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Problems 467

PROBLEMS
8.1. An identity V- (yA) =9y V-A + A-Vy is given, where y = scalar, A = vector.
Show by means of index notation that this identity is valid.

8.2, Show, by means of index notation, that the following vector equation is valid:
B:V(ypA) = yB - VA + AB. Vy; y = scalar and A and B are vectors.

8.3. Consider two orthogonal coordinate systems (2, Zy, Z5) and (ml, a, x:,) ,The primed
coordinate system is related to the unprlmed system as follows: ”3 = zg; the xl-ams makes
an angle of 60° with the x,-axis as shown in Fig. 8P.3.
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Fig. 8P.3

(a) You are given the components of a vector A in the (zl, xz, ‘”3) system: 4; = 1;
Ay = 2; A3 = —1. Find the components of A in the (1, :vz, ) system by using
the transformation law for vectors, A = a;,A,, where ay, is the rotation matrix
between (z;, %5, %5} and (xl, :r2, “'3)

(b) A tensor T, in the (z1, x,, #g) system has elements T; = 1, Ty = 2, T12 =Ty =
3, T:,3 =1, and Ty3= Ty = Tpy = Ty = 0. Find the clements of T, in the
(1, %y, 3) system by using T = a;a;; Ty

8.4. A system has a stress tensor

P, P
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Find the volume force density that results from this stress tensor. )

8.5. A flat plate of infinite extent is parailel to the zy-axis and intersects the z; and Ty-axes,
as shown in Flg 8P.5. In region (2) E = 0, whereas in region (1) the electric field is given
by E = E0(211 iy). Find the #,, ,, and z3 components of the force on the section of the
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plate (per unit depth in the xz4-direction) that extends from the z,- to the z,-axes. Do this
by integrating the Maxwell stress tensor over the surface of the volume shown in Fig. 8P.5,
which encloses this section of the plate.

8.6. A pair of parallel insulating sheets is shown in Fig. 8P.6. The sheet at y = d supports
a surface charge density —o,, whereas the sheet at y = 0 supports the image surface charge
density o,. Hence the electric field between the plates due to the charges is (04/€)i,. External
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Fig. 8P.6

electrodes are used to impose an additional uniform electric field given everywhere by
E = Eji, + Egi,, where E; is a constant.
(a) Write the components of the Maxwell stress tensor at points 4 and B in terms of
o, and Ey.
(b) Use the Maxwell stress tensor to find the total electric force in each of the co-
ordinate directions on the section of the lower sheet between x = aq and z = b
having depth D in the z-direction.

8.7. Two perfectly conducting plates are arranged as shown in Fig. 8P.7. A magnetic field
trapped between the plates is established in such a way that it does not penetrate the
perfectly conducting plates, Also Hy =0 and 9/dx; = 0. Under the assumption that
b « L, find the z,~component of the force per unit z3 on the section of the lower plate
between x; = L and z; = —L. You may assume that, when z; = —L, H = Hi;, where
H is a known constant.
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8.8. Three perfectly conducting plates are arranged as shown in Fig. 8P.8. A potential
difference ¥, between the middle electrode and the outer electrodes is shown. Under the
assumption that @ « /, b « I, use the Maxwell stress tensor to find the force on the middle
plate in the z-direction. Be sure to give all of your arguments.

Depth d into paper

I:_ F— ! TL ! ,l l ,’

$b
H)

- [ ,l— T

Fig. 8P.8

e Q > - R -3

8.9. Capacitor plates with depth d (into the paper), length /, and spacing s are arranged as
shown in Fig. 8P.9. Many of the plates are distributed along the x,-axis. The plates have,
alternately, the potentials + ¥, and —V,, as shown, so that an electric field exists between
each pair of them. You are to find the force in the z,-direction on the section of plate
enclosed by the volume ¥, which has a depth w « d into the paper and encloses a section
of the plate centered between its 5 extremes.

8.10. Figure 8P.10 shows an electromechanical electrostatic voltmeter for measuring the
relaxation time in liquids with very long relaxation times. The two outer conducting plates
are fixed. The middle plate is constrained by a spring that is relaxed when 2 = a but other-
wise free to move in the z-direction. This plate (mass M) moves in a liquid dielectric of
uniform conductivity o and permittivity ¢ (the /o to be measured). The liquid fills the region
between the plates.
(a) Use Maxwell’s stress tensor to find the total electric force on the middle plate
in the x-direction as a function of the potential » of the middle plate and the
position x. (Your answer should be exact, as [s/(a — )] —0.)
(b) Use the energy method to check the result of part (a).
() The switch S has been closed for a long enough time to establish the middle plate
in static equilibrium, Write the equations of motion for the plate position x(t)
(as many equations as unknowns) after the switch is opened.
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(d) Assume that the inertial force on the plate can be ignored (that the plate moves
very slowly) and find (¢). Is your assumption that the inertial force can be ignored
consistent with the liquid having a very long relaxation time?

(¢) How would you use this device to measure the relaxation time of the liquid ?

Liquid dielectric having conductivity o
and permittivity e

s<x having depth d into paper
Fig. 8P.10

8.11. Two parallel conducting plates with a potential difference ¥} are shown in Fig. 8P.11.
Assuming that ¢ < b < a & !« D and that the fringing fields are zero at the extreme
points A and B, find the force in the z,-direction on the lower plate.
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8.12. In Fig. 8P.12 two parallel perfectly conducting electrodes extend from z; =0 to
x; = o and are infinite in the zg-direction. The separation of the electrodes in the w,-
direction is a. A potential ¢ = ¢ sin (w/a)z, is established along the zq-axis at 2, = 0.

(a) Find the electric field intensity E everywhere between the plates and sketch,

(b) Find the total force on the bottom plate per unit depth in the x5-direction.

(c) Find the total force on the top plate per unit depth in the z,-direction.
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8.13. In the system in Fig. 8P.13 the geometry of two equipotentials is defined. These
equipotentials are maintained at a potential difference ¥, by the battery, and the upper
conductor has a movable section (—a < #; < a), as indicated. The system has a large
width w in the zy-direction; thus we neglect any variations with x; and approximate the
potential in the region between the conductors with the expression

o
= 5—- 5 (s® — 2% — a?);
All conductors have *2
width w perpendicular
to paper (x3 direction) [Movable conductor
Flexible wires
Fixed conductors Fixed conductors
|
|
| €
G i
Surface defined by 0 Surface defined by

X2 = -\[4a2+x12 x9 = -\'az'l'x]z

Fig. 8P.13
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the two nonzero components of electric field intensity are then

_ 2V E = 2V,

E
1 3q2 2 3a?

(a) Find the components T,, and T,; of the Maxwell stress tensor between the
conductors in terms of ¢,, V;, a, z;, and z,.

(b) Use the stress tensor to find the component f, of the force applied to the movable
section of the upper conductor (—a < z; < a) by the electric field. Assume that
the movable conductor is held in equilibrium in the position shown by externally
applied forces.

(c) Prove that f; = 0 by using the stress tensor.

(d) Find f, by using the surface force density written in terms of the surface charge
density o, (see Section 8.4.2).

Perfect conductor
potential Vg

Perfect
conductor
potential i
V=0 |
0 €0 = permittivity .
7 7 7 1
0 2 ¢
Fig. 8P.14

8.14. Figure 8P.14 shows two equipotential surfaces that are very long in the zg-direction.
The electric potential is

¢ = a_go L1%2,

where E = —V¢.

(a) Evaluate all elements of the stress tensor for the region between the perfect
conductors.

(b) Find the total force applied by the field to the segment of the curved conductor
between points 4 and B and having depth D in the zz-direction.

8.15. A conducting block moves with the velocity ¥ between plane-parallel, perfectly
conducting electrodes, short-circuited as shown in Fig. 8P.15. A uniform magnetic field
Hj, is imposed. Ignore the magnetic field induced by currents flowing in the block,
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(@) Compute the total force on the block using J x x H.
(b) Show that in this case the Maxwell stress tensor gives zero force on the block.
(c) Why do the results of (a) and (b) differ?

8.16. Figure 8P.16 shows a block of conducting material free to slide between two perfectly
conducting plates that extend to infinity on the right. The conductivity of the block may be
taken as o = g;(1 4 sin 72/2L) and the permeability as u = u,. The conductivity o, is a

o

i(t) = Iop—1(t) Depth D into paper
Fig. 8P.16

positive constant and z is the distance from the left-hand edge of the block. Find the total
force of electromagnetic origin on the block as a function of time. Assume d & D, d K L.

8.17. A slab of conducting material (e.g., graphite) is sandwiched between perfectly
conducting plates, as shown in Fig. 8P.17. The dimension a is much smaller than D and
the z-dimension of the slab. In addition, the z-dimension is much larger than the skin
depth at the frequency w.

Current source Plates having infinite
Icoswt conductivity

Q - W%“/E

Depth D into paper

x

Fig. 8P.17
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(a) Find the steady-state magnetic field H and current density J in the slab.

(b) Compute the total force on the slab in the z-direction by integrating J x uH
over a volume.

(c) Compute the total force on the slab in the z-direction by integrating the Maxwell
stress tensor over a surface.

8.18. A rigid, perfectly conducting body of arbitrary shape is positioned between two
perfectly conducting infinite plates, as shown in Fig, 8P.18. The plates are at a potential

+1N

Fig. 8P.18

difference V). Take advantage of the fact that far from the body E = iy(¥/d) to calculate
the z,-directed force on the body.

8.19. A pair of wires carries the constant current  as shown in Fig. 8P.19. The spacing 2a
of the wires is much larger than the radius of either wire.

(@) Use the force density J, x B to determine the force on a unit length of the right
wire in the #;-direction.

x2
1o = permeability
I I
.4 O~ X1
o

Fig. 8P.19

(b) Now enclose this section of wire with a convenient surface and integrate the
Maxwell stress tensor over the surface to find the force in the x,-direction.
Compare your answer with that found in (a).

Hint. A “convenient” surface might take advantage of the fact that the fields go
to zero as z; and xy — oo and that 2; = 0 is a plane of symmetry.

8.20. Two line charges of strength 4 per unit 2, are located at , = 4+ and ¢y = —a
(see Fig. 8P.20). The line charges extend to & oo in the z-direction.
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(a) Use the Maxwell stress tensor to find the force in the ,-direction per unit depth
in the xg-direction exerted by the electric field on the line charge at », = +a.
(b) Can you think of any other way of computing this force ? If so, check it with part

(a).

8.21. In Problem 7.14 a vehicle system was proposed in which a magnetic field provided
both suspension (i.e., levitation) and propulsion forces. There it was assumed that the
condition ks < 1 is valid and, to calculate the volume force density, J x B was applied.
The Maxwell stress tensor provides an alternate and useful method for the calculation of
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the forces per unit area (Fig. 8P.21). The solution for the magnetic field in the region

—0<y<0is

B, = Re [ K eve/2-Ut]

and

B,

where

o = k(l - .IUOGU)‘/?/.
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(a) Write the components of the Maxwell stress tensor explicitly in terms of B, and
B,. Present your results in matrix form.

(b) Using the stress tensor, compute the time average force per unit area (in the
2-z plane) that holds the vehicle up. Take advantage of the periodic variation
with 2 to define a suitable surface.

(c) Again using the stress tensor, compute the time average force per unit area
(x-z) that tends to propel the train.

8.22. A pair of perfectly conducting plane-parallel electrodes is shorted by a bar of metal
with conductivity o (a constant) (Fig. 8P.22). A source of constant current I, (amperes) is
Depth d into paper
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distributed along the left edges of the plates, and the block moves with the velocity U in
the z-direction. What is the magnetic force on the block in the z-direction? Your answer
should include the possibility that the magnetic Reynolds numbser is large or small.

8.23. A pair of perfectly cdnducting plane parallel electrodes “sandwich™ a slab of lossy
dielectric of thickness b and a region of free space of thickness (@ — b), as shown in Fig.
8P.23. The conductivity of the slab varies in the z-direction, and ¢, and o, are constants.

——ﬁﬁ /Area A

=1, t(b <Ls et
i = I cos w - - b
\ AN,

I S €,0=0do+01(})

Fig. 8P.23

When 7 < 0, the switch § is closed and no electric fields exist between the plates. When
t = 0, the switch S is opened. Neglect fringing fields and find the force in the z-direction
on the upper plate as a function of time.

8.24. A pair of planar, diverging, perfectly conducting plates has a constant potential
difference ¥, and the dimensions shown in Fig. 8P.24. What is the total electrical force on
the lower plate in the z-direction? (Note that « is the radial direction half-way between
the plates.)
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8.25. The dielectric slab shown in Fig. 8P.25 is free to slide in the ,-direction. The upper
and lower surfaces of the slab are in contact with perfectly conducting plates. The remaining
volume is free space. Find the x,-component of force on the slab. Use the Maxwell stress
tensor.
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8.26. An elastic material is placed between two equipotential surfaces with its left-hand
edge fixed to a rigid insulating wall, as shown in Fig. 8P.26. The right-hand edge of the
elastic bulk is free and the permittivity of the material is a function of its mass density
€; = € (p). Free space fills the remaining volume. A potential difference (¥p) exists between
the two plates.

X2 A
b G—»0 .
4_41 3 — Depth D into paper
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b+& +
Rigid 2 €o a Vo
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wall
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Fig. 8P.26
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() Using the Maxwell stress tensor for polarizable material, find the force on the
right-hand edge of the elastic bulk.

(b) Using energy methods, find the force on the right-hand edge of the elastic bulk.

() Compare the answers of parts (a) and (b).

8.27. The force density on a polarized fluid with permittivity e(x,, 25, #3,¢) isF = —E +
E Ve 4 1 V(<E - Eb), where the free charge p, =0,V X E = 0, and b = (p/e) (9¢/2p) is
a parameter that accounts for the electrostriction of the fluid (Fig. 8P.27). The planar

X2
Region a Free space, €p %
111 n *3
ZRegion b Polarized fluid, €, p

2

N\

Fig. 8P.27

surface between dielectrics ¢; and ¢ has 2 normal vector n. Show that the polarization forces
alone cannot exert a traction T on the interface between the two dielectrics which has a
shear component. Remember that 7,, = [T, % — T, tln,.

8.28. Use the electric force density of (8.5.45) to obtain the stress tensor of (8.5.46).





