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Chapter 1

INTRODUCTION

1.0 INTRODUCTION

The human is first of all a mechanical entity who exists in a mechanical
environment. The day-by-day habits of man are dictated largely by such
considerations as how rapidly he can transport or feed himself. Communica-
tion with his environment is geared to such mechanical operations as the
time required for his eye to scan a page or the speed with which he can speak
or typewrite. Furthermore, his standard of living is very much a function of
his ability to augment human muscle for better transportation and for the
diverse industrial processes needed in an advanced society.

There are two major conclusions to be drawn from these thoughts. First,
the unaided human faculties operate on limited time and size scales. Thus the
mechanical effects of electric and magnetic forces on ponderable bodies were
observed and recorded by the Greeks as early as 500 B.C., and electricity and
magnetism were developed largely as classical sciences in the nineteenth
century, on the basis of unaided human observations. Coulomb enunciated
his inverse square Jaw from measurements taken with an electrical torsion
balance; magnetic forces, as they influenced ponderable objects such as
magnetized needles, were the basis of experiments conducted by Oersted and
Ampeére. These electromechanical experiments constituted the origins of the
modern theories of electricity and magnetism. Faraday and Maxwell unified
the subjects of electrostatics and magnetostatics into a dynamical theory that
predicted phenomena largely beyond the powers of direct human observation.
Thus today we recognize that electromagnetic theory encompasses not only
the electromechanical effects that first suggested the existence of electric and
magnetic fields but also numerous radiation effects, whether they involve
radio frequency waves or x-rays. Nonetheless, when man controls these
phenomena, detects their existence, and puts them to good use, he most often
does so by some type of electromechanical interaction—from the simple act of
turning a switch to the remote operation of a computer with a teletypewriter.
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2 Introduction

The second major conclusion to be drawn from our opening remarks is
that man’s need for motive power for transportation and industrial processes
is satisfied largely by conversion of electric energy to mechanical energy.
Energy in electric form is virtually useless, yet the largest and fastest growing
segment of our economy is the electric utility industry, whose source of
income is the sale of electric energy. This is eloquent testimony to the fact
that electric energy can be converted easily into a variety of forms to aid man
in his mechanical environment. It is remarkable that the same 60-Hz power
line can supply the energy requirements of a rolling mill, a television station,
a digital computer, a subway train, and many other systems and devices
that provide a fuller and more comfortable life. In the vast majority of these
examples electromechanical energy conversion is required because of man’s
basic need for mechanical assistance.

As long as engineers are concerned with making the electrical sciences
serve human needs, they will be involved with electromechanical phenomena.

1.0.1 Scope of Application

Because they serve so many useful functions in everyday situations,
transducers are the most familiar illustration of applied electromechanical
dynamics. These devices are essential to the operation of such diverse
equipment as automatic washing machines, electric typewriters, and power
circuit breakers in which they translate electrical signals into such useful
functions as opening a switch. The switch can be conventional or it can open
a circuit carrying 30,000 A while withstanding 400,000 V 2 msec later. The
telephone receiver and high-fidelity speaker are familiar transducers; less
familiar relatives are the high-power sonar antenna for underwater communi-
cation or the high-fidelity shake tables capable of vibrating an entire space
vehicle in accordance with a recording of rocket noise.

Electromechanical transducers play an essential role in the automatic con-
trol of industrial processes and transportation systems, where the ultimate
goal is to control a mechanical variable such as the thickness of a steel
sheet or the speed of a train. Of course, a transducer can also be made to
translate mechanical motion into an electrical signal. The cartridge of a
phonograph pickup is an example in this category, as are such devices as
telephone transmitters, microphones, accelerometers, tachometers and
dynamic pressure gages.

Not all transducers are constructed to provide mechanical input or output.
The (electro)mechanical filter is an example of a signal-processing device
that takes advantage of the extremely high Q of mechanical circuits at
relatively low frequencies. Filters, delay lines, and logic devices capable of
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performing even above 30 MHz are currently the object of research on
electromechanical effects found in piezoelectric and piezomagnetic materials.

Primary sources of energy are often found in mechanical form in the
kinetic energy of an expanding heated gas and in the potential energy of
water at an elevation. Electromechanics has always played a vital role in
obtaining large amounts of electric power from primary sources. This is
accomplished by using large magnetic field-type devices called rotating
machines. Today a single generator can produce 1000 MW (at a retail price
of 2 cents/kWh this unit produces an income of $20,000/h), and as electric
utility systems grow larger generating units (with attendant problems of an
unprecedented nature) will be needed. This need is illustrated by the fact that
in 1960 the national peak load in the United States was 138,000 MW, whereas
it is expected that in 1980 it will be 493,000 MW, an increase of more than
250 per cent in 20 years.

A large part of this electric power will be used to drive electric motors of
immense variety to do a multitude of useful tasks, from moving the hands of
an electric clock at a fraction of a watt to operating a steel rolling mill at
20 MW,

Because of our need for great amounts of energy, it is in the national
interest to seek ways of producing it more efficiently (to conserve natural
resources) and with less costly equipment (to conserve capital). The magneto-
hydrodynamic generator, which employs an expanding heated gas as the
moving conductor, shows some promise of meeting one or both of these
objectives. Another possibility is the use of the interaction between charged
particles and a flowing, nonconducting gas to achieve electrohydrodynamic
power generation. Versions of this machine are similar in principle to the
Van de Graaff generator which is currently producing extremely high voltages
(20 million volts) for a variety of purposes, including medical treatment,
physical research, and irradiation of various substances.

The efficient and economical conversion of mechanical energy to electrical
form is not only of great interest to the rapidly expanding utility industry
but is also of extreme importance to the space program, in which sources of
electric power must satisfy new engineering requirements imposed by the
environment, with obvious limitations on weight and size and with stringent
requirements on reliability.

Electromechanical devices provide power amplification of signals for
purposes similar to those involving electronic amplifiers; for example, in
control systems in which large amounts of power (up to about 20 MW) must
be produced with high fidelity over a bandwidth from zero to a few Hertz
de rotating machines are used. From this the impression is obtained that
electromechanical amplifiers function only at low frequencies; but there are
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electromechanical devices that provide amplification in the gigacycle-per-
second range—electron beam devices which, like other physical electronic
devices, depend on the small mass of the electron for high-frequency
operation.

In current research concerned with controlled thermonuclear fusion the
plasma can be regarded for some purposes as a highly conducting gas elevated
to such a high temperature that it cannot be contained by solid boundaries.
Thus proposed thermonuclear devices attempt to contain the plasma in a
magnetic bottle. This illustrates another important application of electro-
mechanical dynamics—the orientation, levitation, or confinement of mechan-
ical media. More conventional examples in this category are those that use
magnetic or electric fields to levitate the rotor of a gyroscope, to suspend the
moving member of an accelerometer, or to position a model in a wind tunnel.
Metallurgists employ ac magnetic fields to form a crucible for molten metals
that must be free of contamination, and electric fields are proposed for
orienting cyrogenic propellants in the zero-gravity environment of space.
The use of electric and magnetic fields in shaping malleable metals and
solidifying liquids has just begun.

The propulsion of vehicles represents still another application of electro-
mechanics. Even when the primary source of energy is a rotating shaft from
a reciprocating engine or a turbine, as in a locomotive or ship, the problem of
transmitting and controlling the power to the wheels or propeller is simplified
by converting the power to electrical form with a generator and installing
electric motors to propel the vehicle. An important addition to this class of
vehicles would be the electric car in which energy is stored in batteries and
the wheels are driven by electric motors. Less familiar electromechanical
propulsion schemes are being developed, largely for space applications,
which make use of magnetohydrodynamic or electrohydrodynamic accelera-
tion of matter to provide thrust. In this regard the particle accelerators
required in high-energy physics research should be recognized as electro-
mechanical devices.

1.0.2 Objectives

It should be apparent from the discussion of the preceding section that
electromechanical dynamics covers a broad range of applications, many of
which represent highly developed technologies, whereas others are the
subject of research or development. In either case a single application could
be the subject of an entire book and in many cases books already exist.
Our objective here is to lay a cohesive and unified foundation by treating
those concepts and techniques that are fundamental to an understanding of a
wide range of electromechanical phenomena. As a consequence, we do not
dwell at length on any area of application.
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With our basic unified approach it is often difficult to distinguish between
those aspects of electromechanics that may be considered research in the
scientific sense and those that represent engineering applications. For example,
there are many practical uses for a magnetohydrodynamic flow meter, yet the
type of theoretical model needed in its study is also pertinent to an under-
standing of the origin of the earth’s magnetic field as it is generated by motion
of the molten interior of the earth. In fact, a study of magnetohydrodynamics
involves models that are germane to an engineering problem such as the
levitation of a molten metal, an applied physics problem such as plasma
confinement, or a problem of astrophysical interest such as the dynamics of
stellar structures.

The subject of electromechanical dynamics, as we approach it in the
following chapters, provides a foundation for a range of interests that extends
from the purely scientific to engineering applications and from interactions
that occur in systems that can be represented by lumped parameters to those
that need continuum representations.

The selection of appropriate mathematical models for electromechanical
systems is a process that requires the maturity and insight that can result
only from experience with electromechanical phenomena. Of course, the
model chosen depends on the nature of the system being studied and the
accuracy required. We shall not try to develop a formalism for the largely
intuitive process of modeling but rather shall study representative systems
with a variety of mathematical models to illustrate the principal phenomena
that result from electromechanical interactions. In the course of this study
the student should develop facility with the basic models and the mathematical
tools used in their analysis and should acquire the insight into the interrelations
among the physical phenomena that is necessary for him to be able to
develop mathematical models on his own.

1.1 ELECTROMAGNETIC THEORY

The mathematical description of the electrical part of any electromechan-
ical system is based on electromagnetic theory. We therefore assume that the
reader is familiar with the basic theory and in particular with magnetostatics
and electrostatics.

The subject of electromechanics necessarily includes the behavior of
electromagnetic fields in the presence of moving media. In this introductory
chapter it therefore seems appropriate to review the laws of electricity and
magnetism and to include a discussion of those extensions of the theory
required to account for the effects of moving media. This review, however,
would represent a digression from our main purpose—the study of electro-
mechanical dynamics. Consequently a discussion is presented in Appendix B
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for completeness. We can get well into the study of electromechanical
dynamics with a few simple extensions of magnetostatic and electrostatic
theory. Therefore we cite the electromagnetic equations that form the basis
for our study and start to use them immediately. The equations can be
accepted as postulates, justified by their relation to ordinary magnetostatic
and electrostatic theory and by the fact that they give adequate representation
of the electromechanical systems we shall study. As our work progresses
from the lumped-parameter models in Chapters 2 to 5 to situations requiring
continuum models, the physical significance of the field equations in electro-
mechanical interactions will be more apparent. It is at that point that a
meaningful discussion can be made .of the most significant effects of moving
media on electromagnetic fields, and the reader may find that a study of
Appendix B will be most helpful at that time.

1.1.1 Differential Equations

The symbols and units of electromagnetic quantities are defined in Table
1.1. At the outset, we consider two limiting cases of the electromagnetic field
equations, which define the dynamics of quasi-static (almost static) magnetic
and electric field systems. In spite of the restrictions implied by these limits,
our models are adequate for virtually all electromechanical systems of
technical importance. A discussion of the quasi-static approximations, which
shows how both limiting cases come from the more general electromagnetic
theory, is given in Appendix B.

1.1.1a Magnetic Field Systems

The electromagnetic field and source quantities in a magnetic field system
are related by the following partial differential equations:

VxH=1, (1.1.1)
V-B=0, (1.1.2)
V.J, =0, (1.1.3)

B = u,(H + M), (1.1.4)

VxE=_28 (1.1.5)

ot

Thus in our magnetic field system, even with time-varying sources and
deforming media, the magnetic field intensity H and flux density B are
determined as if the system were magnetostatic. Then the electric field
intensity E is found from the resulting flux density by using (1.1.5). This is
the origin of the term quasi-static magnetic field system. In addition to these
equations, we need constituent relations that describe how the physical
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Table 1.1 Symbols and Units of Electromagnetic Quantities

Symbol Field Variable Name MKS Rationalized Units
H Magnetic field intensity A/m
J; Free current density A/m2
K, Free surface current density A/m
B Magnetic flux density Wb/m?
M Magnetization density A/m
E Electric field intensity V/m
D Electric displacement C/m?
ps Free charge density Cjm?
o; Free surface charge density C/m?
P Polarization density C/m?
F Force density N/m3
o Permeability of free space 4 x 1077 H/m
N Permittivity of free space 8.854 x 10712 F/m

properties of the materials affect the field and source quantities. The magneti-
zation density M is introduced to account for the effects of magnetizable
materials. The most common constitutive law for M takes the form

M =y, H, (1.1.6)

where y,, is the magnetic susceptibility. An alternative way of expressing this
relation is to define the permeability g = u,(1 + yx,,), where g, is the perme-
ability of free space

o = 47 x 1077 H/m, (1.1.7)
in which case it follows from (1.1.4) that the constitutive law of (1.1.6) can
also be written as

B = yH. (1.1.8)

We shall make considerable use of this simple linear model for magnetizable
materials.

Free currents in a stationary material most often arise from conduction
induced by the electric field according to Ohm’s law:

J, = oF, (1.1.9)

where ¢ is the conductivity (mhos/m). A similar constitutive law relates the
surface current density K, to the electric field intensity E, tangential to the
surface

K, =oE, (1.1.10)

where o, is the surface conductivity (mhos). These constitutive laws for the
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conduction process represent macroscopic models for the migration of
charges in materials under the influence of an electric field.

Ideally, quasi-static magnetic field systems are characterized by perfectly
conducting (¢ — o) current loops, in which case static conditions (9/0t = 0)
result in zero electric field intensity. All practical conductors (except super-
conductors) have finite conductivity; consequently, a system is modeled as a
magnetic field system when the electrical conductivity ¢ for a current loop is
high enough to cause only small departures from the ideal. Thus in Chapter 2
iron structures with coils of wire wound around them are represented as
ideal (electrically lossless) magnetic field systems in which the winding
resistance is included as an external resistance in series with the winding
terminals.

1.1.1b  Electric Field Systems

The electromagnetic field and source quantities in an electric field system
are related by the following partial differential equations:

VxE=0, (1.1.11)
V-D=p, (1.1.12)
D = ¢E + P, (1.1.13)
V-], = —?aitf, (1.1.14)
VxH=1J,+ %l—t). (1.1.15)

Equations 1.1.11 to 1.1.13 describe the fields in an electrostatic system.
Hence in our electric field system, even with time-varying sources and
geometry, the electric field intensity E and electric displacement D are
determined as though the system were static. Then the current density J, is
determined by (1.1.14), which expresses conservation of charge. In turn, the
magnetic field intensity H (if it is of interest) is found from (1.1.15). It is
because of the basically electrostatic relationship between the electric field
intensity and the free charge density that these equations define the dynamics
of a quasi-static electric field system.

Ideally, a quasi-static electric field system is characterized by a set of
perfectly conducting (¢ — o0) equipotentials separated by perfectly insulating
(o — 0) dielectrics, in which case static conditions (d/0¢t = 0) result in no
current density J,, hence no magnetic field intensity H. Of course, real di-
electrics have finite conductivity; thus a system is representable as an electric
field system when the electrical conductivity is low enough to cause only a
small departure from the ideal. In terms of the lumped-parameter representa-
tion to be introduced in Chapter 2, an electric field system is modeled as an
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ideal circuit consisting of equipotentials separated by perfect insulators with
resistances connected externally between terminals to account for the finite
conductivity of the dielectric.

In this book the constituent relation for the conduction process usually
takes the form of (1.1.9) or (1.1.10). In electric field systems, however, there
can be appreciable net charge density, and we must be careful to distinguish
between a net flow of charge, which occurs in electrically neutral conductors
such as metals, and a flow of net charge, which occurs in situations such as the
drift of negative charge in a vacuum tube. To allow for this differentiation
when it is needed a more general form of the conduction constituent relation
is used:

Iy = (pprprs + pr-0)E, (1.1.16)

where p~ and p,- are the densities of the two species of moving charges
and u+ and p- are the respective mobilities in the field intensity E. When the
charge densities and mobilities are constants, (1.1.16) reduces to (1.1.9).
In some electric field systems p,~ and p,~ are not constant, and (1.1.16)
allows us to include the variable charge densities in our conduction model.
As questions appear in this regard, it will be helpful to refer to Sections
B.1.2 and B.3.3.
To account for the polarization density P of a dielectric material, we most
often use the linear relation
P = ¢.E, (1.1.17)

where ¢, is the permittivity of free space

€ = 8.854 x 1072 F/m (1.1.18)

and g, is the electric susceptibility. In terms of the material permittivity,
€ = (1 + g,) (1.1.17) can also be written

D = ¢E, (1.1.19)
where (1.1.13) has been used.

1.1.2 Integral Equations

It is often necessary to have the electromagnetic equations in integral form;
for example, boundary conditions are found from integral equations and
terminal quantities—voltage and current—are found by integrating field
quantities.

In stationary systems the contours, surfaces, and volumes are all fixed in
space and the transition from differential to integral equations is simply a
matter of using the appropriate integral theorems. In electromechanical
dynamics we need integral equations for contours, surfaces, and volumes
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that are deforming, and the resulting integral equations are different from
those found in stationary systems. The formalism of integrating differential
equations in the presence of motion is presented in Section B.4. The results
are presented here essentially as postulates.

1.1.2a Magnetic Field Systems
The integral forms of (1.1.1) to (1.1.3) and (1.1.5) are

§H-dl =fJ,-nda, (1.1.20)
c S
($B-nda =0, (1.1.21)
Js
§J,-nda =0, (1.1.22)
8
d
§E’-dl= ——fB-nda. (1.1.23)
c dt Js

The contours C, surfaces S, and unit normal vectors n are defined in the
conventional manner, as shown in Fig. 1.1.1. The surfaces of integration S

(b)

Fig. 1.1.1 () Surface S enclosed by the contour C, showing the right-handed relationship
between the normal vector n and the line element d1; (b) surface S enclosing a volume V.
The normal vector n is directed outward, as shown.
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for (1.1.21) and (1.1.22) enclose a volume V, whereas those of (1.1.20) and
(1.1.23) are enclosed by a contour C.

Equations 1.1.20 to 1.1.23 are valid even when the contours and surfaces
are deforming, as demonstrated in Appendix B. Note that in (1.1.23) the
electric field intensity is written as E’, and it is this value that would be
measured by an observer attached to the deforming contour at the point in
question. As demonstrated in Section B.4.1, whenE’ = E x (v x B), wherev
is the local velocity of the contour, (1.1.23) results from (1.1.5). More is said
about the relation between quantities measured by observers in relative
motion in Chapter 6.

In describing magnetic field systems, in addition to (1.1.20) to (1.1.23),
we need constituent relations such as (1.1.8) and (1.1.9). We must keep in
mind that these constituent relations are defined for stationary media. When
there is motion, these equations still hold, but only for an observer moving
with the medium. Thus we know that a perfect conductor can support no
electric field intensity E’. When the contour of (1.1.23) is fixed to a perfect
conductor, the contribution to the contour integral from that portion in the
conductor is zero, whether the conductor is moving or not. This is because
E’ is the quantity measured by an observer moving with the contour
(conductor).

1.1.2b  Electric Field Systems
The integral forms of (1.1.11) to (1.1.15) are

ffE -dl =0, (1.1.24)
SED-nda =fp,dV, (1.1.25)
S V

, d
ff.lf-nda = - —fpde (1.1.26)
s dt Jv
36H’-d1=f.1;-nda+ifn-nda. (1.1.27)

c s dt Js

These equations are valid for moving and deforming contours C, surfaces S,
and volumes V (see Fig. 1.1.1).

Equations 1.1.24 and 1.1.25 are the same as those used to find E and D
in an electrostatics problem. The current density and magnetic field intensity
have been written in (1.1.26) and (1.1.27) as J; and H' to indicate that they
are the values that would be measured by an observer moving with the
contour or surface at the point in question. It is shown in Section B.4.2 that
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(1.1.26) and (1.1.27) result from integrating (1.1.14) and (1.1.15) when
J,=J,—pvand H = H— v x D, where v is the local velocity of the
contour or surface.

1.1.3 Electromagnetic Forces
The force experienced by a test charge ¢ moving with velocity v is
f=gE 4 qvxB. (1.1.28)

This is referred to as the Lorentz force and provides a definition of the fields
E and B. For this case of a single moving charge the quantity gv constitutes a
current. Hence the first term in (1.1.28) is the force on a static charge, whereas
the second is the force on a current.

In a continuum theory in which we are concerned with a charge density p,
and a current density J, forces are stated in terms of a force density

F=pE+J xB. (1.1.29)

Free charge and free current densities are used in (1.1.29) to make it clear
that this expression does not account for forces due to polarization and
magnetization. The terms in (1.1.29) provide a continuum representation of
the terms in (1.1.28). The averaging process required to relate the force
density of (1.1.29) to the Lorentz force is discussed in Sections B.1.1 and
B.1.3. For our present purposes we accept these relations as equivalent
and reserve discussion of the conditions under which this assumption is
valid for Chapter 8.

In the class of problems undertaken in this book one or the other of the
force densities in (1.1.29) is negligible. Hence in the magnetic field systems
to be considered the force density is

F=1J,xB, (1.1.30)
whereas in the electric field systems
F = pE. (1.1.31)

In any particular example the validity of these approximations can be tested
after the analysis has been completed by evaluating the force that has been
ignored and comparing it with the force used in the model.

1.2 DISCUSSION

The equations summarized in Table 1.2 are those needed to describe the
electrical side of electromechanical dynamics as presented here. We find that
they are of far-reaching physical significance. Nonetheless, they are approxi-
mate and their regions of validity should be understood. Furthermore, their
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Table 1.2 Summary of Quasi-Static Electromagnetic Equations

Differential Equations Integral Equations
Magnetic field system VxH=J, (1.1.1) § H.dl = f J;-nda (1.1,20)
! S
V:B=0 (1.1.2) §B-nda=0 (L.1.2D)
s
V-J,=0 (1.1.3) §>‘Jf-nda=0 (1.1.22)
)
B d
VXE=—— (1.1.5) E'+dl=—— | B-nda (1.1.23)
ot o dt Jg
where E'=E +v X B
Electric field system VXE=0 (1.1.11) § E.-dl=0 (1.1.29)
c
V.- D=p, (1.1.12) §D ‘nda = f prdV (1.1.25)
8 ¢
opy ' d
V= —H 111 ‘hda = — — |14 A,
I o (1L.1.14) £J, nda er;rp,d (1.1.26)
oD ’ d
VxH=J.+— (1.115) H.dl= | J,-nda+4 —[D-nda (1.1.27)
ot Jo E dt Jg

where J; =J;— ps¥
H=H~-vxD
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relation to more general electromagnetic theory should also be known. Both
topics are discussed in Appendix B. A study of that material may be more
appropriate as questions are raised in the course of the developments to
follow.

With the equations in Table 1.2 accepted on a postulational basis, we
can—and should—proceed forthwith to study electromechanical dynamics.





