda + VF" dV. (13.1.19)
Jv at Js

* For a thorough discussion of the properties of gases, see, for example, H. B. Callen,
Thermodynamics, Wiley, New York, 1960, pp. 324-333.

13.1.2
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To write the energy equation (13.1.6) in more precise form we must
specify the power input to the fluid within the volume V from all sources.
Consider first the pressure forces that can be viewed as doing net work only
at the surface of the volume V. Thus, because the pressure forces are com-
pressive and normal to any surface, the power input to the fluid from pressure
forces is

pv- n da.

The use of the divergence theorem allows us to write this quantity as

f -n (pv) da = f-V (pv) dV. (13.1.20)

The electrical power input to the fluid within the volume V is the total rate
at which electrical work is done on charged particles. This includes both the
work done by electromagnetic forces and the electrical losses due to finite
conductivity in the fluid. In all cases the electrical input power density is
J . E and the total electrical power input is

Felectrical power = J -EdV. (13.1.21)
input I

To interpret J •E as the input power density to the moving gas consider
first a magneticfield system and denote with primes the variables defined in
a reference frame fixed with respect to the fluid. Using (6.1.36), (6.1.37),
and (6.1.38)*, we write

J. E = J' (E' - v x B'). (13.1.22)

Then from the vector identity

J' v x B' = -J' x B' v
it follows that

J. E = J'- E' +-J' x B' v. (13.1.23)

The first term on the right is the electric power density that heats up the fluid.
For a linear conductor J' = aE' and

j/2J'. E' - .

The second term on the right of (13.1.23) is simply Fe -v, which is the rate
at which the magnetic force density does mechanical work on the fluid.

For an electricfield system we use (6.1.54), (6.1.56), and (6.1.58)* to write
J - E in the reference frame of the fluid as

J E = (J + p'v) E'. (13.1.24)
* See Table 6.1, Appendix G.
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Expansion of this expression yields

J -E = J' •E' + p'E' v. (13.1.25)

The first term on the right is the rate of heating of the fluid and the second
term is the rate at which the electric force density p'E' does mechanical work
on the fluid.

The use of (13.1.20) and (13.1.21) with (13.1.6) yields

f a[p(u + v')] dV + p(u + Iv')v - n da

=V -V (pv) dV + J EdV. (13.1.26)

The divergence theorem is used to write

fp(u + v')v • n da = fV [p(u + jv')v] dV. (13.1.27)

Then all terms in (13.1.26) are volume integrals. The volume is arbitrary;
thus the equation must hold for the differential volume dV.

a [p(u + Iv')] + V . [p(u + jv')v] = -V. pv + J - E. (13.1.28)
at

Expansion of the derivatives in the two terms on the left and use of the
conservation of mass (13.1.1) yield the simplified result

D
p - (u + v2') = -V . (pv) + Ja E. (13.1.29)

Dr

Equations 13.1.26 and 13.1.29 are convenient forms that express the con-
servation of energy for time-varying situations. Many important problems
involve steady flow, in which case (a/at = 0) and (13.1.26) simplifies to

sp(u + v')v. n da = fV-V (pv) dV + f .-EdV (13.1.30)

and (13.1.29) simplifies to

p(v. V)(u + Iv 2) = -V. (pv) + J.E. (13.1.31)

This last equation is conventionally written in a different form by expanding
the first term on the right

V - (pv) = (v V)p + p(V -v).

13.1.2

(13.1.32)
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The use of the conservation of mass to eliminate V • v yields

V. (pv) = (v V)p - - (v . V)p. (13.1.33)
P

Recognizing that

(v.V) = (v. V)p - - (v. )p.
P P P

We write (13.1.33) in the form

V (pv) = p(v - V) p

and (13.1.31) becomes

p(v V)u + P + = J . E. (13.1.34)

This expression is simplified further by defining the specific enthalpy h as

h = u + = u + RT (13.1.35)
P

or, in differential form,

dh = du + R dT = (c, + R) dT = c, dT. (13.1.36)

Thus (13.1.34) is written as

p(v. V)(h + 2v
2 ) = J . E. (13.1.37)

This equation is in a form that emphasizes the electromechanical aspects
of a problem. It shows that electrical input power goes into enthalpy or
kinetic energy in the gas. Thus for steady-flow problems enthalpy plays the
role of energy storage in the gas other than kinetic energy.

13.2 ELECTROMECHANICAL COUPLING WITH COMPRESSIBLE
FLUIDS

Now that we have completed the description of the mathematical models
we shall use for inviscid, compressible fluids, we treat some steady-state
and dynamic systems that emphasize the physical consequences of electro-
mechanical coupling. The simplest examples that illustrate the electro-
mechanical aspects of the problems are selected. It should be clear that many
other effects will be significant in an engineering system that uses the basic
phenomena that we describe. The details of these other effects are outside
the scope of this work but they are well-documented in the literature.*

* See, for example, G. W. Sutton and A. Sherman, Engineering Magnetohydrody)namics,
McGraw-Hill, New York, 1965.

I 
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x1 = 0

Fig. 13.2.1 A conduction-type MHD machine with constant-area channel.

13.2.1 Coupling with Steady Flow in a Constant-Area Channel

In this section we analyze the system of Fig. 13.2.1 which consists of a
channel of constant cross-sectional area through which an electrically con-
ducting gas flows with velocity v. The electrical conductivity is high enough
to justify a quasi-static magnetic field model. The two walls perpendicular to
the x2-direction are electrical insulators and the two walls perpendicular to
the z3-direction are highly conducting electrodes. A flux density B is pro-
duced in the x,-direction by external means not shown. The electrodes are
connected to electrical terminals at which a voltage Vand current I are defined.
Note that this is the same configuration as that in Fig. 12.2.3 which was used
in Section 12.2.1a for the analysis of electomechanical coupling with an
inviscid, incompressible fluid. Thus the example in this section, when com-
pared with that of Section 12.2.1a, highlights the effects of compressibility
on the basic MHD interaction.

We assume that the 1/w and lid ratios of the channel are large enough that
we can reasonably neglect end effects. Also it is assumed that the flow
velocity is uniform over the cross section of the channel and that the magnetic
field induced by current in the fluid is negligible compared with the applied
field (low magnetic Reynolds number). Thus the magnetic flux density and
electric field intensity are constant and uniform along the length of the
channel

B = iB 2, (13.2.1)

E = i iE= -- i3 , (13.2.2)
w

and the velocity and current density are given by

V = ii,1, (13.2.3)

13.2.1

(13.2.4)J = i'J3 .
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The velocity v1 , current density J, and the gas variables (p, p, T) are
functions of x, but not of x, and x,. We assume that the gas has a constant,
scalar electrical conductivity a and consider only a steady-flow problem.

The equations that describe this essentially one-dimensional problem are
obtained by simplifying equations already presented. From (13.1.1) we obtain
the equation for the conservation of mass:

dp dv_v- + P = 0. (13.2.5)
dzx dxz

The momentum equation is obtained from (13.1.17) with FV = J x B:

dv, dpp dv- = JsB 2. (13.2.6)
dxz dxz

The conservation of energy (13.1.37) yields

pvl (h + vl1
2) = J 3E3 . (13.2.7)

dxz

The mechanical equation of state (13.1.10) is

p = pRT (13.2.8)

and the thermal equation of state (13.1.36) is

dh = c, dT. (13.2.9)

Finally, Ohm's law for the moving gas is J' = AE' or*

J3 = o(E 3 + vxB). (13.2.10)

In these equations a total space derivative is written because x, is the only
independent variable.

The six equations (13.2.5) to (13.2.10) have six unknowns (p, p, T,
h, vi, J3) that vary with x1. These equations are nonlinear and direct integra-
tion in a general form is not possible. The usual method of solution is to
assume that all of the variables are known at the inlet and then to integrate
the equations numerically to find the variables along the length of the
channel.

The equations can be put in a form convenient for interpretation and
numerical integration by finding influence coefficients. This process is one
of essentially finding each space derivative as a function of the variables
themselves. In the derivation of influence coefficients it is convenient to
define the velocity of sound (see Section 13.2.3)

a = /-yRT (13.2.11)
* Table 6.1, Appendix G or Section 6.3.1.
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and the Mach number of the flow

M = (13.2.12)
a

By manipulating (13.2.5) to (13.2.10) and using (13.2.11), (13.2.12), and
the ratio of specific heat capacities y (13.1.16) we obtain the influence co-
efficients in these forms

1 dv. 1 dp [(y - 1)E, + yvlB 2JJ 3
- (13.2.13)

v- dx, p dx1  (1 - M2)ypv (13.2.13)

1 dT [(1 - yM2 )Ea - yM2vjB2](y - 1)J

Tdxz (1 - M2 )ypv (13.2.14)
1 dp {(y - 1)M2E3 + [1 + (y - 1)M2 ]vIB,}yJ3

p d (1 - M2 )yp (13.2.15)

1 d(M2 ) {(y - 1)(1 + yM 2)E, + y[2 - (y - 1)M2 ]vB,}J .
.- (13.2.16)

M2 dx, (1 - M 2)ypvI

We first use these influence coefficients to draw some general conclusions
about electromechanical interactions with a conducting gas and then solve a
problem in some detail to assess the consequences of compressibility.

First, with reference to Fig. 13.2.1, consider the situation in which the
system is acting as a generator along the length of the channel. In this case

E3 < 0, J3 = o(E3 + vB 2s) > O.

It is clear from (13.2.13) to (13.2.16) that we can distinguish two cases:

subsonic flow M2 < 1,
supersonic flow M s > 1.

For subsonic flow (M 2 < 1) (13.2.13) to (13.2.16) yield the results

- > 0, < 0, dp < 0, T < 0, d(M2) > 0.
dxz dxl dx, dxl dxx

These results show the curious property that with J x B in a direction to
decelerate the gas the flow velocity actually increases. This is a direct result
of compressibility. The temperature decreases rapidly enough for the
enthalpy of the gas to supply both the energy fed into the electrical circuit
and the energy necessary for the increasing kinetic energy.

For supersonic flow (M2 > 1) (13.2.13) to (13.2.16) yield the results

< 0, p > 0,  p > 0,  T > 0, d(M) < 0.
dzl dx, dzx dzx dx,

_··_·1_

13.2.1
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In this case the fluid decelerates as would at first be expected because the
J x B force density tends to decelerate the gas. At the same time, however,
the increase in temperature indicates that the kinetic energy of the gas
supplies both the electrical output power and the power necessary to increase
the enthalpy of the gas.

In the subsonic case the Mach number increases and in the supersonic case
it decreases. Both changes make the Mach number tend toward unity. It is
clear from (13.2.13) to (13.2.16) that the derivatives go to infinity at M 2 = 1
and our model becomes inaccurate. The treatment of the flow in the vicinity
of the Mach number of one is outside the scope of our discussion. Suffice
it to say that for a subsonic flow that approaches Mach one the flow chokes,
and a smooth transition to supersonic flow is possible only for a very special
set of circumstances. For a supersonic flow that approaches Mach one a
shock wave will form. A shock wave is a narrow region in which the gas
variables change rapidly and the flow velocity changes from supersonic to
subsonic. A more complete model of the gas than we have used is necessary
for an analysis of shock waves. The additional constraint needed is the
second law of thermodynamics.*

The operation of the system in Fig. 13.2.1 as a pump is somewhat more
complicated. By operation as a pump (or accelerator) we mean that the
terminal voltage has the polarity shown, and v. > 0, J3 < 0. Thus electric
power is fed into the channel, and the J x B force density is in a direction
that tends to accelerate the gas. Whether it does accelerate depends on the
results obtained from (13.2.13) to (13.2.16).

Consider first the subsonic flow (M2 < 1). The requirement that J. < 0
imposes through (13.2.10) the requirement that

E3 < -- t'B2.

This ensures that electric power will be put into the fluid. Equations 13.2.13
and 13.2.14 yield the qualitative sketches of Fig. 13.2.2a. The constant y is
always in the range 1 < y < 2; thus we must distinguish two possible curves
for the temperature variation. It is evident from Fig. 13.2.2a that a J x B
force density applied in a direction that tends to accelerate a gas flowing with
subsonic velocity may actually decelerate the flow and heat the gas to a higher
temperature. The curve of (dvl/dx,) also indicates that when the magnitude
of J is made large enough the flow velocity can be increased.

For supersonic flow (M 2 > 1) with J3 < 0 and the terminal voltage set to
the polarity indicated in Fig. 13.2.1 (13.2.13) and (13.2.14) yield the qualita-
tive curves of Fig. 13.2.1 b. The upper curve indicates that for small magnitudes

* For a thorough and lucid description of the many fluid-mechanical phenomena that can
occur in one-dimensional steady flow see A. H. Shapiro, The Dynamics and Thermo-
dynamics of Compressible Fluid Flow, Vol. I, Ronald, New York, 1953, pp. 73-264.

__
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- B,
-y- I

L0 J30

y-1

.yM2
-1

-0 - J30

Fig. 13.2.2 Variation of velocity and temperature in a constant-area channel flow of a
compressible fluid driven by a J x B force: (a) subsonic (M2 < 1); (b)supersonic (M2 > 1).

of J. the velocity is accelerated, but for too much driving current the velocity
decreases.

Phenomena such as those demonstrated in Fig. 13.2.2 complicate the
behavior of MHD devices that use compressible working fluids. Such
phenomena are crucial in applications like plasma propulsion in which the
object is to obtain a gas velocity as high as possible. When it is realized that
these complications are predicted by an extremely simple model that neglects
viscous and boundary layer effects, turbulence, and variation of electrical
conductivity with temperature and is not complete enough to describe shock
waves in supersonic flow, then we understand how complex the behavior
of gaseous MHD systems can be and how we have to be extremely careful
in obtaining the desired result from a particular model.

In order to understand how the behavior of a constant-area channel,
MHD machine is affected by compressibility and to compare it with the
incompressible analysis of Section 12.2.1a, a numerical example is presented.

13.2.1
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For this example we assume gas properties typical of seeded combustion
gases suitable for use in MHD generators:

R = 250 J/kgoK, y = 1.4 , c, = 875 J/kgoK, a = 40 mhos/m.

We assume that the inlet (x, = 0) conditions are known:

vl(0) = 500 m/sec, T(O) = 30000K,

p(O) = 4 x 10 N/m2, p(O) = 0.534 kg/m,3

M 2(0) = 0.238.

The channel dimensions are assumed to be w = 0.2 m, d = 0.1 m., and
I = 0.95 m. The terminals are constrained with a constant voltage source

V = 150 V,

which constrains the electric field intensity to be constant along the length of
the channel

E3 = -750 V/m.

The magnetic flux density is assumed to be

B, = 3 Wb/m 2.

These numerical values lead to an inlet current density

J3(0) = 3 x 104 A/m2 .

These numerical data are used with numerical integration of (13.2.13)
and (13.2.14) and the mechanical equation of state and the definition of the
Mach number to generate the normalized curves of Fig. 13.2.3. It is clear
from these curves that the gas properties and flow velocity vary significantly
over the length of the channel. Moreover, the rate of variation increases with
zx. With reference to the curve of M2, it is evident that if the channel were
made longer M2 would pass through unity. Although the equations would
give numerical answers, the solutions are physically impossible because the
flow would choke and it would be impossible physically to make the Mach
number greater than unity.

For this particular generator and these specified conditions the current
density can be integrated numerically over the length of the channel to obtain
the total terminal current

I= 4100 A

Thus the generated power, that is, the power fed to the voltage source at the
terminals is

P = 615,000 W.

The total pressure drop through the channel is

Ap = 2.11 x 105 N/m2,
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xl (meters)

Fig. 13.2.3 Variation of properties along a constant-area channel with compressible flow
acting as a generator.

or about 2.11 atm. It is interesting to compare these numbers with those of a
generator that has an incompressible fluid operating with the same inlet
velocity, electric field intensity, and flux density. Equations 12.2.19, 12.2.20,
and 12.2.24 yield the results for the incompressible model:

I = 2850 A, P = 427,000 W, Ap = 0.95 x 105 N/m2.

Comparison of these numbers with those of the compressible flow shows that
with compressible flow the output current, power, and pressure drop are
increased. Reference to the curves of Fig. 13.2.3 indicates that these increases
are direct results of the increase in flow velocity with distance down the
channel. The rather large difference in pressure drop is accounted for by the
necessity to accelerate the gas flow in opposition to the decelerating J x B
force.

__1IIL_ _I_

13.2.1
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This example has been presented to highlight some of the effects of com-
pressibility. It must be emphasized that these results and the discussion hold
only for generator operation with subsonic flow. For other conditions the
effects can be grossly different. The techniques involved are the same,
however.

13.2.2 Coupling with Steady Flow in a Variable-Area Channel

It is evident from the results of the preceding example that compressibility
can limit the performance of a constant-area channel with MHD coupling;
for example, with the conditions specified it would be impossible to operate
the system with a larger pressure drop simply by lengthening the channel.
Such limitations can be avoided by constructing the channel to make the
cross-sectional area a function of distance (x1 ) along the channel. When the
channel area varies "slowly" enough with distance along the channel, we
can use a quasi-one-dimensionalmodel to describe the system with only one
independent space variable. This technique is commonly employed in fluid
mechanics* and magnetohydrodynamics,t and it yields quite accurate
results in most applications. Its use in problems involving elastic media was
introduced in Chapters 9 and 11. We present this technique in the context of a
conduction-type MHD machine.

The system to be analyzed is illustrated in Fig. 13.2.4. It consists of a
channel of rectangular cross-section but with the dimensions of the cross-
section functions of the axial distance xz. A perfect gas having constant
electrical conductivity flows with velocity v through the channel as indicated

1=1

x1=0

Fig. 13.2.4 MHD conduction machine with varying area.

* Shapiro, op. cit., pp. 73 and 74.
t Sutton and Sherman, op. cit., Chap. II.
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Electrode
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(a) (b) (c)

Fig. 13.2.5 Approximations for electromagnetic quantities in quasi-one-dimensional
model: (a) electric field intensity; (b) current density; (c) magnetic field intensity.

in the figure. Two walls of the channel are insulators and two are electrodes
that are connected to electrical terminals at which the terminal voltage V
and terminal current I are defined with the polarities indicated.

We shall now develop the quasi-one-dimensional mathematical model for
steady-flow in the system of Fig. 13.2.4. The derivation for non-steady flow
is similar but more complex. The essential feature of the quasi-one-dimen-
sional model is that all variables are assumed independent of x, and x3 over
a cross-section and they are thus functions only of x1, the distance along the
channel. This basic assumption involves approximations that will be discussed
as we proceed.

We are considering a steady-flow problem; thus (a/at = 0) and the electric
field is conservative (V x E = 0). The actual electric field lines between the
electrodes will have the shapes shown qualitatively in Fig. 13.2.5a. In the
quasi-one-dimensional model we assume that the field lines are only in
the x,-direction and the field intensity has the value

V
E = i3E3 = -ia . (13.2.17)

w(xx)

This approximation is also illustrated in Fig. 13.2.5a and is the same as the
long-wave limit used in the treatment of elastic continua in Chapters 9 and
10. It should be evident that the quality of the approximation improves as
(dw/dxl) becomes smaller.

13.2.2
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The current density J will have the actual configuration shown in Fig.
13.2.5b. In the quasi-one-dimensional model we assume that J is in the
x3-direction:

J = i3J. (13.2.18)

and that J, is a function of x1 only. This approximation is illustrated in
Fig. 13.2.5b.

We neglect the magnetic field induced by current flow in the gas (low
magnetic Reynolds number), thus within the gas V x H = 0. For illustration
purposes we assume infinitely permeable pole pieces that conform to the
insulating walls of Fig. 13.2.4; consequently, the actual magnetic field
intensity appears as in Fig. 13.2.5c. In the quasi-one-dimensional approxima-
tion the magnetic field intensity (and flux density because B = P0H in the
gas) is in the x2-direction and given by

F
H = i2 dl) (13.2.19)

where F is the mmf (ampere-turns) applied by external means between the
pole pieces. Thus

B = i2B2(x) = 2 oF (13.2.20)
d(xl)

This approximation, also illustrated in Fig. 13.2.5c, improves in validity as
(dd/dxz) decreases.

Although Fig. 13.2.5c represents a reasonable method for establishing the
flux density, the magnetic material may not conform to the insulating walls
or the field may be excited by air-core coils. In these cases we still assume that
there is only an xs-component of B and that it varies only with x, in a manner
determined by the method of excitation. Thus B2(X1) is most often a function
independently set in the analysis of an MHD device.

It is clear from (13.2.17), (13.2.18), and (13.2.20) and Fig. 13.2.5 that
fringing fields at the ends of the channel are neglected. It should also be
clear that the approximate field quantities (13.2.17), (13.2.18) and (13.2.20)
do not satisfy the required electromagnetic equations exactly. This is a con-
sequence of the approximation.

In the quasi-one-dimensional model we assume that all the gas properties
(p, p, T) are uniform over a cross section and functions only of xx. Moreover,
we assume that the x,-component of the velocity is uniform over a cross
section. We neglect the effects of transverse velocity components. Thus, in
view of (13.2.17), (13.2.18) and (13.2.20), we write Ohm's law as

Js = ot(E + vIB,). (13.2.21)
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Use of the small volume between planes at x1 and at x, + Axz, as illustrated
in Fig. 13.2.6 with the integral form of the conservation of mass (13.1.3) and
the assumption of the uniformity of v, over a cross section gives

f(pv . n) da = p(xl + Ax1 )v1 (x, + Ax1)A(x 1 + Axx)

- p(x=)v,(x1)A(x 1) = 0, (13.2.22)

where A is the cross-sectional area given by

A(x,) = w(x1) d(x1). (13.2.23)

We divide (13.2.22) by Ax, and take the limit as Ax1 - 0 to obtain

d(pv,A)d(A) 0. (13.2.24)
dx1

This is the differential form that expresses conservation of mass in the
quasi-one-dimensional model.

In deriving the quasi-one-dimensional momentum equation it is often the
practice to use a small volume, shown in Fig. 13.2.6, with the integral form
of the momentum equation (13.1.5). It is more
direct, however, to recognize initially the assump-
tions that all gas properties and the x1-component
of velocity are uniform over a cross section and that
transverse components of velocity have negligible
effects and to write the x,-component of (13.1.4)

Pv = - - JB 2. (13.2.25)
ax1  ax,

In this equation we have used (13.1.9) for the Fig. 13.2.6 Closed surface
for derivation of conserva-

mechanical force density and J x B for the mag- tion of mass equation
netic force density. for quasi-one-dimensional

The same comments hold true for the conserva- model.
tion of energy. Recognizing the assumptions made,
we can write the quasi-one-dimensional energy equation from (13.1.37) as

pyd (h + IvI) = J3 E3 . (13.2.26)
dxx

In the quasi-one-dimensional model the equations of state (13.1.10) and
(13.1.14) or (13.1.36) are unchanged from their general forms.

The quasi-one-dimensional model of MHD interactions in the variable-
area channel of Fig. 13.2.4 consists of (13.2.17), (13.2.18), (13.2.20),
(13.2.21), (13.2.24), (13.2.25), (13.2.26), (13.1.10), and (13.1.36). This set of

IXIIIYI·~--·~-··IUII-
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coupled, nonlinear, differential equations can be used with specified boundary
conditions to calculate how the gas properties, flow velocity, and electro-
magnetic quantities vary along the length of the channel. The equations are
summarized in Table 13.2.1.

As is the case with compressible flow in a constant-area channel, (Section
13.2.1) it is useful to derive influence coefficients that express each derivative
as a function of the variables themselves. These influence coefficients are
useful for general interpretation of properties and for numerical integration
of the equations.

By solving the equations in Table 13.2.1 for each of the derivatives sepa-
rately we arrive at the following set of influence coefficients:

l dv 1 + 1 dA
v dx1  (1 - M2) ypv1  A dx-' (13.2.27)

P[(y - 1)E3 1 , + yvB2] -  + , (13.2.28)
p dx1  (1- M2 ) y pv1  A I

1 dT M(] - 1) J M2 dA
dT (- 1) - yM 2 )E3 - yM'vB] + (13.2.29)

T dx, (1 - M2 ) Ypv1  A dx1

1 dp Y [(Y - 1)M'E 3 + {1 + (Y - 1)M 2}viB 2
p dx, (1 - M')

J dA
x + 3 +M , (13.2.30)

YPvo A dx )

M2 dx (1 - M )  ) pvL
M2 dx, (1 - M2) 'YPV 1

[2 + (y - 1)M2 ] dA} (13.2.31)
A dx

These influence coefficients should be compared with those of (13.2.13) to
(13.2.16) for the constant-area channel. It is clear that when (dA/dx, = 0)
the two sets of influence coefficients become identical.

It is also clear from (13.2.27) to (13.2.31) that for any set of conditions the
derivative of any variable can be made to have either sign and any magnitude
by adjusting the factor (dA/dx1 ). Thus the tendency of the flow to approach
Mach one in a constant-area channel can be counteracted by letting the area
of the channel vary. In fact, by adjusting the area A(x,) such that the quantity
in braces in (13.2.31) is zero all along the channel the Mach number can be
held constant along the channel. It is also true that any of the other influence
coefficients can be used to design a channel [fix A(xl)] such that one property
(v,, p, p, or T) is constant along the length of the channel.

i
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Table 13.2.1 Summary of Quasi-One-Dimensional Equations for System
of Fig. 13.2.4

Channel area A(xl) = w(x 1) d(x1 ) (13.2.23)
V

Electric field intensity E = iE 3 = -- (13.2.17)
W(x1)

Current density J = isJl (13.2.18)
Magnetic flux density B = iB ,(x1) (13.2.20)
Ohm's law J3 = a(E3 + v1B2) (13.2.21) "'

Conservation of mass d(pA) = 0 (13.2.24)
dx1

Conservation of momentum pv •, = d- - J3 B (13.2.25)
dx, dx1

d
Conservation of energy pv1  (h + 1v:) = JEs (13.2.26)

Mechanical equation of state p = pRT (13.1.10)
Thermal equation of state dh = c, dT (13.1.36)

Local sound velocity a = vyRT (13.2.11)

Local Mach number M V1  (13.2.12)
a

Although the influence coefficients of (13.2.27) to (13.2.31) are useful for
examining general properties of the variable-area MHD machine and for
numerical integration when necessary, some exact solutions are possible and
they are best obtained by using the basic equations summarized in Table
13.2.1.

Before proceeding with an example of an exact solution of the equations
it is useful to introduce a convention used in the analysis of gaseous MHD
generators. This convention defines a loading factor K as

K = E (13.2.32)
vlB

2

The use of the factor K in Ohm's law (13.2.21) yields

Js = (1 - K)cavB,. (13.2.33)

Thus, when 0 < K < 1, electric energy is being extracted from the gas;
otherwise it is being put into the gas. The power density extracted electrically
from the gas [see (13.2.26)] is

P, = -JsE, = K(1 - K)av1
2B 2

2 .

____I I_
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Thus it is evident that maximum energy is extracted locally when K = ½
or when the electric field intensity is one half v x B. On a continuum basis
this is the maximum output condition when the external impedance is made
equal to internal impedance. In general, K can be a function of x1; however,
to achieve maximum power extraction along the channel, K should be kept
close to the optimum value of one half. It is evident from (13.2.34) that the
maximum power density that can be extracted electrically from the gas is

o'u2B2
Pe(max) = 2 (13.2.35)

4

We now set constraints suitable for obtaining an exact solution of the
quasi-one-dimensional equations that describe the variable area MHD
machine in Fig. 13.2.4. A set of constraints is selected to correspond closely
to those used for analyzing MHD generators for large amounts of power
(more than 100 MW). We present a normalized solution in literal form and
then introduce numerical constants.

It is assumed that the values ofall quantities are known at the inlet (x, = 0).
We select the channel dimensions to achieve constant flow velocity v1,
constant loading factor K, and constant-channel aspect ratio [w(x 1)/d(xj).
The requirements of constant K and constant aspect ratio are satisfied only
if

d(xz)

Thus we assume that the magnetic field is excited by using infinitely permeable
pole pieces that conform to the insulating walls, as illustrated in Fig. 13.2.5c.
It follows that the flux density B, is given by (13.2.20).

For the constraints that have been specified, with the loading factor K
defined by (13.2.32) and the current density J3 given by (13.2.33), the equa-
tions of Table 13.2.1 can be simplified to the following:

d(pA) = 0, (13.2.36)
dx,

= -(1 - K)avvB 2
2 , (13.2.37)

dxz

dT
pvIc, - = -K(1 - K)aov 2 B2

2 , (13.2.38)
dx,

p = pRT. (13.2.39)

Before solving for any variable as a function of xz, it is convenient to obtain
relations between pairs of unknowns; for example, division of (13.2.38) by
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(13.2.37) and simplification of the results yield

dT dp
P, - K dp (13.2.40)

dx, dx,

This equation can be written as
(c,)dT 1 dp

(pR) = (Kp) d (13.2.41)
R Tdxl p dx,

Using (13.2.39) and the fact that

R y7-1'

we integrate (13.2.41) to obtain the result that

P(x1) = [T(1x)]/l[KG' -1)] (13.2.42)
p(o) T(O)j

Note from (13.2.33) that when K = 1no current flows and (13.2.42) reduces
to the standard isentropic relation between temperature and pressure.*

We now use (13.2.42) with (13.2.39) to obtain the relation between tem-
perature and density as

p(Zx) [T(x1 )][-K(Y-1)]K(Y-1)
p( - L T-(0) (13.2.43)
p(0) IT(0)l

The use of this result with (13.2.36) yields

A(xl) T(xx)][K(y-1)--]/K(y-1)
(13.2.44)

A(O) LIT(0)1I

Because the aspect ratio (w/d) is constant, (13.2.44) yields the result

d(x) w(x•) FA(xO)1d(0) w =) O) (13.2.45)

Finally, the definition of Mach number M in Table 13.2.1 with the constraint
of constant velocity yields the relation between the square of the Mach
number and the temperature:

M2(0) LT(xO) (13.2.46)

Now that we have relations among the unknowns it is necessary to obtain
a solution for only one of the unknowns as a function of x,. It is easiest to

*Allis and Herlin, op. cit., p.78 .

13.2.2
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do this for the temperature by using (13.2.38), which we rewrite as

dT _ -K(1 - K)avB22(13.2.47)
dx I pc,

From (13.2.36) pA = constant and from (13.2.20) and (13.2.45) B,2A =
constant.

Thus (13.2.47) becomes

dT _ K(1 - K)ravB1B(0)
(13.2.48)

dx1 p(O)c,

The right side of this expression is constant and integration yields

K(1 -- K)rovB,2(O)T(x-) - T(0)= (- - 2 
1. (13.2.49)

p(o)c,

By normalizing and rearranging this expression we obtain

T() 1 - (y - 1) K(1 - K)orvx B 2
2 (0) X. (13.2.50)

T(O) yp(O)

We define the constant C, as

(7 - 1) K(1 - K)orvI B 2 (0)
C, = (13.2.51)

yp(O)

and rewrite (13.2.50) as

= 1 - CIx1 . (13.2.52)
T(0)

We now use (13.2.42) to (13.2.46) to obtain the space variations of the other
variables; thus

P(X1 ) = (1 - C1x)y/I[K(-1)], (13.2.53)
p( 0 )

p(X0)= (1 - Cx •j)
[y-K(y-1)]/K(y-1), (13.2.54)

P( 0 )

A(x) = (1 - Cxx)K(y-l)-y/K(y-l, (13.2.55)
A(O)

d() = w(xX) = (1 - CJxx)[ K ( v- 1)-
y]/2K(y - 1), (13.2.56)

d(O) w(O)

M2() = (1 - CIz -x). (13.2.57)
M2 (0)
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To complete the description of this generator we note from (13.2.17) and
(13.2.32) that the terminal voltage with polarity defined in Fig. 13.2.4 is

V = KvLB 2(x,) w(xl) (13.2.58)

and constant. From (13.2.33) the current density is

J3 = (1 - K)av, B 2(x,). (13.2.59)

The total terminal current is

I = J. d(xj) dzx = (1 - K)av, B2(xl) d(xz) dzx. (13.2.60)

From (13.2.20) we have

B,(x1 ) d(xj) = B2(0) d(0); (13.2.61)

thus (13.2.60) is written as

I =f(1 - K)av1 BA(0) d(O) dx. (13.2.62)

In this expression the integrand is constant, which indicates that each element
dx, along the length makes the same contribution to the total current.
Integration of (13.2.62) yields

I = (1 - K)av, B2(0) d(0)1. (13.2.63)

It is interesting to note by reference to Section 12.2.1 that this is the same as
the current output from a constant-area channel of depth d(0), width w(O),
and length 1, using an incompressible fluid with conductivity a and velocity
v, in the presence of a uniform flux density of value B2(0).

It will be instructive to make the input dimensions and variables the same
as those of the constant-area channel in Section 13.2.1 and to compare the
performance of the variable area and constant-area channels. Thus we set

R = 250 J/kg°K, y = 1.4, c, = 875 J/kg°K,

a = 40 mhos/m, v, = 500 m/sec, T(0) = 30000K,

p(O) = 4 x 105 N/m2, p(O) = 0.534 kg/m3 , M 2(0) = 0.238,

w(0) = 0.2 m, d(0) = 0.1 m, I = 0.95 m,

K = Y, V = 150 V, B2(0) = 3 Wb/m2 .

First we use (13.2.51) to calculate the constant C1 :

C1 = 0.0322/m.

__I __··
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Then the expressions for the variables follow from (13.2.52) to (13.2.57):

T(xl) = (1 - 0.0322x,), = (1 - 0.0322x,)7,
T(0) p(0)

P(X1 -= (1 - 0.0322x,) 6 , A(x 1
p(O) A(0) (1 - 0.0322x1) 6

d(x) _ w(x__) 1 0.238

d(0) w(0) (1 - 0.0322x)' (1 - 0.0322x,)

These variations with x, are plotted in Fig. 13.2.7. Compare the curves in
this figure with those in Fig. 13.2.3 to learn how the slight variation of the
channel area can reduce the changes in properties along the channel. Because
the Mach number has changed so slightly over the length of the channel, the
channel can be made much longer without reaching Mach one. This was not
the case for the constant-area channel.

Further comparisons can be made in the constant-area channel with both
compressible and incompressible fluids. Assuming the same inlet dimensions
and properties for each of the three cases, we list several quantities in Table
13.2.2. Note that the constant-area generator with incompressible fluid
produces the same power as the variable-area generator but with a larger
pressure drop, and that the constant-area generator with compressible
fluid produces the most power. This is due to the acceleration of the gas
down the channel, as indicated by Fig. 13.2.3. This small increase in power
occurs at the expense of a large increase in pressure and temperature drops

1.3

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0
xl (meters)

Fig. 13.2.7 Variation of properties along a variable-area channel designed to have constant
velocity and constant loading factor while acting as a generator.

A(xt)

A(O)

ST(O)

p(x )
p(x (x)•
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Table 13.2.2 Properties of MHD Generators

Variable-Area
Constant-Area Constant-Area Constant Velocity
Incompressible Compressible Constant Loading

Fluid Fluid Factor

Terminal voltage (volts) 150 150 150
Terminal current (amperes) 2,850 4,100 2,850
Power output (watts) 427,000 615,000 427,000
Pressure drop (newtons per

square meter) 0.95 x 105 2.11 x 105 0.80 x 105
Temperature drop (degrees

Kelvin) ... 420 93

over the variable-area generator. Although it is beyond the scope of this
book, it is worthwhile to remark that this increase in power output from the
constant-area channel results in the generation of considerable entropy
which makes the energy in the exhaust fluid less available than with the
variable-area channel.

In our analysis of the variable area channel we defined a set of constraints
that allowed the complete solution of the differential equations in closed
form. Several other sets of constraints allow direct integration of the equa-
tions. For still others numerical integration is necessary for solution.

It must be recognized that when a set of constraints is selected and closed-
form solutions are obtained the design of a generator is fixed. In our example
this means we specify the dimensions [d(x1), and w(xz) ]. Now, if we wish to
operate this channel with a different set of inlet conditions, magnetic flux
density, and/or applied voltage, we can no longer, in general, determine how
the properties vary along the channel by literal integration. Instead, we must
integrate numerically. Thus, if we wanted to fix the inlet properties to the
channel we designed in our example and to find the output current and power
as a function of load resistance for the range from open-circuit to short
circuit, our solution in closed form would represent only one point on the
curve. The remainder of the points would have to be found by numerical
integration.

The preceding analysis of a variable-area MHD machine with a com-
pressible working fluid is the basic technique in the study of electromechanical
coupling in conduction-type MHD generators. Several types of machine have
been built or proposed.* A cutaway drawing of one machine is shown in Fig.
13.2.8 and a photograph in Fig. 13.2.9.

* T. R. Brogan, "MHD Power Generation," IEEE Spectrum, 1, 58-65 (February 1964).
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Fig. 13.2.8 Cutaway drawing of Avco Mark V rocket-driven, self-excited MHD power generator. Oxygen and fuel are burned in the
combustion chamber to create a 5000'F electrically conducting gas which flows through the channel, where it interacts with the magnetic
field to generate power. The magnet coil is excited by part of the generator output. For a gross power output of 31.3 MW, 7.7 MW are used to
energize the field coils. (Courtesy of Avco-Everett Research Laboratory, a division of Avco Corporation.)

Courtesy of Textron Corporation.  Used with permission.
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Fig. 13.2.9 Photograph of Avco Mark V generator described in Fig. 13.2.8. (Courtesy of
Avco-Everett Research Laboratory, a division of Avco Corporation.)

13.2.3 Coupling with Propagating Disturbances

Recall from Section 12.2.3 that in the analysis of Alfvyn waves propagating
through an incompressible fluid of high electrical conductivity the fluid
motion was entirely transverse. Even though the assumption of incompressi-
bility was made, it was not necessary for the type of fluid motion described.
Thus Alfv6n waves are also found in an inviscid gas of high electrical con-
ductivity.

Because a gas is compressible, it will also transmit longitudinal (acoustic)
waves that are very much like the longitudinal elastic waves analyzed in
Chapter 11. The propagation of acoustic waves in a gas can be affected by
bulk electromechanical coupling when the gas has high electrical conductivity
and is immersed in a transverse magnetic field. These modified disturbances
are called magnetoacoustic waves. The same phenomena also occur in liquids
because liquids are slightly compressible. The effect of bulk electromechanical
coupling on acoustic waves in a liquid, however, is much less pronounced
than in a gas. Consequently, we use our mathematical model of a gas to
describe acoustic waves first and then to describe magnetoacoustic waves.

13.2.3

Courtesy of Textron Corporation.  Used with permission.
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13.2.3a Acoustic Waves

As already stated, we shall study longitudinal disturbances, and thus we
assume the rectangular channel in Fig. 13.2.10, which has rigid walls per-
pendicular to the x,- and x,-axes and infinite length in the x,-direction. At
x, = 0 a close-fitting piston, perpendicular to the x,-direction, can be driven
in the x1-direction by a mechanical source. The channel is filled with a gas,
with gas constant R and specific heat capacity at constant volume c,, that
can be represented as ideal. With this arrangement, the piston will drive
disturbances that are uniform across the channel and that will propagate along
the channel. The infinite length in the x,-direction precludes reflections of the
disturbance.

It is clear from the configuration of Fig. 13.2.10 that with disturbances
driven by the piston uniformly in an x2,-x,-plane there will be no variation of
properties with x2 or x, and there will only be an x1-component of velocity v,.
Thus we can write the equations of motion for the gas in one-space-dimen-
sional forms:

conservation of mass (13.1.1)

Dip av,
D-- -- p - (13.2.64)

Dt x, '
where now

D = a- + v a (13.2.65)
Dt (at ax,

conservation of momentum (13.1.17)

P Dt = ax (13.2.66)
Dt ax,

conservation of energy (13.1.29)

Sa
p (u + v2) =- (pv1 ), (13.2.67)

Dt ax1
and the equations of state (13.1.10) and (13.1.14)

p = pRT, du = c, dT. (13.2.68)

Before proceeding to analyze the propagation of disturbances, it will be
useful to simplify the equations somewhat. First, we use the equations of state
to eliminate u and then T from the conservation of energy.

cv Drlp , Dcl1 0
p+ pDv Dt - (p v ). (13.2.69)

R Dtp Dt ax
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Fig. 13.2.10 Configuration for studying propagation of longitudinal (acoustic) disturb-
ances in a gas.

Next, the conservation of momentum equation simplifies this expression to

PRD 1p -P a 1  (13.2.70)

Finally, the conservation of mass equation eliminates the space derivative of
v, and the derivative on the left is expanded to obtain

D -p _ yp D- p (13.2.71)
Dt p Dt

An equation of the same form can be obtained for three-dimensional varia-
tions of properties.

Equations 13.2.64, 13.2.66, and 13.2.71 are sufficient to describe the
propagation of disturbances through the gas; these equations, however, are
nonlinear. For the remainder of this section, we assume that the disturbances
involve small perturbations from an equilibrium condition such that the
equations can be linearized. Thus we represent the three relevant variables
in terms of equilibrium quantities (subscript o) and perturbation quantities
(primed)

P = Po + p', (13.2.72a)

P = Po + P', (13.2.72b)

v, = 1. (13.2.72c)

At equilibrium the gas is at rest; thus the equilibrium value of v, is zero.
Substitution of (13.2.72a-c) into (13.2.64), (13.2.66), and (13.2.71) and

I~-·^II·L*·I~··--CI---I
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retention of only linear terms in the perturbation quantities yield

ap' av'
p' Po 1, (13.2.73)

at 0a-x

av; ap'
Po L p' (13.2.74)at ax

p'= YPo p'. (13.2.75)
Po

In obtaining (13.2.75), the linearized version of (13.2.71) has been integrated
and the constant of integration set to zero because both perturbation quan-
tities are zero at equilibrium.

Elimination ofp' and p' from (13.2.73) to (13.2.75) yields a single equation
with vi as the unknown:

a2 v' ypo0 a2vS- (13.2.76)
at" Po axi "

This is a wave equation (see Section 11.4.1) that describes longitudinal

(acoustic) waves that propagate with a sound speed given by*

a, = (YP) (13.2.77)

Refer now to Fig. 13.2.10. We specify that the piston be driven with small
amplitude oscillations such that the velocity of the gas at x1 = 0 is con-
strained to be

v;(0, t) = V,, cos cot. (13.2.78)

Because the channel is infinitely long in the xj-direction, disturbances will
propagate only in the positive x_-direction (there are no reflected waves).
Thus the velocity of the gas at any point along the channel for steady-state
conditions is

v'(x1, t) = Vm'cos (ot - -x . (13.2.79)
a,

That this is a solution of (13.2.76) which satisfies the boundary condition of
(13.2.78) can be verified by direct substitution.

We can now use (13.2.79) in (13.2.73) to find the perturbation density

p'(xl, t) = p cos cot - - x . (13.2.80)
a, a,

* This is the same speed as that given by (13.2.11).
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U1 P

Fig. 13.2.11 Density and velocity variations in a sound wave of frequency w propagating
in the positive xq-direction.

Sketches of the variation of density and velocity as functions of space at a
given instant of time are shown in Fig. 13.2.11. Note that the velocity and
density perturbations are in phase and that the whole pattern propagates in
the positive x1-direction with the acoustic speed a,.

It is clear from the nature of the wave equation (13.2.76) that sound waves
propagate in our assumed perfect medium without dispersion. Thus all the
techniques and conclusions of Section 9.1.1 apply equally well to sound
waves.

It is also worthwhile at this point to comment that no heat conduction
term appears in the conservation of energy equation. This is the model
that best describes sound waves from the audio-frequency range up to the
megacycle per second range.

In modeling the slight compressibility of liquids to describe mechanical
behavior during moderate changes in pressure the temperature is immaterial.
Consequently, the conservation of energy equation and the thermal equation
of state are dropped, and the mechanical equation of state is conventionally
written as*

dp-= dp, (13.2.81)
P

where K is the compressibility. For small perturbations about an equilibrium
with the definitions of (13.2.72a,b) (13.2.81) can be linearized and integrated
to obtain

p' = - p'. (13.2.82)
KPo

* See, for example, H. B. Callen, Thermodynamics, Wiley, New York, 1960, pp. 344-349.
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If this expression is used in place of (13.2.75) with (13.2.73) and (13.2.74),
it will be found that a wave equation like that of (13.2.76) will result and
(ypl/po) will be replaced by (1/Kpo). Thus for a liquid with density po and
compressibility K the acoustic speed is

a, - . (13.2.83)

With this modification all the results already obtained for acoustic waves in
inviscid gases hold equally well for acoustic waves in inviscid liquids.

In this mathematical development we used a lossless fluid model with the
mathematical result that a plane disturbance propagates with no attenuation.
In all real fluids viscosity (mechanical loss) dissipates energy and damps
disturbances. In most practical problems, however, the damping is slight
and can be treated mathematically as a perturbation of the lossless analysis,
much like the process used to introduce electrical losses in transmission lines.t
Although the problem of viscous damping of acoustic waves is not analyzed
in this book, the concept and mathematical model of viscosity is introduced
in Chapter 14, and it is a straightforward process to include viscous terms as
perturbations on the lossless analysis and evaluate viscous damping of
acoustic waves.

13.2.3b Magneloacoustic Waves

Now that we have described the physical nature and mathematical char-
acterization of ordinary acoustic waves, we add bulk electromechanical
coupling to see how acoustic waves are modified to magnetoacoustic waves.
The physical system to be used is the rectangular channel of Fig. 13.2.10,
with electric and magnetic modifications, as illustrated in Fig. 13.2.12. The
channel is fitted with pole pieces and an excitation winding which produce,
at equilibrium, a flux density that is uniform throughout the channel and has
only an xz-component:

B = i,B,. (13.2.84)

The walls of the channel that are perpendicular to the x,-axis are made of
highly conducting electrodes. The movable piston is also made of highly
conducting material.

Because of the high conductivity of the gas, the electrodes, and the piston
and because of the presence of an applied magnetic field, the electromagnetic
part of this system is represented by a quasi-static, magnetic field system.

t See, for example, R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy
Transmission andRadiation, Wiley, New York, 1960, Chapter 5, p. 179.
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Movable pisto
made of highl
conducting
material o--

Fig. 13.2.12 Configuration for studying propagation of magnetoacoustic disturbances in
a highly conducting gas.

Moreover, the assumed symmetry in the problem (including a neglect of
fringing effects at the ends and edges of the channel) leads to the conclusion
that, as in the preceding section, all variables are independent of x, and x3 .
Furthermore, the gas velocity has only an x1-component v1 , the highly
conducting electrodes cause the electric field intensity to have only an
x3-component E3 , the current density in the gas thus also has only an xz-
component,* and the perturbation magnetic field induced by current flow
in the gas has only an x,-component. Summarizing these statements about
electromagnetic quantities, we have

E = i3E3(xz, t), (13.2.85a)

J = i3JA3(x, t), (13.2.85b)

B = i2[Bo + B2(x 1, t)]. (13.2.85c)

I n order to describe mathematically the dynamic nature of magnetoacoustic
waves, we must modify (13.2.64) to (13.2.68) to include electromechanical
coupling terms and add the electromagnetic equations necessary for a
complete description.

* As we shall see subsequently, there is longitudinal current in the electrodes to satisfy
V-J = 0.
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First, the momentum and energy equations (13.2.66) and (13.2.67) must
be modified to include coupling terms, thus:

conservation of momentum (13.1.17) is

Dav1 ap
p - J3(Bo + B2), (13.2.86)

Dt ax,

and conservation of energy (13.1.29) is

D, a
P - (u + -v_) = (p 1) + J3 E,. (13.2.87)

Dt ax,
Next, recognizing that the equilibrium flux density Bo is not a function of

time or space, the relevant electromagnetic equations are:

Ampere's law (1.1.1)*

1 aBB S_ J 3, (13.2.88)
P0o xZ

Faraday's law (1.1.5)*
aE ,a(13.2.89)

ax, at
and Ohm's law J' = aE' written ast

J3 = a[E3 + vl(Bo + B2)]. (13.2.90)

Note that V -B = 0 is automatically satisfied by the functional form of B
that results in this problem.

The equations necessary for describing magnetoacoustic disturbances are
(13.2.86) to (13.2.90), plus the conservation of mass (13.2.64) and the
equations of state (13.2.68). As in the case of acoustic waves, these equations
are nonlinear; thus we assume perturbations small enough to allow us to
linearize the equations of motion. Again we represent the relevant variables
in terms of equilibrium quantities (subscript o) and perturbation quantities
(primed).

P = Po + p', (13.2.91a)
P = Po + P', (13.2.91b)
T= To + T', (13.2.91c)
vI = v;, (13.2.91d)

B2 = Bo + B,, (13.2.91e)

J3 = J3, (13.2.91 f)
E, = E3. (13.2.91g)

* Table 1.2, Appendix G.
t See Table 6.1, Appendix G.
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Note that velocity, current density, and electric field intensity have zero
equilibrium values.

First, linearization of Ohm's law (13.2.90) in the limit where a --* o gives

E, = -vBo. (13.2.92)

Substitution of this result in (13.2.89) yields

1 aB' aov
B - a2 - (13.2.93)

Bo  t ax

Linearization of (13.2.64) (conservation of mass) and division of the result
by Po yields

1 ap' Bv'1 ap(13.2.94)
Po at ax1

Subtraction of (13.2.94) from (13.2.93) and integration with respect to time
(recognizing that for equilibrium conditions all perturbation quantities go
to zero) yields

2- (13.2.95)
B0  p0

This shows that perturbations in flux density follow perturbations in mass
density. This is formal mathematical acknowledgment that for a -- oo the
time constant for diffusion of magnetic flux lines through the gas goes to
infinity and the flux lines are essentially frozen into the material.

It can be verified by following a process similar to that for (13.2.69) to
(13.2.71) for small-signal linearized equations that (13.2.71) still holds for
perturbation quantities:

Dip' yPo DIP'p- (13.2.96)
Dt Po Dt

Integration of this expression and use of (13.2.77) to define acoustic speed
a, yield

p' = a,~p'. (13.2.97)

Linearization of the conservation of momentum (13.2.86) yields

av; ap' B0 aB,
Po• (13.2.98)at axi go a8i

In writing this equation, we have used (13.2.88) to eliminate J1.
The use of (13.2.97) to eliminate p' from (13.2.98) and the use of (13.2.95)

to eliminate B2 yield
av; 2 B0

2 ap'
Po a, + ' (13.2.99)at l oPopo ax

I_ _ I__·
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The use of this expression and the linearized conservation of mass (13.2.94)
to eliminate p' yields the single equation for v":

-2 B(a, a 1+ B 0 V (13.2.100)
at ( oPo+ 8x2 "

Comparison of this result with (13.2.76) for ordinary acoustic waves shows
that (13.2.100) describes longitudinal waves that propagate without dis-
persion with a propagation speed a given by

a= (a, + B/o . (13.2.101)

These waves are called magnetoacoustic waves and a is the magnetoacoustic
velocity because the propagation speed is given by (13.2.101) as a combination
of the acoustic velocity a, and another velocity !B,212/[o,p,, which depends on
magnetic flux density. This other velocity is numerically equal to the Alfvtn
velocity ab obtained for transverse electromechanical waves and defined in
(12.2.88).

Provided we replace a, with a, as defined in (13.2.101), all the comments
made about acoustic waves in the preceding section hold true for magneto-
acoustic waves. Because of the bulk electromechanical coupling, it will be
instructive to study the physical makeup of a magnetoacoustic wave. To
provide a basis for comparison with ordinary acoustic waves we assume the
same driving function we used for the acoustic wave example, namely, that
the piston at x, = 0 is driven with small amplitude at angular frequency o
such that the gas velocity at xz = 0 is

v (0, t) = Vm cos ot. (13.2.102)

The gas velocity at any point in the gas is then

vi(x 1, t) = Vm cos (ot - a x . (13.2.103)

This can be verified as the solution by seeing that the boundary condition
(13.2.102) and the differential equation (13.2.100) are both satisfied. In
addition, the infinite length in the x,-direction results in no reflected waves
traveling in the negative x,-direction.

We now use the conservation of mass (13.2.94) and (13.2.95) to write

B2(x,, t) p'(xl, t) m ( (3204)- PO -a cos ot - -a x . (13.2.104)
Bo Po a a

Finally, we use (13.2.88) to evaluate J3:

J,(xl, t) = Buoa n sin (wt - - x . (13.2.105)
oa 2 a
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Fig. 13.2.13 Gas and electromagnetic variables in a magnetoacoustic wave of frequency w
propagating in the positive xz-direction.

The variables described by (13.2.103) to (13.2.105) are illustrated for one
instant of time in Fig. 13.2.13. As time passes, this pattern propagates with
speed a in the positive x,-direction. In describing J3 the density of lines
indicates the intensity of the current density, and for B' the density of the
circles indicates the strength of the flux density. We already know that B' is
excited by Ja. This can be verified by the right-hand rule or by (13.2.88).
Also, as indicated by (13.2.95), the perturbation flux density and mass
density are linearly related. Thus, when the gas is compressed, magnetic flux
lines are compressed. This compression of flux lines induces a current
density J3, which interacts with the equilibrium flux density to produce a
force that resists the compression. This makes the gas essentially less com-
pressible, raises the effective continuum "spring constant," and makes the
propagation velocity greater than the ordinary acoustic velocity.
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It is clear from the pattern of current density in Fig. 13.2.13 why the highly
conducting electrodes are necessary to close the current paths and maintain
the one-dimensional nature of the problem.

In the example the waves were driven mechanically by a piston; they could
have been driven equally well by local perturbations in flux density or current
density. Furthermore, these waves can interact with an electric circuit that
couples either to the flux density or to the current density. Thus magneto-
acoustic waves provide the opportunity for continuum electromechanical
coupling between a channel of highly conducting gas and an electric circuit.*

Although viscosity provides the loss mechanism that ultimately damps
ordinary acoustic waves, magnetoacoustic waves are damped both by viscosity
and by electrical losses that result from current flow in the presence of
finite conductivity. In virtually all cases in which magnetoacoustic waves
can be excited experimentally electrical losses predominate as the damping
mechanism, and it is the limited electrical conductivity of gases that restricts
the possibilities for practical utilization of magnetoacoustic waves for electro-
mechanical coupling. This limitation is explored extensively in the literature.t

To illustrate the kinds of conditions necessary for the propagation of
magnetoacoustic waves, we select conditions in which the waves have been
excited and detected":

Helium gas, Po = 0.0016 kg/m3 ,

Bo = 0.32 Wb/m 2, T, = 15,000°K,

R = 2080 J/kgoK, Po = 0.5 x 105 N/m2 (1 atm).

y = 1.67,

The extremely high temperature is necessary to achieve high enough con-
ductivity that will allow magnetoacoustic wave propagation without excessive
damping. Needless to say, this was a pulsed experiment. From the data given
the sound velocity is

as= (2 - 7240 m/sec.
\ Pol

The AlfvIn velocity is

ab =(o 7150 m/sec.

* H. A. Haus, "Alternating Current Generation with Moving Conducting Fluids," J.
Appl. Phys., 33, 2161 (June 1962).
t G. L. Wilson and H. H. Woodson, "Excitation and Detection of Magnetoacoustic
Waves in a Rotating Plasma Accelerator," AIAA,Vol. 5, No. 9, Sept. 1967, pp. 1633-1641.
$ Wilson and Woodson, loc. cit.
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The magnetoacoustic velocity is

a = Va,_ + a, = 10,200 m/sec.

It is clear from these numerical values that in a gas a moderate flux density
will yield a magnetoacoustic velocity that is considerably greater than the
ordinary acoustic velocity; thus the electromechanical coupling in the wave
is easily made strong.

Magnetoacoustic waves can also be excited in conducting liquids such as
liquid metals; however, because of the high density of liquids it is difficult
to obtain an Alfv6n velocity large enough to affect appreciably the propaga-
tion velocity of longitudinal disturbances. It is easy to show that the propaga-
tion velocity of magnetoacoustic waves in conducting liquids is still given by

a = a,2 + ab,

where a, is the sound velocity given by (13.2.83) and a, is the Alfvyn velocity
given by (12.2.88).

To determine how much the propagation velocity of a longitudinal dis-
turbance can be affected in a conducting liquid by an applied magnetic field
consider mercury for which the sound velocity and density are

a, = 1410 m/sec,

p0 = 13,600 kg/m 3.

The flux density necessary to give an Alfvyn velocity that is 10 per cent of the
sound velocity is

Bo = 18.5 Wb/m 2.

This flux density (185,000 gauss) is obtainable at present only in large, high-
field research magnets and it is a factor of 10 higher than obtainable with
conventional iron-core electromagnets. A less dense liquid metal like sodium
or potassium would require less flux density. For obtainable fields, however,
the effect of a magnetic field is still small. Conducting gases, on the other
hand, have low enough densities that the Alfv6n velocity can be greater than
the sound velocity at moderate flux densities, as we illustrated earlier.

In general, the propagation of disturbances in conducting fluids immersed
in magnetic fields involves complex combinations of ordinary acoustic
waves (longitudinal waves) and Alfv6n waves (transverse waves) both
propagating along magnetic field lines, and magnetoacoustic waves (longi-
tudinal waves) propagating normal to magnetic field lines. These separate
component waves couple through electromagnetic and gas variables

13.2.3
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and are all damped by loss mechanisms. Thus the analysis of a disturbance,
in general, is quite complex. Nonetheless, many phenomena can be under-
stood in terms of the simple component waves we have studied
separately.

13.3 DISCUSSION

In this chapter we have gone one step further in the analysis of electro-
mechanical interactions between electrical systems and conducting fluids by
using a compressible fluid model. The effects of compressibility on the basic
conduction-type MHD machines were shown. Compressible fluids were
shown to propagate longitudinal (acoustic) waves, and under appropriate
conditions (long enough magnetic diffusion time) these waves can be modified
significantly by the presence of a transverse magnetic field. Although the
phenomena described and the techniques used in their analyses have impor-
tant engineering applications, they were also intended to be indicative of
the techniques available for the study of still other types ofelectromechanical
interactions with fluids.

In Chapter 14 we introduce viscosity, another fluid-mechanical effect.
We limit the discussion to incompressible fluids to highlight the principal
effects of viscosity in MHD systems.

PROBLEMS

13.1. A static compressible fluid is subject to a gravitational force per unit volume - pg
(Fig. 13P.1). Under the assumption that the fluid has a constant temperature To and that
the fluid is a perfect gas so that p = pRTfind the distribution of density p(xl). The density
at x1 = 0 is Po.

Fig. 13P.1

13.2. The MHD generator illustrated in Fig. 13P.2 uses a gas with constant specific heat
capacities c, and c,, and constant scalar conductivity a. The dimensions are defined in the
figure and it is assumed that the inlet values of all quantities are known. The loading factor
K is to be held constant and the magnetic flux density is adjusted to satisfy the relation
B 2(z) A(z) = Bi2Ai. For the constraint that the pressure be constant along the channel
determine how the velocity v varies as a function of z.
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Fig. 13P.2

13.3. The dc MHD generator of Fig. 13P.3 has constant width w between the electrodes,
and the magnetic flux density Bo is constant along the length of the channel. The gas is
assumed ideal with constant specific heats and with constant electrical conductivity. The
inlet quantities pi, pi, Ti, and vi are assumed known. The electrodes are short circuited
together.

(a) Find the channel depth d(z) necessary to maintain the temperature constant
along the channel.

(b) Find the mass density variation along the channel for the channel geometry
found in part (a).

13.4. For the MHD generator of Fig. 13P.4 assume that all inlet quantities are known
(Pi, Pi, Ti, di, wi, Ai) and that the working gas has constant, scalar conductivity a and ratio
of specific heats 7. We apply a magnetic flux density Bo, which is constant, over the length
of the channel. We now specify that we wish to design a channel such that the loading
factor K will be constant along the length of the channel.

(a) For maintaining constant Mach number M along the channel find the following
functions of z that satisfy the given conditions:

A(z) d(z) w(z) v(z) p(z) T(z)

A i ' d i ' wi ' vj ' pi ' Ti

(b) Repeat part (a) for maintaining constant velocity v along the channel.
(c) Assume that the given data is

y = 1.4, a = 40 mhos/m, R = 240 J/kg°K,

P i = 5 x 105 N/m2, pi = 0.7 kg/m 3 , Ti = 30000 K,

vi = 700 m/sec, wi = 0.4 m di = 0.2 m.

K = 0.5, Bo = 4 Wb/m 2

For the generators of parts (a) and (b) find the length of generator necessary to
reduce the total enthalpy per unit mass (c,T + jv2) by 10%.

.· __ ___
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Fig. 13P.3

-z=1

Fig. 13P.4

13.5. An MHD generator (Fig. 13P.4) uses an ideal gas with a constant ratio of specific
heats y = 1.4 and a constant, scalar, electrical conductivity a = 50 mhos/m. At the inlet
to the MHD generator channel the parameters and variables are adjusted to have the values

Bi = 4 Wb/m 2 , vi = 700 m/sec,

Pi = 0.7 kg/m3, Mi2 = 0.5,

Pi = 5 x 10" N/m 2 , di = 0.5 m

wi = 1 m,
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The aspect ratio of the channel is to remain constant so that the electric and magnetic
fields will vary as

B(z) E(z) w(z) d(z) [A(z)]ý- '

B. ET w, LdI L Ad

where A is the channel cross sectional area. For the conditions specified and for a loading
factor K = 0.5 complete the following:

(a) Find the area as a function of znecessary to keep the gas velocity constant.
(b) For the channel of part (a) specify the length I necessary to reduce the gas tem-

perature by 20 percent; that is, find I such that T(I)/T i = 0.8.
(c) Calculate and plot curves of p(z), p(z), T(z) and M 2(z) over the length of the

channel.
(d) Calculate the total electrical power drawn from this generator under the

conditions given.

13.6. An ion propulsion device is represented schematically in Fig. 13P.6. The lateral
dimensions are much larger than the separation of the accelerator electrodes so that
fringing fields can be neglected. Ions, each having a charge q and mass m are injected with
negligible initial velocity at x = 0. The system opert.es in the steady state in the space-
charge-limited mode, in which case the solution for the electric field between the electrodes
is

4V

and the solution for the charge density between the electrodes is

4 co Vo
Pe = 9 L4x%

The charge on each ion does not change during the acceleration process; that is,

Pe _ q
Pm m
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where Pm is mass density. The pressure in the ion gas is negligibly small. For steady-state
operation complete the following:

(a) Find the velocity of the ion gas as a function of x between the electrodes.
(b) Find the magnitude and direction of the force that must be supplied by the fixed

support to keep the accelerator system at rest.

13.7. In Fig. 13P.7 a liquid is placed between rigid walls and a movable piston. The liquid
has a speed of sound a. The system is uniform in the x2- and x.-directions (8/ax 2 = a8/8a =

0). Assuming that the piston is moved by a velocity source V = V, cos cot at xz = -L,

Rigid walls

Movable piston
i Depth D

V(-L, t)=
Vo cos Wt

xx

Fig. 13P.7

complete the following:
(a) Find the pressure in the liquid at x, = -L. Take the equilibrium pressure inside

and outside the liquid as Po-
(b) At what frequencies will there be resonances in the pressure, p(-L, t)?

13.8. A perfectly conducting compressible inviscid fluid fills the region 0 < x2 < d as
shown in Fig. 13P.8. When the fluid is static, it is permeated by a magnetic field H = HJis.
The fluid is set in motion by a piston at x1 = -L having velocity as shown, and is con-
strained at x, = 0 by a piston having mass M.

(a) Derive a differential equation (one equation in one unknown) for the velocity
v,(xz, t). Use a linearized analysis.

(b) Find the velocity of the piston, which in equilibrium is at x1 = 0, under the
conditions shown in Fig. 13P.8.

Movable piston
a a having x2-xaS 0 area A and
x2 --x= mass M \

Movable piston
having velocity
V = V. cos Wt

u -r--. Perfectly conducting, I
-L compressible, inviscid / O

liquid having density p
and acoustic velocity a

Pressure = pl
= constant

-710717

Fig. 13P.8

i

r 0
Equilibrium magnetic

field H = H013

X2

x2 = dP
, /fffJff
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a a = 0 Movable piston
ax - ax o-r--o having area A,

Movable

having velocity
V = Vcos wt Equilibrium magnetic

field H = Hoi 3

iX2

x2 = d

Pressure = Pl
= constant

0
Perfectly conducting
compressible inviscid
liquid having static density p.
and acoustic velocity a

Fig. 13P.9

13.9. The region 0 < x2 < d in Fig. 13P.9 is filled with a perfectly conducting inviscid
compressible fluid. When the fluid is static, it is permeated by a magnetic field H = Hi,.
The fluid is excited by a piston at x1 = -L with velocity v(t), as shown, and constrained at
x1 = 0 by a movable massless insulating piston connected to a dashpot.

(a) Derive a differential equation (one equation in one unknown) for the velocity
vl(x1 , t). Use a linearized analysis.

(b) The system is to be used as a delay line in which the object is to delay a signal by
a fixed time without distorting the signal. If the signal is to be transmitted delayed
and undistorted to xz = 0, the backward traveling wave must be eliminated by
choosing a specific value for the dashpot coefficient B. Find this value in terms of
the appropriate constants of the system.

13.10. The system shown in Fig. 13P.10 consists of a cylinder of cross-sectional area A,
containing aliquid of compressibility Kand equilibriumdensity p, at equilibriumpressurepo
The fluid is constrained at x = 0 by the closed end of the cylinder and at the other end by a
rigid piston of mass M and thickness A. The equilibrium length of the liquid in the x-
direction is L1 .The left face of the piston is connected to a thin elastic rod of cross-sectional
area A s, modulus of elasticity E, and equilibrium density p,. The equilibrium length of the
elastic rod is L 2. The left end of the elastic rod is driven by a stress source T, + Ts(t), where
T,(t) < To . For small-signal dynamic operation around an equilibrium point the general
solutions are for the elastic rod: -- (L1 + L 2 + A) < x < -- (L1 + A), T(x, t) and v,(x, t);
for the fluid -L, < x < 0, p(x, t) and v,(x, t). Assume that except for constants to be
determined by boundary conditions these solutions are known. Set up the equations that
describe all the boundary conditions necessary for specializing constants in the general
solutions. Note. You are not required to solve these equations.

-- X

To + T,(t)

x=0

Fig. 13P.10
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Electromechanics of Compressible, Inviscid Fluids

13.11. A slightly compressible inviscid fluid flows with a steady velocity Vo in the x-direction
(Fig. 13P.11). The motions are in the x-direction and only a function of (x, t). The velocity
of sound in the fluid is as.

(a) Find the dispersion equation for small disturbances in the form of p = Re
[!Pej(•t•-kx)].

(b) Under what condition will the phases of both waves propagate in the positive
x-direction ?

Sound velocity = as

Fig. 13P.11

13.12. A static, inviscid fluid of conductivity a is immersed in a uniform magnetic field Ho
(Fig. 13P.12). In the limit in which a -- co, it is possible for magnetoacoustic plane waves
to propagate along the x-axis. In this problem investigate the consequences of having a
finite conductivity a.

y

a aI H0 dv a: =0

z

Fig. 13P.12

(a) Write the linearized equations ofmotion for perturbations that are compressional
(along the x-axis) and depend only on (x, t). (You need not combine these
equations.)

(b) Consider solutions of the form vx = Re [6e j (
V

t -
k

X
)] and find the dispersion rela-

tion between w and k. Show that in the limit a -+co the lossless dispersion equa-
tion is retained.

(c) Show that when a is small there are two pairs of waves, each pair consisting of
a forward and backward traveling wave. What would you call these waves?

(d) Consider the case in which a is very large but finite (slight losses) and in which
the excitation is sinusoidal ()o is real). Find an approximate expression for the
rate at which waves decay in space. Hint. Write the dispersion equation in the
form

02 f(o, k)k2 = -'
a2 a

where a is the phase velocity of magnetoacoustic waves. When a is large but
finite, the second term can be approximated by making k 2

_ (w2/a 2). (Why?)
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