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Chapter 5

LUMPED-PARAMETER
ELECTROMECHANICAL DYNAMICS

5.0 INTRODUCTION

The representation of lumped-parameter electromechanical systems by
means of mathematical models has been the subject of the preceding chapters.
Our objective in this chapter is to study their dynamical behavior. Mathe-
matically, we are interested in the solution of differential equations of
motion for given initial conditions and with given driving sources. Physically,
we are interested in important phenomena that occur in electromechanical
systems.

It is clear from previous examples that the differential equations that
describe electromechanical systems are in most cases nonlinear. Consequently,
it is impossible to develop a concise and complete mathematical theory, as is
done for linear circuit theory. We shall find many systems for which we can
assume ‘‘small-signal” behavior and linearize the differential equations.
In these cases we have available to us the complete mathematical
analysis developed for linear systems. If exact solutions are required for
nonlinear differential equations, each situation must be considered separately.
Machine computation is often the only efficient way of obtaining theoretical
predictions. Some simple cases however, are amenable to direct integration.
The physical aspects of a given problem often motivate simplifications of the
mathematical model and lead to meaningful but tractable descriptions.
Hence in this chapter we are as much concerned with illustrating approxima-
tions that have been found useful as with reviewing and expanding funda-
mental analytical techniques.

Lumped-parameter systems are described by ordinary differential equations.
The partial differential equations of continuous or distributed systems are
often solved by a reduction to one or more ordinary differential equations.
Hence many concepts used here will prove useful in the chapters that follow.
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180 Lumped-Parameter Electromechnical Dynamics

Similarly, the physical behavior of a distributed system is sometimes most
easily understood in terms of lumped parameter concepts. Examples discussed
in this chapter are in many cases motivated by the physical background that
they provide for more complicated interactions to be considered later.

Because the mathematics of linear systems is comparatively simple,
we begin our study of the dynamic behavior of lumped-parameter electro-
mechanical systems by considering the several types of system for which a
linear model provides an adequate description. We shall then consider the
types of system that are basically nonlinear and for which the differential
equations can be integrated directly.

5.1 LINEAR SYSTEMS

We have stated that electromechanical systems are not usually described by
linear differential equations. Many devices, however, called incremental-
motion transducers, are designed to operate approximately as linear systems.
Moreover, meaningful descriptions of the basic properties of nonlinear
systems can often be obtained by making small-signal linear analyses.
In the following sections we develop and illustrate linearization techniques,
linearized models, and the dynamical behavior of typical systems.

5.1.1 Linear Differential Equations

First, we should recall the definition of a linear ordinary differential

equation.* An nth-order equation has the form

d"z d" 'z

ar T A0 s
where the order is determined by the highest derivative. Note that the
coefficients 4,(f) can in general be functions of the independent variable :.
If, however, the coefficients were functions of the dependent (unknown)
variable z(¢), the equation would be nonlinear. The ‘“‘driving function”
f(¢) is a known function of time.

The “homogeneous™ form of (5.1.1) is provided by making f(z) = 0.
There are » independent solutions z,(f) to the homogeneous equation. The
general solution to (5.1.1) is a linear combination of these homogeneous
solutions, plus a particular solution z,(¢) to the complete equation:

() = cyzy(t) +  + + + ez, (8) + z,(2). (5.1.2)
Although (5.1.1) is linear, it has coefficients that are functions of the

+ - 4+ 4,0z = f(1), (5.1.1)

* A review of differential equations can be found in such texts as L. R. Ford, Differential
Equations, 2nd Ed., McGraw-Hill, New York, 1955.
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independent variable and this can cause complications; for example, if
f(t) is a steady-state sinusoid of a given frequency, the solution may contain
all harmonics of the driving frequency. Alternatively, if f(¢) is an impulse,
the response varies with the time at which the impulse is applied. These
complications are necessary in some cases; most of our linear systems,
however, are described by differential equations with constant coefficients.
For now we limit ourselves to the case in which the coefficients 4; = a; =
constant, and (5.1.1) becomes

d"z(t) d*1x(t)
+
am " g

+ -+ aqa(t) = £(0). G.13)

The solution to equations having this form is the central theme of circuit
theory.* The solutions z,(t) to the homogeneous equation, when the co-
efficients are constant, are exponentials e*, where s can in general be complex;
that is, if we let

z(t) = i c;e’t (5.1.9)

i=1

and substitute it in the homogeneous equation, we obtain

(5" +as? ™+ +a)dced=0 (5.1.5)
i=1
and (5.1.4) is a solution, provided that the complex frequencies satisfy
the condition

s+ astt 4 +a,=0. (5.1.6)

Here we have an nth-order polynomial in s, hence a condition that defines
the » possible values of 5 required in (5.1.4). The frequencies s, that satisfy
(5.1.6) are called the natural frequencies of the system and (5.1.6) is sometimes
called the characteristic equation.t

Many commonly used devices are driven in the sinusoidal steady state.
In this case the driving function f(z) has the form

f(t) = Re [Fe’™]. (5.1.7)

Here Fis in general complex and determines the phase of the driving signal;
for example, if £ = 1, f(f) = cos wt, but, if F = —j, f(t) = sin wt. To find

* See, for example, E. A. Guillemin, Theory of Lirear Physical Systems, Wiley, New York,
1963 (especially Chapter 7).

1 If the characteristic equation has repeated roots, the solution must be modified slightly,
see, for example, M. F. Gardner and J. L. Barnes, Transients in Linear Systems, Wiley,
New York, 1942, pp. 159-163.
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the particular solution with this drive we assume

z,(f) = Re [£e’*"] (5.1.8)
and substitute into (5.1.3) to obtain

Re {¢*[R((o)" + ajo)' + -+ a) — F}=0.  (5.19)
It follows that (5.1.8) is the particular solution if

~

F
(o) + ajo)™ + -+ a,
Note that the natural frequencies (5.1.6) are the values of jw in (5.1.10)
which lead to the possibility of a finite response X when F = 0; thus the
term natural frequency.

The general solution is the sum of the homogeneous solution and the
driven solution (5.1.4) and (5.1.8):

o(f) = 3 o™ Fel™ ] 1.

0= F e+ Re [ e (D
Given n initial conditions [e.g., x(0), (dx/[dt)(0), ..., (d"x/dt""1)(0)], the
constants ¢; can be evaluated. The first term in (5.1.11) is the transient part
of the solution and the second term is the driven or steady-state part. If the
system is stable (i.e., if all the s; have negative real parts), the transient term
in (5.1.11) will damp out. After a long enough time the first term will become
small enough to be neglected. Then the system is said to be operating in the
sinusoidal steady state and the response is given by the second term alone.
When we wish to calculate the sinusoidal steady-state response, we find only
the particular solution.

(5.1.10)

5.1.2 Equilibrium, Linearization, and Stability

We have already stated that useful informaton can be obtained about many
electromechanical systems by making small-signal linear analyses in the
vicinity of equilibrium points. In this section we introduce the concept of
equilibrium and illustrate how to obtain small-signal, linear equations. In
the process we shall study the nature of the small-signal behavior and define
two basic types of instability that can occur in the vicinity of an equilibrium
point.

5.1.2a Static Equilibrium and Static Instability

In general, the term equilibrium is used in connection with a dynamical
system to indicate that the motion takes on a particularly simple form;
for example, a mass M, constrained to move in the z-direction and subject
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to a force f(x) will have a position x() predicted by the equation [see (2.2.10)
of Chapter 2]

ME&: = (). (5.1.12)
dt

We say that the mass is in equilibrium at any point = X such that f(X) = 0.
Physically, we simply mean that at the point x = X there is no external force
to accelerate the mass, hence it is possible for the mass to retain a static
position (or be in equilibrium) at this point.

The word equilibrium is used to refer not only to cases in which the
dependent variables (x) take on static values that satisfy the equations of
motion but also to situations, such as uniform motion, in which the general
(nonlinear) equations of motion are satisfied by the equilibrium solution.
Equilibria of this type were of primary interest in Chapter 4, in which the
steady-state behavior of rotating magnetic field devices was considered.

Small perturbations from the equilibrium positions are predicted approxi-
mately by linearized equations of motion, which are found by assuming that
the dependent variables have the form

() =X+ 2(1), (5.1.13)

where X is the equilibrium position and #’(¢) is the small perturbation.
It is then possible to expand nonlinear terms in a Taylor series* about the
equilibrium values; for example, f(x) in (5.1.12) can be expanded in the series

d d?

f(x)=f(X)+x’-£(X)+%x’2—’;(X)+---. (5.1.14)
dz dz

Now, if 2’ is small enough, it is likely that the first two terms will make the

most significant contributions to the series, hence the remaining terms can
be ignored. Recall that by definition f(X) = 0 and 5.1.12 has the form,

gt_z-.*.wox =4, (5.1.15)
where
2 1 df
o & — X
de( )

The resulting equation is linear and can be solved as described in Section
5.1.1. The solution has the form

2’ = 187" + cyeTIV, (5.1.16)

* F. B. Hildebrand, Advanced Calculus for Engineers, Prentice-Hall, New York, 1949,
p. 125.
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Fig. 5.1.1 Graphical representation of a force f(z) which acts on the mass M with a
static equilibrium at 2 = X: (@) unstable; (b) stable; (¢) nonlinear.

We see that if (df]dx)(X)is positive w, is imaginary and any small displace-
ment of the mass (as will inevitably be supplied by noise) will lead to a
motion that is unbounded. In this case we say that the equilibrium position
X is unstable, and we call this type of pure exponential instability a static
instability. We can interpret this situation physically by reference to Fig.
5.1.1a which shows a plot of f(x) with a positive slope at x = X. If the mass
moves a small distance to the right of the equilibrium point, the force f
becomes positive and tends to increase the displacement still further. Thus a
static experiment will reveal the presence of the instability. Although our
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solution cannot be trusted for long after the start of a transient, the small-
signal instability provides the essential information that the mass will not
remain at the equilibrium point. If dffdz is negative at = X, w, is real and
the mass will execute a sinusoidal motion about the equilibrium point with
the angular frequency w,, as can be seen from (5.1.15) and (5.1.16). This
result is also easily understood physically. Figure 5.1.15 shows a plot of force
J having a negative slope at the equilibrium point. If the mass moves slightly
to the right, the force becomes negative and tends to return the mass to
xz = X. When the mass reaches the equilibrium point it has finite velocity
and overshoots. In the absence of further external disturbances the mass will
oscillate sinusoidally about the equilibrium point with constant amplitude.
We call this motion stable because the response is bounded. If there were
damping in the system, the amplitude of the oscillation would decay until the
mass came to rest at the equilibrium point.

Once a solution has been found to the linearized equations of motion, it is
possible to check the accuracy of the prediction by considering the significance
of the terms that were dropped in (5.1.14), compared with the second term.
An extreme case in which linearized equations would not adequately describe
the motion is illustrated in Fig. 5.1.1c, where the slope of f(z) is also zero at
the equilibrium point. In this case the lowest order, nonzero term in (5.1.14)
must be retained.

Example 5.1.1. To illustrate some of these ideas we consider again the magnetic field

transducer shown schematically in Fig. 5.1.2. The electric terminal relations were calculated
in Example 2.1.1 and the equations of motion were written in Example 3.2.1.

Oy Spring constant K
Oy equilibrium position [

Highly permeable
magnetic material

Depth d
perpendicular

to page

Fig. 5.1.2 Magnetic field transducer used to demonstrate linearization techniques in
Example 5.1.1.
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The electric terminal relation, as described by (d) and (e) of Example 2.1.1, is

_ L, @)
1+ 2fg
where
2(2wd
L,= %(ZW) (b)

is the inductance with the air gap closed (x = 0). The force of electric origin is given by
(d) of Example 3.2.1 and is
L,

" 2g(0 + afg?”

Because the electrical excitation is a current source, the equation for the electrical part
of the system is not of interest. In the mechanical part we neglect damping; consequently,
the equation of motion for the mechanical node () is [see (€) of Example 3.2.1]

d?%x L2

fe= ©

e s R @
This equation has the form of (5.1.12):
fl@) = — —5&3 — K@ =) =) + f*(). @©
2¢( + alg)
In static equilibrium at 2 = X, (d) becomes
f(x) = L KX —1)=0. ®

250 + X[y

This is a cubic equation in X which cannot be solved easily. Its properties, however, can
be investigated by sketching the two terms as shown in Fig. 5.1.3. In this figure the negative
of £¢ has been plotted as a function of X on the same scale as a plot of f°. Hence the inter-
sections represent solutions to (f); that is, the points X, and X, are positions at which the

Force
N
1 LI \\
276 N N\
X — fo= =KX =D
~N
~N
~N

_ LoI?
2(1 +>i@

00Xy Xa !

X

Fig. 5.1.3 Sketch for determining equilibrium points for system of Fig. 5.1.2.
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plunger experiences no external forces, hence it can be in static equilibrium. There are, of
course, three roots to the cubic equation, but one is not physical, since it requires that X
be less than zero or that the plunger extend into the magnetic yoke. The relative values of
the parameters can be such that there are no possible equilibrium points, as illustrated by
the dashed curve 4 in Fig. 5.1.3, or there may be only one equilibrium point, as indicated
by the dashed curve B. Note that all equilibrium points are such that X < /. Physically,
this is expected, since the force £ always tends to pull the plunger into the yoke, hence to
extend the length of the spring.

We now assume that the conditions represented by the solid curves of Fig. 5.1.3 have been
established and consider the dynamics for small excursions from the equilibrium points;
for example, about X7,

2(t) = X, + 2'(t)
and (d) becomes (see 5.1.15)

a2
anr + w2’ =0, (g
where
1 df 1 LI
2= X)=— | K- -— 2 |, h
@ Mas V= [ S+ Xllg):’} ®

It should be clear from (5.1.15) and (5.1.16), and the associated discussion, that the relative
magnitudes of the two terms in brackets determines whether this system is stable at the
operating point X;.

Although we could proceed in a formal mathematical way to study the stability at the
equilibrium points, we shall pursue the subject with some qualitative study of the curves
in Fig. 5.1.3.

At the point X the magnitude of df°/dX is larger than the magnitude of df*/dX. Hence
the derivative df/dX at X has the sign of df?/dX; that is,

& xY>0 @
ax "V
and we conclude that this equilibrium point is unstable. We have found mathematically
that a small excursion of the mass to the right of X = X, (Fig. 5.1.3) subjects the plunger
to a force dominated by the spring force, which tends to force the plunger further to the
right. (Remember that f* is defined as a force that acts in the -+z-direction if it is positive.)

Similarly, at X, the slope df°/dX has a larger magnitude than df®/dX, hence the sign of
df]dX is negative at X,

& Xy <0 §)]
dx e !
and the equilibrium point X, is stable.

The process of using the first two terms in a Taylor series expansion to make
a linear approximation has been described for the case in which there is a
single dependent variable (x). It can be generalized to an arbitrary number of
dependent variables. Suppose there are M variables z,, @, . . . , ¥, in terms
of which a general function is expressed as f(z,, 2,, . . . , x;;). If there is an
equilibrium point (Xy, X,, X3, . .., X;) about which we wish to obtain a
linear approximation to f by using a Taylor series expansion, we express each

variable as ,
=X, + =z,
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Then we write the fixed and linearly varying parts of the Taylor series about
the fixed point as

f(xl’ Loy oo s x}ll) "N"f(Xl’ Xz, e aXM)

M

+32 Y (X1 Xa, ... Xppmp (5.1.17)

k=1 0%,

The range of z, over which this approximation is valid within specified
limits of error must be evaluated by using higher order terms in the Taylor
series.* In Section 5.2.1 we consider the errors that result from using a linear
approximation.

5.1.2b Dynamic or Steady-State Equilibrium

In the preceding section we studied small-signal operation about a static
equilibrium. In many cases it is desirable to analyze devices as they are
perturbed from a steady-state dynamic condition. This often occurs in
rotating devices that are commonly designed to operate with constant
angular velocity (as discussed in Chapter 4). Changes in external constraints
(excitation or load) produce changes in the angular velocity that can be
described as perturbations from the steady-state condition.

The linearization techniques that are the subject of this section are also
applicable to many situations containing continuous media. The steady-state
equilibrium may involve a moving medium such as a fluid, which has a
constant velocity at a given point in space. The dynamics that result from
perturbations from this steady flow could be described in a way similar to
that developed here and illustrated in Chapter 10.

In the following example a synchronous magnetic field machine is used to
illustrate the ideas involved in studying linearized motions about a dynamic
equilibrium. The steady-state behavior of this type of device was studied in
Section 4.1.6a and the example picks up the equations of motion developed
there.

Example 5.1.2. A synchronous machine is modeled by the system of three coils shown
schematically in Fig. 5.1.4. The physical arrangement of these coils may be as shown in
Fig. 4.1.10.

The magnetic torque on the rotor, as a function of the stator currents i, and i, the
rotor current /., and the rotor angle 6, is (4.1.38)

T° = Mi, (i, cos 6 — i, sin 6). (@

* For a discussion of this expansion see, for example, F. B. Hildebrand, Advanced Calculus
for Engineers, Prentice-Hall, New York, 1949, p. 353,
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tag = Ig COS Wyt ‘)

ips = I Sin wjyt
Fig. 5.1.4 Schematic representation of synchronous machine showing two fixed (stator)
and one rotatable (rotor) coils.

To obtain steady-state synchronous conditions the stator and rotor terminals are excited
by the current sources

iy=1, (b)
gy = I;cos 0 t, (©)
s = I sin wt, @)

where it is helpful for purposes of discussion to-consider I,, I,, and o, as positive constants,
In addition to the torque 7%, the shaft is subject to an inertial torque, a friction torque, and
a load torque. We represent the total moment of inertia about the axis of rotation as J [see
(2.2.27)}, the friction torque as linear with coefficient B [see (2.2.6)], and the load torque
as a driving function T,,(¢). Thus we can write the mechanical equation of motion for the
angular deflection 6 of the rotor as

d%9 d6 . .
J 7 + B 7 + MI,J (cos wt sin @ — sin wt cos 6) = T, (¢). O]
To establish a dynamic equilibrium we assume T, = 0 and constant angular velocity
0
% = Q = constant )
and write
6=Q+ Yo» (g)

where 7, is a constant to be determined. We substitute (g) into (e) with 7,, = 0 to obtain
the equilibrium equation

BQ + MII[cos ot sin (Qf + v,) — sin wt cos 2 + y,)] = 0. (h)
The use of a trigonometric identity to simplify the term in brackets yields
BQ = MI,I,sin [(w, — Q) — v,]. @
The left side of this equation is constant; consequently, the equation can be satisfied for all
¢ only if
Q= w, G

This is the synchronous speed at which the rotor can run in dynamic equilibrium. Using
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Fig.5.1.5 The equilibrium values of angle y,.

(j) in (i), we obtain an expression for y,:

—BQ ®
MILI~

Dynamic equilibrium is defined for the system of Fig. 5.1.4 with the electrical excitations of

(b) to (d) by (g), (j), and (k). Note that there is a limited range of parameters over which
a dynamic equilibrium is possible because

—1<siny, <1.

sin y, =

Also, for any value of
BQ <1
MII,
there are basically two different solutions for y,, as indicated in Fig. 5.1.5.
We now assume operation in dynamic equilibrium and describe perturbations from this
equilibrium by »’(¢); thus

0(t)=Qr + v, + ¥'(t). 0]

Substitution of this expression into (e), use of appropriate trigonometric identities, and
retention of only linear terms yields after some simplification

%y’ dy’

J—L + B—— + Ky’ =T, (),

B Ky = T,0 (m)
where K = MI,I, cos y, is the effective spring constant of the magnetic torque. In writing
this equation we have subtracted out the equilibrium equation represented by (k).

To study the dynamic behavior we assume that the load torque T, is a small step
occurring at 1 = 0:
To(8) = Tu_y (), (n)

where T is a constant and «_,(¢) is the unit step occurring at ¢ = 0.
The method of solution reviewed in Section 5.1.1 can be used here. A particular solution
is

T
V=% @

The initial conditions are y'(0) = 0 and (dy’/dt)(0) = 0. The complete solution therefore is

’, ___T S 8.t 51 8,0
7(t)—K(l+s1_S2e1+s2_sle= ) ()
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where _ B N BY k¥
IR YI R Y7 R B
B
27

e 5 [(3-2]

are the natural frequencies that satisfy the characteristic equation
B K
s2 — — = 0.
+ 7° + 7 G))

We refer now to the two equilibrium points illustrated in Fig. 5.1.5. At equilibrium point
(2) the effective spring constant K is negative because cos y,, is negative. Consequently, s, is
positive, the response is unbounded, and the machine has a static instability at equilibrium
point (2).

At equilibrium point (1) in Fig. 5.1.5 cos y,, is positive, K is positive, and the real parts of
s, and s, are both negative. Consequently, this equilibrium point is stable. When we assume

the system to be underdamped,
k_ (BY
we can write (p) in the form
Y@= Z [1 - e—ﬂ(cos ot + z sin wt):] , (r)
X w

where

o= >

-5 G

The response of (r) is plotted as a function of time for two values of /w in Fig. 5.1.6. Two

Rlw

16 | T T T l T
o =02
1.2 — T~ -
/ ~ 2-05
~N w
| ___ L S N
X /, T
}. & 081 —
04 [ -
0 | [ | | ] |
()} 4 8 12 16 20 24 28

bat

T
Fig.5.1.6 Hunting transient of a synchronous machine.
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general features of this “hunting” transient should be noted. First the initial parts of both
transients are the same because, as (¢) indicates, the initial part of the transient is dominated
by the angular acceleration term J(4%6/dt2), which is the same for both cases. Second, the
damping retards the phase as indicated by the second term in parentheses in (r). The
normalization for the time axis is different in the two cases because w differs by a small
amount.

5.1.2c¢ Overstability or Dynamic Instability

In Section 5.1.2a we described a static instability characterized by a pure
exponential growth in time. There is a second basic type of instability, called
overstability or dynamic instability, which we now illustrate.

The equilibrium points of the system described by (5.1.12) are not changed
if the mass is subject to an additional force proportional to velocity. The
equation of motion has the form

7172 + B— = f(x), (5.1.18)

and in static equilibrium the addltlonal term makes no contribution. The
linearized equation, however, is

2.7
%ﬂ\%% + ol =0 (5.1.19)
and the natural frequencies of the system are
—B BZ %
SG) = W + (4—'1\? -— woz) . (5.1.20)

If the term B(dz/dt) is due to viscous damping, B will be positive (see Section
2.2.1b). In this case, if w,2 < 0, one of the natural frequencies will be positive,
and the result will be a static instability that can be detected by the static
experiment described in Section 5.1.2a. On the other hand, if w2 > 0, the
system will be stable, regardless of the magnitude of w,2.

As we show in Example 5.1.3, feedback can be used to make B < 0 in
(5.1.18). If w,2 < 0, one of the natural frequencies (5.1.20) will be real and
positive and will result in a pure exponential growth that is a static instability
detectable with a static experiment. Alternatively, if

2

0<w?< ﬁl—z, B <0, (5.1.21)

the natural frequencies will be real and both will be positive, thus indicating
an instability that cannot be detected by our static argument. If
2

4M?

0< <o}k B<O, (5.1.22)

the radical in (5.1.20) will be imaginary and the natural frequencies will be
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complex with positive real parts. In this case the transient is an exponentially
growing sinusoid. This is overstability* or dynamic instability.

Note that under conditions of overstability w,2 > 0 and our static experi-
ment of a small displacement will result in a force that tends to return the
mass toward the equilibrium point; but this force is reinforced by the negative
damping and the system overshoots the equilibrium point and reaches a
larger displacement in the opposite direction.

It is clear that the static argument we used in Section 5.1.2a to detect a
static instability will not detect overstability and one type of exponential
growth. Thus we must regard the static argument as a sufficient, but not a
necessary, condition for instability.

We have discussed stability in Section 5.1.2a and in this section in terms of
a system describable by a second-order differential equation. Many systems
have differential equations of an order higher than 2. Whenever a system
goes unstable, however, the instability is usually caused by one or two
natural frequencies. Because the instability dominates the dynamical behavior,
the system differential equation can sometimes be approximated by a first-
or second-order differential equation for studying the instability.

It is worthwhile to establish the physical significance of the three modes of
instability. For this purpose, suppose that the mass is given an initial position
@' = x, with no initial velocity. Then the appropriate solution to (5.1.19) is
[in terms of the roots s, and s, defined by (5.1.20)],

2(f) = —2— (5ye™" — 5,¢™). (5.1.23)

S — 5

This solution is shown in Fig. 5.1.7 for the three cases of instability that have
been illustrated. Further insight is provided by the following example.

Example 5.1.3. In many situations it is desirable to support an object with a magnetic
field; for example, in a wind tunnel effects of the mechanical structure (stinger) supporting
the model under study introduce errors in drag and lift measurements. One solution to this
problem is to use a magnetic field.t Then, if the fluid is an ordinary nonconducting gas, the
magnetic field will not interfere with the flow. To support a large mass it is desirable to use
a ferromagnetic core in the model so that magnetic forces will be of a useful magnitude.
It is familiar to anyone who has held a piece of magnetic material near a magnet, that any
static equilibrium achieved with these forces is unstable. The example undertaken here
shows how feedback can be used to stabilize an inherently unstable equilibrium. Without
feedback the equilibrium exhibits a static instability. This is obviated by the introduction of
feedback, but then dynamic instability comes into play. This second type of instability is
removed by additional feedback.

* For additional discussion of the terminology we use for describing instabilities see S.
Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press,
London, 1961, pp. 1-3.

tJ. E. Chrisinger et al., “Magnetic Suspension and Balance System for Wind Tunnel
Application,” J. Roy. Aeron. Soc., 67, 717724 (1963).
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Fig.5.1.7 Three modes of instability for a second-order system. The normalized damping
« is negative for cases B and C (a = Bf2M).

The simple example to be considered here is shown schematically in Fig. 5.1.84 and an
operating system of this type is illustrated in Fig. 5.1.8b. This system has the basic ingredients
of systems constructed to levitate a mass M to be used in gyroscopes and accelerometers.
The spherical particle is magnetic and is therefore attracted upward by the magnetic field
induced by I. Hence there is a position » = d at which the mass is supported against
gravity by the magnetic fieild. With no feedback (i = 0) the equilibrium is unstable, for,
as the ferromagnetic mass approaches the inductor, the upward force increases, whereas
the gravitational force remains constant. Feedback is introduced by using the optical
system to detect the position of the mass. The photomultiplier and amplifier are adjusted
to give a current i’ as nearly as possible proportional to the deflection =’ from the equilibrium
position z = d. Hence with feedback there is an addition to the magnetic force proportional
to the deflection =”. By adjustment of the loop gain it is possible to make the effective spring
constant introduced by the feedback large enough so that the equilibrium will appear to be
stable on the basis of a static experiment of displacing the sphere from equilibrium and
finding a restoring force. The amplifier, however, is not an ideal current source, and the
effect of the coil inductance with finite amplifier output impedance causes the equilibrium
to be dynamically unstable. A feedback signal proportional to sphere velocity is then added
to stabilize the equilibrium completely. This discussion characterizes the design process
used with the system shown in Fig. 5.1.8b.*

* The analysis was used in a student laboratory project to achieve the stable suspension
of the sphere shown.
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Measurement of the inductance L as a function of the position of the mass M would
produce a curve like that shown in Fig. 5.1.8¢. The inductance has its largest value when the
ferromagnetic sphere is next to the coil and decreases to a constant as the sphere is removed
to x = oo, For the present purposes we take this dependence as

L,

m N @

L@ =L +

where Ly, L,, and a are ?ositive constants. Then the methods of Chapter 3 provide the force
on the mass M; that is, the coenergy (since the electrical terminal relation is linear) is

e a1 L, \,
W(t,x)—-2-<L1+1+z/a),2 (b)

and the force of electrical origin follows as
oW’ 1 L,

o e DD e e e — '2.
p 22 (1 + zja} ©
When the sphere is in static equilibrium, the gravitational force is balanced by this force:
1 L
Mg=—_—"2__1
= 2% +dap @

Given the current I, the equilibrium position 4 is determined. Perturbations =’ from the
equilibrium lead to a perturbation current i’; that is,

x=d + z’s
] ., O]
i=1+17.
To linear terms in the perturbation quantities the force of (c) becomes
L, I 212 2
= —0 - . f
I=-% [(1 Tdar al+dar O+ d/a)”:l ®
It follows that the incremental equation of motion is
d%’ L2 , LI’
A+ dar” T aitdap 0, ®

where use has been made of (d) to cancel out the constant part of the force equation.

In the absence of feedback (i' = 0) it is clear from (g) that the equilibrium is statically
unstable. To consider first the effect of ideal feedback, assume that the output voltage of the
photomultiplier is linear with = and that the amplifier is a perfect current source feeding
the coil. In this case

i = Gx, (h)
where G is a constant, including the amplifier gain. Substitution of this expression into (g)
yields
d2’ GL,I Ln?
M= o ___ * = 0. i
att l:a(l ¥da? 21 + d/a)a]” 0 @

This system has natural frequencies determined from [see (5.1.15)]

wio_ L (G_ I )
° 7 aM(l + dja)? at+d) O



5.1.2 Linear Systems 197

Thus the response is bounded and the system is
stable when the feedback gain is raised highenough
to make

I

a+d’ ®

G>

No amplifier is absolutely ideal; consequently,
we consider next the system performance in which
the amplifier has a large but finite output im-
pedance. In this case the amplifier produces a
voltage proportional to sphere displacement 2" and ~ Fig. 5.1.9 The driving current of
this voltage is applied to the series RL circuit illu-  Fig. 5.1.8a is produced by a voltage
strated in Fig. 5.1.9 in which the resistance R in- amplifier connected in series with a
cludes the internal resistance of the amplifier. The large resistance R. The outputvoltage
relation between #’ and i is now determined from  is proportionaltothedisplacement «’.

the equation The inductance L is the equilibrium
1 d(Li") inductance of the coil shown in Fig.
Ga' = 2z T () 5.1.8a.

Expansion of the derivative and retention of only linear terms yields

Gl 1 L + LD 0 12
r = — —_—
R\ T T da + (m)

di’ LI dx’
dt Ra(l + dja)® dt

Using the exponential forms

z =ge* and i = e, (n)
we rewrite (m) in the form
LI
14+ —-—"——s
GRa(l + dja)? .
=G . (o)

1 L
14— (L + 2
+R( 1+1+d/a)s
For relatively high gain G and relatively high amplifier output impedance we assume

L1

0
P
GRal 1+ djap* <

1L+L" 1
R\ T Ty da) <

and approximate (o) by the form
= Gi(l — As), ()]

_1! L, \ L]
4=z [(Ll T d/a) Ga(l + d/a)J' @

It is evident that when the inequality £ is satisfied 4 > 0.

where
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We rewrite (p) in differential form as

dzl
i’ = Gz’ — GA —
i z @ 0]
and substitute this result in (g) to obtain
d%  GALJ dv Ll 1
- —_ - ' =0,
@ it dard sl +dar\C Tatd) ©

This has the form of (5.1.19) with B < 0; thus the system is overstable or dynamically
unstable when the nonideal nature of the amplifier is included. The response of this system
to a small disturbance will be like curve B or curve C of Fig. 5.1.7, depending on the relative
sizes of the coefficients in (s) [see (5.1.19) to (5.1.22)).

We can interpret the three curves of Fig. 5.1.7 physically with reference to this example.
For curve A the electrical force due to the bias current I exceeds the restoring force induced
by the feedback. Thus, when the mass is released from rest with a small initial displacement,
the displacement increases exponentially. This occurs regardless of whether the damping
is negative or positive, the only effect of the damping being to change the rate of exponential
growth.

Curve B of Fig. 5.1.7 represents the situation in which the feedback force dominates the
force due to bias current I to provide a restoring force but the derivative term due to
electrical feedback is negative. Also, the relative parameter values are such that the system
is oscillatory. When the mass is released from rest with an initial displacement, the feedback
force immediately accelerates the mass back toward equilibrium. The negative damping
force adds to this feedback force to cause the position to overshoot equilibrium by more
than the magnitude of the initial displacement. The process repeats periodically as the
amplitude of the oscillation grows exponentially.

Curve C of Fig. 5.1.7 represents the situation in which the feedback force dominates the
electrical force due to the bias current 7 to provide a static restoring force. The negative
damping due to the electrical feedback is large enough to make the system’s natural
frequencies s real. When the mass is released from rest with an initial displacement,
the feedback force accelerates the mass back toward equilibrium. As the mass starts moving,
however, the negative damping adds a force to accelerate the mass further toward equilib-
rium. As the mass passes through equilibrium, the negative damping force dominates to
accelerate the mass further along a rising exponential in a direction opposite that of the
initial displacement.

To stabilize the equilibrium with a nonideal amplifier it is necessary to modify the
amplifier signal so that its output current contains a component proportional to (dr’/dr)
with the proper sign. This process is called compensation.* The simplest method of compen-
sation is achieved by using the RC circuit of Fig. 5.1.10 between the photomultiplier output
and the amplifier input. Implicit in what follows is the assumption that the internalimpedance
of the photomultiplier is very low and the amplifier input impedance is very high.

In terms of complex exponentials

vy = e and v, = bye®,
* Compensating networks and their use in automatic control systems are discussed in
such texts as J. J. D’Azzo and C. H. Houpis, “Feedback Control System Analysis and
Synthesis.” McGraw-Hill, New York, 2nd ed., 1966 p. 158.
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Fig. 5.1.10 Compensating network to provide stabilization of dynamic instability caused
by finite amplifier output impedance.

the transfer function of the compensating network is

u2 R, R Cs +1 ®
5, Ry+ Ry | [RyRy[(Ry + RYICs + 1
For proper operation of the network it is conventional to set R, « Ry; thus
Cs &K R, C
& + R2 s K RCs
and for low frequencies we can approximate (t) by the form
p Ry .
Dy = RiCs + 1)i
2= R Rz( 1 )by
or in differential form as
oo = R, dvl +o @
2 R, + R2 1 u

Because v; is the output voltage of the photomuitiplier and is therefore proportional to «’,
we now rewrite (m) as

& L, \dr Ll
G + GRCE = 1 o (E__LL &,
'+ G RO R(L +l+d/a) & R+ dapa T ™
where

Ry

R+ R

1 —
Using the exponential forms of (n), we solve for / to obtain

Lt
GiRa(l + dja)®’

1+1 L+——L° )
R\ 1+d/as

1+ RCs +

{=G#

Making the assumption that parameter values and frequency s are such that we need retain



200 Lumped-Parameter Electromechanical Dynamics
only first-order terms in s, (w) becomes
{ = Gyi[l + (RyC — A)s], (x)

where A is defined in (q) and 4 > 0 when inequality.£ is satisfied. Writing (x) in differential
form, we have

s

dx
' =G + G(R,C — A)E— . (7]

Substitution of this expression into (g) yields

d¥%’  L,JGy(R,C — A)dz' L, I
e PR

At T Tl + da®  dr a0 +daE\ 1T a+

It is clear from this equation that the compensation circuit has added positive damping
to the system and that the system is completely stable when

I
G > o and RC>A.

Notethatbecause Gy = [R,/(R; + Rp)1Gand R, K R, for proper compensation the amplifier
gain must be greater when compensation is used. This is a principal consequence of
compensation—that amplifier gain can be traded for a change in dynamic system behavior.

5.1.2d Steady-State Sinusoidal Response

Many incremental-motion transducers, such as speakers, microphones,
and electromechanical filters, are designed to operate approximately as linear
systéms. One of the most important design factors is the driven response. A
transducer may be used to convert a mechanical signal (pressure for example)
to an electrical form, in which case the electrical signal is the response to a
driving force. It may also convert the output of an amplifier to an acoustic
signal, and thus the pressure or velocity response to a driving voltage is of
interest. The most commonly used and convenient driven response for a
linear system with constant coefficients is the sinusoidal steady state. Many
systems operate largely in a sinusoidal steady-state condition, but even for
those that do not the techniques of Fourier transforms and Fourier series are
available. The response to an arbitrary signal can be synthesized from the
response to sinusoidal driving signals ranging over the frequency spectrum
of interest.*

In this section we show, by means of an example, how the techniques of
Section 5.1.1 can be used to find the steady-state response to a sinusoidal
excitation. The example also serves to illustrate characteristic dynamical
behavior and impedance levels in an electric field system.

* See, for example, S. J. Mason and H. J. Zimmermann, Electronic Circuits, Signals, and
Systems, Wiley, New York, 1960, Chapter 7.
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Fig. 5.1.11 Electric field transducer that can be used as a pressure sensor (microphone)
or pressure source (speaker): (a) cross section of device (side view); it would appear circular
from above; (b) equivalent electromechanical circuit.

Example 5.1.4. The simple variable capacitor shown schematically in Fig. 5.1.11 illustrates
the basic construction of an electric field transducer that can be used as a microphone or as
a speaker. * A circular movable plate with a total mass M is mounted on a peripheral bellows
spring which has an equivalent constant K. The plate moves against a damping force
(primarily caused by the surrounding air), which we assume is linear, with a coefficient B.
When the device operates as a microphone, the differential pressure p(t) acting over the
area of the moving plate exerts a force f(¢t) (defined as positive in the positive z-direction)
which moves the plate and changes the capacitance, as seen from the electrical terminals.
When the electrical terminals are biased with a constant voltage V, (see Fig. 5.1.1148), a
change in capacitance due to the motion induces a current dg/d? in the circuit. This current,
at least in part, flows through resistance R, and produces a voltage v,(?) at the output
terminals.

In this example we wish to analyze the behavior of the device of Fig. 5.1.11 for steady-
state sinusoidal operation as a microphone. We assume that the driving force (pressure)
is a sinusoidal function of time with constant amplitude and ask for the steady-state
response of the output voltage. In the process we make approximations appropriate for the
analysis of devices of this type.

Because the general properties of the coupling network should be described without
taking into account the external elements, we begin with the electric field coupling network.
We neglect fringing fields at the edges of the plates and describe the capacitance of this

* L. L. Beranek, Acoustic Measurements, Wiley, New York, 1949, pp. 173-176 and pp.
211-224,
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electrically linear system as
soA

C
(@) == (@)
Thus the electrical terminal relation for the coupling network is
€, Av
qv, ) = Clx)p = Lk (b)
The system is conservative, hence we obtain the force /¢ as
W/ (v, )
e __ e
[frE=— ©
Because the system is electrically linear, we express the electric coenergy as
o Av?
W, = 4Can® = ——. @
We use this expression with (c) to evaluate the force
2
e _ €AV
f 52 * (e)

The equation of motion for the mechanical node (x) is written by referring to the circuit of

Fig. 5.1.115:
2,

dx
M+ B+ K@ —D) =f*+[0). ®
We use (e) in this expression to rewrite (f) as

2,

dt2 dr

(®)

Before equations for the electric circuit shown in Fig. 5.1.115 are written, we shall make
some appropriate approximations to simplify the problem. The circuit comprised of
capacitance C; and resistance R, is used to isolate the output terminals from the bias
voltage ¥, and is not intended to affect the dynamic behavior of the system in normal
operation. Consequently, with a driving frequency @ we assume that the values of R, and
C, satisfy the inequalities
—l" &R, and R >R (h)

wCy
over the frequency range of interest. Thus the output voltage v,(7) is essentially the time-
varying component of v and the current through R, can be neglected compared with the
current through R.

Using the inequality (h) we now write the node equation for the electric circuit as

(i)

dg d [e,Av .
—Uo(f)=R—7=R—( ); )]
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(g), (), and (j) are the general equations from which we can calculate the output voltage
v,(f) once the driving force f() is specified. Note that these equations are nonlinear.

This capacitor microphone is representative of a class of devices constructed and operated
purposely to behave as linear devices. Nonlinear effects cause distortion and loss of fidelity.
Linearization techniques are especially meaningful because they are appropriate under
conditions that must be fulfilled in construction and operation to achieve linearity.

We now use the technique presented in Section 5.1.2 to linearize (g), (), and (j) for
small-signal operation about a static equilibrium. We define the static equilibrium by
requiring that all time derivatives and f(t) be zero. Thus from (j) the equilibrium value for
vo(t) is zero. Defining the equilibrium values of = and v as X and ¥, respectively, we find
the relations from (g) and (i):

AV

KX-D+ — X =0, (9]

V,— V=0 )

It is clear that the equilibrium value of the terminal voltage is the bias voltage ¥, and that
the equilibrium position X is determined from the cubic equation. This equation and the
properties of the equilibria are similar to those studied in Example 5.1.1. For our purposes
here it suffices to state that we select the solution of (k) that represents a stable equilibrium
position X.

We now assume the two variables « and » to be perturbed from their equilibrium values
by small time-dependent functions z’(¢) and v'(¢t). Thus

z(t) = X + ='(1),
o(t) =V, + v'(0).

We substitute these variables into (g), (i), and (j), subtract out equilibrium terms, and
retain only linear terms in the perturbation variables to obtain

dle dx’ 4 /
M?+B—E+Kdm +C0EDD =f(t), (m)
dv’ v
Co dt CoEs— &R’ (n)
v,(1) = v'(0), )
where we have defined the following constants:
€A \ . R
= 53 is the capacitance at equilibrium,
E,= v, is the magnitude of the electric field intensity between the plates
7 at equilibrium,
K,= K — C,E? isthe effective (net) spring constant and is positive for the stable

equilibrium we are using.

Our interest here is in the steady-state response of the system to a sinusoidal driving force.
Thus (see Section 5.1.1 and Fig. 5.1.11) we assume that

f{t) = —A p(t) = Re (Fe’®?) = Fcos wt, ®
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where F and o are positive real constants. The system equations are linear with constant
coefficients; thus we assume solutions of the form

2'(t) = Re (Xeiot),
v,(t) = v'(t) = Re (Vei®t),

where X and ¥ are complex amplitudes. We substitute these forms of the dependent
variables into (m) and (n), cancel the e?**, and drop the Re to obtain the algebraic equations.

[(jw)*M + joB + K,)X + C,E,V = F, )
( joC, + ]—L) V = juC,EX. {y)

We solve these two equations to find the complex amplitude of the output voltage ¥V
as a function of the amplitude of the driving force F:
. jwC,RE,
p= —JUCRE, . — |F. ®
(K, — ©®*M + joB)(joC,R + 1) + jo(C,E)*R

This expression could be used to determine the time response v,4(¢) for any set of parameters,
value of frequency, and amplitude of drive. It is customary, however, to describe the steady-
state sinusoidal response by plotting the magnitude (and often the phase) of the complex
amplitude as a function of frequency for a constant input amplitude. Such a plot could be
made for (s), but the denominator is quite complex and in its general form obscures the
fact that different physical phenomena predominate in different frequency ranges.

We plot the amplitude of the transfer function ¥/F as a function of frequency by making
approximations to simplify the expression in three frequency ranges. Our approximations
are those made to achieve good microphone design.*

We consider first the low frequency behavior of the microphone and set the limit of (s)

as w — 0 to obtain

12 jwC,RE,

-] = ]_i_" . )
Fle K,

The operation at very Iow frequencies can be interpreted as follows: first, the velocity and
acceleration are so small that the inertia and damping forces are much smaller than the
spring force in (g) and can be neglected. Next, the perturbation voltage ¥ has negligible
effect in the force equation and the term C,E, ¥ can be neglected in (q). These two assump-
tions lead to the result in (t) if we recognize that the first term is small compared to the
second on the left hand side of (r).

The fact that we can neglect the V term in (q) indicates that from a mechanical viewpoint
the microphone capacitance is constrained to constant voltage. Thus the spring constant
K, includes the electrical spring constant due to the constant (bias) voltage [see (m)].

In summary, in the low-frequency limit the microphone capacitance operates at constant
voltage and the mechanical system behaves as a spring, which includes electrical “spring™
effects.

The low-frequency approximation breaks down when the frequency becomes large
enough that

oC,R ~ 1.

* Ibid., pp. 211-218 and especially Fig. 5.30a.
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This occurs in conventional microphones around a frequency of 10 Hz.* In the region of
transition between the low-frequency and the mid-frequency ranges the transfer function is
V_ JoCyRE,
F K,(joC,R + 1) + jo(C,E)PR’

(w)

We next define the mid-frequency range as starting at a frequency such that

1
w))EE‘,a

and continuing until inertia and damping forces become appreciable. This results in a
mid-frequency transfer function )
1% E,
0.
mf

Note that the denominator is the spring constant K alone, without the electrical spring force
[see (m)]. This is an indication that the microphone capacitance is operating at constant
charge because a parallel plate capacitor with negligible fringing fields and constant charge
will have a force that is independent of plate spacing. The constraint of constant charge
results because the resistance R is so large (R 3> 1/wC,) that appreciable charge cannot
flow on or off the plates. We can obtain this mid-frequency solution by neglecting the 1/R
term in (r) and using that result to eliminate the term involving Vin (q).

The mid-frequency range is the normal operating range of the microphone. The amplitude
and phase of the transfer function are constant over this range; thus the output voltage is
an exact replica of the input force and high fidelity is obtained.

The approximate transfer function for the mid-frequency range (v) breaks down when
inertia and damping forces become appreciable. In practice, the mechanical system is
lightly damped and a resonance occurs. In fact, elaborate means are used to provide
additional mechanical damping to reduce the size of the resonance peak.t With a resonance,
the mid-frequency transfer function breaks down when the frequency becomes high
enough so that

0*M ~ K.

The frequency corresponding to this transition is usually around 10,000 Hz.}
In the transition between the mid-frequency and high-frequency ranges the transfer
function is
V_ E, @)
F K— oM + joB’
Note that in this region the microphone capacitance is still operating at constant charge,
as evidenced by the presence of only the mechanical spring constant K in the denominator.
The high-frequency range is defined by the condition

o®M>» K and oM >» wB.

Thus the high-frequency transfer function is

-

N _ K
(3=~

* Ibid.
t Ibid., pp. 217 and 220.
i Ibid., p. 220.
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Fig. 5.1.12 Frequency response of capacitor microphone.

In this case the microphone capacitance is still operating at constant charge and the
mechanical dynamics are determined completely by the mass M.

The amplitude of the transfer function F/F is plotted as a function of frequency in Fig.
5.1.12. The approximate solutions, commonly called asymptotes, given by (t), (v), and (x)
are shown as dashed lines. The more exact solutions in the transition regions (u) and (w)
are shown as solid lines. The curves are plotted for the following relations among parameters:

B K, K\%
— =10.7; — =10.9; CoR —_ = 1000.
vVMK K M

Note that in Fig. 5.1.12 both the amplitude and frequency scales are logarithmic. This
is a Bode plot, used for plotting frequency-response data.*

5.1.3 Physical Approximations

There are two indices by which the usefulness of an engineering model
can be measured. First, there is the degree to which it represents the essential
features of the physical situation. Second, there is the amount of effort
required to use it for an analytical study. Obviously, these two considerations
are in conflict and the choice of a model represents a compromise.

The selection of an appropriate model demands an awareness of the inter-
play between physical approximations and mathematical techniques; for
example, if dissipation mechanisms are not significant in a given situation,
it may be a simple matter to describe the nonlinear dynamics. In the opposite
extreme, if dissipation dominates the dynamics, it may also be possible to
include nonlinear effects. In the intermediate case of moderate damping
nonlinear effects may be included only with a great deal of effort.

In this section a simple example is used to illustrate how the mathematical
model can be simplified by recognizing the important physical effects at the

* F. E. Nixon, Principles of Automatic Controls, Prentice-Hall, Englewood Cliffs, N.J.,
1953, pp. 165-174.
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outset. This is often done in circuit theory.
Suppose that the voltage v in the LR circuit
of Fig. 5.1.13 is given and the current i is to
be computed. We can, of course, solve this
problem with little trouble. This allows us to
see that if interest is confined to the current
at very low frequencies Fig.5.1.13 L-R circuit to illustrate

~ D appropriate electrical approxima-
v iR; (5.1.24) tions when the period of excitation
is extreme compared with the time

constant L/R.

that is at low frequencies virtually all of the
voltage drop is across the resistance. By
contrast, at high frequencies the inductive
reactance greatly exceeds the resistance and virtually all the voltage drop is
across the inductance. In this limit

v~ L%, (5.1.25)

The frequency is considered to be low or high, depending on the relationship
between the period of excitation 27/w and the time constant L/R of the
circuit. This is normally expressed as a ratio of inductive reactance and
resistance. Thus, when wL/R « 1, (5.1.24) can be used; and, when wL/R 3
1, (5.1.25) can be used. When wL/R ~ 1, neither approximation is appro-
priate.

By contrast with the circuit of Fig. 5.1.13, most electromechanical problems
are represented by nonlinear equations unless the dynamics are limited to
incremental motions. In these situations approximations analogous to those
represented by (5.1.24) and (5.1.25) are useful. The electromechanical
approximation, however, is more subtle because the frequency or character-
istic time constant of the system is often not known until after the problem
has been solved. In Fig. 5.1.13 we knew at the outset that the current i
had the same frequency as the driving voltage. With the circuit coupled to a
mechanical system and natural or free motions of the system under considera-
tion (not the sinusoidal steady state resulting from a given driving function),
the temporal behavior of the system is at least in part determined by mechan-
ical effects. Hence the characteristic frequencies of the response to initial
conditions can be low or high, compared with the natural frequencies of the
electrical system.

The pair of coils shown in Fig. 5.1.14 provides a concrete example of the
physical consequences of making electrical approximations in a magnetic
field system. A pair of fixed coils is driven by the constant current i, = ¥ and
arranged to give a uniform magnetic flux density B, in the region of a pivoted
coil with the angular deflection 6. The rotatable coil is short-circuited but hasa
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Fig. 5.1.14 A pivoted coil is free to rotate with the angular deflection 0 in a uniform
magnetic field produced by i,.

resistance R, which is represented by a resistance connected to the terminals.
We wish to study the mechanical response of the coil when it is given an
initial angular velocity d6/dt = Q at the angular position 6§ = 0.
The equations of motion are found by first writing the electrical terminal
relations as
Ay = Lyji; + Mi,sin 0, (5.1.26)
Ay = Mi; sin 6 + L,i,, (5.1.27)

where L,, M, and L, are constants. The dependence of the mutual inductance
on 6 should be evident from Fig. 5.1.14, and in the absence of magnetic
materials the self-inductances are independent of 6. For this electrically
linear system the coenergy follows from (5.1.26) and (5.1.27) as

W' = }Lii2 + Migy sin 0 + 3Ly52 (5.1.28)

Hence the electrical torque is
T® = w = Mi,i, cos 6. (5.1.29)
00
The rotatable coil has a moment of inertia J, so that if mechanical damping is
ignored the mechanical equation of motion is (i,M = IM = AB,).
d?o
J — = AB,i, cos 0. 5.1.30
P 1 ( )
The electrical equation requires that —i; R = dl,/dt, which, in view of (5.1.26)
and the fact that Mi, = AB,, is
—i,R — L, diy _ AB,cos 0 46 . (5.1.31)
dt dt
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The voltage on the right-hand side of this equation is induced by the motion
of the coil through the magnetic induction B,. The equation expresses the
fact that this “speed voltage” is absorbed by the self-inductance of the coil
and by the resistance R. Note that the relative magnitudes of these terms on
the left are determined by the same considerations discussed in connection
with Fig. 5.1.13. Now, however, the current /; has a temporal behavior that
depends on the mechanical deflection of the coil. From (5.1.31) it is clear
that the moment of inertia plays a part in determining whether the inductive
reactance or the resistance (or both) are significant.

We approach the problem here by assuming at the outset that one or the
other of the terms on the leftin (5.1.31) dominates, investigating the analytical
consequences, and returning to check the validity of the initial assumption by
using the predicted response. Suppose first that
diy

li,R| > Ly (5.1.32)

Then, 7; can be found explicitly from (5.1.31) and substituted into (5.1.30).
The result, after some trigonometric manipulation, has the form

2

i[J 9 L CABo) (o5 0sin 6 + 6)] —0. (5.1.33)
dtl dt 2R

Here one derivative has been factored to show that the quantity in brackets

is constant. The initial conditions that df/dt = Q when 6 = 0 fix this constant

so that (5.1.33) can be integrated.

df (AB,)? .
J— 4+ —2(cosOsin b + ) = JQ. 5.1.34
0 SR (cos Osin 6 + 6) ( )

This first-order equation can be integrated to find 6(r) without approxima-
tions concerning the amplitude of the angular deflection 8. This approach to
nonlinear dynamics is the subject of Section 5.2.2. It serves our purpose here
to establish the physical significance of the approximation by limiting
consideration to small amplitude (linearized) deflections about ¢ = 0, in
which case (5.1.34) is approximated by

db 0
— 4+ ==, 5.1.35
a7, ( )
where
RJ
T, = .
(4B,

In view of the initial conditions, this linear equation has the solution

0 = Qr,(1 — e~t%), (5.1.36)
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Fig. 5.1.15 Response in angular deflection of the rotatable coil of Fig. 5.1.14 to an initial
angular velocity Q at 8 = 0: () motion dominated by electrical resistance (7, > L,/R); (b)
flux 4, conserved at zero (2n/w, < L,/R) as it would be if the resistance R were very small.

which is sketched in Fig. 5.1.154. Remember that this expression is valid
only if the inequality of (5.1.32) is satisfied. Use of (5.1.36) shows that the
inequality requires

L,
o 5.1.37
> R ( )

Note that the electromechanical time constant 7, is proportional to the mo-
ment of inertia J. When 7, is large enough to satisfy (5.1.37), it simply means
that the inertial effect slows the motion to the point at which the inductive
reactance (which depends on the rate of change of /;) is of negligible influence.

This approximation is typical of those used in the analysis of large, magnetic-
field type devices such as rotating machines. Mechanical and electro-
mechanical time constants are so long compared with electrical time constants
that mechanical and electromechanical transients are assumed to occur with
the electrical system always operating in the steady state [L,(dl/dt) neglected
in the example just completed]. Conversely, electrical transients are so fast
that they are assumed to occur with the mechanical system operating at
constant speed.

It is important to see that an equation of motion in the form of (5.1.35)
would be obtained if the magnetic induction B, were absent but the coil
rotated in a viscous fluid. In the limit in which the reactance of the coil
can be ignored the magnetic field and short-circuited coil combine to act as a
mechanical damper. This is the limit used in synchronous machines when
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short-circuited damper windings are added to the rotor to assist in damping
electromechanical oscillations (see Section 4.1.6a and Example 5.1.2).

It is evident from the solution (5.1.36) that there are no oscillations (as
would be expected from “springlike” torques). The reactance represents the
contribution of self-currents to the total magnetic field. When L,di,/dt is
ignored in (5.1.31), it means that we are ignoring the magnetic field induced
by the current i;. This kind of physical approximation is useful in dealing
with continuum interactions (see Chapter 10). We shall also find that in the
limit in which electrical dissipation dominates, media tend to “ooze” rather
than “bounce.”

In both lumped parameter and continuum electromechanics it is often
meaningful to model a conducting medium as “perfectly” conducting. This
model is illustrated here by taking an extreme (to that so far considered)
in which characteristic times of the electromechanical system are short
enough to warrant neglecting the drop across the resistance compared with
that across the reactance; that is, the first term in (5.1.31) is ignored compared
with the second. That expression can then be integrated to give

B,

i1=—

sin 6. (5.1.38)
1

Here, we assume that when the motion is initiated at ¢ = 0, not only do

6 = 0 and d6/dt = Q but i; = 0. Note that (5.1.38) requires that the flux 4,

linking the rotatable coil be conserved. The initial conditions require that this
flux be conserved at 4, = 0.

It follows from (5.1.38) and (5.1.30) that the equation of motion is
26 2
;40 _ (4B

art L,
This nonlinear expression can be integrated without further approximations.
For now, we delay this nonlinear problem until Section 5.2.1 and illustrate

the physical consequences of the approximation by considering small
amplitude deflections about & = 0. Then (5.1.39) becomes

sin 6 cos 6. (5.1.39)

2
% + »,%0 =0, (5.1.40)
where
AB,
w, =

VL
The solution to this equation, which satisfies the initial conditions, is

6 = sin w,r. (5.1.41)
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l Field due to iy

Fig. 5.1.16 Distortion of the initially uniform magnetic field caused by angular deflection
of coil shown in Fig 5.1.14. The flux of the moveable coil is constrained to be zero.

This expression is plotted in Fig. 5.1.15b, where it can be compared with the
loss-dominated case.

When the electrical dissipation can be ignored, the magnetic torque has
the same effect on the motion as a torsional spring (in the nonlinear case, a
nonlinear torsional spring). The reason for this can be seen physically with
the help of Fig. 5.1.16. Remember that in this limit the total flux 4, through
the rotatable coil is constrained to be zero. With the angular deflection
shown in Fig. 5.1.16, the flux density B, links the coil, thus contributing to 4.
This flux must be canceled by a flux induced by the current /;. The deflection
shown in Fig. 5.1.16 is accompanied by the currents, as indicated, which
induce a flux that cancels that from B,. The total magnetic field is distorted to
remain tangential to the plane of the coil. Note that the magnetic force
i; x B tends to restore the coil to the angle § = 0. Because the induced current
is proportional to the angular deflection (and not to its rate of change), the
magnetic torque is similar to that of a spring.

The assumption that the inductive reactance is of primary importance to
the dynamics is equivalent to recognizing that the effect of the magnetic
field induced by the motion is on the same order as that of the imposed
magnetic field. More is said on this point in Section 7.0, in which the same
physical arguments appear in the context of a distributed interaction. In the
context of lumped parameters perfectly conducting media (in a magnetic
field system) behave in a “springlike” or ““bouncing” fashion. In continuous
media (e.g., a “perfectly” conducting fluid) the same approximation leads
to the possibility of wavelike motions, as illustrated in Section 12.2.3.

Our remarks in this section have been limited to electrical approximations
that are appropriate in magnetic field systems. We could further illustrate the
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role of electrical dissipation in electric field systems. This was done implicitly
however, in Example 5.1.4, in which it was shown that the electrical variables
of a capacitor microphone were essentially constrained to constant potential
and constant charge in the low and high-frequency ranges, respectively;
that is, if the capacitor plate in Fig. 5.1.11 responded at a low frequency,
the R dg/dt drop across the resistance R could be ignored and the potential
on the plate taken as the constant V. In the opposite extreme rapid variations
in the capacitance of the microphone meant that there was little chance of
charge leaking off through the resistance R. The result was an essentially
constant charge on the movable plate. The critical parameter that determined
which approximation was valid was wRC, or again essentially the ratio of the
electrical time constant and the period of the mechanical response. The
simplifying feature of Example 5.1.4 was the known response frequency w.
We could, however, easily envision a situation like the one considered in this
section, in which the characteristic dynamic time would not be known until
after the problem had been solved.

5.2 NONLINEAR SYSTEMS

As we have seen, most lumped-parameter electromechanical devices are
described in general by nonlinear differential equations. Section 5.1 was
devoted to showing that for many purposes these equations can be approxi-
mated bylinearized equations. There arecases inwhich thenonlineardynamics
are essential, and indeed nonlinear interactions represent possibilities for
engineering applications that are not available within the framework of
linear systems. Unfortunately, there is no general mathematical theory to
cover the solution of all types of nonlinear differential equation. This is not
surprising, since nonlinear equations include all types that are not linear, as
defined in Section 5.1.1.

The most direct way of obtaining numerical answers to nonlinear problems
is to use machine computation, either analog or digital. In some simple cases
it is possible to integrate the equations of motion. In the following two
sections we illustrate two classes of these simple systems and the analytical
techniques that are useful in obtaining solutions. Our objective is not only to
study techniques for describing nonlinear systems but to gain a deeper
physical insight into electromechanical dynamics.

5.2.1 Conservative Systems

In mechanics, if the energy remains constant throughout the motion of a
system, the system is said to be conservative; that is, although the velocity
and position of a mass change with time, the total energy is conserved at its



214 Lumped-Parameter Electromechanical Dynamics

initial value. As we show in this section, this
provides a basis for finding the motions of many
electromechanical systems.

A simple mechanical system that illustrates
the approach while allowing considerable phys-
ical insight is the simple pendulum of Fig. 5.2.1.
It consists of a mass M whose center of mass is
connected by a rigid, weightless rod of length /
to a frictionless pivot. We consider the motion
in which there is no externally applied torque
except that due to gravity, which acts downward
as shown.

The torque equation is therefore

Fig. 52.1 Simple pendulum
with an angular deflection 6(¢) J 42_0 =T (5.2.1)
in the gravitational field g. a v i

where the moment of inertia J = M/? and T,, the torque due to gravity,
can be written as

T,=— v ; V = —Mgl cos 6. (5.2.2)

’ 00
It is useful to write the torque as the derivative of the potential ¥ because
(5.2.1) can then be written as

%B (%j?) + V] —o. (5.23)

The best way to see that this is true is to take the first time derivative in
(5.2.3) and see that (5.2.1) is recovered. It follows from (5.2.3) that the
quantity in brackets is constant, or conserved. If we call this constant E,
J (dOY
: (dt) E — v(6). (5.2.4)
To understand the physical significance of this equation it is helpful to think
in terms of the potential plot shown in Fig. 5.2.2. The constant E, which is
the sum of the kinetic and potential energies, is independent of 6. According
to (5.2.4), the kinetic energy, hence the square of the angular velocity, is
proportional to the difference between E and V(6). This is shown graphically
in Fig. 5.2.2. It is apparent from the diagram that at points () and (b), at
which [0 = 0, the angular velocityis zero, whereas at 6 = 0 the magnitude of
the angular velocity has its largest value. The kinetic energy J(d0/dt)?/2 is
always positive. Hence, given the value of E, we can picture the angular
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Fig. 5.2.2 Potential well V() for the pendulum of Fig. 5.2.1 and for the rotatable coil
of Fig. 5.2.4. If the pendulum is released from a stationary state at 6 = 0,,, it will have an
excursion between the points (@) and (b). The square of the angular velocity at any given
position is proportional to the vertical distance between the constant E line and the
potential ¥(9).

deflection as limited to those regions of the potential plot in which the con-
stant E line is above the potential F(6). For the value of E shown in Fig. 5.2.2
the pendulum oscillates between the angles 6 = 6,, and 6 = —46,,.

The invariant E is established by the initial conditions. Suppose that at
t=0, 06 =40, and df/dt = 0; that is, the pendulum is released from an
initial static deflection § = 0,,. Then from (5.2.4) E = ¥V (0,,) and

J

; (d_@)z — V(0,) — V(). (5.2.5)

dt

Similarly, the pendulum could be given an initial velocity (d6/dr),, at 6 = 0,
and it follows from (5.2.4) that E = (J/2)(d8/dt)2, + V(0). If the initial
kinetic energy exceeds V(w) — V(0), the line of constant £ in Fig. 5.2.2
never intersects the potential curve and the pendulum deflection increases
monotonically. This simply means that, given a large enough initial energy,
the pendulum rotates continuously on its pivot, moving rapidly at § = 0,
27, 4m, ... and slowing down at 6 = =, 37, .. ..

Note that at the angles 6 = 0, =, . . . the pendulum can be in static equilib-
rium, for at these points 0¥V/06 = 0 (T, = 0). The question whether these
equilibria are stable can be answered in terms of the potential plot. Suppose
that the pendulum is given an initial static position § = 0. This establishes
the constant E line in Fig. 5.2.2 as passing through point (1). To see if the
equilibrium is stable, the pendulum is given a slight kinetic energy, which
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raises the constant E line just above point (1) and shows that small amplitude
oscillations result. In the sense defined in Section 5.1.2a we say that this
equilibrium is stable. Similarly, if the pendulum is placed in static equilibrium
at (2), the constant E line just grazes the peaks of the potential curve. To test
for stability the pendulum is given a slight additional kinetic energy (greater
E). It is clear that the pendulum does not tend to return to position (2),
which is a point of unstable static equilibrium. This is not surprising to
someone who has tried to balance a broom on his finger. The pendulum is
upside down at 6 = =.

As a consequence of our deductions concerning Fig. 5.2.2, we can interpret
the system behavior as if the moment of inertia were a particle that slides
without friction on a physical “hill” with the shape V(). Motions within a
potential well are bounded and therefore stable.

It is worthwhile to place the linear stability theory of Section 5.1.2a in
perspective by relating it to the potential well. The torque 7, can be expanded
about a point of static equilibrium 6 = O:

T, = — %(@) 0 — @) Y (@) (5.2.6)

06*
Because the equilibrium is static, the first term on the right is zero. Hence
(5.2.1) has been linearized and is

"29 [a02 (@)}(e —®)=0. (5.2.7)

From this constant coefficient linear equation it follows that the solutions will
be oscillatory, hence stable, at points of zero slope on the potential plot at
which

4 0. 2.8

Py > (5.2.8)
Our linearized techniques of Section 5.1.2a tell us that small perturbations
about a point in the bottom of a potential well (1) are stable, whereas those
from the peaks (2) are unstable. We shall see in the examples that follow cases
in which even though small amplitude deflections are unstable large deflec-
tions remain bounded.

We return to this example of the mechanical pendulum to show how (5.2.4)
can be integrated to determine the detailed temporal behavior. Before
doing so, however, it would be more to the point to see how these ideas can
be extended into the context of electromechanics.

In Fig. 5.2.3 an electromechanical system is represented schematically by a
mechanical system connected to an electromechanical coupling network.
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+ T*
Iy M —>O
Electro + Mechanical
mechanical 0 system
coupling |5 |
+
B(1) N

Fig. 5.2.3 Electromechanical system in which conservation of an energy function can be
used to determine the dynamics. The mechanical system is composed of lossless elements
and one of each of the electrical terminal variables is held constant.

This network, as defined in Chapter 3, does not contain elements that dissipate
energy, but, of course, it in turn couples to an electrical system that does
_ contain such elements. If, however, the electrical terminals are constrained
so that a variable at each of the terminal pairs is held fixed, we expect to find
a constant of the motion for the total electromechanical system. This is true
because any additions to the total electromechanical energy of the system
must be made through the electrical terminals. If a terminal variable is fixed,
there is either no flow of energy or no flow of coenergy through that terminal
pair; for example, in the case shown in Fig. 5.2.3 an increment of coenergy
at the (i, 4,) terminal pair is 4, di;, which is constrained to zero as long as
I, = constant. Now we know from Chapter 3 that the torque of electrical
origin T can be found as the derivative of an “energy function” written as a
function of & and one of each of the elec-
trical terminal variables (the “independent”

variables): for example, in Fig. 5.2.4 ~
aW, — —
T = ——(iy, iy, 0), 529 !
ae ( 1s 2 ) ( ) |
— By
where W’ is the coenergy function (see, |
for example, Section 3.1.2b). If /; and i, [
are constrained to be constant, then T¢is L -~ L
the derivative of a known function of 6: =M+ i
ow’ - A+

e e ——y
"= 90 (1,15, 0). (5:2.10) Fig. 5.2.4 A pair of fixed coils is

excited in series by the current i, A
Because the mechanical system is composed swo:ledhcmll has_thf angular deflection
of elements that do not dissipate energy, . the electrical terminal variables

i . (71, 41). When both coils are driven by
the mechanical torque can also be written  onctant current sources. the poten-

as the derivative with respect to 6 of an tial well is as shown in Fig. 5.2.2.
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energy function, which we might call U(6)
ou

T = . 5211
It follows that the torque equation can be written as
d6  ov
J—+ =0 5.2.12
dr* 90 ( )
where
V() = U®) — W'(1,, I, 0), (5.213)

which now takes on the same form as (5.2.3).
Example 5.2.1 is based on this generalization of the potential well to
include the electromechanical energy function.

Example 5.2.1. The electromechanical system shown in Fig. 5.2.4 has the schematic
description of Fig. 5.2.3. The pivoted coil has the terminal variables (iy, 4;), whereas the
fixed coils are connected in series, with the terminal variables (i5, A5). There is no magnetic
material in the problem, so that self-inductances remain constant and the electrical terminal
relations can be written as

Ay = Lyiy + M(0)i,, @
Ay = M(0)iy + Lyi, )

where for this particular case M(0) = M, cos 0, L,, Ly, and M, are constants. From the
terminal relations the coenergy W'(iy, iy, 0) follows as

W’ = 3L,i® + $Lyi,2 + M(0)iyi,. ©

The first two terms in this expression are constant and can be absorbed in the constant of
the motion E. Hence from (5.2.13) we have

V = —1,I,M(6). ()
For the particular case of Fig. 5.2.4

V= —II,M,cos 0. (e)

This potential has the same form as the mechanical pendulum of Fig. 5.2.1; hence the
developments relevant to dynamics of the pendulum are equally applicable here. For
quantitative purposes Mgl is replaced by I ;M,,.

Note that the state of stable static equilibrium at (1) in Fig. 5.2.2 now corresponds to the
situation in which the magnetic ficld generated by i; at the center of the pivoted coil is
aligned with the field produced by i,. If either I, or I, is made negative, the potential well
in Fig. 5.2.2 is inverted, with @ = 0 becoming an unstable static equilibrium and point (2)
becoming a stable equilibrium.

Now that we have discussed the basic considerations involved in using
potential-well techniques for describing electromechanical problems it would
be interesting to embark on examples that illustrate characteristic dynamic
behavior. It is not often that an engineer is concerned with the detailed tem-
poral behavior of a system. Example 5.2.2 illustrates how a knowledge of the
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electrical terminal relations can be used to establish the significant features
of dynamic behavior under a variety of electrical constraints. This approach
is extremely useful because the relevant features of the electrical terminal
relations can be found quantitatively by simple measurements or qualitatively
by sketching the electric or magnetic fields.

Example 5.2.2. A coil (mass M) is mounted on a massless pendulum of length R, as
shown in Fig. 5.2.5, to allow it to swing through the magnetic field generated by a pair of
series-connected fixed coils. We wish to study the dynamical consequences of energizing
the fixed coils with a current source I, and constraining the electrical terminals of the
movable coil in two different ways. First, the pendulum motions that result when i; = I;
or the current through the moving coil is constant provide us with an opportunity to illus-
trate how a combination of electrical and mechanical potentials is handled, a situation that
can then be contrasted with the second case to be considered in which the terminals (i, 1)
are constrained to zero flux linkage. This is the physical result if the terminals of the moving
coil are short-circuited and the resistance of the coil is *“small.” This limit is discussed in
Section 5.1.3, in which it is shown that the flux can be considered essentially constant if
the current ¢, is limited by the self-reactance of the coil and not by the resistance. This
demands that the characteristic time constant of the motion be short compared with the
L/R time constant of the moving coil.

The mutual inductance between the moving and fixed coils is shown in Fig. 5.2.5¢. The

Magnetic
field lines

:M(o) @ lﬂ =M+ |

o~~~ N —

(c)

Fig.5.2.5 (a) A coil is attached to a pendulum in such a way that when 6 = 0 it is directly
between a pair of fixed coils energized by the current /;; (b) top view of (a) showing the
magnetic field produced by the fixed coils; (¢) mutual inductance between the fixed and
movable coils of (b).
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dependence on 6 can be understood qualitatively by considering Fig. 5.2.55. When 6R is
very large, it is clear that the magnetic field generated by the fixed coils does not link the
movable coil. As the movable coil comes into the vicinity of the fixed coils, it links a magnetic
field having the opposite direction to that linked when it is directly between the coils. Hence
the mutual inductance first becomes negative and then positive. If the diameter of the fixed
coils is large compared with their spacing, the field, which tends to concentrate near the
currents, will be smaller at the center (6 = 0) than at off-center angles where the movable
coil is adjacent to the fixed windings. Hence the mutual inductance is shown with a dip in
the vicinity of 6 = 0.

This inductance could be measured by exciting the fixed coil with a sinusoidal current
and measuring the induced voltage in the movable coil as a function of position. Therefore
we can regard M(6) as determined either qualitatively or quantitively. The electric terminal
relations have the form of (a) and (b) in Example 5.2.1.

CONSTANT CURRENT CONSTRAINTS

First, consider the consequences of driving both fixed and movable coils by constant-
current sources. The total potential is then the sum of a gravitational potential (5.2.2) and
a potential due to the magnetic field [(d) of Example 5.2.1]:

V = —Mglcos 6 — I,I,M(6). (a)

There are two possibilities. Either I;1, > 0, in which case the total potential appears as
shown in Fig. 5.2.6a, or I,I, < 0, and V(6) is as shown in Fig. 5.2.6b.

Consider first the case in which both currents are positive. If the pendulum holding the
coil is released from an initial static position at 6 = 6,,, the line of constant E appears as
shown in Fig. 5.2.6a. The pendulum swings completely through the region of the fixed
coils. The effect of the negative slope of the mutual inductance is not sufficient to
decelerate it as it approaches them. Once the movable coil is between the fixed coils, the
I x B force tends to accelerate it toward the center, except very near 6 = 0. The effect of
the constant current constraints with both currents positive is to make the potential well
centered on 6 = 0 even deeper than it would be without the field.

A similar experiment with one of the currents reversed results in motions characterized
by the constant E line shown in Fig. 5.2.6b. For this case the pendulum released from the
initial angle 8,, is reflected by the magnetic interaction with the fixed coil. This is expected,
since the I x B force on the moving coil as it nears the origin is now in the direction required
to retard the motion. Of course, given enough initial energy, the pendulum will pass on
through the interaction region. Note that the pendulum could be trapped in a region near
the origin.

A significant feature of the constant current dynamics is its dependence on the sign of
the excitation current. If one of the currents is reversed, that part of the potential due to
the magnetic field is turned upside down; for example, in Fig. 5.2.6b, in which one of the
currents is reversed, the static equilibrium at the origin () is stable, and there are two
additional points (4 and e) at which the pendulum can be in stable static equilibrium. The
equilibria (b and c) that were stable in Fig. 5.2.6a are replaced by unstable equilibria (b and
c) in Fig. 5.2.6b.

CONSTANT-CURRENT CONSTANT-FLUX CONSTRAINTS

We now embark on describing the motions when the pendulum coil of Fig. 5.2.5 is
constrained to constant (zero) flux. As is evident from the development, the electro-
mechanical coupling must now be represented by a hybrid energy function, for neither all
of the currents nor all of the fluxes are constrained to be constant.
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Fig. 5.2.6 Potential plots for the system of Fig. 5.2.5 constrained to constant current:
(a) both coil currents positive; (b) one coil current positive and one negative.

A schematic representation of the terminal constraints is shown in Fig. 5.2.7. To use the
potential techniques, we require a function W”(f) from which we can find the electrical
torque by taking a derivative:

aw”

T = T ®)

This function, with the terminations of Fig. 5.2.3, was simply the coenergy W', since in
the coenergy function the currents are used as independent variables. For our present
purposes it is helpful to recall that any of the energy functions are derived from a statement
of conservation of energy for the electromechanical coupling.

iy diy + iy dhy = dW + T*d6; ©
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Fig. 5.2.7 Schematic representation of the system shown in Fig. 5.2.54 when the pendulum
coil is constrained to zero flux.

for example, in the case in which the currents were held constant it was appropriate to
transform this expression to one involving the currents #; and i, as independent variables
(as discussed in Section 3.1.2b). For the present situation 4, and i, are fixed and therefore
should be used as independent variables. Hence the second term in (c) is rewritten as

iy dAy = d(iphy) — Ay diy @
so that (c) becomes
Aydiy — iy dAy = dW” — T°d0, (e)
where
W” = iydy — W.

From (e) it follows that the electrical torque is given by (b). As for the energy and coenergy
functions, " is found by integrating a form of the energy equation, which is now (e). In
carrying out this integration, it must be remembered that i, and 4, are independent variables
and myst be used to express 4, and 7, in (). Thus (a) and (b) of Example 5.2.1 are written as

.M M),
-2-h ®
M2@)\ . | M)

2.2 = (LZ —_ Ll )12 + Ll '11’ (g)
Now, if the integration of () is carried out in the usual way (Section 3.1.1), we obtain

1 M2 1,2 M

o _ IR VX B a2 I

w 2([‘2 Ll)'2 2L, T ®

The terminal constraints require that i, = I, and that 4, = 0. (The initial conditions
determine the constant 1, the short-circuited pendulum coil will retain.) For the present
purposes we assume that the coil is initially outside the magnetic field, where a short
circuit establishes the flux 4; = 0. We have established the function W" to be used in (b):

v 1 M? .
W' = E(LZ - —171-)122. (l)

The potential ¥, which includes both the effects of the magnetic field and gravity, is [from
(5.2.2)]

12 :
V= —Mglcos 0 + 52—1 M*(0). ()
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Here, a constant has been absorbed in the constant of the motion E [which appears in
(5.2.4)].

The potential well for the flux-constrained coil is shown in Fig. 5.2.8 as the superposition
of the same gravitational potential used before and a magnetic potential that is proportional
to the square of M(6), as given in Fig. 5.2.5¢. At the outset two observations are of physical
significance ; the potential well is unaltered by reversing the direction of the field due to the
fixed coils [/, is squared in (j)] and the interaction does not depend on the sign of the mutual
inductance. This is by contrast with the current constrained situation in which the potential
well could take on the alternative forms shown in Fig. 5.2.6. These observations reflect the
fact that the current /; is induced in a direction that cancels any flux due to J; linking the
pendulum coil. This type of dynamics is familiar from Section 5.1.3 and is evident here
from the potential diagram.

The field generated by the fixed coils represents a magnetic barrier to the pendulum coil;
for example, if the pendulum is given the initial velocity required to establish the constant
of the motion as £, in Fig. 5.2.8, the moving coil will bounce off the potential barrier set
up by the magnetic field. In fact, at an energy E,, the pendulum coil oscillates between a
maximum deflection magnitude determined by gravity and a minimum determined by the
magnetic interaction.

At an energy Ej it is possible to trap the coil in a well created solely by the
imposed magnetic field. This magnetic trapping is a lumped-parameter illustration of how
a magnetic field can be shaped to “bottle up™ a highly conducting continuum such as a
plasma. We can think of the pendulum coil as replaced by a highly conducting *“blob” of
material, which in turn can be modeled by many arbitrarily oriented, perfectly conducting
loops. Each of these loops tends to behave as described here.

The effects of a finite coil resistance were considered in Section 5.1.3 to place the dynamics
as found here in perspective. The zero flux constraint is a meaningful model for the actual

b 4()) .
Iy 2
FI7y M)
M=0
ia=1Ip
E3 =
l "1
—
0
—Mgi cos ¢

Fig. 5.2.8 Potential well for the system of Fig. 5.2.5¢ when the pendulum coil is con-
strained to zero flux. The potential has this shape regardless of the sign of the current 7,.
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physical situation only as long as characteristic times for the motion are short compared
with the L/R time constant of the pendulum coil.

So far in this discussion of nonlinear conservative systems we have not
concerned ourselves with detailed temporal behavior. Sometimes nonlinear
periods of oscillation or deflections as a function of time are required and
(5.2.4) must be integrated. For this purpose it is written as

%
46 _ i{z [E — V(6)]} . (5.2.14)
dt J
The plus and minus signs indicate that the pendulum can be moving in
either direction at a given angle 0.

If we specify that when ¢ = 0 the angle 0 = 0,,, (5.2.14) can be integrated.

t=+ L : [f " —di;(e')]}% . (5.2.15)

The parameter 6 is a running variable of integration. Whether (5.2.15) can
be integrated analyticaily depends on the form of V(6). In any case, given
V(0), numerical integration is a straightforward matter.

In the case of the mechanical pendulum of Fig. 5.2.1, V() is given by
(5.2.2) and the integration of (5.2.15) can be carried out. Suppose that the
pendulum is released from rest at 6 = 0,,. Then from (5.2.4) E = v(8,,)
and the integral of (5.2.15) takes the standard form of an elliptic integral*
for which solutions are tabulated. One fourth of a cycle of oscillation is
shown as a function of time in Fig. 5.2.9, where for (a) the pendulum is
released from an initial “small” angle 6,, = 20° and for (b) the initial ampli-
tude is 90°. For these plots the time is normalized to the frequency w = \/gfl.
This is the frequency of oscillation for small amplitudes, as can be seen by
combining and linearizing (5.2.1) and (5.2.2) to obtain

d*0

] + 0 = 0. (5.2.16)
For the initial conditions considered in Fig. 5.2.9 the solution to this equa-
tion is

6 = 4,, cos wt. (5.2.17)
This response, predicted by the linearized equation of motion, is shown as
dashed curves in Fig. 5.2.9. For an amplitude of 6 = 20° the results from the
linear and nonlinear models are almost identical, although there is some

* P. Franklin, Methods of Advanced Calculus, McGraw-Hill, New York, 1944, Chapter
VII.
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Fig.5.2.9 Oscillation of a simple pendulum: (@) small amplitude; (b) large amplitude.

discrepancy between the predictions for & = 90°. This comparison between
the exact and linearized solutions should help to place the methods of
Section 5.1 in perspective. Of course, the adequacy of a linearized model will
depend greatly on the nature of the nonlinearity. The following example is
one in which a linearized model would be difficult to make and would be of
doubtful usefulness.
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Fig. 5.2.10 (a) Capacitor plates just overlap when 6 = 0 and are constrained to constant
potential ¥,; (b) capacitance as a function of 6; (c) potential for the system of (a).

Example 5.2.3. The electric field system shown in Fig. 5.2.10 illustrates how the period
of oscillation, computed from (5.2.15), can have nonlinear behavior. A capacitor is con-
structed from fixed and rotatable plates with the shape of sections from coaxial cylinders.
At 6 = 0 the plates are aligned and the capacitance has the maximum value C,. At 6 = 42«
there is no overlap between the plates and the capacitance is essentially zero. Hence C(8)
depends on 0 essentially as shown in Fig. 5.2.10b. With the plates constrained to have the
constant potential difference ¥, we expect that the rotatable plate can be at rest at 6 = 0,
for the induced charges will tend to make the plates attract one another. We wish to deter-
mine the period of oscillation that results when the plate is deflected from this equilibrium.

The terminals are constrained to constant potential; hence it is appropriate to write the
electric torque in terms of the coenergy W’(v, 6) (see Section 3.1.2b):

ow’
6 =
T = v, 0). (@
Hence the potential ¥ is [from (5.2.1) and (5.2.2)]
V=— W’( Voa 0): (b)
which for this example is
= _%Vozc(o)a (C)

with C(6) as shown in Fig. 5.2.10b. 1t follows that the potential produced by the electric
field appears as shown in Fig. 5.2.10c. From this diagram it is clear that if the movable
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plate (with the moment of inertia J but with no effect from gravity) is given a kinetic energy
greater than

doY
37 (2?) = §C,V;? @
at 8 = 0 the motions will not be oscillatory. Instead, the plate will rotate continuously with
constant velocity when the plates do not overlap and with a maximum velocity at 6 = 0.

We can compute the period of oscillation T from (5.2.15) when the initial conditions are
such that the motions are oscillatory. For this purpose we call the peak deflection 6, so
that the line of constant energy is as shown in Fig. 5.2.10c. In terms of that figure the rotor
moves from (a) to (b) in T/4 sec. Over this interval the potential can be written as

_G v
V(0) = T 6 — 20) - (e)
For our purposes (5.2.15) becomes

T Y do’
T~ f - - ®
on {7 V(6 — V(G’)]}

where from (e)

C, V.2
Ve, — ve)===@, —0-=.
) () 20‘( m — @) > 4]
Substitution of (g) into (f), followed by integration, gives the required period of oscillation:
Wa \E
Tr= S(E‘O—V;”) VO (O] < 2. )

Of course, this result is limited to a range of 6,, in which the plates overlap. Beyond this
range the motions are not bounded (oscillatory) and

T—; [0, > 2 0]

The dependence of the oscillation period on 8, is shown in Fig. 5.2.11. In a linear system
the period of oscillation is independent of amplitude. Hence the plot emphasizes the
nonlinear character of the motion.

It should be recognized that the approximate function C(6) is valid only if the plate
spacing g is small compared with deflections 8R of interest. In a more exact model the
functional dependence of C would be smoothed in the region near 6 = 0 and 6 = +2a in
Fig. 5.2.10. This is true because the fringing fields would extend beyond the edge of the
overlapping plates a distance on the order of g. Hence we cannot expect the period of
oscillation given by (h) to be correct unless 6,,R > g.

5.2.2 Loss-Dominated Systems

The approach to the analysis of nonlinear problems in Section 5.2.1 took
advantage of the small mechanical and electrical energy dissipations. In this
section we wish to illustrate how simplifying assumptions can be made
valid when there is a /arge effect from damping mechanisms. We can illustrate
briefly the notion involved by returning to the example of the pendulum used
in Section 5.2.1 (Fig. 5.2.1). If there is viscous damping (with coefficient B),
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Fig. 5.2.11 Normalized period of oscillation for the electric pendulum of Fig. 5.2.10a
as a function of peak amplitude.

(5.2.1) for the deflection of the pendulum is replaced by (see Section 2.2.1b
for a discussion of torsional viscous dampers)
d’6 db .
J 7 + B — = —Mglsin§. (5.2.18)
In the analysis presented in Section 5.2.1 the viscous term was implicitly
assumed small compared with the other terms in the equation. In the opposite
extreme the viscous damping is so large that the inertial effects of the first
term are ignorable. This would be the result of i immersing the pendulum in
heavy oil. Then we can approximate (5.2.18) by

do

— = —Mglsin§, 5.2.19
o g (5.2.19)
which is a simple nonlinear expression to integrate. Rearranging, we have
—_ie— — Mgl dt. (5.2.20)
sin 0 B
If, when t = 0, 8 = §,,, we can integrate this equation between 0, and 6(z)
0(¢) t
f 46 _ _ Ml (5.2.21)
0, Sin @ B Jo
We carry out this integration to obtain*
t(Mi’) - —In [t—a“—w/—z)] (5.2.22)
B tan (6,,/2)

This expression for 0 is plotted in Fig. 5.2.12.

We now consider an example of a nonlinear, lossy system, for which we
can make simplifying assumptions to allow analytical integration of non-
linear equations, and analyze a time-delay relay in which the dynamic

* C. D. Hodgman, Mathematical Tables from Handbook of Chemistry and Physics, 9th
ed., Chemical Rubber Publishing Co., Cleveland, Ohio.
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Fig. 5.2.12 Angular deflection 0 of a pendulum heavily damped and released from
6, =90.

behavior is controlled by mechanical losses. Although we treat a time-delay
relay in this example, the approximations and analytical techniques are
applicable to many other systems.

Example 5.2.4. In Fig. 5.2.13 we show schematically the basic actuator for a mechanically
damped time-delay relay.* The basic operation to be analyzed is as follows: with switch §
open, the spring pulls the plunger against a mechanical stop at z = z,; when switch S is
closed, current in the coil causes a magnetic force that pulls the plunger against the stop
at z = 0. This displacement opens or closes relay contacts. The motion of the plunger when
driven by the magnetic force is dominated by the mechanical damper. The damper, or
dashpot, normally used in this application consists of a piston with a small orifice, moving
in a cylinder filled with oil (see Fig. 2.2.10a). As discussed in Section 2.2.1b, a damper of
this type is represented quite well by a damping force proportional to the square of the
velocity [see (2.2.8)].

The electromechanical coupling of the configuration in Fig. 5.2.13 has been analyzed
in Examples 2.1.1, 3.2.1, and 5.1.1. Neglecting fringing fields and assuming infinitely
permeable magnetic material, we obtain the electrical and mechanical terminal relations
from (a) and (c) of Example 5.1.1.

Ly

A= TTas (@
. L,,i2
fe= 2——3(1 T (b)
where
L = N 2wd)

(]

&

* A. E. Knowilton, ed., Standard Handbook for Electrical Engineers, 9th ed., McGraw-Hill,
New York, 1957, Section 5-150.
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Fig. 5.2.13 Basic configuration of actuator for mechanically damped time-delay relay.

Thus, with switch S closed and the plunger between the stops

0<z <z,
the equations of motion are
. L, di L,i dx
rRry +algdt gl +ajgidr’ ©
d% &\ L,
iy e T WO . A (d)
Md£2 + B, (dr) + Kz —1) 250 + zfg)t

The + or — sign on the damping force is chosen to make the damping force oppose the
motion.

As already stated, we wish to analyze the transient that occurs when the switch S is
closed at r = 0 with the initial conditions at 1 = 0

x=gz, i=0. (©

The mechanical damper dominates the mechanical motion and slows down the motion of
the plunger so that the closing time can be of the order of seconds to minutes. Consequently,
the speed voltage, the last term in (c), can be neglected throughout the analysis, and the
transient in current is complete before the position = changes significantly from the initial
position «,. Thus we find the current from the simplified equation

L, di

V=Ri+—20,
+l+='=m’.f,'dr

()



5.2.2 Nonlinear Systems 231

which has constant coefficients. The current transient is

| 4
= = (1 — et ®

where
L,
Ty = oe—————.
¢ RU 4+ Tol2)

The time constant 7, is the electrical time constant with the gap fully open.

With the purely electrical transient completed before the mechanical motion starts and
with the neglect of the speed voltage in (c) the mechanical motion occurs with the current
essentially constant. Thus from the viewpoint of the mechanical motion the voltage source
¥ and resistance R form an effective current source. This situation, in which electrical time
constants are much shorter than mechanical time constants (see Section 5.1.3), occurs often
in electromechanical transducers and is the source of significant simplification.

As stated before, the mechanical motion is dominated by the damper. This means that
except for the very short time during which the mass initially accelerates, the damping force,
the second term on the left of (d), is much greater than the acceleration force and the spring
force. Consequently, when our interest is in the time required for the air gap to close, we

can simplify (d) to
di®  L(VIR? ®
T (E?) T 2e(1 + afp)?’

where we have chosen the minus sign because B (dz/dr)* must act to retard the motion of
the plunger in the —a-direction. Solution of this expression for the velocity yields

dz _ V'L,2gB, VIR ]

dr 1+ =zfg @

We have specified a minus sign because we know from the initial conditions and the physical
nature of the problem that « is decreasing.

With the initial condition as specified by (), we integrate (i) to find the time ¢ at which
the plunger is at position = as

T z’ , t L 14 | 4 , .
L( g o \2¢B,) R

Integration of this expression yields

@2—23 (L YV "
(z, — x) + ——Zg = (ZgB,) R t. (9]

We find « as a function of time by solving this quadratic equation. The result is

% Y%
z=-g+ I:(g + zp)* — (2%3) ; r] O

Note that this expression satisfies the initial condition that at # = 0, # = z,. Because the
other root of (h) does not satisfy this condition, it is extraneous.
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Fig. 5.2.14 Dynamic response of system of Fig. 5.2.13.

Alternatively, if we wish to evaluate the time r,, necessary for the airgap to close, we set

« = 0 in (k) and obtain
2B, iR Zo (m
= (2 G142 )

It is clear from this expression how the closing time can be controlled by the damping
constant B, or by the current V/R.

The response of the position as a function of time (I) is plotted in Fig. 5.2.14. For this
purpose (1) is normalized in the following way:

2 1
f=—£+[(£+1)-(2—“'+1)ﬂ , @
£2) T %o Ty T

and we assume the ratio

& —o1.
Ly

Also plotted in Fig. 5.2.14 is the magnitude of the velocity, normalized, by using (i) and (n)

in the form
2 —14
__ldajar] __ [(1 s 2oy =) L] ©
(Lo/2¢B)%VIR £ £ &) ™
We note from the curves of Fig. 5.2.14 that the plunger moves at almost constant velocity
over most of the travel and then accelerates markedly. This results because the magnetic

force (b) increases rapidly as ¢ — 0. A characteristic of this type is desirable in a time-delay
relay to ensure that the contacts will close rapidly to avoid arcing. In any given situation,
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however, the validity of ignoring the acceleration and speed voltage effects in this last region
should be examined.

The curve of velocity in Fig. 5.2.14 indicates that this system behaves much like a linear
statically unstable system (see curve A of Fig. 5.1.7). In some cases it may be desirable to
approximate the equations of motion by a linear set with a static instability. This is especially
true if the nonlinear expressions cannot be integrated analytically.

Although we have confined our attention in this section to discussing
examples in which the damping is mechanical in nature, electrical damping
can also dominate the dynamics. An example in which this is the case was
discussed in Section 5.1.3. There the dynamic behavior of a coil rotating in a
magnetic field was discussed in the limit at which the inductive reactance
could be ignored [condition of (5.1.32)]. This made it possible to reduce
the solution of the nonlinear motions to the problem of integrating (5.1.34),
a procedure that is analogous to integrating (5.2.19).

5.3 DISCUSSION

In this chapter there have been two objectives. For the first, important
types of dynamical behavior have been illustrated in which attention has been
given to the relation of basic electromechanical interactions to mathematical
models. For the second objective we have formed a basis on which to build an
understanding of continuum inferactions. In this regard both the mathe-
matical techniques and physical approximations of this chapter are important
in the chapters that follow.






