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The electromagnetic field laws, derived thus far from the 
empirically determined Coulomb-Lorentz forces, are correct 
on the time scales of our own physical experiences. However, 
just as Newton's force law must be corrected for material 
speeds approaching that of light, the field laws must be cor­
rected when fast time variations are on the order of the time it 
takes light to travel over the length of a system. Unlike the 
abstractness of relativistic mechanics, the complete elec­
trodynamic equations describe a familiar phenomenon-
propagation of electromagnetic waves. Throughout the rest 
of this text, we will examine when appropriate the low-
frequency limits to justify the past quasi-static assumptions. 

7-1 MAXWELL'S EQUATIONS 

7-1-1 Displacement Current Correction to Ampere's Law 

In the historical development of electromagnetic field 
theory through the nineteenth century, charge and its electric 
field were studied separately from currents and their 
magnetic fields. Until Faraday showed that a time varying 
magnetic field generates an electric field, it was thought that 
the electric and magnetic fields were distinct and uncoupled. 
Faraday believed in the duality that a time varying electric 
field should also generate a magnetic field, but he was not 
able to prove this supposition. 

It remained for James Clerk Maxwell to show that Fara­
day's hypothesis was correct and that without this correction 
Ampere's law and conservation of charge were inconsistent: 

VxH=Jf->V - J=0 (1) 

V Jf+=Pf=0 (2)at 

for if we take the divergence of Ampere's law in (1), the 
current density must have zero divergence because the 
divergence of the curl of a vector is always zero. This result 
contradicts (2) if a time varying charge is present. Maxwell 
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realized that adding the displacement current on the right-
hand side of Ampere's law would satisfy charge conservation, 
because of Gauss's law relating D to pf (V - D= pf). 

This simple correction has far-reaching consequences, 
because we will be able to show the existence of electro­
magnetic waves that travel at the speed of light c, thus proving 
that light is an electromagnetic wave. Because of the 
significance of Maxwell's correction, the complete set of 
coupled electromagnetic field laws are called Maxwell's 
equations: 

Faraday's Law 

8BC d 
VxE= > E - dl= -- B - dS (3)

at fL dsis 

Ampere's law with Maxwell's displacement current correction 

VxH=Jf+ D-:> H-dl= fJf-dS+-d D-dS (4)
at fLdt f 

Gauss's laws 

V- D=pf > D.dS= LpfdV (5) 

V- B=0 B -dS =0 (6) 

Conservation of charge 

V- J+Lf=O Jr -dS+ d pfdV=0 (7) 

As we have justified, (7) is derived from the divergence of (4) 
using (5). 

Note that (6) is not independent of (3) for if we take the 
divergence of Faraday's law, V - B could at most be a time-
independent function. Since we assume that at some point in 
time B= 0, this function must be zero. 

The symmetry in Maxwell's equations would be complete if 
a magnetic charge density appeared on the right-hand side of 
Gauss's law in (6) with an associated magnetic current due to 
the flow of magnetic charge appearing on the right-hand side 
of (3). Thus far, no one has found a magnetic charge or 
current, although many people are actively looking. 
Throughout this text we accept (3)-(7) keeping in mind that if 
magnetic charge is discovered, we must modify (3) and (6) 
and add an equation like (7) for conservation of magnetic 
charge. 

M = 
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7-1-2 Circuit Theory as a Quasi-static Approximation 

Circuit theory assumes that the electric and magnetic fields 
are highly localized within the circuit elements. Although the 
displacement current is dominant within a capacitor, it is 
negligible outside so that Ampere's law can neglect time vari­
ations of D making the current divergence-free. Then we 
obtain Kirchoff's current law that the algebraic sum of all 
currents flowing into (or out of) a node is zero: 

V-J=0 fJ.dS=0*IiA=0 (8) 

Similarly, time varying magnetic flux that is dominant 
within inductors and transformers is assumed negligible 
outside so that the electric field is curl free. We then have 
Kirchoff's voltage law that the algebraic sum of voltage drops 
(or rises) around any closed loop in a circuit is zero: 

VxE=0*E=-VV* E-dl=0Iv=0 (9) 

7-2 CONSERVATION OF ENERGY 

7-2-1 Poynting's Theorem 

We expand the vector quantity 

V -(Ex H)=H -(VxE)-E - (Vx H) 

---- -E -j-H . E - (1)at at 

where we change the curl terms using Faraday's and 
Ampere's laws. 

For linear homogeneous media, including free space, the 
constitutive laws are 

D=eE, B=IH (2) 

so that (1) can be rewritten as 

a8 2+1 2
V - (ExH)+a(2eE +2H)-E -Jf (3)at 

which is known as Poynting's theorem. We integrate (3) over a 
closed volume, using the divergence theorem to convert the 
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first term to a surface integral: 

(ExH)- dS+ f ( ,E 2 + LH ) dV vE -JdV (4) 

V (ExH)dV 
V 

We recognize the time derivative in (4) as operating on the 
electric and magnetic energy densities, which suggests the 
interpretation of (4) as 

dW 
P..,+-= --Pd (5)

dt 

where P, is the total electromagnetic power flowing out of 
the volume with density 

S = E X H watts/M2 [kg-s~ 3 ] (6) 

where S is called the Poynting vector, W is the electromag­
netic stored energy, and Pd is the power dissipated or 
generated: 

P0 m= (EXH)-dS= S-dS 

W= [eE2+tIH 2 ] dV (7) 

Pd = E-J dV 

If E and J are in the same direction as in an Ohmic conduc­
tor (E - Jf = oE 2), then Pd is positive, representing power dis­
sipation since the right-hand side of (5) is negative. A source 
that supplies power to the volume has E and Jf in opposite 
directions so that Pd is negative. 

7-2-2 A Lossy Capacitor 

Poynting's theorem offers a different and to some a 
paradoxical explanation of power flow to circuit elements. 
Consider the cylindrical lossy capacitor excited by a time 
varying voltage source in Figure 7-1. The terminal current 
has both Ohmic and displacement current contributions: 

. eA dv Av dv v eA
d=---+--=C-+ C=-- R=- (8) 

-

From a circuit theory point of view we would say that the 
power flows from the terminal wires, being dissipated in the 

M 

I 
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= C ,+ 

Area A = ira2 

a 

H 0 I 

Figure 7-1 The power delivered to a lossy cylindrical capacitor vi is partly dissipated by 
the Ohmic conduction and partly stored in the electric field. This power can also be 
thought to flow-in radially from the surrounding electric and magnetic fields via the 
Poynting vector S = E x H. 

resistance and stored as electrical energy in the capacitor: 

vR dt 

We obtain the same results from a field's viewpoint using 
Poynting's theorem. Neglecting fringing, the electric field is 
simply 

E,= v/l (10) 

while the magnetic field at the outside surface of the resistor 

is generated by the conduction and displacement currents: 

r r ( 8E, orAv a dv 
f-dl= f J .E- dS >Ho 21ra =---v+-eA-v= i (11)

at I dt 

where we recognize the right-hand side as the terminal cur­
rent in (8), 

H, = i/(2ra) (12) 

The power flow through the surface at r = a surrounding the 
resistor is then radially inward, 

(E x H) -dS= - v i ado dz = -vi (13)
is 2ira 

and equals the familiar circuit power formula. The minus 
sign arises because the left-hand side of (13) is the power out 
of the volume as the surface area element dS points radially 
outwards. From the field point of view, power flows into the 
lossy capacitor from the electric and magnetic fields outside 
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the resistor via the Poynting vector. Whether the power is 
thought to flow along the terminal wires or from the sur­
rounding fields is a matter of convenience as the results are 
identical. The presence of the electric and magnetic fields are 
directly due to the voltage and current. It is impossible to have 
the fields without the related circuit variables. 

7-2-3 Power in Electric Circuits 

We saw in (13) that the flux of S entering the surface 
surrounding a circuit element just equals vi. We can show this 
for the general network with N terminals in Figure 7-2 using 
the quasi-static field laws that describe networks outside the 
circuit elements: 

VxE= >E=-VV 

V XH =Jf V -J= (14) 

We then can rewrite the electromagnetic power into a surface 
as 

Pin=- EXH -dS 
s 

=- V-(ExH)dV 

= V-(VVXH)dV (15) 

V3
 
V2
 

VN --
12 V2IN-1 

1 

VN N VH= E x H I 

Figure 7-2 The circuit power into an N terminal network E.. I V,, equals the 
electromagnetic power flow into the surface surrounding the network, -fs E x H - dS. 
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where the minus is introduced because we want the power in 
and we use the divergence theorem to convert the surface 
integral to a volume integral. We expand the divergence term 
as 

0 

V - (V V x H)= H - (V x V V)-V V - (V x H) 

-Jf - VV = -V - (JV) (16) 

where we use (14). 
Substituting (16) into (15) yields 

Pin=- V -(JfV)dV 

=-JfV-dS (17) 

where we again use the divergence theorem. On the surface 
S, the potential just equals the voltages on each terminal wire 
allowing V to be brought outside the surface integral: 

N 

Pin= I -V, Jf - dS 
k=I s 

N 

= Y VAIh (18)
k=I 

where we recognize the remaining surface integral as just 
being the negative (remember dS points outward) of each 
terminal current flowing into the volume. This formula is 
usually given as a postulate along with Kirchoff's laws in most 
circuit theory courses. Their correctness follows from the 
quasi-static field laws that are only an approximation to more 
general phenomena which we continue to explore. 

7-2-4 The Complex Poynting's Theorem 

For many situations the electric and magnetic fields vary 
sinusoidally with time: 

E(r, t) = Re [E(r) e"'] 
jWI (19)

H(r, t) = Re [H(r) e"''] 

where the caret is used to indicate a complex amplitude that 
can vary with position r. The instantaneous power density is 
obtained by taking the cross product of E and H. However, it 
is often useful to calculate the time-average power density 
<S>, where we can avoid the lengthy algebraic and trig­
onometric manipulations in expanding the real parts in (19). 
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A simple rule for the time average of products is obtained by 
realizing that the real part of a complex number is equal to 
one half the sum of the complex number and its conjugate 
(denoted by a superscript asterisk). The power density is then 

S(r, t) = jE(r, t) X H(r, t) 

= [E(r) e""t + E*(r) e-""]x [11(r) e'' + H*(r) e "'I 

= a[E(r) X H(r) e2' + E*(r) X H(r) + E(r) XN*(r) 
+E*(r) X N*(r) e -2l"] (20) 

The time average of (20) is then 

<5> = i[i*(r) X 11(r) + E(r) X H*(r)] 

= b Re [E(r) X H*(r)] 

iRe [i*(r)XH(r)] (21) 

as the complex exponential terms ei*"2" average to zero over a 
period T = 2ir/w and we again realized that the first bracketed 
term on the right-hand side of (21) was the sum of a complex 
function and its conjugate. 

Motivated by (21) we define the complex Poynting vector as 

$ = E(r) X H*(r) (22) 

whose real part is just the time-average power density. 
We can now derive a complex form of Poynting's theorem 

by rewriting Maxwell's equations for sinusoidal time varia­
tions as 

VX E(r) = -japH(r) 

V X 1(r) = J1 (r) +jwe (r) (23) 
V 9(r)= f(r)Ie 

V BE(r)= 0 

and expanding the product 

VS$= V - [E(r) x A*(r)] = -[H*(r) - V x E(r) - E(r) Vx H*(r)] 

=f[-jaiwt IH(r) 2+jwe I (r)l 2] -E(r) -Jf(r) (24) 

which can be rewritten as 

V -$+2jw[<w.>-<w,>]= -Pd (25) 

where 

<Wn> =4LIH(r)l 2 

<w,>=46E(r)2 (26) 

Pd = lt(t) - j*(r) 
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We note that <w,,> and <w,> are the time-average magnetic 
and electric energy densities and that the complex Poynting's 
theorem depends on their difference rather than their sum. 

7-3 TRANSVERSE ELECTROMAGNETIC WAVES 

7-3-1 Plane Waves 

Let us try to find solutions to Maxwell's equations that only 
depend on the z coordinate and time in linear media with 
permittivity e and permeability M. In regions where there are 
no sources so that pf= 0, J1 =0, Maxwell's equations then 
reduce to 

aE, aE.. aH 
_iX+-, = -A-- (1)az az at 

8H, 3H. 8E
'i+ -- i,= 6-- (2)

az az 8t 

aE. 
- = (3) 

aH 
- - = (4)
Oz 

These relations tell us that at best E, and H, are constant in 
time and space. Because they are uncoupled, in the absence 
of sources we take them to be zero. By separating vector 
components in (1) and (2) we see that E is coupled to H, and 
E, is coupled to H: 

aE aH, aE, aH. 
az 

. 

at Oz at 

aH, aE. 8H. aE, (5) 
=-e-, -- =ez at az at 

forming two sets of independent equations. Each solution has 
perpendicular electric and magnetic fields. The power flow 
S= E X H for each solution is z directed also being perpendic­
ular to E and H. Since the fields and power flow are mutually 
perpendicular, such solutions are called transverse elec­
tromagnetic waves (TEM). They are waves because if we take 
8/az of the upper equations and a/at of the lower equations 
and solve for the electric fields, we obtain one-dimensional 
wave equations: 

82E. 1 a2E. a2E, 1 a2E,
 
aZ2 C2 ' C2 at2 (6)
at2 z 
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where c is the speed of the wave, 

1 1 3x108 

c =-- m/sec (7) 

In free space, where e, = 1 and A, = 1, this quantity equals the 
speed of light in vacuum which demonstrated that light is a 
transverse electromagnetic wave. If we similarly take alt of 
the upper and a/Oz of the lower equations in (5), we obtain 
wave equations in the magnetic fields: 

a2 H, 1 a2H, a2HX 1 a2H. 
2 2at (8)

az 2 C2 2' 

7-3-2 The Wave Equation 

(a) Solutions 
These equations arise in many physical systems, so their 

solutions are well known. Working with the E and H, equa­
tions, the solutions are 

E.(z, t)=E,(t- z/c)+E_(t +z/c)(9 
H,(z, t) = H+(t- z/c) + H-(t + z/c) 

where the functions E+, E_, H+, and H_ depend on initial 
conditions in time and boundary conditions in space. These 
solutions can be easily verified by defining the arguments a 
and P with their resulting partial derivatives as 

Z aa a 
c at az c 

(10) 

P=t+-Z=>a=1, -=-I 
c at az C 

and realizing that the first partial derivatives of E.(z, t) are 

aE. dE+ aa dE. ap 
at da at dp at 

dE+ dE­
det dO 

aE_ dE+aa dE-a(p 
az da az d1 az 

1_ dE+ dE 
c da dp 
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The second derivatives are then 

a2E. d2E, 8a d2 E- ap 
at2 at 

d2E d'E­

I 2E. 1 d2E+Oa d2E-.2 (12)aE7z dg9Ez
da2 aZ +- L 

1(d2E+ d2 E.. 1 a2E. 
\7 dp -C2 at2 

which satisfie's the wave equation of (6). Similar operations 
apply for H,, E,, and H.. 

In (9), the pair H+ and E+ as well as the pair H- and E- are 
not independent, as can be seen by substituting the solutions 
of (9) back into (5) and using (11): 

8E= H= I dE+dE) dH dH (13) 
az at C da \dad 

The functions of a and P must separately be equal, 

d-(E -scH+)=0, -(E-+pcH-)=0 (14)
da dp 

which requires that 

E+=ipcH+=jEH+, E- =-scH-=- H- (15) 

where we use (7). Since / has units of Ohms, this quantity 
is known as the wave impedance ?1, 

n = j 120rjF (16) 

and has value 120ir 377 ohm in free space (I,= 1, E,= 1). 
The power flux density in TEM waves is 

S=ExH = E+(t-z/c)+E-(t+z/c)]!ix 

X [H+(t- z/c) + H-(t + z/c)]i, 

=(E+H+ + E-H- + E-H+ + E+H-)i (17) 

Using (15) and (16) this result can be written as 

1 2)
S.= (2+-E-(18)

n1 
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where the last two cross terms in (17) cancel because of the 
minus sign relating E_ to H_ in (15). For TEM waves the total 
power flux density is due to the difference in power densities 
between the squares of the positively z-directed and nega­
tively z-directed waves. 

(b) 	 Properties 
The solutions of (9) are propagating waves at speed c. To 

see this, let us examine E+(t - z/c) and consider the case where 
at z = 0, E+(t) is the staircase pulse shown in Figure 7-3a. In 
Figure 7-3b we replace the argument t by t -z/c. As long as 
the function E. is plotted versus its argument, no matter what 
its argument is, the plot remains unchanged. However, in 
Figure 7-3c the function E+(t -z/c) is plotted versus t result­
ing in the pulse being translated in time by an amount z/c. To 
help in plotting this translated function, we use the following 
logic: 

(i) 	 The pulse jumps to amplitude Eo when the argument is 
zero. When the argument is t - z/c, this occurs for t = z/c. 

(ii) 	 The pulse jumps to amplitude 2Eo when the argument 
is T. When the argument is t - z/c, this occurs for t= 
T +z/c. 

(iii) 	 The pulse returns to zero when the argument is 2 T. For 
the argument t -z/c, we have t =2 T+z/c. 

E, (t), Z=0 	 E (Q-
C 

) 

2E,2E0 

T 	 2T T 2T ­
C 

(a) 	 (b) 

E, (t-- ) 	 E,(t-2) 
C 	 C 

2EO 	 2EO ­

- '-+T '-+2T ' c(t-2T)ct-T) ct Z 
C 	 C C 

(c) 	 (d) 

Figure 7-3 (a) E+(t) at z =0 is a staircase pulse. (b) E,(O) always has the same shape as 
(a) when plotte-I versus 0, no matter what 0 is. Here 46 = t - z/c. (c) When plotted versus 
t, the pulse is translated in time where z must be positive to keep t positive. (d) When 
plotted versus z, it is translated and inverted. The pulse propagates at speed c in the 
positive z direction. 
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Note that z can only be positive as causality imposes the 
condition that time can only be increasing. The response at 
any positive position z to an initial E, pulse imposed at z = 0 
has the same shape in time but occurs at a time z/c later. The 
pulse travels the distance z at the speed c. This is why the 
function E,(t - z/c) is called a positively traveling wave. 

In Figure 7-3d we plot the same function versus z. Its 
appearance is inverted as that part of the pulse generated first 
(step of amplitude EO) will reach any positive position z first. 
The second step of amplitude 2EO has not traveled as far 
since it was generated a time T later. To help in plotting, we 
use the same criterion on the argument as used in the plot 
versus time, only we solve for z. The important rule we use is 
that as long as the argument of a function remains constant, 
the value of the function is unchanged, no matter how the 
individual terms in the argument change. 

Thus, as long as 

t-z/c = const (19) 

E+(t - z/c) is unchanged. As time increases, so must z to satisfy 
(19) at the rate 

z dz 
t--= const>-= c (20) 

c dt 

to keep the E, function constant. 
For similar reasons E_(t +z/c) represents a traveling wave at 

the speed c in the negative z direction as an observer must 
move to keep the argument t +z/c constant at speed: 

z dz 
t +-= const>-= -c (21) 

c dt 

as demonstrated for the same staircase pulse in Figure 7-4. 
Note in Figure 7-4d that the pulse is not inverted when 
plotted versus z as it was for the positively traveling wave, 
because that part of the pulse generated first (step of ampli­
tude EO) reaches the maximum distance but in the negative z 
direction. These differences between the positively and nega­
tively traveling waves are functionally due to the difference in 
signs in the arguments (t -z/c) and (t +z/c). 

7-3-3 Sources of Plane Waves 

These solutions are called plane waves because at any 
constant z plane the fields are constant and do not vary with 
the x and y coordinates. 

The idealized source of a plane wave is a time varying 
current sheet of infinite extent that we take to be x directed, 
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E_.(t),z= 0 E (t+ ) 

2ED2E0 

EO Eo 

T 2T t T 2T 
C 

(a) (b) 

E (tC+ 

2EO 2EO 

-- +T - -+2T t -Ct -c(t-T) -c(t-2T z 

(C) (d) 

Figure 7-4 (a) E_(t) at z =0 is a staircase pulse. (b) E-(4) always has the same form of 
(a) when plotted versus 4. Here 46 = t + z/c. (c) When plotted versus t, the pulse is 
translated in time where z must be negative to keep t positive. (d) When plotted versus z, 
it is translated but not inverted. 

as shown in Figure 7-5. From the boundary condition on the 
discontinuity of tangential H, we find that the x-directed 
current sheet gives rise to a y-directed magnetic field: 

H,(z =0+) - H,(z = 0)= -K.(t) (22) 

In general, a uniform current sheet gives rise to a magnetic 
field perpendicular to the direction of current flow but in the 
plane of the sheet. Thus to generate an x-directed magnetic 
field, a y-directed surface current is required. 

Since there are no other sources, the waves must travel 
away from the sheet so that the solutions on each side of the 
sheet are of the form 

H t H.(t -z/c) E t H+(t -zc), z>0 

H-(t+zc) -qH-(t+z/c), z <0 
(23) 

For z >0, the waves propagate only in the positive z direction. 
In the absence of any other sources or boundaries, there can 
be no negatively traveling waves in this region. Similarly for 
z <0, we only have waves propagating in the -z direction. In 
addition to the boundary condition of (22), the tangential 
component of E must be continuous across the sheet at z =0 

H+(t) - H() = -K() H.(t)=-H-(t)= (24)
71[H+(t)+H-(t)]=0 } 2 



--- 

502 Electrodynamics-Fieldsand Waves 

x 

Z 

K,,(t) 

H H, 

E (z,t)= K, (t + 1)
E (, 2 

EK(z ) -~-S=_ (t - tS *­ K,(t+ )
C

Hy (z,t) Hy (z, t) _ ­2 

K, (t) 
(a) 

2K 

Ko 

t E,,(z, t) 
T 2T 

-Ct Ct 

,Hy (z, t) 

-Ko 

-Ct 

-- K0 

SS2 (z, t) = ExHy 

_7K02 

-Ct -4 po 
Ct 

L 
-- K2 

(b) 

Figure 7-5 (a) A linearly polarized plane wave is generated by an infinite current sheet. 
The electric field is in the direction opposite to the current on either side of the sheet. 
The magnetic field is perpendicular to the current but in the plane of the current sheet 
and in opposite directions as given by the right-hand rule on either side of the sheet. The 
power flowS is thus perpendicular to the current and to the sheet. (b) The field solutions 
for t >2 T if the current source is a staircase pulse in time. 
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so that the electric and magnetic fields have the same shape as 
the current. Because the time and space shape of the fields 
remains unchanged as the waves propagate, linear dielectric 
media are said to be nondispersive. 

Note that the electric field at z =0 is in the opposite direc­
tion as the current, so the power per unit area delivered by 
the current sheet, 

-E(z = 0, t) - K.(t) = 7jK2(t) (25)
2 

is equally carried away by the Poynting vector on each side of 
the sheet: 

., z>0 
4 

S(z=0)=EXH = (26) 

7-3-4 A Brief Introduction to the Theory of Relativity 

Maxwell's equations show that electromagnetic waves 
propagate at the speed co= 1/,eoo in vacuum. Our 
natural intuition would tell us that if we moved at a speed v we 
would measure a wave speed of co - v when moving in the same 
direction as the wave, and a speed co + v when moving in the 
opposite direction. However, our intuition would be wrong, 
for nowhere in the free space, source-free Maxwell's equa­
tions does the speed of the observer appear. Maxwell's equa­
tions predict that the speed of electromagnetic waves is co for 
all observers no matter their relative velocity. This assump­
tion is a fundamental postulate of the theory of relativity and 
has been verified by all experiments. The most notable 
experiment was performed by A. A. Michelson and E. W. 
Morley in the late nineteenth century, where they showed 
that the speed of light reflected between mirrors is the same 
whether it propagated in the direction parallel or perpendic­
ular to the velocity of the earth. This postulate required a 
revision of the usual notions of time and distance. 

If the surface current sheet of Section 7-3-3 is first turned 
on at t = 0, the position of the wave front on either side of the 
sheet at time t later obeys the equality 

z -c0t 2 =0 (27) 

Similarly, an observer in a coordinate system moving with 
constant velocity ui, which is aligned with the current sheet at 
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t =0 finds the wavefront position to obey the equality 

z'-ct' =0 (28) 

The two coordinate systems must be related by a linear 
transformation of the form 

z =a1z+a2 t, t' = b1z +b2t (29) 

The position of the origin of the moving frame (z'=0) as 
measured in the stationary frame is z = vt, as shown in Figure 
7-6, so that a, and a2 are related as 

0= aivt + a2t=|>ajv+a2 =0 (30) 

We can also equate the two equalities of (27) and (28), 
2 _ 2 2 = p2 _ 2tF2 =. 2_C 

z -cot z'-cot (aIz +a t) -c(b 1 z +b 2t)2 (31) 

so that combining terms yields 

2l 2+2 2) 22( 2 L2 C2 
z \(-aicobi)-ci 1+- U2)-2(aia 2- bib2)zt=0 

co 
(32) 

Since (32) must be true for all z and t, each of the coefficients 
must be zero, which with (30) gives solutions 

1 -v/c2 
a,= -(-

l= -(v/co) 2 

-.11- (vico)2 

(33)-v 
a2 -(v/cO) b2 = 

1, -(v/co)y 

x 
e 

-...------. ~- II 

Figure 7-6 The primed coordinate system moves at constant velocity vi, with respect 
to a stationary coordinate system. The free space speed of an electromagnetic wave is co 
as measured by observers in either coordinate system no matter the velocity v. 
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The transformations of (29) are then 

Z -vt 1 0-vz/c
Z'= _ t'= (34) 

1 -(v/cO)T I1 -(v/cO) 

and are known as the Lorentz transformations. Measured 
lengths and time intervals are different for observers moving 
at different speeds. If the velocity v is much less than the 
speed of light, (34) reduces to the Galilean transformations, 

lim Z' - -vt, t' -t (35)
v/c< 1 

which describe our usual experiences at nonrelativistic 
speeds. 

The coordinates perpendicular to the motion are 
unaffected by the relative velocity between reference frames 

x'= x, y'= y (36) 

Continued development of the theory of relativity is be­
yond the scope of this text and is worth a course unto itself. 
Applying the Lorentz transformation to Newton's law and 
Maxwell's equations yield new results that at first appearance 
seem contrary to our experiences because we live in a world 
where most material velocities are much less than co. 
However, continued experiments on such disparate time and 
space scales as between atomic physics and astronomics verify 
the predictions of relativity theory, in part spawned by Max­
well's equations. 

7-4 SINUSOIDAL TIME VARIATIONS 

7-4-1 Frequency and Wavenumber 

If the current sheet of Section 7-3-3 varies sinusoidally with 
time as Re (Ko e"c'), the wave solutions require the fields to 
vary as elW" "'1 and e :(t+zlc). 

R _e( e""'), z >0 

H,(z, t) = 

Re( + e- ' ze 0 

Re(_!K ejWt~Z1' ,Z > 0 
E. (z, t)2 

[Re(- !- e c))*', z -<0 
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At a fixed time the fields then also vary sinusoidally with 
position so that it is convenient to define the wavenumber as 

k = = ~W%IIL(2)
A c 

where A is the fundamental spatial period of the wave. At a 
fixed position the waveform is also periodic in time with 
period T: 

1 2fr 
T=-=-- (3)

f W 

where f is the frequency of the source. Using (3) with (2) gives 
us the familiar frequency-wavelength formula: 

w = kc *fA = c (4) 

Throughout the electromagnetic spectrum, summarized in 
Figure 7-7, time varying phenomena differ only in the scaling 
of time and size. No matter the frequency or wavelength, 
although easily encompassing 20 orders of magnitude, elec­
tromagnetic phenomena are all described by Maxwell's equa­
tions. Note that visible light only takes up a tiny fraction of the 
spectrum. 

4 2 2 
Xmeters 3x10f 3x10 3x10 3 3 x 10- 2 3 x 10-4 3 x 10- 6 3 x 10- 3 x 10'" 3 x 10^ 

f (Hz) 
0 102 104 106 10 1010 1012 1014 1016 018 1020 

SI I I I I I I 
Power Radio and television Infrared Visible Ultraviolet X-rays Gamma 

AM FM (heat) light Red (700nm) rays 
Orange (650nm) 
Yellow (600nm) 
Green (550nm)

Circuit theory Microwaves Blue (450nm) 
Violet (400nm) 

N 21r/k 

-1 ­
sin w.t m T =21 

2w 

--1­

Figure 7-7 Time varying electromagnetic phenomena differ only in the scaling of time 
(frequency) and size (wavelength). In linear dielectrir media the frequency and 
wavelength are related as fA = c (w = Ac), where c = 1/ls is the speed of light in the 
medium. 
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For a single sinusoidally varying plane wave, the time-
average electric and magnetic energy densities are equal 
because the electric and magnetic field amplitudes are related 
through the wave impedance 7: 

<w,.> <w,> pli=;j_-Ejj=ILKo (5) 

From the complex Poynting theorem derived in Section 
7-2-4, we then see that in a lossless region with no sources for 

z |>0 that Pd =0 so that the complex Poynting vector has 
zero divergence. With only one-dimensional variations with z, 
this requires the time-average power density to be a constant 
throughout space on each side of the current sheet: 

<S>= - Re [E(r) X H*(r)] 

Kiz, z>0 
= 2 (6) 

The discontinuity in <S> at z = 0 is due to the power output of 
the source. 

7-4-2 Doppler Frequency Shifts 

If the sinusoidally varying current sheet Re (Ko ew'l) moves 
with constant velocity vi,, as in Figure 7-8, the boundary 
conditions are no longer at z =0 but at z = vt. The general 
form of field solutions are then: 

Re (11 ew)+(~zc)), z > vt 
H,(zt) Re (Ae i-(z')) z<vt 

A t-x0)' (7) 
_ 0Re (nH+e ), z > vt 

E,(z, ) = Re (-71II- ei"-i(tc), Z < Vt 

where the frequencies of the fields w, and w- on each side of 
the sheet will be different from each other as well as differing 
from the frequency of the current source w. We assume 
v/c < I so that we can neglect relativistic effects discussed in 
Section 7-3-4. The boundary conditions 

E..(z = vt) = E,-(z = vt) > A+ eI I''(lvc) = ---.- ew-'(" 

H,.(z = vt) - H,-(z = vt) = -&K (8) 

=>,g e"+'"-''' - f_ Hw-'(''I = -Ko e"' 

must be satisfied for all values of t so that the exponential time 
factors in (8) must all be equal, which gives the shifted 
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x 

Re(Koe iwt) 

E= Re [ ?K e 

Ko i. (t-L)
H, =Re[--Te + C
 

H=Re K0,io .- (t+ 1)
 

WO+V 
C 

C 

1=1 

Figure 7-8 When a source of electromagnetic waves moves towards an observer, the 
frequency is raised while it is lowered when it moves away from an observer. 

frequencies on each side of the sheet as 

w= ~w 1+-I,
1-v/c c 

= d~ => = -F-Ko 
(9) 

1-
1+v/c C 2 

where v/c < 1. When the source is moving towards an obser­
ver, the frequency is raised while it is lowered when it moves 
away. Such frequency changes due to the motion of a source 
or observer are called Doppler shifts and are used to measure 
the velocities of moving bodies in radar systems. For v/c < 1, 
the frequency shifts are a small percentage of the driving 
frequency, but in absolute terms can be large enough to be 
easily measured. At a velocity v = 300 rxi/sec with a driving 
frequency of f= 1010 Hz, the frequency is raised and lowered 
on each side of the sheet by Af= f(v/c)= 104 Hz. 

7-4-3 Ohmic Losses 

Thus far we have only considered lossless materials. If the 
medium also has an Ohmic conductivity a-, the electric field 
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will cause a current flow that must be included in Ampere's 
law: 

aE. OH, 
az at 

OH, - E. E. (10)
-=-J- e = -a-E -s­az at at 

where for conciseness we only consider the x-directed electric 
field solution as the same results hold for the E,, H. solution. 
Our wave solutions of Section 7-3-2 no longer hold with this 
additional term, but because Maxwell's equations are linear 
with constant coefficients, for sinusoidal time variations the 
solutions in space must also be exponential functions, which 
we write as 

Ex(z, t)= Re (Zo eJ'(ctk)) 

H,(z, t) = Re (Ho ei(,I'-h)) 

where to and Ho are complex amplitudes and the wavenum­
ber k is no longer simply related to w as in (4) but is found by 
substituting (11) back into (10): 

-jkEo = -jwp.Ho 

-jko= -jae (1 +o-/j )Z (12) 

This last relation was written in a way that shows that the 
conductivity enters in the same way as the permittivity so that 
we can define a complex permittivity / as 

i =e (1+/jwE) (13) 

Then the solutions to (12) are 

= =WO/A =k2 20,,2Ms(1+-r-0 (14) 
Ho k we \jws / 

which is similar in form to (2) with a complex permittivity. 
There are two interesting limits of (14): 

(a) Low Loss Limit 
If the conductivity is small so that aWe < 1, then the solution 

of (14) reduces to 

= (15) lim k=* 11 1+F ( 
01/W1Ije \C c 2 E)/ 

where c is the speed of the light in the medium if there were 
no losses, c = 1/.. Because of the spatial exponential 
dependence in (11), the real part of k is the same as for the 
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lossless case and represents the sinusoidal spatial distribution 
of the fields. The imaginary part of k represents the 
exponential decay of the fields due to the Ohmic losses with 
exponential decay length 1rq, where 7 = -4i7e is the wave 
impedance. Note that for waves traveling in the positive z 
direction we take the upper positive sign in (15) using the 
lower negative sign for negatively traveling waves so that the 
solutions all decay and do not grow for distances far from the 
source. This solution is only valid for small o- so that the wave is 
only slightly damped as it propagates, as illustrated in Figure 
7-9a. 

-Ikilz
 

z7' - ON. 

Low loss limit 

(a) 

eP/e2/ eP' 6 e:' 

g. z 

Large lass limit 

(b) 
Figure 7-9 (a) In a slightly lossy dielectric, the fields decay away from a source at a slow 
rate while the wavelength is essentially unchanged. (b) In the large loss limit the spatial 
decay rate is equal to the skin depth. The wavelength also equals the skin depth. 
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(b) Large Loss Limit 
In the other extreme of a highly conducting material so 

that q-/we > 1, (14) reduces to 

(1 -i) 2lim k2 ~-jtoy- k =( , 8 - (16)
&/we 1 1 4ao­

where 8 is just the skin depth found in Section 6-4-3 for 
magneto-quasi-static fields within a conductor. The skin-
depth term also arises for electrodynamic fields because the 
large loss limit has negligible displacement current compared 
to the conduction currents. 

Because the real and imaginary part of k have equal 
magnitudes, the spatial decay rate is large so that within a few 
oscillation intervals the fields are negligibly small, as illus­
trated in Figure 7-9b. For a metal like copper with 1A =O = 

41r x 10-7 henry/m and o -6 x 107 siemens/m at a frequency 
of 1 MHz, the skin depth is 8 -6.5 x 105 m. 

7-4-4 High-Frequency Wave Propagation in Media 

Ohm's law is only valid for frequencies much below the 
collision frequencies of the charge carriers, which is typically 
on the order of 1013 Hz. In this low-frequency regime the 
inertia of the particles is negligible. For frequencies much 
higher than the collision frequency the inertia dominates and 
the current constitutive law for a single species of charge 
carrier q with mass m and number density n is as found in 
Section 3-2-2d: 

aJ/at =oE E (17) 

where w, = Vqden/me is the plasma frequency. This constitutive 
law is accurate for radio waves propagating in the ionosphere, 
for light waves propagating in many dielectrics, and is also 
valid for superconductors where the collision frequency is 
zero. 

Using (17) rather than Ohm's law in (10) for sinusoidal time 
and space variations as given in (11), Maxwell's equations are 

aE. aHA 
-=_J -p-> -jk~o =-jw1Aoaz 8t 

2(18)H, aE. Wo Paz =-. ---- jko=-jwe 1--- E
Oz 8 -tj 

The effective permittivity is now frequency dependent: 

A=6(1-w2/(02) (19) 
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The solutions to (18) are 
2_ 2to (OL 2 .. CO W 

= (AE= 2 (20)
Ho k we C 

For w > w,, k is real and we have pure propagation where the 
wavenumber depends on the frequency. For w <w,, k is 
imaginary representing pure exponential decay. 

Poynting's theorem for this medium is 

at woe at01 1 Orf 

1 
at W2E 2 

Because this system is lossless, the right-hand side of (21) 
can be brought to the left-hand side and lumped with the 
energy densities: 

V - S+ E[IE|2+I |H2+1 1 1Jf12 = (22)
at 2 woe 

This new energy term just represents the kinetic energy 
density of the charge carriers since their velocity is related to 
the current density as 

1 1
Jf=qnv=>2- J2=mnnvI (23)

2 

7-4-5 Dispersive Media 

When the wavenumber is not proportional to the 
frequency of the wave, the medium is said to be dispersive. A 
nonsinusoidal time signal (such as a square wave) will change 
shape and become distorted as the wave propagates because 
each Fourier component of the signal travels at a different 
speed. 

To be specific, consider A stationary current sheet source at 
z =0 composed of two signals with slightly different frequen­
cies: 

K(t) = Kolcos (wo+ Aw)t +cos (wo - Aw)t] 

= 2Ko cos Awt cos wot (24) 

With Aw < w the fast oscillations at frequency wo are modu­
lated by the slow envelope function at frequency Aw. In a 
linear dielectric medium this wave packet would propagate 
away from the current sheet at the speed of light, c = l/v y). 
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If the medium is dispersive. w'th the wavenumber k(w) being 
a function of w, each frequency component in (24) travels at a 
slightly different speed. Since each frequency is very close to 
wo we expand k(w) as 

dk 
k(wo+Aw)=k(wo)+- AW

dw o 
(25) 

k(jo--Aw)~k(wo)- '&W 
dwo 

where for propagation k(wo) must be real. 
The fields for waves propagating in the +z direction are 

then of the following form: 

E.(z, t) =Re Eo(exp { (wo+Aow)t - (k(wo)+ AWz 

+exp j[ (w-Aw)t k(wo) A z] 

ddk 

= Re (Io exp {j[wot -- k (wo)z } exp j AW t- A zj]
dw . 

+exp -j A t z 

=2Eo cos (wot - k(wo)z) cos Aw t A.z) (26) 

where without loss of generality we assume in the last relation 
that Eo= Eo is real. This result is plotted in Figure 7-10 as a 
function of z for fixed time. The fast waves with argument 
0ot -k((oo)z travel at the phase speed v, = wo/k(wo) through 
the modulating envelope with argument Aw(t-dk/dwae0 z). 
This envelope itself travels at the slow speed 

dk dz d__(27
t- A z=const=>'= V d(27) 

known as the group velocity, for it is the velocity at which a 
packet of waves within a narrow frequency band around wo 
will travel. 

For linear media the group and phase velocities are equal: 

w = kc > V,= = C 

(28 )
V g 

V, == =C 
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E. (s, t = 0) E'cos[w(t -A)]cos[Aw(t- S)
VP VE 

Pk(wo) / 

\ /1 \ /
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Figure 7-10 In a dispersive medium the shape of the waves becomes distorted so the 
velocity of a wave is not uniquely defined. For a group of signals within a narrow 
frequency band the modulating envelope travels at the group velocity v,. The signal 
within the envelope propagates through at the phase velocity v,. 

while from Section 7-4-4 in the high-frequency limit for 
conductors, we see that 

S2=k2C2+W2 =>V,= 
k 

dw k 2 (29)
V =-=-C 

Ak w 

where the velocities only make sense when k is real so that 
w >w,. Note that in this limit 

2VgV , = (30) 

Group velocity only has meaning in a dispersive medium 
when the signals of interest are clustered over a narrow 
frequency range so that the slope defined by (27), is approxi­
mately constant and real. 

7-4-6 Polarization 

The two independent sets of solutions of Section 7-3-1 both 
have their power flow S = E x H in the z direction. One solu­
tion is said to have its electric field polarized in the x direction 
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while the second has its electric field polarized in the y direc­
tion. Each solution alone is said to be linearly polarized 
because the electric field always points in the same direction 
for all time. If both field solutions are present, the direction 
of net electric field varies with time. In particular, let us say 
that the x and y components of electric field at any value of z 
differ in phase by angle 4: 

E = Re [Ei.+ E, e'i,] e" = E, cos wti., + E, cos (wt + 4)i, 
(31) 

We can eliminate time as a parameter, realizing from (31) that 

cos wt= E2IEO 
(32) 

sin w = cos wt cos 4 - E,/E, = (E./E,) cos 4) -EE, 
sin 4 sin 4 

and using the identity that 

sin2 wt +cos 2 (jt 

21 	( 2 (EJE )2 cos 4 + (E,/E) 2 - (2E.E,/EE,) cos 4 
E 	 sin2 4 

(33) 

to give us the equation of an ellipse relating E. to E,: 
2(E 2(E 2E.E, 2 

- -cos4=sin 4 (34)
(E, ,) E.E, 

as plotted in Figure 7-1 a. As time increases the electric field 
vector traces out an ellipse each period so this general case of 
the superposition of two linear polarizations with arbitrary 
phase 4 is known as elliptical polarization. There are two 
important special cases: 

(a) 	Linear Polarization 
If E. and E, are in phase so that 4 =0, (34) reduces to 

E, E(E E, 0=>tan =-= = (35) E. E(3 

The electric field at all times is at a constant angle 6 to the x 
axis. The electric field amplitude oscillates with time along 
this line, as in Figure 7-11 b. Because its direction is always 
along the same line, the electric field is linearly polarized. 

(b) Circular Polarization 
If both components have equal amplitudes but are 90 out 

of phase, 

E,= E, = E0 , 4 = ir/2 (36) 
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E=EOi0 +E ,e i'iy 

os= i 1,0<0< E 

-E t = , 140 

0 E+ E- E o # = n E.Elliptical polarization 

Figure 7-11 (a) Two perpendicular field components with phase difference 4 have the 
tip of the net electric field vector tracing out an ellipse each period. (b) If both field 
components are in phase, the ellipse reduces to a straight line. (c) If the field 
components have the same magnitude but are 900 out of phase, the ellipse becomes a 
circle. The polarization is left circularly polarized to z-directed power flow ifthe electric 
field rotates clockwise and is (d) right circularly polarized if it rotates counterclockwise. 

(34). reduces to the equation of a circle: 

Ei+Ei=EE(37) 

The tip of the electric field vector traces out a circle as time 
evolves over a period, as in Figure 7-11c. For the upper (+) 
sign for 4 in (36), the electric field rotates clockwise while the 
negative sign has the electric field rotating counterclockwise. 
These cases are, respectively, called left and right circular 
polarization for waves propagating in the +z direction as 
found by placing the thumb of either hand in the direction of 
power flow. The fingers on the left hand curl in the direction 
of the rotating field for left circular polarization, while the 
fingers of the right hand curl in the direction of the rotating 
field for right circular polarization. Left and right circular 
polarizations reverse for waves traveling in the -z direction. 

7-4-7 Wave Propagation in Anisotropiz Media 

Many properties of plane waves have particular appli­
cations to optics. Because visible light has a wavelength on the 
order of 500 nm, even a pencil beam of light 1 mm wide is 
2000 wavelengths wide and thus approximates a plane wave. 
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Figure 7-11 

(a) Polarizers 
Light is produced by oscillating molecules whether in a 

light bulb or by the sun. This natural light is usually 
unpolarized as each molecule oscillates in time and direction 
independent of its neighbors so that even though the power 
flow may be in a single direction the electric field phase 
changes randomly with time and the source is said to be 
incoherent. Lasers, an acronym for "light amplification by 
stimulated emission of radiation," emits coherent light by 
having all the oscillating molecules emit in time phase. 

A polarizer will only pass those electric field components 
aligned with the polarizer's transmission axis so that the 
transmitted light is linearly polarized. Polarizers are made of 
such crystals as tourmaline, which exhibit dichroism-the 
selective absorption of the polarization along a crystal axis. 
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The polarization perpendicular to this axis is transmitted. 
Because tourmaline polarizers are expensive, fragile, and 

of small size, improved low cost and sturdy sheet polarizers 
were developed by embedding long needlelike crystals or 
chainlike molecules in a plastic sheet. The electric field 
component in the long direction of the molecules or crystals is 
strongly absorbed while the perpendicular component of the 
electric field is passed. 

For an electric field of magnitude Eo at angle 4 to the 
transmission axis of a polarizer, the magnitude of the trans­
mitted field is 

E, = Eo cos 4 (38) 

so that the time-average power flux density is 

<S > = 1I4Re [E(r)x A*(r)]1 
l 2 

=2 -- 4cos (39) 

which is known as the law of Malus. 

(b) Double Refraction (Birefringence) 
If a second polarizer, now called the analyzer, is placed 

parallel to the first but with its transmission axis at right 
angles, as in Figure 7-12, no light is transmitted. The 
combination is called a polariscope. However, if an anisotro­
pic crystal is inserted between the polarizer and analyzer, 
light is transmitted through the analyzer. In these doubly 
refracting crystals, light polarized along the optic axis travels 
at speed cl while light polarized perpendicular to the axis 
travels at a slightly different speed c,. The crystal is said to be 
birefringent. If linearly polarized light is incident at 450 to the 
axis, 

E(z = 0, t) = Eo(i. + i,) Re (es") (40) 

the components of electric field along and perpendicular to 
the axis travel at different speeds: 

E.(z, t) = Eo Re (e3(Wt-,,I)), kt=1w/c 
E,(z, t) = Eo Re (e'~*), A = w/c, (41) 

After exiting the crystal at z = 1, the total electric field is 

E(z = 1, t) = Eo Re [e-(e~-h'i,,+e­

= Eo Re [e(w" %1)(i. + ei( h~ i,)] (42)(42) 
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Figure 7-12 When a linearly polarized wave passes through a doubly refracting 
(birefringent) medium at an angle to the crystal axes, the transmitted light is elliptically 
polarized. 

which is of the form of (31) for an elliptically polarized wave 
where the phase difference is 

4 = (kjj-kJl= wl (43)
Cli c-

When 4 is an integer multiple of 27r, the light exiting the 
crystal is the same as if the crystal were not there so that it is 
not transmitted through the analyzer. If 4 is an odd integer 
multiple of 7r, the exiting light is also linearly polarized but 
perpendicularly to the incident light so that it is polarized in 
the same direction as the transmission axis of the analyzer, 
and thus is transmitted. Such elements are called half-wave 
plates at the frequency of operation. When 4 is an odd 
integer multiple of r/2, the exiting light is circularly 
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polarized and the crystal serves as a quarter-wave plate. 
However, only that polarization of light along the trans­
mission axis of the analyzer is transmitted. 

Double refraction occurs naturally in many crystals due to 
their anisotropic molecular structure. Many plastics and 
glasses that are generally isotropic have induced birefrin­
gence when mechanically stressed. When placed within a 
polariscope the photoelastic stress patterns can be seen. Some 
liquids, notably nitrobenzene, also become birefringent when 
stressed by large electric fields. This phenomena is called the 
Kerr effect. Electro-optical measurements allow electric field 
mapping in the dielectric between high voltage stressed elec­
trodes, useful in the study of high voltage conduction and 
breakdown phenomena. The Kerr effect is also used as a light 
switch in high-speed shutters. A parallel plate capacitor is 
placed within a polariscope so that in the absence of voltage 
no light is transmitted. When the voltage is increased the light 
is transmitted, being a maximum when 4= r. (See problem 
17.) 

7-5 NORMAL INCIDENCE ONTO A PERFECT CONDUCTOR 

A uniform plane wave with x-directed electric field is 
normally incident upon a perfectly conducting plane at z =0, 
as shown in Figure 7-13. The presence of the boundary gives 
rise to a reflected wave that propagates in the -z direction. 
There are no fields within the perfect conductor. The known 
incident fields traveling in the +z direction can be written as 

E:(z, t) = Re (Zi e '1ik ) 

Hi(z, t) = Re (E'~ Itk2) 

while the reflected fields propagating in the -z direction are 
similarly 

E,(z, t) = Re (P,e("'+Ali.) 

H,(z, t)= Re ( e e""''M'i, (2) 

where in the lossless free space 

71 = oleo, k=ae'ogo (3) 

Note the minus sign difference in the spatial exponential 
phase factors of (1) and (2) as the waves are traveling in 
opposite directions. The amplitude of incident and reflected 
magnetic fields are given by the ratio of electric field ampli­
tude to the wave impedance, as derived in Eq. (15) of Section 
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Figure 7-13 A uniform plane wave normally incident upon a perfect conductor has 
zero electric field at the conducting surface thus requiring a reflected wave. The source 
of this reflected wave is the surface current at z 0, which equals the magnetic field 
there. The total electric and magnetic fields are 90* out of phase in time and space. 

7-3-2. The negative sign in front of the reflected magnetic 
field for the wave in the -z direction arises because the power 
flow S, = E, x H, in the reflected wave must also be in the -z 
direction. 

The total electric and magnetic fields are just the sum of 
the incident and reflected fields. The only unknown 
parameter E, can be evaluated from the boundary condition 
at z =0 where the tangential component of E must be 
continuous and thus zero along the perfect conductor: 

Zi+Z,=0->Z,=-Z9i (4) 
The total fields are then the sum of the incident and reflected 
fields 

E.(z, t) = Ei (z, t) +E,(z, t) 
= Re [Ei(e* -e*k) ei ] 

= 2Ei sin kz sin wt 

H,(z, t) = Hi(z, t) +H,(z, t) 
(5)

=Re (e -jz+ e+') el"710 

2 E
 
= -- cos kz cos wt 

710 



522 Electrodynamics-Fieldsand Waves 

where we take EA = Ei to be real. The electric and magnetic 
fields are 90* out of phase with each other both in time and 
space. We note that the two oppositely traveling wave solu­
tions combined for a standing wave solution. The total solu­
tion does not propagate but is a standing sinusoidal solution 
in space whose amplitude varies sinusoidally in time. 

A surface current flows on the perfect conductor at z =0 
due to the discontinuity in tangential component of H, 

2E,
K.= H,(z =0)=- cos wt (6)

11o 

giving rise to a force per unit area on the conductor, 

F=2K x poH = 4p1oH2 (z = 0)i, =2eoE? cos 2 Wti (7) 

known as the radiation pressure. The factor of 2 arises in (7) 
because the force on a surface current is proportional to the 
average value of magnetic field on each side of the interface, 
here being zero for z = 0. 

7-6 NORMAL INCIDENCE ONTO A DIELECTRIC 

7-6-1 Lossless Dielectric 

We replace the perfect conductor with a lossless dielectric 
of permittivity 62 and permeability s, as in Figure 7-14, with 
a uniform plane wave normally incident from a medium with 
permittivity Ei and permeability jp. In addition to the 
incident and reflected fields for z <0, there are transmitted 
fields which propagate in the +z direction within the medium 
for z >0: 

E(z, t) = Re [4 ei-1)], ki= W e A, 

H(z, t)=Re[Er e(ukI,,)i Al= 
711~ 6 <0 

E,(z, t) = Re [, e(+z)(i.] 

H,.(z, t)= Re [P e "i, = 0)] (2 

E, (z, t) =Re [E, ej("2'i.]' k2 = &)_e82A2 

H,(z, t) = Re [Eu"~ :,], 12=e 7 

It is necessary in (1) to use the appropriate wavenumber 
and impedance within each region. There is no wave travel­
ing in the -z direction in the second region as we assume no 
boundaries or sources for z >0. 
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E , JI (I1 c1 E2 ,P2 (72 C2 

A j(-.t-k1 IZ)
E= Re(Er e is) 

ki = ki 

E= Re(E e i8 k2s) i) 

??AHi Re(E e A--ixi ) y 

k, =k2i = is 

E, =Re(E, e ji-I+kI ) 
H, = Re(Et eI(-th2zl 

H,= Re(- e' 
kr.=,-ks,=~ is 

Figure 7-14 A uniform plane wave normally incident upon a dielectric interface 
separating two different materials has part of its power reflected and part transmitted. 

The unknown quantities ^, and E, can be found from the 
boundary conditions of continuity of tangential E and H at 
z = 0, 

E +Z,= 

Zi Z, A (2) 

from which we find the reflection R and transmission T field 
coefficients as 

E 712-11R = = + 
Ei 12+711 

(3)
E, 212 

Ei 712+111 

where from (2) 

1+R=T (4) 

If both mediums have the same wave impedance, II= 2, 
there is no reflected wave. 
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7-6-2 Time-Average Power Flow 

The time-average power flow in the region z <0 is 

<S&>= - Re [E.(z)HI,*(z)] 

= Re [Z ,e-'+Z,e + +][Zie+ikI -Z,* e~h,*I 

+ _LRe [PZZ' e+2 
fz - P*Z e-201z271 a(5) 

The last term on the right-hand side of (5) is zero as it is the 
difference between a number and its complex conjugate, 
which is pure imaginary and equals 2j times its imaginary 
part. Being pure imaginary, its real part is zero. Thus the 
time-average power flow just equals the difference in the 
power flows in the incident and reflected waves as found 
more generally in Section 7-3-2. The coupling terms between 
oppositely traveling waves have no time-average yielding the 
simple superposition of time-average powers: 

<S~s > =jL[|Z;I-|Z,|2]> 2n,11 ­IEI1 2,i 2 

= [1-R ) (6)
2n, 

This net time-average power flows into the dielectric 
medium, as it also equals the transmitted power; 

=I1 Z1 2T* 1| 2 
<S,>=-|Z,|22 

. [I-R 7 
2712 2n2 271 

7-6-3 Lossy Dielectric 

If medium 2 is lossy with Ohmic conductivity a-, the solu­
tions of (3) are still correct if we replace the permittivity 62 by 
the complex permittivity i2, 

2=92 1+( 

so that the wave impedance in region 2 is complex: 

'12 = (9)(/92)
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We can easily explore the effect of losses in the low and large 
loss limits. 

(a) Low Losses 
If the Ohmic conductivity is small, we can neglect it in all 

terms except in the wavenumber k 2: 

lim k2-)(02_2ff (10) 
/W624C1 2 62 

The imaginary part of k 2 gives rise to a small rate of 
exponential decay in medium 2 as the wave propagates away 
from the z =0 boundary. 

(b) Large Losses 
For large conductivities so that the displacement current is 

negligible in medium 2, the wavenumber and impedance in 
region 2 are complex: 

k 1-j 2 

lim (11) 
/jCML2 1+1 

?12 -' -V 

The fields decay within a characteristic distance equal to the 
skin depth 8. This is why communications to submerged 
submarines are difficult. For seawater, 2 = A= 
41r X 10-7 henry/m and o- 4 siemens/m so that for 1 MHz 
signals, 8~0.25 m. However, at 100 Hz the skin depth 
increases to 25 meters. If a submarine is within this distance 
from the surface, it can receive the signals. However, it is 
difficult to transmit these low frequencies because of the large 
free space wavelength, A 3 X 106 m. Note that as the 
conductivity approaches infinity, 

lim 2 > I(12)
a-(1 12 = 0 T=( 

so that the field solution approaches that of normal incidence 
upon a perfect conductor found in Section 7-5. 

EXAMPLE 7-1 DIELECTRIC COATING 

A thin lossless dielectric with permittivity e and permeabil­
ity M is coated onto the interface between two infinite half-
spaces of lossless media with respective properties (E1, pt1) and 
(62, p2), as shown in Figure 7-15. What coating parameters e 
and M and thickness d will allow all the time-average power 
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- xe 

E2 

d K k 

H1 H2 

Region 1 Region 2 

No reflections 

if d - .L, n - 1, 3,5...
4 

and =7 V 1-72 , whereX = 2r i 

measured within the coating 

Figure 7-15 A suitable dielectric coating applied on the interface of discontinuity 
between differing media can eliminate reflections at a given frequency. 

from region 1 to be transmitted through the coating to region 
2? Such coatings are applied to optical components such as 
lenses to minimize unwanted reflections and to maximize the 
transmitted light intensity. 

SOLUTION 

For all the incident power to be transmitted into region 2, 
there can be no reflected field in region 1, although we do 
have oppositely traveling waves in the coating due to the 
reflection at the second interface. Region 2 only has positively 
z-directed power flow. The fields in each region are thus of 
the following form: 

Region 1 

E,= Re [E1 ei(i&-I)ia], ki =wm/c1= md6 I 

HI=Re Ee j(" , ~ Si=171 1 
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Coating 

E= Re [Z+ , k = wc =w 

H,=Re [,e ~'i,], 77= ­

E_= Re [Z e'('")i. 

H-=Re [ _ei(wt+k)i 

Region 2 

E2= Re [P 2 ek x], k2 =C2=(6 

H 2 =Re [E ei( ij, =
 
712 62
 

Continuity of tangential E and H at z =0 and z d requires 

1t=Z+Z+L P, E+-E_ 
711 71 

P, e'h +Z- e+'"= Z2 e-id 

Z+e-+ " -Z e _I2 e~kg 

71 712 

Each of these amplitudes in terms of Z, is then 

2\ g 

Z.=eZ(1+-Z 

Z 4 - +-.e(+ =0"de-12d t 

Writing Z. and Z_ in terms of Z1 yields 

(i+IL( ..- ~+esiki1 +) (1--..) =0 

Since this relation is complex, the real and imaginary parts 
must separately be satisfied. For the imaginary part to be zero 
requires that the coating thickness d be an integral number of 
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quarter wavelengths as measured within the coating, 

2kd=nar >d=nA/4, n=1,2,3,... 

The real part then requires 

2 71 1 1=0 n even 
\71/\( /\ n odd 

For the upper sign where d is a multiple of half-wavelengths 
the only solution is 

2=1 (d=nA/4, n=2,4,6,...) 

which requires that media 1 and 2 be the same so that the 
coating serves no purpose. If regions 1 and 2 have differing 
wave impedances, we must use the lower sign where d is an 
odd integer number of quarter wavelengths so that 

71 =1172 '71= %liq2 (d =nA/4, n =1, 3,5,,... 

Thus, if the coating is a quarter wavelength thick as measured 
within the coating, or any odd integer multiple of this thick­
ness with its wave impedance equal to the geometrical average 
of the impedances in each adjacent region, all the time-
average power flow in region 1 passes through the coating 
into region 2: 

=-1|il1|Z2 |<S,>= IE
22 71, 712 

(E+ e+3hz -Pe -k 

1~71 

271 

Note that for a given coating thickness d, there is no reflection 
only at select frequencies corresponding to wavelengths d= 
nA/4, n = 1, 3, 5 ..... For a narrow band of wavelengths 
about these select wavelengths, reflections are small. The 
magnetic permeability of coatings and of the glass used in 
optical components are usually that of free space while the 
permittivities differ. The permittivity of the coating e is then 
picked so that 

and with a thickness corresponding to the central range of the 
wavelengths of interest (often in the visible). 
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7-7 UNIFORM AND NONUNIFORM PLANE WAVES 

Our analysis thus far has been limited to waves propagating 
in the z direction normally incident upon plane interfaces. 
Although our examples had the electric field polarized in the 
x direction., the solution procedure is the same for the y-
directed electric field polarization as both polarizations are 
parallel to the interfaces of discontinuity. 

7-7-1 Propagation at an Arbitrary Angle 

We now consider a uniform plane wave with power flow at 
an angle 0 to the z axis, as shown in Figure 7-16. The electric 
field is assumed to be y directed, but the magnetic field that is 
perpendicular to both E and S now has components in the x 
and z directions. 

The direction of the power flow, which we can call z', is 
related to the Cartesian coordinates as 

z'=x sin8+z cos 0 (1) 

so that the phase factor kz' can be written as 

kz'= k,x +kz, k.= k sin 0 
k~kcos8(2)k" = k Cos 0 

where the wavenumber magnitude is 

k =(>/6 (3) 

x 

2' = x sinO + cos6 

S =iE 2k ; k =! cos 0 i,+ sin 0 i, I 
6C 

E Re(Ee i 

H = Re(! [-cosoi, + sinig, le 

Figure 7-16 The spatial dependence of a uniforrN plane wave at an arbitrary angle 8 
can be expressed in terms of a vector wavenumber k as e- , where k is in the direction 
of power flow and has magnitude o>/c. 
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This allows us to write the fields as 

E= Re [Ee1"'-xh-z=i,]
[ ](4) 

H=Re [ (-cos Oi. + sin Oei1) th.-hZ 

We note that the spatial dependence of the fields can be 
written as e- k, where the wavenumber is treated as a vector: 

k = k.i +ki,+ ki (5) 
with 

r= xi,+yi,+zi, (6) 
so that 

k - r = ,x +y +kz (7) 

The magnitude of k is as given in (3) and its direction is the 
same as the power flowS: 

AI2 
S=ExH= -(cos Gi. +sin 01.,) cos2 (ot -k -r) 

fZI2k 2 
= cos (wt-k -r) (8) 

where without loss of generality we picked the phase of Z to 
be zero so that it is real. 

7-7-2 The Complex Propagation Constant 

Let us generalize further by considering fields of the form 

E = Re [ el " e~] = Re [E ej(-1'~~r' e- ] 

H = Re [H e'" e - = Re [H ei(e-a-> . (9) 

where y is the complex propagation vector and r is the posi­
tion vector of (6): 

y=a+jk= yji.+y+,yi,+y(i1 

y - r=yx +yy + yz 

We have previously considered uniform plane waves in 
lossless media where the wavenumber k is pure real and z 
directed with a =0 so that y is pure imaginary. The 
parameter a represents the decay rate of the fields even 
though the medium is lossless. If a is nonzero, the solutions 
are called nonuniform plane waves. We saw this decay in our 
quasi-static solutions of Laplace's equation where solutions 
had oscillations in one direction but decay in the perpendic­
ular direction. We would expect this evanescence to remain at 
low frequencies. 
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The value of the assumed form of solutions in (9) is that the 
del (V) operator in Maxwell's equations can be replaced by the 
vector operator -- : 

V=--i+-i,+-i.ax ay az 

-Y(11) 

This is true because any spatial derivatives only operate on 
the exponential term in (9). Then the source free Maxwell's 
equations can be written in terms of the complex amplitudes 
as 

E-jWynA -Yx = 

-Y A E(12) 

-Y -=E0 

The last two relations tell us that y is perpendicular to both 
E and H. If we take -y x the top equation and use the second 
equation, we have 

-IX(y X i) =-joLt(y X H) = -jaj(-jwe E) 

=- ~ei (13) 

The double cross product can be expanded as 

-y X(y X f)= -y(y . I)+(y -y)i 

= -(14) 

The y - i term is zero from the third relation in (12). The 
dispersion relation is then 

-- y=(a-k2 +2jc.k)=-W ye (15) 

For solution, the real and imaginary parts of (15) must be 
separately equal: 

(16) 

a -k=O 

When a=0, (16) reduces to the familiar frequency­
wavenumber relation of Section 7-3-4. 

The last relation now tells us that evanescence (decay) in 
space as represented by a is allowed by Maxwell's equations, 
but must be perpendicular to propagation represented by k. 
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We can compute the time-average power flow for fields of 
the form of (9) using (12) in terms of either E or H as follows: 

<S>= - Re (EX ), 

,=-Re Ex .-

-'Re .E, 

- k -s i**-)I 
=- -- |L + -2 Re., 

<S>= Re (E X (7*)uatii(!*!.I-iE*(2 - E) 

\e jWE/ 

=e 9 

I k jt2_ i Re y - ft*)defnedin10 and (1),te do prdc N* s eo Sc 
2 wE ( 1-w 

Although both final expressions in (17) are equivalent, it is 
convenient to write the power flow in terms of either E or H. 
When E is perpendicular to both the real vectors eL and 0, 
defined in (10) and (16), the dot product y* - E is zero. Such a 
mode is called transverse electric (TE), and we see in (17) that 
the time-average power flow is still in the direction of the 
wavenumber k. Similarly, when H is perpendicular to a and 
13, the dot product -y - H* is zero and we have a transverse 
magnetic (TM) mode. Again, the time-average power flow in 
(17) is in the direction of k. The magnitude of k is related to w 
in (16). 

Note that our discussion has been limited to lossless 
systems. We can include Ohmic losses if we replace E by the 
complex permittivity 6 of Section 7-4-3 in (15) and (17). 
Then, there is always decay (a #0) because of Ohmic dis­
sipation (see Problem 22). 

Nonuniform Plane Waves 

We can examine nonuniform plane wave solutions with 
nonzero a by considering a current sheet in the z =0 plane, 
which is a traveling wave in the x direction: 

K.(z = 0) = Ko cos (wt - kx) = Re (Ko e" j( k~x)) (18) 
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The x-directed surface current gives rise to a y-directed 
magnetic field. Because the system does not depend on the y 
coordinate, solutions are thus of the following form:

{ Re(Hji elo'e*I), z>O 

Re(H 2eJ 'e~), z<0 
A. (19) 

Re - 1xH i, e 'J, z>0 

E=jw 

Re [-7'2 e,-W.2.e2r], z<0 

where 'y and Y2 are the complex propagation vectors on each 
side of the current sheet: 

Y.=ylxl (20) 

72 = Y2xix + Y2ziz( 

The boundary condition of the discontinuity of tangential H 
at z =0 equaling the surface current yields 

-A, e~,' + A2 e-^2-' = Ko e-i"- (21) 

which tells us that the x components of the complex prop­
agation vectors equal the trigonometric spatial dependence of 
the surface current: 

Yi. = Y2. =jk. (22) 

The z components of'yi and Y2 are then determined from (15) 
as 

. 2 2 W6 >Y 2 (k 2IA11
Vx + Vz = -W~p -i *'(kY (23) 

If k2< W26/i, y, is pure imaginary representing propagation 
and we have uniform plane waves. If k2 >w2es, then y, is 
pure real representing evanescence in the z direction so that 
we generate nonuniform plane waves. When w =0, (23) cor­
responds to Laplacian solutions that oscillate in the x direc­
tion but decay in the z direction. 

The z component of y is of opposite sign in each region, 

Y1.= -Y2.=+(k2 -2614)1/2 (24) 

as the waves propagate or decay away from the sheet. 
Continuity of the tangential component of E requires 

l.H= 2.H2=' H2 = -H, = Ko/2 (25) 

If k.=0, we re-obtain the solution of Section 7-4-1. 
Increasing k. generates propagating waves with power flow in 
the kji. A kai. directions. At ki = w 2e, k = 0 so that the power 
flow is purely x directed with no spatial dependence on z. 
Further increasing k. converts k. to a,, as y. becomes real and 
the fields decay with z. 



534 Elecrodynamics-Fieldsand Waves 

7-8 OBLIQUE INCIDENCE ONTO A PERFECT CONDUCTOR 

7-8-1 E Field Parallel to the Interface 

In Figure 7-17a we show a uniform plane wave incident 
upon a perfect conductor with power flow at an angle 9, to 
the normal. The electric field is parallel to the surface with 
the magnetic field having both x and z components: 

Ei = Re [Z, e""~*j(1-ixki,]i' 
(1) 

Hi = Re [-L(-cos 9ai. +sin i ) e"~ 

where 

k 2=k sin O k (2) 
k2i=k cos 6 

x 

H, 

Ek, 

0= 1 

- Z 

Oi 

0, 0,
E. kr C'U 

Hi (aa) 

Hr 

. H, 

k, 

E, 

k,
 
. 0, =Or
 

Hj
 

(b) 

Figure 7-17 A uniform plane wave obliquely incident upon a perfect conductor has its 
angle of incidence equal to the angle of reflection. (a) Electric field polarized parallel to 
the interface. (b) Magnetic field parallel to the interface. 
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There are no transmitted fields within the perfect conductor, 
but there is a reflected field with power flow at angle ,. from 
the interface normal. The reflected electric field is also in the 
y direction so the magnetic field, which must be perpendic­
ular to both E and S = E x H, is in the direction shown in 
Figure 7-17a: 

E, = Re [E, e"~*k-x"+-'Zi,I ( 

H, = Re [r(cos ,.i. +sin 6,i,) 

where the reflected wavenumbers are 

kx,= k sin 0, 

k,,=k cos 0, (4) 

At this point we do not know the angle of reflection 0, or 
the reflected amplitude E,. They will be determined from the 
boundary conditions at z =0 of continuity of tangential E and 
normal B. Because there are no fields within the perfect 
conductor these boundary conditions at z =0 are 

Z e A' +Z4er-C =0 
(5) 

-(Z. sin Oie A-j'+Z4 sin 0, e'"')=0 

These conditions must be true for every value of x along z = 0 
so that the phase factors given in (2) and (4) must be equal, 

k. = k.>9,> =60,= (6) 

giving the well-known rule that the angle of incidenceequals the 
angle of reflection. The reflected field amplitude is then 

Z,= Ei (7) 

with the boundary conditions in (5) being redundant as they 
both yield (7). The total fields are then: 

E, = Re [Z (eikA - e+k-) e1(G~k-z)] 

= 2Ej sin kz sin (w --kx) 

H=Re [f![cos 6(-e Ajk -e +k-)i,+sin G(e '' 

(8)-e +k. )i1j e (t-k.-

2E,
=-[-cos 0cos k~z cos (t - kx)ix

77 

+sin 0 sin kz sin (wt -kx)i. 

where without loss of generality we take e to be real. 
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We drop the i and r subscripts on the wavenumbers and 
angles because they are equal. The fields travel in the x 
direction parallel to the interface, but are stationary in the z 
direction. Note that another perfectly conducting plane can 
be placed at distances d to the left of the interface at 

kd= nir (9) 
where the electric field is already zero without disturbing the 
solutions of (8). The boundary conditions at the second 
conductor are automatically satisfied. Such a structure is called 
a waveguide and is discussed in Section 8-6. 

Because the tangential component of H is discontinuous at 
z =0, a traveling wave surface current flows along the inter­
face, 

14=-H2E, 
K, =H(z = 0)=- cosO cos (wt- kx) (10)

1 

From (8) we compute the time-average power flow as 

<S > = 1 Re [E(x, z) x H*(x, z)] 

2EE 
= 2 sin 0 sin 2 kzi, 11 

1 

We see that the only nonzero power flow is in the direction 
parallel to the interfacial boundary and it varies as a function 
of z. 

7-8-2 H Field Parallel to the Interface 

If the H field is parallel to the conducting boundary, as in 
Figure 7-17b, the incident and reflected fields are as follows: 

Ei = Re [Ei (cos 6ii. -sin e i.) e - k4] 

Hi = Re e""'~*** **zi 

E, = Re [E, (-cos Ori, -sin 9, i) et x-k'z)] (12) 

H, = Re e 

The tangential component of E is continuous and thus zero 
at z = 0: 

E cos Oi e-s*k -Z cos , e =0 (13) 

There is no normal component of B. This boundary condi­
tion must be satisfied for all values of x so again the angle of 
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incidence must equal the angle of reflection (0, = 6,) so that 

Z4 =Z, (14) 

The total E and H fields can be obtained from (12) by adding 
the incident and reflected fields and taking the real part; 

E = Re {Zi [cos 0(e -'' - e+j-)i. 

-sin 6(eik.Z +e+jkj)i,] e(W~-ikX } 

= 2E{cos 0 sin kzz sin (wt - kx)i. 

- sin 0 cos k.z cos (wt - kx)i} ( 

H = Re (ei'. +e +Ik)ei(t -k.X)i] 

2E, 
=- - cos kaz cos (wt - kxx)i, 

The surface current on the conducting surface at z =0 is 
given by the tangential component of H 

2E,
K.(z = 0)= H,(z = 0)= --- cos (wt - kx) (16)

1 

while the surface charge at z = 0 is proportional to the normal 
component of electric field, 

o-f(z = 0) = -eEz(z = 0) = 2eE, sin 0 cos (wt - k.x) (17) 

Note that (16) and (17) satisfy conservation of current on the 
conducting surface, 

V.- K + =0 -+- 0 (18)
at ax at 

where 

VY=-ix +-iY 
ax ay 

is the surface divergence operator. The time-average power 
flow for this polarization is also x directed: 

<S>= 2- Re (i x AI*) 
2E2=2 sin 0 COS2 kjzi, (19) 
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7-9 OBLIQUE INCIDENCE ONTO A DIELECTRIC 

7-9-1 E Parallel to the Interface 

A plane wave incident upon a dielectric interface, as in 
Figure 7-18a, now has transmitted fields as well as reflected 
fields. For the electric field polarized parallel to the interface, 
the fields in each region can be expressed as 

E = Re [EZ ei(--kzzi, 

H; = Re (-cos 0i. +sin 0ai.) 

E, = Re [, e'( k-x+k-) i,( 

H, = Re [,-(cos ,i. +sin Oi.) e 
Nli 

E, = Re [E, e ~k",X,, 

H,= Re [.L(-cos 6,i +sin ji2 ) 
L12 

where 8i, 8,, and 6, are the angles from the normal of the 
incident, reflected, and transmitted power flows. The 
wavenumbers in each region are 

k Ai=k k, =k1 k=k2 sin, (2)sin 0, sin 6,, 

ki =kIcos , =k Icos 0,, k,= k2 cos , 

where the wavenumber magnitudes, wave speeds, and wave 
impedances are 

ki , 2 , CI= 

77-= 772 C2
61 E2 1/E2A2 

The unknown angles and amplitudes in (1) are found from 
the boundary conditions of continuity of tangential E and H 
at the z =0 interface. 

Zi e -'k-i- +t -s- =4$ e-s 

- Z. cos , e -'kx + ,.cos 0,-e Z, cos 0, e -kx( 

These boundary conditions must be satisfied point by point 
for all x. This requires that the exponential factors also be 
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1, p1 2 2 

c,= 1 x 2 

kt 
H, Et 

E. k, H 

E, e
0 0, 

C2 =,/El JAI 

HH, H1 . 

Hi 

sin0, =f sin Of
C1 

Figure 7-18 A uniform plane wave obliquely incident upon a dielectric interface also 
has its angle of incidence equal to the angle of reflection while the transmitted angle is 
given by Snell's law. (a) Electric field polarized parallel to the interface. (b) Magnetic 
field parallel to the interface. 

equal so that the x components of all wavenumbers must be 
equal, 

,= k, = k.1 k1 sin O= k1 sin 0, = k 2 sin 0, (5) 

which relates the angles as 

E, =, (6) 

sin 6, = (c 2/c ) sin 6 (7) 7
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As before, the angle of incidence equals the angle of 
reflection. The transmission angle obeys a more complicated 
relation called Snell's law relating the sines of the angles. The 
angle from the normal is largest in that region which has the 
faster speed of electromagnetic waves. 

In optics, the ratio of the speed of light in vacuum, co= 
11/le-A, to the speed of light in the medium is defined as the 
index of refraction, 

ni=co/ci, n2 =co/c 2 (8) 

which is never less than unity. Then Snell's law is written as 

sin 0, = (n1 /n 2) sin 0, (9) 

With the angles related as in (6), the reflected and transmitted 
field amplitudes can be expressed in the same way as for 
normal incidence (see Section 7-6-1) if we replace the wave 
impedances by 71 ->71/cos 0 to yield 

'12 711 

E, cos 0, cos 0,
R = 2, 

Ei 712 71i 
cos 6, cos 0, 

2C O2
Z, 2712 

+71cos 0 E c + 7CO(128 
(COs 0, +O i 

712 cos 0 - 711 cos 0S 

12 cos ,+71 cos O, 

2 2 COSs 8i (1 0 )
2712 COS Oi 

712 cos i 

In (4) we did not consider the boundary condition of 
continuity of normal B at z =0. This boundary condition is 
redundant as it is the same condition as the upper equation in 
(4): 

M-(Zi+,) s sin 0, >(1i+Z4) =4Z (11)
771 712 

where we use the relation between angles in (6). Since 

A161si , 
711 C1 

the trigonometric terms in (11) 
There is no normal component 
continuous across the interface. 

7-9-2 Brewster's Angle of No Reflection 

$=L262 = (12) 
712 C2 

cancel due to Snell's law. 
of D so it is automatically 

We see from (10) that at a certain angle of incidence, there 
is no reflected field as R =0. This angle is called Brewster's 
angle: 

R = 0 >12 cos 0, = 1i cos O, (13) 
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By squaring (13), replacing the cosine terms with sine terms 
(cos 2 = 1 -sin 2), and using Snell's law of (6), the Brewster 
angle OB is found as 

s2n2 1-291/(EII2) (14) )1 -(OAI/Is 2 

There is not always a real solution to (14) as it depends on the 
material constants. The common dielectric case, where 1L, = 

A2 sj but ei E2, does not have a solution as the right-hand 
side of (14) becomes infinite. Real solutions to (14) require the 
right-hand side to be between zero and one. A Brewster's 
angle does exist for the uncommon situation where E1 = E2 
and P # 2: 

sin2 OB 1 =tan 8=JB (15)
I+PI/P2 Al 

At this Brewster's angle, the reflected and transmitted power 
flows are at right angles (OB + 0, = ir/2) as can be seen by using 
(6), (13), and (14): 

cos (OB + 01) = cos OB cos 0, - sin OB sin 0, 

2 e sin2 A 

Ar A2 
= cos 

-sin2 + =0) (16)
Ai A2 A I 

7-9-3 Critical Angle of Transmission 

Snell's law in (6) shows us that if c2 >cI, large angles of 
incident angle B, could result in sin 0, being greater than 
unity. There is no real angle 0, that satisfies this condition. 
The critical incident angle 0, is defined as that value of Oi that 
makes 0, = ir/2, 

sin6, =c1Ic 2 (17) 

which has a real solution only if c I<c 2. At the critical angle, 
the wavenumber k., is zero. Lesser incident angles have real 
values of k.. For larger incident angles there is no real angle 0, 
that satisfies (6). Snell's law must always be obeyed in order to 
satisfy the boundary conditions at z =0 for all x. What 
happens is that 0, becomes a complex number that satisfies 
(6). Although sin 0, is still real, cos 0, is imaginary when sin 0, 
exceeds unity: 

cos 0, = (18)(18) 
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This then makes k,, imaginary, which we can write as 

ka = k2 cos0,= -ja (19) 

The negative sign of the square root is taken so that waves 
now decay with z: 

E, = Re [A ei'*ie-"i,] 
A (20) 

H, = Re [:(-cos Oi. +sin 0,i.) e'(*Iklx) e z 

The solutions are now nonuniform plane waves, as discussed 
in Section 7-7. 

Complex angles of transmission are a valid mathematical 
concept. What has happened is that in (1) we wrote our 
assumed solutions for the transmitted fields in terms of pure 
propagating waves. Maxwell's equations for an incident angle 
greater than the critical angle require spatially decaying 
waves with z in region 2 so that the mathematics forced k. to 
be imaginary. 

There is no power dissipation since the z-directed time-
average power flow is zero, 

<S,>= - Re [EH*] 

- Re ,)* e~ ](-COS (21) 

because cos 0, is pure imaginary so that the bracketed term in 
(21) is pure imaginary. The incident z-directed time-average 
power is totally reflected. Even though the time-averaged 
z-directed transmitted power is zero, there are nonzero but 
exponentially decaying fields in region 2. 

7-9-4 H Field Parallel to the Boundary 

For this polarization, illustrated in Figure 7-18b, the fields 
are 

Ej = Re [.Zi (cos 8gi. -sin ,i.) e3"'~k*i~k**)] 

Hi = Re [:L e(w-k.j--z)i
711 

E, = Re [#, (-cos Oi. -sin 0,i,) eu' k'""kz] 
(22)A 

H, = Re [L e"'(8-k-" i, 

E, = Re [Z, (cos Gi. -sin 0J,.) e'(~'"~xk-")] 

H, = Re [LeiC'~*t"-u)i
712 
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where the wavenumbers and impedances are the same as in 
(2) 	and (3). 

Continuity of tangential E and H at z =0 requires 

Ei COS O: e-"-x - Z, COS 0, e -"= COS 0, e­

Z4 e -A*- +4 e -'k- 4 e ik-x (23) 

771 112 

Again the phase factors must be equal so that (5) and (6) are 
again true. Snell's law and the angle of incidence equalling 
the angle of reflection are independent of polarization. 

We solve (23) for the field reflection and transmission 
coefficients as 

Z, 711 COS Oi - 712 COS 01
R 	=,c (24)

E 12 cos 0+l IcosG1 

E, 212 cosG
T = G c 	 (25)

Ej 'q2 COS O CO O6+Q Io 

Now we note that the boundary condition of continuity of 
normal D at z =0 is redundant to the lower relation in (23), 

eIE1 sin 9, + 1ZE, sin ,.= E2 E, sin G, (26) 

using Snell's law to relate the angles. 
For this polarization the condition for no reflected waves is 

R = 0 >q2cos 0, =q Icos Oi (27) 

which from Snell's law gives the Brewster angle: 

2 1- 6 1 2/(E21L1) (28) 
1- (e 1/2) 

There is now a solution for the usual case where /A I= p2 but 
El 0 E2: 

sin2 OB =>tan OB = - (29)
1+61/62e 

At this Brewster's angle the reflected and transmitted power 
flows are at right angles (GB + 0,) = r/2 as can be seen by using 
(6), (27), and (29) 

cos (GB + 0,) = cos OB cos , -sin GB sin 0, 

2=cos GB -sl2B 
E 62 

= 	jL - sin2 9(VfTI , )E o (30) 
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Because Snell's law is independent of polarization, the 
critical angle of (17) is the same for both polarizations. Note 
that the Brewster's angle for either polarization, if it exists, is 
always less than the critical angle of (17), as can be particularly 
seen when p I= 142 for the magnetic field polarized parallel to 
the interface or when 1 = E2 for the electric field polarized 
parallel to the interface, as then 

1 	 1 
2 +1 (31)

sin eB 	 sin2, 

7-10 APPLICATIONS TO OPTICS 

Reflection and refraction of electromagnetic waves 
obliquely incident upon the interface between dissimilar 
linear lossless media are governed by the two rules illustrated 
in Figure 7-19: 

(i) The angle of incidence equals the angle of reflection. 
(ii) 	 Waves incident from a medium of high light velocity 

(low index of refraction) to one of low velocity (high 
index of refraction) are bent towards the normal. If the 
wave is incident from a low velocity (high index) to high 
velocity (low index) medium, the light is bent away from 
the normal. The incident and refracted angles are 
related by Snell's law. 

S, H, 

e2, IA2 

eopo 
el.* U E 

95 	 sinO, =!I i~ 

(Snell's law) 

Si 

Ej 

HI 

Figure 7-19 A summary of reflection and refraction phenomena across the interface 
separating two linear media. When 0j = OB (Brewster's angle), there is no reflected ray. 
When 0, >9, (critical angle), the transmitted fields decay with z. 
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Most optical materials, like glass, have a permeability of 
friee space s~o. Therefore, a Brewster's angle of no reflection 
only exists if the H field is parallel to the boundary. 

At the critical angle, which can only exist if light travels 
from a high index of refraction material (low light velocity) to 
one of low index (high light velocity), there is a transmitted 
field that decays with distance as a nonuniform plane wave. 
However, there is no time-average power carried by this 
evanescent wave so that all the time-average power is 
reflected. This section briefly describes various applications of 
these special angles and the rules governing reflection and 
refraction. 

7-10-1 Reflections from a Mirror 

A person has their eyes at height h above their feet and a 
height Ah below the top of their head, as in Figure 7-20. A 
mirror in front extends a distance Ay above the eyes and a 
distance y below. How large must y and Ay be so that the 
person sees their entire image? The light reflected off the 
person into the mirror must be reflected again into the 
person's eyes. Since the angle of incidence equals the angle of 
reflection, Figure 7-20 shows that Ay = Ah/2 and y =h/2. 

7-10-2 Lateral Displacement of a Light Ray 

A light ray is incident from free space upon a transparent 
medium with index of refraction n at angle 0,, as shown in 
Figure 7-21. The angle of the transmitted light is given by 
Snell's law: 

sin 0, =(1/n) sin Oi (1) 

A h AY =_A~y2 

hT 

Mirror 

Figure 7-20 Because the angle of incidence equals the angle of reflection, a person can 
see their entire image if the mirror extends half the distance of extent above and below 
the eyes. 
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S=dsin(O;-0t)

Cos s=
 

-d-

Figure 7-21 A light ray incident upon a glass plate exits the plate into the original 
medium parallel to its original trajectory but laterally displaced. 

When this light hits the second interface, the angle 0, is now 
the incident angle so that the transmitted angle 02 is again 
given by Snell's law: 

sin 02 =n sin 0, = sin Oi (2) 

so that the light exits at the original incident angle 8,. 
However, it is now shifted by the amount: 

d sin (G,-0) (3) 
cos 8, 

If the plate is glass with refractive index n = 1.5 and thickness 
d = 1 mm with incident angle 8, = 30*, the angle 0, in the glass 
is 

sin 0, = 0.33> , = 19.5* (4) 

so that the lateral displacement is s = 0.19 mm. 

7-10-3 Polirization By Reflection 

Unpolarized light is incident upon the piece of glass in 
Section 7-10-2 with index of refraction n = 1.5. Unpolarized 
light has both E and H parallel to the interface. We assume 
that the permeability of the glass equals that of free space and 
that the light is incident at the Brewster's angle OB for light 
polarized with H parallel to the interface. The incident and 
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transmitted angles are then 

tanOB= IE=fnl>0= 56. 3 

(5)
tan 6, = Vo/E = 1I/n 0, = 33.7' 

The Brewster's angle is also called the polarizing angle 
because it can be used to separate the two orthogonal 
polarizations. The polarization, whose H field is parallel to 
the interface, is entirely transmitted at the first interface with 
no reflection. The other polarization with electric field 
parallel to the interface is partially transmitted and reflected. 
At the second (glass-free space) interface the light is incident 
at angle 0,. From (5) we see that this angle is the Brewster's 
angle with H parallel to the interface for light incident from 
the glass side onto the glass-free space interface. Then again, 
the H parallel to the interface polarization is entirely trans­
mitted while the E parallel to the interface polarization is 
partially reflected and partially transmitted. Thus, the 
reflected wave is entirely polarized with electric field parallel 
to the interface. The transmitted waves, although composed 
of both polarizations, have the larger amplitude with H 

E 

S H 
H 

0) E 

Polarized light Partially polarized
(E parallel to interface)l\ (mostly H parallel 

to the interface) 

/ 
.. ft 

Unpolarized 
light 

(E and H parallel 
to interface) 

Figure 7-22 Unpolarized light incident upon glass with A =yAO can be polarized by 
reflection if it is incident at the Brewster's angle for the polarization with H parallel to 
the interface. The transmitted light becomes more polarized with H parallel to the 
interface by adding more parallel glass plates. 
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parallel to the interface because it was entirely transmitted 
with no reflection at both interfaces. 

By passing the transmitted light through another parallel 
piece of glass, the polarization with electric field parallel to 
the interface becomes further diminished because it is par­
tially reflected, while the other polarization is completely 
transmitted. With more glass elements, as in Figure 7-22, the 
transmitted light can be made essentially completely 
polarized with H field parallel to the interface. 

7-10-4 Light Propagation In Water 

(a) Submerged Source 
A light source is a distance d below the surface of water 

with refractive index n = 1.33, as in Figure 7-23. The rays 
emanate from the source as a cone. Those rays at an angle 
from the normal greater than the critical angle, 

sin 6, = 1/n >0, = 48.80 (6) 

are not transmitted into the air but undergo total internal 
reflection. A circle of light with diameter 

D = 2d tan6O - 2.28d (7) 

then forms on the water's surface due to the exiting light. 

(b) Fish Below a Boat 
A fish swims below a circular boat of diameter D, as in 

Figure 7-24. As we try to view the fish from the air above, the 
incident light ray is bent towards the normal. The region 
below the boat that we view from above is demarcated by the 
light rays at grazing incidence to the surface (, = r/2) just 
entering the water (n = 1.33) at the sides of the boat. The 
transmitted angle of these light rays is given from Snell's law 
as 

sinG1 1 
sin 6,= s =-6, = 48.8* (8) 

n n 

D = 2dtanOc. 

sin c 

Figure 7-23 Light rays emanating from a source within a high index of refraction 
medium are totally internally reflected from the surface for angles greater than the 
critical angle. Lesser angles of incidence are transmitted. 
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nt8 
D 

Y 2tanO 

Figure 7-24 A fish cannot be seen from above if it swims below a circular boat within 
the cone bounded by light rays at grazing incidence entering the water at the side of the 
boat. 

These rays from all sides of the boat intersect at the point a 
distance y below the boat, where 

D D 
tan O, =->y = - -0.44D (9)

2y 2 tan 0, 

If the fish swims within the cone, with vertex at the point y 
below the boat, it cannot be viewed from above. 

7-10-5 Totally Reflecting Prisms 

The glass isoceles right triangle in Figure 7-25 has an index 
of refraction of n = 1.5 so that the critical angle for total 

45 

no=1 

<st> 2 Y 
<-s -> n+ I 

Figure 7-25 A totally reflecting prism. The index of refraction n must exceed v 2 so 
that the light incident on the hypotenuse at 450 exceeds the critical angle. 
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internal reflection is 

1 1 
sin =-=-=>6, = 41.80 (10)

n 1.5 

The light is normally incident on the vertical face of the 
prism. The transmission coefficient is then given in Section 
7-6-1 as 

E, 2n 2/n 2T,=,= -= = =0.8 (11)
E i7+tjo 1+1/n n+1 

where because the permeability of the prism equals that of 
free space n = v jE while 1/1o = Veo/e 1= /n. The transmitted 
light is then incident upon the hypotenuse of the prism at an 
angle of 45*, which exceeds the critical angle so that no power 
is transmitted and the light is totally reflected being turned 
through a right angle. The light is then normally incident 
upon the horizontal face with transmission coefficient: 

E2 2no 2 2n 
T2= -- =-=-= = 1.2 (12)

0.8Ej 71+,o I/n+I n+I 

The resulting electric field amplitude is then 

Z2 = T, T2E, = 0.961i (13) 

The ratio of transmitted to incident power density is 

<S> |2|1t21/170 |Z2|2 2 
ZS2iE2= 12/ 10 = 24 ~ 0.92 (14) 

This ratio can be increased to unity by applying a quarter­
wavelength-thick dielectric coating with index of refraction 
ncoating= .hn, as developed in Example 7-1. This is not usually 
done because the ratio in (14) is already large without the 
expense of a coating. 

7-10-6 Fiber Optics 

(a) Straight Light Pipe 
Long hin fibers of transparent material can guide light 

along a straight path if the light within the pipe is incident 
upon the wall at an angle greater than the critical angle 
(sin 0, = 1/n): 

sin 62 =cos 0,a sin 0, (15) 

The light rays are then totally internally reflected being 
confined to the pipe until they exit, as in Figure 7-26. The 
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no = 1 

Figure 7-26 The index of refraction of a straight light pipe must be greater than N2 for 
total internal reflections of incident light at any angle. 

incident angle is related to the transmitted angle from Snell's 
law, 

sin 0, =(1/n) sin Oi (16) 

so that (15) becomes 

cos 0, = %/- =(I /n2) sing uj 1/n (17) 

which when solved for n yields 

n 2 -1+sin 20 (18) 

If this condition is met for grazing incidence (, = r/2), all 
incident light will be passed by the pipe, which requires that 

n2 22=n 2- (19) 

Most types of glass have n - 1.5 so that this condition is easily 
met. 

(b) Bent Fibers 
Light can also be guided along a tortuous path if the fiber is 

bent, as in the semi-circular pipe shown in Figure 7-27. The 
minimum angle to the radial normal for the incident light 
shown is at the point A. This angle in terms of the radius of 
the bend and the light pipe width must exceed the critical angle 

R 
sinBA=R dsinO. (20) 

A R +d 

R 

Figure 7-27 Light can be guided along a eircularly bent fiber if Rid > 1/(n - 1) as then 
there is always total internal reflection each time the light is incident on the walls. 
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so that 

Rd 1- (21)
R/d+l n 

which when solved for Rid requires 

R 1 
- , (22)d n -I 

PROBLEMS 

Section 7-1 
1. For the following electric fields in a linear media of 
permittivity e and permeability ji find the charge density, 
magnetic field, and current density. 

(a) E = Eo(xi. +yi,) sin wt 
(b) E= Eo(yi. -xi,) cos wt 
(c) E = Re [Eoe "-zzi,. How must k., k,, and w be 

related so that J =0? 

2. An Ohmic conductor of arbitrary shape has an initial 
charge distribution po(r) at t = 0. 

(a) What is the charge distribution for all time? 
(b) The initial charge distribution is uniform and is 

confined between parallel plate electrodes of spacing d. What 
are the electric and magnetic fields when the electrodes are 
opened or short circuited? 

(c) Repeat (b) for coaxial cylindrical electrodes of inner 
radius a and outer radius b. 

(d) When does a time varying electric field not generate a 
magnetic field? 

3. (a) For linear media of permittivity s and permeability U, 
use the magnetic vector potential A to rewrite Faraday's law 
as the curl of a function. 

(b) Can a scalar potential function V be defined? What is 
the electric field in terms of V and A? The choice of V is not 
unique so pick V so that under static conditions E = -V V. 

(c) Use the results of (a) and (b) in Ampere's law with 
Maxwell's displacement current correction to obtain a single 
equation in A and V. (Hint: V x (V x A) = V(V - A) -V 2A.) 

(d) Since we are free to specify V - A, what value should we 
pick to make (c) an equation just in A? This is called setting 
the gauge. 

(e) Use the results of (a)-(d) in Gauss's law for D to obtain a 
single equation in V. 
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