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In our development thus far, we have found the electric 
and magnetic fields to be uncoupled. A net charge generates 
an electric field while a current is the source of a magnetic 
field. In 1831 Michael Faraday experimentally discovered 
that a time varying magnetic flux through a conducting loop 
also generated a voltage and thus an electric field, proving 
that electric and magnetic fields are coupled. 

6-1 FARADAY'S LAW OF INDUCTION 

6-1-1 The Electromotive Force (EMF) 

Faraday's original experiments consisted of a conducting 
loop through which he could impose a dc current via a switch. 
Another short circuited loop with no source attached was 
nearby, as shown in Figure 6-1. When a dc current flowed in 
loop 1, no current flowed in loop 2. However, when the 
voltage was first applied to loop 1 by closing the switch, a 
transient current flowed in the opposite direction in loop 2. 

~ji1 (t) 

+ A Ammeter i2(t) 	 Dies off because of Ohmic 
V 	 losses with time constant 

" = L/R 

Positive current is induced 
to try to keep magnetic flux 
equal to a non-zero constant 

Negative current is induced 
to try to keep magnetic flux 

equal to zero 

Figure 6-1 Faraday's experiments showed that a time varying magnetic flux through 
a closed conducting loop induced a current in the direction so as to keep the flux 
through the loop constant. 
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When the switch was later opened, another transient current 
flowed in loop 2, this time in the same direction as the original 
current in loop 1. Currents are induced in loop 2 whenever a 
time varying magnetic flux due to loop I passes through it. 

In general, a time varying magnetic flux can pass through a 
circuit due to its own or nearby time varying current or by the 
motion of the circuit through a magnetic field. For any loop, 
as in Figure 6-2, Faraday's law is 

dlb d
EMF= E-dl=---=_ -- B-dS (1)

fL dt dt 

where EMF is the electromotive force defined as the line 
integral of the electric field. The minus sign is introduced on 
the right-hand side of (1) as we take the convention that 
positive flux flows in the direction perpendicular to the direc­
tion of the contour by the right-hand rule. 

6-1-2 Lenz's Law 

The direction of induced currents is always such as to 
oppose any changes in the magnetic flux already present. 
Thus in Faraday's experiment, illustrated in Figure 6-1, when 
the switch in loop 1 is first closed there is no magnetic flux in 
loop 2 so that the induced current flows in the opposite 
direction with its self-magnetic field opposite to the imposed 
field. The induced current tries to keep a zero flux through 

- dS'b=fBs 

ndS dS 

f E - di = -fB - dS 
L 

Figure 6-2 Faraday's law states that the line integral of the electric field around a 
closed loop equals the time rate of change of magnetic flux through the loop. The 
positive convention for flux is determined by the right-hand rule of curling the fingers 
on the right hand in the direction of traversal around the loop. The thumb then points 
in the direction of positive magnetic flux. 
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loop 2. If the loop is perfectly conducting, the induced cur­
rent flows as long as current flows in loop 1, with zero net flux 
through the loop. However, in a real loop, resistive losses 
cause the current to exponentially decay with an LIR time 
constant, where L is the self-inductance of the loop and R is 
its resistance. Thus, in the dc steady state the induced current 
has decayed to zero so that a constant magnetic flux passes 
through loop 2 due to the current in loop 1. 

When the switch is later opened so that the current in loop 
1 goes to zero, the second loop tries to maintain the constant 
flux already present by inducing a current flow in the same 
direction as the original current in loop 1. Ohmic losses again 
make this induced current die off with time. 

If a circuit or any part of a circuit is made to move through 
a magnetic field, currents will be induced in the direction 
such as to try to keep the magnetic flux through the loop 
constant. The force on the moving current will always be 
opposite to the direction of motion. 

Lenz's law is clearly demonstrated by the experiments 
shown in Figure 6-3. When a conducting ax is moved into a 
magnetic field, eddy currents are induced in the direction 
where their self-flux is opposite to the applied magnetic field. 
The Lorentz force is then in the direction opposite to the 
motion of the ax. This force decreases with time as the cur­
rents decay with time due to Ohmic dissipation. If the ax was 
slotted, effectively creating a very high resistance to the eddy 
currents, the reaction force becomes very small as the 
induced current is small. 

f, = 2rR IB, 
t = JJ x BdV 
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Figure 6-3 Lenz's law. (a) Currents induced in a conductor moving into a magnetic 
field exert a force opposite to the motion. The induced currents can be made small by 
slotting the ax. (b) A conducting ring on top of a coll is flipped off when a current is 
suddenly applied, as the induced currents try to keep a zero flux through the ring. 
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When the current is first turned on in the coil in Figure 6-3b, 
the conducting ring that sits on top has zero flux through it. 
Lenz's law requires that a current be induced opposite to that 
in the coil. Instantaneously there is no z component of 
magnetic field through the ring so the flux must return radi­
ally. This creates an upwards force: 

f = 27RI X B= 2rRI4Bri. (2) 

which flips the ring off the coil. If the ring is cut radially so 
that no circulating current can flow, the force is zero and the 
ring does not move. 

(a) Short Circuited Loop 
To be quantitative, consider the infinitely long time varying 

line current I(t) in Figure 6-4, a distance r from a rectangular 
loop of wire with Ohmic conductivity o-, cross-sectional area 
A, and total length I = 2(D+ d). The magnetic flux through 
the loop due to I(t) is 

rD2 r+d 

cDb,. = LoH,(r') dr' dz 
z--D/2 r 

jtoID r+dr' joID r+d (3) 
2 1r r r' 2v r 

H,(r')= ,21rr' 

cross sectional area A 
Ohmic conductivity a 

D 

Par 

pr­
-Ed-­

Figure 6-4 A rectangular loop near a time varying line current. When the terminals 
are short circuited the electromotive force induces a current due to the time varying 
mutual flux and/or because of the motion of the circuit through the imposed nonuni­
form magnetic field of the line current. If the loop terminals are open circuited there is 
no induced current but a voltage develops. 
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The mutual inductance M is defined as the flux to current 
ratio where the flux through the loop is due to an external 
current. Then (3) becomes 

D,. = M(r)I, M(r) = In r+d (4)
21r r 

When the loop is short circuited (v = 0), the induced Ohmic 
current i gives rise to an electric field [E = J/o = i/(Ao)] so that 
Faraday's law applied to a contour within the wire yields an 
electromotive force just equal to the Ohmic voltage drop: 

il d(D
E - dI=-= iR = --- (5)

fL oA dt 

where R = L/(crA) is the resistance, of the loop. By convention, 
the current is taken as positive in the direction of the line 
integral. 

The flux in (5) has contributions both from the imposed 
current as given in (3) and from the induced current pro­
portional to the loop's self-inductance L, which for example is 
given in Section 5-4-3c for a square loop (D = d): 

(D = M(r)I+ Li (6) 

If the loop is also moving radially outward with velocity 
vr = dr/dt, the electromotively induced Ohmic voltage is 

-iR =­
dt 

dI dM(r) di 
d= di d 

dI dMdr di 
= M(r)-+I +L-d(7)

dt dr dt dt 

where L is not a function of the loop's radial position. 
If the loop is stationary, only the first and third terms on 

the right-hand side contribute. They are nonzero only if the 
currents change with time. The second term is due to the 
motion and it has a contribution even for dc currents. 
Turn-on Transient. If the loop is stationary (drldt=0) at 
r = ro, (7) reduces to 

di dl 8 
L-+ iR = -M(ro) (8)

di dt 

If the applied current I is a dc step turned on at t =0, the 
solution to (8) is 

M(ro)I Lti(t) = (/~.t>O (9) 
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where the impulse term on the right-hand side of (8) imposes 
the initial condition i(t=0)=-M(ro)I/L. The current is 
negative, as Lenz's law requires the self-flux to oppose the 
applied flux. 
Turn-off Transient. If after a long time T the current I is 
instantaneously turned off, the solution is 

i(S)= M(ro)IeLaT t> T (10)
L 

where now the step decrease in current I at t = T reverses the 
direction of the initial current. 
Motion with a dc Current. With a dc current, the first term 
on the right-hand side in (7) is zero yielding 

di 0oIDd dr 1)
L-+iR (_____)

dt 27rr(r+d)dt 

To continue, we must specify the motion so that we know how 
r changes with time. Let's consider the simplest case when the 
loop has no resistance (R = 0). Then (11) can be directly 
integrated as 

Li 'oIDIn l+d/rL 2=- lIn r (12)21r I+ d/ro 

where we specify that the current is zero when r =ro. This 
solution for a lossless loop only requires that the total flux of 
(6) remain constant. The current is positive when r> ro as the 
self-flux must aid the decreasing imposed flux. The current is 
similarly negative when r < ro as the self-flux must cancel the 
increasing imposed flux. 

The force on the loop for all these cases is only due to the 
force on the z-directed current legs at r and r+d: 

SAODiI I 
21 r+d r) 

yLoDiId 
21rr(r+d) 

being attractive if iI> 0 and repulsive if iI <0. 

(b) Open Circuited Loop 
If the loop is open circuited, no induced current can flow 

and thus the electric field within the wire is zero (J = rE =0). 
The electromotive force then only has a contribution from 
the gap between terminals equal to the negative of the 
voltage: 

d4 d4
 
fE-dl= E-dl=-v -- :v- (14)
JL bdt d 
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Note in Figure 6-4 that our convention is such that the cur­
rent i is always defined positive flowing out of the positive 
voltage terminal into the loop. The flux (D in (14) is now only 
due to the mutual flux given by (3), as with i =0 there is no 
self-flux. The voltage on the moving open circuited loop is 
then 

dl dMdr 
v=M(r) + I (15)

dt dr dt 

(c) Reaction Force 
The magnetic force on a short circuited moving loop is 

always in the direction opposite to its motion. Consider the 
short circuited loop in Figure 6-5, where one side of the loop 
moves with velocity v,. With a uniform magnetic field applied 
normal to the loop pointing out of the page, an expansion of 
the loop tends to' link more magnetic flux requiring the 
induced current to flow clockwise so that its self-flux is in the 
direction given by the right-hand rule, opposite to the applied 
field. From (1) we have 

il dCI dx 
E - dl=-= iR -- BoD- = BoDv. (16)

L o-A ' dt dt 

where I 2(D+x) also changes with time. The current is then 

.BoDv.Z=B (17)
R 

y 

D '' B : eB B= Boi. 
F p 

0 Expanding loop 

A 
F e B 

Contracting loop 

Figure 6-5 If a conductor moves perpendicular to a magnetic field a current is 
induced in the direction to cause the Lorentz force to be opposite to the motion. The 
total flux through the closed loop, due to both the imposed field and the self-field 
generated by the induced current, tries to remain constant. 

I 
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where we neglected the self-flux generated by i, assuming it to 
be much smaller than the applied flux due to Bo. Note also 
that the applied flux is negative, as the right-hand rule 
applied to the direction of the current defines positive flux 
into the page, while the applied flux points outwards. 

The force on the moving side is then to the left, 
2 2 

f = -iDi, x Boi. = -iDB i= = - i (18) 
R 

opposite to the velocity. 
However if the side moves to the left (v, <0), decreasing 

the loop's area thereby linking less flux, the current reverses 
direction as does the force. 

6-1-3 Laminations 

The induced eddy currents in Ohmic conductors results in 
Ohmic heating. This is useful in induction furnaces that 
melt metals, but is undesired in many iron core devices. To 
reduce this power loss, the cores are often sliced into many 
thin sheets electrically insulated from each other by thin oxide 
coatings. The current flow is then confined to lie within a thin 
sheet and cannot cross over between sheets. The insulating 
laminations serve the same purpose as the cuts in the slotted 
ax in Figure 6-3a. 

The rectangular conductor in Figure 6-6a has a time vary­
ing magnetic field B(t) passing through it. We approximate 
the current path as following the rectangular shape so that 

dx w
 
- -dy L
 

L dy 3 x L 

B() (a) B(t) (b) 

Figure 6-6 (a) A time varying magnetic field through a conductor induces eddy 
currents that cause Ohmic heating. (b) If the conductor is laminated so that the 
induced currents are confined to thin strips, the dissipated power decreases. 
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the flux through the loop of incremental width dx and dy of 
area 4xy is 

D= -4xyB(t) (19) 

where we neglect the reaction field of the induced current 
assuming it to be much smaller than the imposed field. The 
minus sign arises because, by the right-hand rule illustrated in 
Figure 6-2, positive flux flows in the direction opposite to 
B(t). The resistance of the loop is 

4I x 4 LXF+ IE\ 21 
RL= + = (20) 

The electromotive force around the loop then just results in 
an Ohmic current: 

ftd 
-d(D dBEdl= iR== =4xy-=-x --

dt 
4L 2 dB(21) 
w dt 

with dissipated power 

i2R. = 4Dx 3 oL(dB/dt) 2 dx 
w[1+(w/L)(] 

The total power dissipated over the whole sheet is then 
found by adding the powers dissipated in each incremental 
loop: 

w/2 

P= dp 

4D(dB/dt)2o-L w12 x3 dx 
w[ l+(w/L)2 o 
LDw~o-(dB/dt)2 

16[1+(w/L)2 ] 

If the sheet is laminated into N smaller ones, as in Figure 
6-6b, each section has the same solution as (23) if we replace w 
by wIN. The total power dissipated is then N times the power 
dissipated in a single section: 

_ LD(wIN)3r(dB/dt)2 N crLDw3(dBldt) 2 

16[1+(w/NL) 2] 16N2[l+(wINL)2] 

As N becomes large so that w/NL < 1, the dissipated power 
decreases as 1/N2 

6-1-4 Betatron 

The cyclotron, discussed in Section 5-1-4, is not used to 
accelerate electrons because their small mass allows them to 
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reach relativistic speeds, thereby increasing their mass and 
decreasing their angular speed. This puts them out of phase 
with the applied voltage. The betatron in Figure 6-7 uses the 
transformer principle where the electrons circulating about 
the evacuated toroid act like a secondary winding. The 
imposed time varying magnetic flux generates an electric field 
that accelerates the electrons. 

Faraday's law applied to a contour following the charge's 
trajectory at radius R yields 

fE - dl= E02rR = -- (25)
di 

which accelerates the electrons as 

dv, e dcl e (6
m-ds= -eEs = e Q=v#= e ( (26)

dt 27rR dt 27rmR 

The electrons move in the direction so that their self-
magnetic flux is opposite to the applied flux. The resulting 
Lorentz force is radially inward. A stable orbit of constant 
radius R is achieved if this force balances the centrifugal 
force: 

dv, my,2 

M-=--ev.B(R) = 0 (27)
di R 

which from (26) requires the flux and magnetic field to be 
related as 

0=21rR2B,(R) (28) 

This condition cannot be met by a uniform field (as then 
0 = 1rR2B ) so in practice the imposed field is made to 
approximately vary with radial position as 

B.(r)=Bo(- Q>Q=21rJ B,(r)rdr=2,rR2 Bo (29) 

R 

Figure 6-7 "thebetatron accelerates electrons to high speeds using the electric field 
generated by a time varying magnetic field. 
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where R is the equilibrium orbit radius, so that (28) is 
satisfied. 

The magnetic field must remain curl free where there is no 
current so that the spatial variation in (29) requires a radial 
magnetic field component: 

(aB, _ B) BoR 
VxB= 14=0>B= 2z (30)

( z ar r 

Then any z-directed perturbation displacements 

d2 z ev!t, eB\ 2 
-, = - - (R)= - - z 
t _M In 

z =A 1 sin wt+A 2 cos w0 t, wo= (31) 

have sinusoidal solutions at the cyclotron frequency wo= 
eBo/m, known as betatron oscillations. 

6-1-5 Faraday's Law and Stokes' Theorem 

The integral form of Faraday's law in (1) shows that with 
magnetic induction the electric field is no longer conservative 
as its line integral around a closed path is non-zero. We may 
convert (1) to its equivalent differential form by considering a 
stationary contour whose shape does not vary with time. 
Because the area for the surface integral does not change 
with time, the time derivative on the right-hand side in (1) 
may be brought inside the integral but becomes a partial 
derivative because B is also a function of position: 

E - dl=- -B- dS (32)
at 

Using Stokes' theorem, the left-hand side of (32) can be 
converted to a surface integral, 

E.dl= VxE.dS- -dS (33) 
, fS s at 

which is equivalent to 

B 
j(VxE+- -dS=0 (34) 

Since this last relation is true for any surface, the integrand 
itself must be zero, which yields Faraday's law of induction in 
differential form as 

BB
VxE- (35)

at 
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6-2 MAGNETIC CIRCUITS 

Various alloys of iron having very high values of relative 
permeability are typically used in relays and machines to 
constrain the magnetic flux to mostly lie within the permeable 
material. 

6-2-1 Self-Inductance 

The simple magnetic circuit in Figure 6-8 has an N turn 
coil wrapped around a core with very high relative 
permeability idealized to be infinite. There is a small air gap 
of length s in the core. In the core, the magnetic flux density 
B is proportional to the magnetic field intensity H by an 
infinite permeability g. The B field must remain finite to keep 
the flux and coil voltage finite so that the H field in the core 
must be zero: 

H=O 
lim B=AH-> (1) 

B finite 

Contour of integration of 
Ampere's law 

D 

PO 

p * 00 
Nturns _-------­

di 

H = -S s+ 

Flux leaving 

Closed surface S 
has zero net flux 

through it 

Flux entering SL_ 

Current i passes perpendicularly 
through contour N times 

' 
Faraday s law evaluated for dashed contour o ow ngN

turn coil in the direction of the current 

Figure 6-8 The magnetic field is zero within an infinitely permeable magnetic core 
and is constant in the air gap if we neglect fringing. The flux through the air gap is 
constant at every cross section of the magnetic circuit and links the N turn coil N times. 
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The H field can then only be nonzero in the air gap. This 
field emanates perpendicularly from the pole faces as no 
surface currents are present so that the tangential component 
of H is continuous and thus zero. If we neglect fringing field 
effects, assuming the gap s to be much smaller than the width 
d or depth D, the H field is uniform throughout the gap. 
Using Ampere's circuital law with the contour shown, the 
only nonzero contribution is in the air gap, 

H - d= Hs = Itotal encosed = Ni (2) 

where we realize that the coil current crosses perpendicularly 
through our contour N times. The total flux in the air gap is 
then 

Db= ioHDd= uoNDd (3)
S 

Because the total flux through any closed surface is zero, 

5SB - dS =0 (4) 

all the flux leaving S in Figure 6-8 on the air gap side enters 
the surface through the iron core, as we neglect leakage flux 
in the fringing field. The flux at any cross section in the iron 
core is thus constant, given by (3). 

If the coil current i varies with time, the flux in (3) also 
varies with time so that a voltage is induced across the coil. We 
use the integral form of Faraday's law for a contour that lies 
within the winding with Ohmic conductivity o-, cross sectional 
area A, and total length 1. Then the current density and 
electric field within the wire is 

11 J 
J=-, E=-=-- (5)A a- oA 

so that the electromotive force has an Ohmic part as well as a 
contribution due to the voltage-across the terminals: 

C 
E-d= -- d1+J E-dI=---- fB-dS (6) 

-L f A bdt 

iR across 
in wire terminals 

The surface S on the right-hand side is quite complicated 
because of the spiral nature of the contour. If the coil only 
had one turn, the right-hand side of (6) would just be the time 
derivative of the flux of (3). For two turns, as in Figure 6-9, 
the flux links the coil twice, while for N turns the total flux 
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I
 
fB - dS 

c = 
Spiral surface S 

9 Flux linked by a 
N turn coil is 

t 0 
Flux 0 through
 
a single loop
 4 

Flux linked 
by a two turn 
loop is 20 4 

Figure 6-9 The complicated spiral surface for computation of the linked flux by an N 
turn coil can be considered as N single loops each linking the same flux 4,. 

linked by the coil is NM. Then (6) reduces to 

di 
v=iR+L­(7)dt 

where the self-inductance is defined as 

B dS = 1N2Dd henry [kg-m 2-A -s2] (8) L =N= N = 
S fL H - dl s 

For linearly permeable materials, the inductance is always 
independent of the excitations and only depends on the 
geometry. Because of the fixed geometry, the inductance is a 
constant and thus was taken outside the time derivative in (7). 
In geometries that change with time, the inductance will also 
be a function of time and must remain under the derivative. 
The inductance is always proportional to the square of the 
number of coil turns. This is because the flux 4, in the air gap 
is itself proportional to N and it links the coil N times. 

EXAMPLE 6-1 SELF-INDUCTANCES 

Find the self-inductances for the coils shown in Figure 
6-10. 

(a) Solenoid 
An N turn coil is tightly wound upon a cylindrical core of 

radius a, length 1, and permeability A. 
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Figure 6-10 Inductances. (a) Solenoidal coil; (b) toroidal coil. 

SOLUTION 

A current i flowing in the wire approximates a surface 
current 

K6 = Ni/l 

If the length I is much larger than the radius a, we can neglect 
fringing field effects at the ends and the internal magnetic 
field is approximately uniform and equal to the surface cur­
rent, 

Ni 
H.= K0= 

as we assume the exterior magnetic field is negligible. The 
same result is obtained using Ampere's circuital law for the 
contour shown in Figure 6-10a. The flux links the coil N 
times: 

NID NAH. ra2 N2 
1A'ra

2 

L= 

(b) Toroid 
AnN turn coil is tightly wound around a donut-shaped core 

of permeability 1A with a rectangular cross section and inner 
and outer radii R, and R 2. 
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SOLUTION 

Applying Ampere's 	 circuital law to the three contours 
shown in Figure 6-10b, only the contour within the core has a 
net current passing through it: 

0, r<R1 

fH-dl=H027rr= 	 Ni, R><r<R2 
0, r>R2 

The inner contour has no current through it while the outer 
contour enclosing the whole toroid has equal but opposite 
contributions from upward and downward currents. 

The flux through any single loop is 
R2 

(1) yD Ho Hdr 

piDNi R2 dr 

21r fRr r 

yDNi R 2 = In-­
27r R1 

so that the self-inductance is 

N'F pgDN 2R
L= = -D In-	 2 

i 27r R1 

6-2-2 Reluctance 

Magnetic circuits are analogous to resistive electronic 
circuits if we define the magnetomotive force (MMF) 9 
analogous to the voltage (EMF) as 

Ni 	 (9) 

The flux then plays the same role as the current in electronic 
circuits so that we define the magnetic analog to resistance as 
the reluctance: 

N 29 (length) 
(D L (permeability)(cross-sectional area) 

which is proportional to the reciprocal of the inductance. 
The advantage to this analogy is that the rules of adding 

reluctances in series and parallel obey the same rules as resist­
ances. 
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(a) Reluctances in Series 
For the iron core of infinite permeability in Figure 6-11 a, 

with two finitely permeable gaps the reluctance of each gap is 
found from (8) and (10) as 

= 2 22 1= iai s2 (11)
pjajD' ApaD 

so that the flux is 

_ Ni NO N2 

(D= = - =>L=-= (12) 

The iron core with infinite permeability has zero reluctance. 
If the permeable gaps were also iron with infinite permeabil­
ity, the reluctances of (11) would also be zero so that the flux 

p-+4 o 

i + 

Nturns 

U1a,D 

L----a2 -

. evaluating Ampere's lawS2 

Depth D (a) 

)- - M 

i 

C 
P N turns- :r_-_-_-_-_-_-_-_-P- _ 02 =afaq

C S Jr= Ni 
C 

pA a,D 

L- Paths for evaluation 
of Ampere's circuital 

Depth D law which give us 
that H, = H2 = Ni/s 

(b) 

Figure 6-11 Magnetic circuits are most easily analyzed from a circuit approach where 
(a) reluctances in series add and (b) permeances in parallel add. 
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in (12) becomes infinite. This is analogous to applying a 
voltage across a short circuit resulting in an infinite current. 
Then the small resistance in the wires determines the large 
but finite current. Similarly, in magnetic circuits the small 
reluctance of a closed iron core of high permeability with no 
gaps limits the large but finite flux determined by the satura­
tion value of magnetization. 

The H field is nonzero only in the permeable gaps so that 
Ampere's law yields 

Hls1+H2s2 =Ni (13) 

Since the flux must be continuous at every cross section, 

= s1iHia 1D = A2Ha2D (14) 

we solve for the H fields as 

.=lals2a2Ni H 2 = .LaiNi 
H1 a1s2+A2a2S iaIs2 +A 2a2sI 

(b) Reluctances in Parallel 
If a gap in the iron core is filled with two permeable materials, 
as in Figure 6-1 lb, the reluctance of each material is still given 
by (11). Since each material sees the same magnetomotive 
force, as shown by applying Ampere's circuital law to 
contours passing through each material, 

Ni 
His = H2s = Ni ->Hi= H 2 =- (16) 

s 

the H fields in each material are equal. The flux is then 

Ni(Mt1 +22)
0 = (giHlaa +A2H2a2)D = Ni91+R)= Ni(91 +92) 

(17) 

where the permeances 01 and -2 are just the reciprocal 
reluctances analogous to conductance. 

6-2-3 Transformer Action 

(a) Voltages are not Unique 
Consider two small resistors R, and R 2 forming a loop 

enclosing one leg of a closed magnetic circuit with permeabil­
ity A, as in Figure 6-12. An N turn coil excited on one leg with 
a time varying current generates a time varying flux that is 
approximately 

'D(t)=pNAiI/ (18) 

where I is the average length around the core. 
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Cross sectional R2 d4 area A =-iRV 2 2 RI + R 2 dt 

R2 

-N turns 

Li 

R 1 df
V, = iRl = R 1 + R2 dt 

del 
V1 - V2 = dt 

Figure 6-12 Voltages are not unique in the presence of a time varying magnetic field. 
A resistive loop encircling a magnetic circuit has different neasured voltages across the 
same node pair. The voltage difference is equal to the time rate of magnetic flux 
through the loop. 

Applying Faraday's law to the resistive loop we have 

d4(Q) 1 dQi
f E-dl=i(Rs+R2)=+ =>i= - (19)

L dt R1 +R 2 dt 

where we neglect the self-flux produced by the induced cur­
rent i and reverse the sign on the magnetic flux term because 
D penetrates the loop in Figure 6-12 in the direction opposite 
to the positive convention given by the right-hand rule illus­
trated in Figure 6-2. 

If we now measured the voltage across each resistor, we 
would find different values and opposite polarities even 
though our voltmeter was connected to the same nodes: 

R, dot-(v, =iR,=+ R 1 
R 1 +R2 di 

-R 2 d1 (20) 

V= -iR 2 ­R 1 +R2 dt 

This nonuniqueness of the voltage arises because the elec­
tric field is no longer curl free. The voltage difference 
between two points depends on the path of the connecting 
wires. If any time varying magnetic flux passes through the 
contour defined by the measurement, an additional contri­
bution results. 
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(b) Ideal Transformers 
Two coils tightly wound on a highly permeable core, so that 

all the flux of one coil links the other, forms an ideal trans­
former, as in Figure 6-13. Because the iron core has an 
infinite permeability, all the flux is confined within the core. 
The currents flowing in each coil, it and i2 , are defined so 
that when they are positive the fluxes generated by each coil 
are in the opposite direction. The total flux in the core is then 

Nji, -N 2 i I 
(21)@= 

where 92 is the reluctance of the core and I is the average 
length of the core. 

The flux linked by each coil is then 

yEA 2i 
A 1=-(Niii-NN2 i2)=N 

(22)
yA

A2 =N2)= -(NN 2ii-Nii2)I 

Cross sectional
 
area A
 

7 

+ 

i 2 
turns 


turns _
 
N1 N2V1 (1) + onV2RL 

-F. 

Secondary winding 
ci,Primary 

winding 
I, 

vrg core eng 
N,v1 

v 2 N 2 

=V2ii N2N 

I2 N, 

(a) 

Figure 6-13 (a) An ideal transformer relates primary and secondary voltages by the 
ratio of turns while the currents are in the inverse ratio so that the input power equals 
the output power. The H field is zero within the infinitely permeable core. (b) In a real 
transformer the nonlinear B-H hysteresis loop causes a nonlinear primary current i 
with an open circuited secondary (i2 =0) even though the imposed sinusoidal voltage 
v, = VO cos wt fixes the flux to be sinusoidal. (c) A more complete transformer equivalent 
circuit. 
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Figure 6.13. 

which can be written as 

A I Llij-Mi2 (23) 
A 2 =Mil-L 2i 2 

where LI and L2 are the self-inductances of each coil alone 
and M is the mutual inductance between coils: 

LI=NIL, L2 = N2L0 , M =N,N2Lo, Lo =pAl 
(24) 

In general, the mutual inductance obeys the equality: 
2M=k(LIL2) , 0 ks1 (25) 
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where k is called the coefficient of coupling. For a noninfinite 
core permeability, k is less than unity because some of the flux 
of each coil goes into the free space region and does not link 
the other coil. In an ideal transformer, where the permeabil­
ity is infinite, there is no leakage flux so that k = 1. 

From (23), the voltage across each coil is 

dA, di, di2 
=-~=L1 -M­

di dt dt 
(26) 

dA 2 di, di2 v= -- =M--L2­
di di di 

Because with no leakage, the mutual inductance is related 
to the self-inductances as 

N2 N1
M=-L =-L 2 (27)
N1 N2 

the ratio of coil voltages is the same as the turns ratio: 

v, dA,/dt N1 

v 2 dA 2/dt N2 

In the ideal transformer of infinite core permeability, the 
inductances of (24) are also infinite. To keep the voltages and 
fluxes in (26) finite, the currents must be in the inverse turns 
ratio 

-=- N(29)
N,i2 


The electrical power delivered by the source to coil 1, called 
the primary winding, just equals the power delivered to the 
load across coil 2, called the secondary winding: 

v~iI=V2 i2 	 (30) 

If N 2>Nl, the voltage on winding 2 is greater than the 
voltage on winding I but current i2 is less than iI keeping the 
powers equal. 

If primary winding 1 is excited by a time varying voltage 
vI(t) with secondary winding 2 loaded by a resistor RL so that 

V2= i2 RL 	 (31) 

the effective resistance seen by the primary winding is 

R= 	 v= - 2 .V - RL (32)
ii N2 (N2/Ni)i 2 N2 
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A transformer is used in this way as an impedance trans­
former where the effective resistance seen at the primary 
winding is increased by the square of the turns ratio. 

(c) Real Transformers 
When the secondary is open circuited (i 2 = 0), (29) shows 

that the primary current of an ideal transformer is also zero. 
In practice, applying a primary sinusoidal voltage VO cos wt 
will result in a small current due to the finite self-inductance 
of the primary coil. Even though this self-inductance is large 
if the core permeability y is large, we must consider its effect 
because there is no opposing flux as a result of the open 
circuited secondary coil. Furthermore, the nonlinear 
hysteresis curve of the iron as discussed in Section 5-5-3c will 
result in a nonsinusoidal current even though the voltage is 
sinusoidal. In the magnetic circuit of Figure 6.13a with i 2 =0, 
the magnetic field is 

H= (33) 

while the imposed sinusoidal voltage also fixes the magnetic 
flux to be sinusoidal 

d'F V0 .v1=---= Vocos wt |> b= BA =--sin wt (34)
dtW 

Thus the upper half of the nonlinear B-H magnetization 
characteristic in Figure 6-13b has the same shape as the flux-
current characteristic with proportionality factors related to 
the geometry. Note that in saturation the B-H curve 
approaches a straight line with slope .Lo. For a half-cycle of 
flux given by (34), the nonlinear open circuit magnetizing 
current is found graphically as a function of time in Figure 
6-13b. The current is symmetric over the negative half of the 
flux cycle. Fourier analysis shows that this nonlinear current is 
composed of all the odd harmonics of the driving frequency 
dominated by the third and fifth harmonics. This causes 
problems in power systems and requires extra transformer 
windings to trap the higher harmonic currents, thus prevent­
ing their transmission. 

A more realistic transformer equivalent circuit is shown in 
Figure 6-13c where the leakage reactances X, and X2 

represent the fact that all the flux produced by one coil does 
not link the other. Some small amount of flux is in the free 
space region surrounding the windings. The nonlinear 
inductive reactance X, represents the nonlinear magnetiza­
tion characteristic illustrated in Figure 6-13b, while R, 
represents the power dissipated in traversing the hysteresis 
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loop over a cycle. This dissipated power per cycle equals the 
area enclosed by the hysteresis loop. The winding resistances 
are R, and R 2. 

6-3 FARADAY'S LAW FOR MOVING MEDIA 

6-3-1 The Electric Field Transformation 

If a point charge q travels with a velocity v through a region 
with electric field E and magnetic field B, it experiences the 
combined Coulomb-Lorentz force 

F= q(E+vX B) (1) 

Now consider another observer who is travelling at the same 
velocity v as the charge carrier so that their relative velocity is 
zero. This moving observer will then say that there is no 
Lorentz force, only a'Coulombic force 

F'= qE' (2) 

where we indicate quantities measured by the moving obser­
ver with a prime. A fundamental postulate of mechanics is 
that all physical laws are the same in every inertial coordinate 
system (systems that travel at constant relative velocity). This 
requires that the force measured by two inertial observers be 
the same so that F'= F: 

E'= E+vX B (3) 

The electric field measured by the two observers in relative 
motion will be different. This result is correct for material 
velocities much less than the speed of light and is called a 
Galilean field transformation. The complete relativistically 
correct transformation slightly modifies (3) and is called a 
Lorentzian transformation but will not be considered here. 

In using Faraday's law of Section 6-1-1, the question 
remains as to which electric field should be used if the 
contour L and surface S are moving. One uses the electric 
field that is measured by an observer moving at the same 
velocity as the convecting contour. The time derivative of the 
flux term cannot be brought inside the integral if the surface 
S is itself a function of time. 

6-3-2 Ohm's Law for Moving Conductors 

The electric field transformation of (3) is especially 
important in modifying Ohm's law for moving conductors. 
For nonrelativistic velocities, an observer moving along at the 



418 ELectromagnetic Induction 

same velocity as an Ohmic conductor measures the usual 
Ohm's law in his reference frame, 

Jf= a-E' 	 (4) 

where we assume the conduction process is unaffected by the 
motion. Then in Galilean relativity for systems with no free 
charge, the current density in all inertial frames is the same so 
that (3) in (4) gives us the generalized Ohm's law as 

J'=J1 = o-(E+vx B) 	 (5) 

where v is the velocity of the conductor. 
The effects of material motion are illustrated by the parallel 

plate geometry shown in Figure 6-14. A current source is 
applied at the left-hand side that distributes itself uniformly 
as a surface current K. = *I/D on the planes. The electrodes 
are connected by a conducting slab that moves to the right with 
constant velocity U. The voltage across the current source can 
be compu-ted using Faraday's law with the contour shown. Let 
us have the contour continually expanding with the 2-3 leg 
moving with the conductor. Applying Faraday's law we have 

14 03f2 PE' - dl / dl+ E'- dl+ -dl+ E- di 

iR 	 -V 

=--d B-dS 	 (6)
dt 

Surface current 

K.=I I 

it	 II D 

4' 	 _ _.3. 

----	 d+­

H. 	 =-Return surface
 
D current K, -1
 

Figure 6-14 A moving, current-carrying Ohmic conductor generates a speed voltage 
as well as the usual resistive voltage drop. 
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where the electric field used along each leg is that measured 
by an observer in the frame of reference of the contour. 
Along the 1-2 and 3-4 legs, the electric field is zero within the 
stationary perfect conductors. The second integral within the 
moving Ohmic conductor uses the electric field E', as 
measured by a moving observer because the contour is also 
expanding at the same velocity, and from (4) and (5) is related 
to the terminal current as 

J' I
E'= i (7)

o- o-Dd ( 

In (6), the last line integral across the terminals defines the 
voltage. 

Is d Cd 
is -v=--- B-dS=- d (oHexs) (8)o-Dd dt sdt 

The first term is just the resistive voltage drop across the 
conductor, present even if there is no motion. The term on 
the right-hand side in (8) only has a contribution due to the 
linearly increasing area (dxldt = U) in the free space region 
with constant magnetic field, 

H,=I/D (9) 

The terminal voltage is then 

v = IfR +AoUsI, R = (10)
\ DI oDd 

We see that the speed voltage contribution arose from the 
flux term in Faraday's law. We can obtain the same solution 
using a contour that is stationary and does not expand with 
the conductor. We pick the contour to just lie within the 
conductor at the time of interest. Because the contour does 
not expand with time so that both the magnetic field and the 
contour area does not change with time, the right-hand side 
of (6) is zero. The only difference now is that along the 2-3 leg 
we use the electric field as measured by a stationary observer, 

E=E'-vxB (11) 

so that (6) becomes 

IR+ IS- V=0 (12)
D 

which agrees with (10) but with the speed voltage term now 
arising from the electric field side of Faraday's law. 

This speed voltage contribution is the principle of electric 
generators converting mechanical work to electric power 
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when moving a current-carrying conductor through a 
magnetic field. The resistance term accounts for the electric 
power dissipated. Note in (10) that the speed voltage contri­
bution just adds with the conductor's resistance so that the 
effective terminal resistance is v/I = R +(yt.Us/D). If the slab 
moves in the opposite direction such that U is negative, the 
terminal resistance can also become negative for sufficiently 
large U (U<-RD/os).Such systems are unstable where the 
natural modes grow rather than decay with time with any 
small perturbation, as illustrated in Section 6-3-3b. 

6-3-3 Faraday's Disk (Homopolar Generator)* 

(a) Imposed Magnetic Field 
A disk of conductivity o- rotating at angular velocity w 

transverse to a uniform magnetic field Boi,, illustrates the 
basic principles of electromechanical energy conversion. In 
Figure 6-15a we assume that the magnetic field is generated 
by an N turn coil wound on the surrounding magnetic circuit, 

BO=ILoNif (13) 

The disk and shaft have a permeability of free space yo, so 
that the applied field is not disturbed by the assembly. The 
shaft and outside surface at r = RO are highly conducting and 
make electrical connection to the terminals via sliding 
contacts. 

We evaluate Faraday's law using the contour shown in 
Figure 6-15a where the 1-2 leg within the disk is stationary so 
the appropriate electric field to be used is given by (11): 

E,=r wrBo -wrBo (14)
" 2 7rodr 

where the electric field and current density are radial and i, is 
the total rotor terminal current. For the stationary contour 
with a constant magnetic field, there is no time varying flux 
through the contour: 

24 

E - dl= E, dr + E - dl= 0 (15) 

* Some of the treatment in this section is similarto that developed in: H. H. Woodson andJ. R. 
Melcher, Electromechanical Dynamics, Part I, Wiley, N. Y., 1968, Ch. 6. 



Faraday'sLaw for Moving Media 421 

IRI 

VjN turns 2 i 

-O poNf - 4+7 

Stationary contour of 
integration of Faraday's law 

(a) 

Rr Lrfg Lf 

V/ Rt Vr Gwil 

(b) 

Figure 6-15 (a) A conducting disk rotating in an axial magnetic field is called a 
homopolar generator. (b) In addition to Ohmic and inductive voltages there is a speed 
voltage contribution proportional to the speed of the disk and the magnetic field. 

Using (14) in (15) yields the terminal voltage as 

vr= RO -wrBo dr 
Ri 27rTo-d 

= R o wBo(R -R ) 

2,ro-d Ri 2 

=irRr-GWif (16) 

where R, is the internal rotor resistance of the disk and G is 
called the speed coefficient: 

In (Ro/Ri) ~ -~ 2 2 
R,= ( G= ON(R 0 -R,) (17)

27ro-d 2s 

We neglected the self-magnetic field due to the rotor current, 
assuming it to be much smaller than the applied field Bo, but 
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it is represented in the equivalent rotor circuit in Figure 6-15b 
as the self-inductance L, in series with a resistor and a speed 
voltage source linearly dependent on the field current. The 
stationary field coil is represented by its self-inductance and 
resistance. 

For a copper disk (o= 6 x 107 siemen/m) of thickness 1mm 
rotating at 3600 rpm (w = 1207r radian/sec) with outer and 
inner radii RO = 10 cm and Ri = 1cm in a magnetic field of 
Bo = 1 tesla, the open circuit voltage is 

vc= >Bo(R2-R) - -1.9 V (18)
2 

while the short circuit current is 

i.= VoC 2Iro-d - 3 X 105 amp (19)In (RolRi) 

Homopolar generators are typically high current, low voltage 
devices. The electromagnetic torque on the disk due to the 
Lorentz force is 

2vr d Ro 

T=f riX(JXB)rdrd46 dz 
-
L 
o = f-

RO 

=-i,Boi. rdr 

=--- (R2 -R )i,
2 

=-Gii,i. (20) 

The negative sign indicates that the Lorentz force acts on 
the disk in the direction opposite to the motion. An external 
torque equal in magnitude but opposite in direction to (20) is 
necessary to turn the shaft. 

This device can also be operated as a motor if a rotor 
current into the disk (i,<0) is imposed. Then the electrical 
torque causes the disk to turn. 

(b) Self-Excited Generator 
For generator operation it is necessary to turn the shaft and 

supply a field current to generate the magnetic field. 
However, if the field coil is connected to the rotor terminals, 
as in Figure 6-16a, the generator can supply its own field 
current. The equivalent circuit for self-excited operation is 
shown in Figure 6-16b where the series connection has i,= ir. 
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Figure 6-16 A homopolar generator can be self-excited where the generated rotor 
current is fed back to the field winding to generate its own magnetic field. 

Kirchoff's voltage law around the loop is 

di 
L +i(R -G>)=0, R = R,+ Rf, L = L,+ Lf 

dt 
(21) 

where R and L are the series resistance and inductance of the 
coil and disk. The solution to (21) is 

i = Io e -[(R-C ILl (22 

where Io is the initial current at t = 0. If the exponential factor 
is positive 

Gw>R (23) 
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the current grows with time no matter how small Io is. In 
practice, Io is generated by random fluctuations (noise) due to 
residual magnetism in the iron core. The exponential growth 
is limited by magnetic core saturation so that the current 
reaches a steady-state value. If the disk is rotating in the 
opposite direction (w <0), the condition of (23) cannot be 
satisfied. It is then necessary for the field coil connection to be 
reversed so that i,= -if. Such a dynamo model has been used 
as a model of the origin of the earth's magnetic field. 

(c) Self-Excited ac Operation 
Two such coupled generators can spontaneously generate 

two phase ac power if two independent field windings are 
connected, as in Figure 6-17. The field windings are con­
nected so that if the flux through the two windings on one 
machine add, they subtract on the other machine. This 
accounts for the sign difference in the speed voltages in the 
equivalent circuits, 

di1L--+(R - GOw)ii + G0i2 = 0
dt 

di2 (24) 
L-+(R-GW)i-Gwi1=0 

dt 

where L and R are the total series inductance and resistance. 
The disks are each turned at the same angular speed w. 

Since (24) are linear with constant coefficients, solutions are 
of the form 

i = Ie"', i2 =12 e" (25) 

which when substituted back into (24) yields 

(Ls + R - Gw)I + GwI2 =0 

-GfoIi+(Ls + R -Go)I 2 =0 (26) 

For nontrivial solutions, the determinant of the coefficients of 
I, and I2 must be zero, 

(Ls + R -GW)2 =-(GW)2 (27) 

which when solved for s yields the complex conjugate natural 
frequencies, 

(R-Gw) .Gw 
L L 

(28)I112=*Ej 

where the currents are 90* out of phase. If the real part of s is 
positive, the system is self-excited so that any perturbation 
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Figure 6-17 Cross-connecting two homopolar generators can result in self-excited 
two-phase alternating currents. Two independent field windings are required where 
on one machine the fluxes add while on the other they subtract. 

grows at an exponential rate: 

Gw>R (29) 

The imaginary part of s yields the oscillation frequency 

Co= Im (s)=GwIL (30) 

Again, core saturation limits the exponential growth so that 
two-phase power results. Such a model may help explain the 
periodic reversals in the earth's magnetic field every few 
hundred thousand years. 
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(d) Periodic Motor Speed Reversals 
If the field winding of a motor is excited by a dc current, as 

in Figure 6-18, with the rotor terminals connected to a 
generator whose field and rotor terminals are in series, the 
circuit equation is 

di (R - Gio,) . & if (31) 
-- + =-	 If (1
dt L L 

where L and R are the total series inductances and resis­
tances. The angular speed of the generator w is externally 

Generator 

Motor 

RI-

If= RV 

- Motor 

Rrm Lrm 

G WmIf 	 L=Lrm +Lrg+Lfg 
R =Rrm + Rig + Rrg 

R 1g 

Lfg 

Generator 
g Lrg 

Ggwgi 

Figure 6-18 Cross connecting a homopolar generator and motor can result in spon­
taneous periodic speed reversals of the motor's shaft. 
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constrained to be a constant. The angular acceleration of the 
motor's shaft is equal to the torque of (20), 

dom
J--= --GIfi (32)

dt 

where J is the moment of inertia of the shaft and If = Vf/Rm is 
the constant motor field current. 

Solutions of these coupled, linear constant coefficient 
differential equations are of the form 

i = Ie" 

West (33)& = 

which when substituted back into (31) and (32) yield 

+ R -G' G I 

I + Ws =0 (34) 

Again, for nontrivial solutions the determinant of coefficients 
of I and W must be zero, 

s(s+RZ#JG +(G1) =0 (35)
L e!L L 

which when solved for s yields 

(R-Ggw,) [(R -Gp !) 2 (G.nif) 211 (36) 
2L 2L JLI 

For self-excitation the real part of s must be positive, 

G,> R (37) 

while oscillations will occur if s has an imaginary part, 

(G.f)2> R - GgW 2 (8 
JL 2L) 

Now, both the current and shaft's angular velocity spon­
taneously oscillate with time. 

6--4 Basic Motors and Generators 

(a) ac Machines 
Alternating voltages are generated from a dc magnetic field 

by rotating a coil, as in Figure 6-19. An output voltage is 
measured via slip rings through carbon brushes. If the loop 
of area A is vertical at t = 0 linking zero flux, the imposed flux 
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Figure 6-19 A coil rotated within a constant magnetic field generates a sinusoidal 
voltage. 

through the loop at any time, varies sinusoidally with time 
due to the rotation as 

Di = (o sin wt (39) 

Faraday's law applied to a stationary contour instantaneously 
passing through the wire then gives the terminal voltage as 

dQ di 
v = iR +--= iR +L-i+(Dow cos wt (40)

dt dt 

where R and L are the resistance and inductance of the wire. 
The total flux is equal to the imposed flux of (39) as well as 
self-flux (accounted for by L) generated by the current i. The 
equivalent circuit is then similar to that of the homopolar 
generator, but the speed voltage term is now sinusoidal in 
time. 

(b) dc Machines 
DC machines have a similar configuration except that the 

slip ring is split into two sections, as in Figure 6-20a. Then 
whenever the output voltage tends to change sign, the 
terminals are also reversed yielding the waveform shown, 
which is of one polarity with periodic variations from zero to a 
peak value. 
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Figure 6-20 (a) If the slip rings are split so that when the voltage tends to change sign 
the terminals are also reversed, the resulting voltage is of one polarity. (b) The voltage 
waveform can be smoothed out by placing a second coil at right angles to the first and 
using a four-section commutator. 

The voltage waveform can be smoothed out by using a 
four-section commutator and placing a second coil perpen­
dicular to the first, as in Figure 6-20b. This second coil now 
generates its peak voltage when the first coil generates zero 
voltage. With more commutator sections and more coils, the 
dc voltage can be made as smooth as desired. 
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6-3-5 MHD Machines 

Magnetohydrodynamic machines are based on the same 
principles as rotating machines, replacing the rigid rotor by a 
conducting fluid. For the linear machine in Figure 6-21, a 
fluid with Ohmic conductivity a- flowing with velocity v, 
moves perpendicularly to an applied magnetic field Boi.. The 
terminal voltage V is related to the electric field and current 
as 

E=L -, J= o-(E+v XB)= -+VBo ix=-ix 
s 4s Dd 

(41) 

which can be rewritten as 

V = iR -vBos (42) 

which has a similar equivalent circuit as for the homopolar 
generator. 

The force on the channel is then 

f=tJxBdV 

= -iBosi, (43) 

again opposite to the fluid motion. 

6-3-6 Paradoxes 

Faraday's law is prone to misuse, which has led to 
numerous paradoxes. The confusion arises because the same 

B0 

R = d-DdI 

V 
- ~ .E 

V vBos 
+
 

S
 
D 

y d 

x 

Figure 6-21 An MHD (magnetohydrodynamic) machine replaces a rotating conduc­
tor by a moving fluid. 
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contribution can arise from either the electromotive force 
side of the law, as a speed voltage when a conductor moves 
orthogonal to a magnetic field, or as a time rate of change of 
flux through the contour. This flux term itself has two 
contributions due to a time varying magnetic field or due to a 
contour that changes its shape, size, or orientation. With all 
these potential contributions it is often easy to miss a term or 
to double count. 

(a) A Commutatorless de Machine* 
Many persons have tried to make a commutatorless dc 

machine but to no avail. One novel unsuccessful attempt is 
illustrated in Figure 6-22, where a highly conducting wire is 
vibrated within the gap of a magnetic circuit with sinusoidal 
velocity: 

v.=vo sin (at (44) 

Faraday's law applied to a 
stonary contour (dashed)

instantaneously within 
wire.

vibrating 

1+ 1-4 

34 -N 

sinwtEoint -, vx=o 
'2 sinwt 

-L 

Fcc 6-22 It is impossible to design a commutatorless dc machine. Although the speed 
voltage alone can have a dc average, it will be canceled by the transformer elec­
tromotive force due to the time rate of change of magnetic flux through the loop. The 
total terminal voltage will always have a zero time average. 

* H. Sohon, ElectricalEssays for Recreation. Electrical Engineering, May (1946), p. 294. 
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The sinusoidal current imposes the air gap flux density at the 
same frequency w: 

B. = Bo sin wt, Bo = goNIols (45) 

Applying Faraday's law to a stationary contour instan­
taneously within the open circuited wire yields 

i0 j 2 3 
4 

E-dl= ,E-dl+ E -dI + E-dl+ E-dl 

E=-vxB -v 

- B -dS (46)dts 

where the electric field within the highly conducting wire as 
measured by an observer moving with the wire is zero. The 
electric field on the 2-3 leg within the air gap is given by (11), 
where E'=0, while the 4-1 leg defines the terminal voltage. If 
we erroneously argue that the flux term on the right-hand side 
is zero because the magnetic field B is perpendicular to dS, the 
terminal voltage is 

v =v.B.l =voBol sin2 a2t (47) 

which has a dc time-average value. Unfortunately, this result 
is not complete because we forgot to include the flux that 
turns the corner in the magnetic core and passes perpen­
dicularly through our contour. Only the flux to the right of 
the wire passes through our contour, which is the fraction 
(L - x)/L of the total flux. Then the correct evaluation of (46) is 

d 
-v +v.Bl =+ [(L -x)B1l) (48) 

where x is treated as a constant because the contour is sta­
tionary. The change in sign on the right-hand side arises 
because the flux passes through the contour in the direction 
opposite to its normal defined by the right-hand rule. The 
voltage is then 

dB 
v = v,,B.l -(L - dx)lE (49)

dt 

where the wire position is obtained by integrating (44), 

x = v.dt = -V(cos wt - 1)+xo (50) 
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and xo is the wire's position at t = 0. Then (49) becomes 

v =-(xB,)-Ld 
dt dt 

=Bolvo [(+ I)cos wt -cos 2wt - LBow cos wt (51)
VO 

which has a zero time average. 

(b) Changes in Magnetic Flux Due to Switching 
Changing the configuration of a circuit using a switch does 

not result in an electromotive force unless the magnetic flux 
itself changes. 

In Figure 6-23a, the magnetic field through the loop is 
externally imposed and is independent of the switch position. 
Moving the switch does not induce an EMF because the 
magnetic flux through any surface remains unchanged. 

In Figure 6-23b, a dc current source is connected to a 
circuit through a switch S. If the switch is instantaneously 
moved from contact 1 to contact 2, the magnetic field due to 
the source current I changes. The flux through any fixed area 
has thus changed resulting in an EMF. 

(c) Time Varying Number of Turns on a Coil* 
If the number of turns on a coil is changing with time, as in 

Figure 6-24, the voltage is equal to the time rate of change of 
flux through the coil. Is the voltage then 

d(D
v1 N-- (52) 

or 
d d4 dN 

dt dt d( 

No current is induced 
by switching. 

jS IB E 7 

1 2 1 2 

(a) (b) 

Figure 6-23 (a) Changes in a circuit through the use of a switch does not by itself 
generate an EMF. (b) However, an EMF can be generated if the switch changes the 
magnetic field. 

* L. V. Bewley. Flux Linkages and Electromagnetic Induction. Macmillan, New York, 
1952. 
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Figure 6-24 (a) If the number of turns on a coil is changing with time, the induced 
voltage is v = N(t) d4'/dt. A constant flux does not generate any voltage. (b) If the flux 
itself is proportional to the number of turns, a dc current can generate a voltage. (c) 
With the tap changing coil, the number of turns per unit length remains constant so 
that a dc current generates no voltage because the flux does not change with time. 

For the first case a dc flux generates no voltage while the 
second does. 

We use Faraday's law with a stationary contour instan­
taneously within the wire. Because the contour is stationary, 
its area of NA is not changing with time and so can be taken 
outside the time derivative in the flux term of Faraday's law so 
that the voltage is given by (52) and (53) is wrong. Note that 
there is no speed voltage contribution in the electromotive 
force because the velocity of the wire is in the same direction 
as the contour (v x B -dl = 0). 
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If the flux (D itself depends on the number of turns, as in 
Figure 6-24b, there may be a contribution to the voltage even 
if the exciting current is dc. This is true for the turns being 
wound onto the cylinder in Figure 6-24b. For the tap changing 
configuration in Figure 6-24c, with uniformly wound turns, 
the ratio of turns to effective length is constant so that a dc 
current will still not generate a voltage. 

6-4 MAGNETIC DIFFUSION INTO AN OHMIC CONDUCTOR* 

If the current distribution is known, the magnetic field can 
be directly found from the Biot-Savart or Ampere's laws. 
However, when the magnetic field varies with time, the 
generated electric field within an Ohmic conductor induces 
further currents that also contribute to the magnetic field. 

6-4-1 Resistor-Inductor Model 

A thin conducting shell of radius Ri, thickness A, and depth 
I is placed within a larger conducting cylinder, as shown in 
Figure 6-25. A step current Io is applied at t =0 to the larger 
cylinder, generating a surface current K =(Io/1)i4. If the 
length I is much greater than the outer radius R0 , the 
magnetic field is zero outside the cylinder and uniform inside 
for Ri <r < Ro. Then from the boundary condition on the 
discontinuity of tangential H given in Section 5-6-1, we have 

'0
Ho=-Loi., Ri<r<Ro (1) 

The magnetic field is different inside the conducting shell 
because of the induced current, which from Lenz's law, flows 
in the opposite direction to the applied current. Because the 
shell is assumed to be very thin (A< R1 ), this induced current 
can be considered a surface current related to the volume 
current and electric field in the conductor as 

K. = JA = (o-A)E, 	 (2) 

The product (a-A) is called the surface conductivity. Then the 
magnetic fields on either side of the thin shell are also related 
by the boundary condition of Section 5-6-1: 

Hi - Ho= K. = (o-A)E4 	 (3) 

* 	Much of the treatment of this section is similar to that of H. H. Woodson andJ. R. Melcher, 
Electromechanical Dynamics, PartII, Wiley, N. Y., 1968, Ch. 7. 
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Figure 6-25 A step change in magnetic field causes the induced current within an 
Ohmic conductor to flow in the direction where its self-flux opposes the externally 
imposed flux. Ohmic dissipation causes the induced current to exponentially decay 
with time with a LIR time constant. 

Applying Faraday's law to a contour within the conducting 
shell yields 

d 2 dH.
E - di= B - dS=> E#21rRi = -povrR. (4) 

where only the magnetic flux due to H passes through the 
contour. Then using (1)-(3) in (4) yields a single equation in 
Hi: 

dHi+Hi I(t) AoRicrA (5) 
dt 7 IT' 2 

where we recognize the time constant r as just being the ratio 
of the shell's self-inductance to resistance: 

4) AoirR? 2rRi L AoRio-A
L= -- R=-, =- (6

K,0 ' R I-1A R 2 (6) 

The solution to (5) for a step current with zero initial 
magnetic field is 

Hi=L(1-e-1T) (7) 

Initially, the magnetic field is excluded from inside the 
conducting shell by the induced current. However, Ohmic 
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dissipation causes the induced current to decay with time so 
that the magnetic field may penetrate through the shell with 
characteristic time constant r. 

64-2 The Magnetic Diffusion Equation 

The transient solution for a thin conducting shell could be 
solved using the integral laws because the geometry con­
strained the induced current to flow azimuthally with no 
radial variations. If the current density is not directly known, 
it becomes necessary to self-consistently solve for the current 
density with the electric and magnetic fields: 

B
V xE = a (Faraday's law) (8)

at 

V x H = Jf (Ampere's law) (9) 

V - B=0 (Gauss's law) (10) 

For linear magnetic materials with constant permeability si 
and constant Ohmic conductivity o moving with velocity U, 
the constitutive laws are 

B =H, J=cr(E+Ux LH) (11) 

We can reduce (8)-(11) to a single equation in the magnetic 
field by taking the curl of (9), using (8) and (11) as 

V x (V x H) = V x J 

= c[V X E+tV x (U X H)] 

= +Vx(Ux H)) (12) 

The double cross product of H can be simplified using the 
vector identity 

~0 
Vx(VxH)=V(V H)-V2H 

- -V2H =--H Vx(UxH) (13)
Af at 

where H has no divergence from (10). Remember that the 
Laplacian operator on the left-hand side of (13) also 
differentiates the directionally dependent unit vectors in 
cylindrical (i, and i#) and spherical (i,,i#, and i,) coordinates. 
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6-4.3 Transient Solution with Jo Motion (U =0) 

A step current is turned on at t =0, in the parallel plate 
geometry shown in Figure 6-26. By the right-hand rule and 
with the neglect of fringing, the magnetic field is in the z 
direction and only depends on the x coordinate, B.(x, t), so 
that (13) reduces to 

2H7 aH. 
(14)

axt 
which is similar in form to the diffusion equation of a dis­
tributed resistive-capacitive cable developed in Section 3-6-4. 

In the dc steady state, the second term is zero so that the 
solution in each region is of the form 

a H. 
(15)

aX 
2 =0->H,=ax+b 

K 0 = I/D DepthD 

y s1(t) I() H 

YI
 
=-1D

101Kx 

- x
0 d 

(a) 

t = 0. (Surface current= I/D) 

-1.0 2.0 

H, (x, t)
lD 0.5 t-

Jv (x,t) -
1/(Dd) 

2.0 
.50 0.1 0.25 

0. .25 
T i 

0. 1.0 
0.5 

0 0.5 1.0 0.5 1.0 
x/d x/d 

(b) 

Figure 6-26 (a) A current source is instantaneously turned on at t =0. The resulting 
magnetic field within the Ohmic conductor remains continuous and is thus zero at t = 0 
requiring a surface current at x =0. (b) For later times the magnetic field and current 
diffuse into the conductor with longest time constant r = o-d2 /ir2 towards a steady 
state of uniform current with a linear magnetic field. 
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where a and b are found from the boundary conditions. The 
current on the electrodes immediately spreads out to a uni­
form surface distribution E (IID)i, traveling from the upper 
to lower electrode uniformly through the Ohmic conductor. 
Then, the magnetic field is uniform in the free space region, 
decreasing linearly to zero within the Ohmic conductor being 
continuous across the interface at x =0: 

- -I S x 0
D 

lim H.(x) = (16) 
sooIIt-0--I(d -x), 0:5 x - d 

Dd 

In the free space region where o-=0, the magnetic field 
remains constant for all time. Within the conducting slab, 
there is an initial charging transient as the magnetic field 
builds up to the linear steady-state distribution in (16). 
Because (14) is a linear equation, for the total solution of the 
magnetic field as a function of time and space, we use super­
position and guess a solution that is the sum of the steady-
state solution in (16) and a transient solution which dies off 
with time: 

IA 
H.(x, t)= -(d - x) + (x) e" (17) 

We follow the same procedures as for the lossy cable in 
Section 3-6-4. At this point we do not know the function H(x) 
or the parameter a. Substituting the assumed solution of (17) 
back into (14) yields the ordinary differential equation 

d2 H(x) 
(18)dx2 +0-jkaH(x)=0 

which has the trigonometric solutions 

H(x)=Aisin Vlx+A 2 cosloAax (19) 

Since the time-independent part in (17) already meets the 
boundary conditions of 

H(x = 0) = ID 

H,(x=d)= 0 
the transient part of the solution must be zero at the ends 

H(x =0)=0=>A 2 =0 

H(x = d)=0=A i sin a d =0 (21) 

which yields the allowed values of a as 

-lo,a d = nir =>a. = I (nsr)2 , n =1, 2,3,. ... (22) 
s~o- d/ 
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Since there are an infinite number of allowed values of a, the 
most general solution is the superposition of all allowed solu­
tions: 

I narx 
H.(x, 0)=--(d-x)+ Y An sin e -a (23)

Dd n=1 d 

This relation satisfies the boundary conditions but not the 
initial conditions at t = 0 when the current is first turned on. 
Before the current takes its step at t =0, the magnetic field is 
zero in the slab. Right after the current is turned on, the 
magnetic field must remain zero. Faraday's law would 
otherwise make the electric field and thus the current density 
infinite within the slab, which is nonphysical. Thus we impose 
the initial condition 

I flnTx
H,(x,t = 0)=0=-(d-x)+ An sin (24)Dd 71.1 d 

which will allow us to solve for the amplitudes An by multi­
plying (24) through by sin (m'wx/d) and then integrating over 
x from 0 to d: 

I d Mm CO d .nirx .mr
O=j (d-x)sin-mdx +_ An sin - sin -dx

d d n.1 0 d d 
(25) 

The first term on the right-hand side is easily integrable* 
while the product of sine terms integrates to zero unless 
m = n, yielding 

2I 
A. - (26)

mirD 

The total solution is thus 

I x * sin (nixld) _ni,.H (x, t)= D- - 2 E - e(7 (27)
d .=1 n*1 

where we define the fundamental continuum magnetic 
diffusion time constant T as 

1 ILc-d2 
r = -- = 2 (28) 

a, ir 

analogous to the lumped parameter time constant of (5) and 
(6). 

(d -x) sin mx dx =d
2 

d MIT 
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The magnetic field approaches the steady state in times 
long compared to r. For a perfect conductor (o ->), this time 
is infinite and the magnetic field is forever excluded from the 
slab. The current then flows only along the x = 0 surface. 
However, even for copper (o--6x 107 siemens/m) 10-cm 
thick, the time constant is r=80 msec, which is fast for many 
applications. The current then diffuses into the conductor 
where the current density is easily obtained from Ampere's law 
as 

Jf=VXH - _ , 
ax 

nirx1+2
S + Cos e"i, (29) 

The diffusion of the magnetic field and current density are 
plotted in Figure 6-26b for various times 

The force on the conducting slab is due to the Lorentz 
force tending to expand the loop and a magnetization force 
due to the difference of permeability of the slab and the 
surrounding free space as derived in Section 5-8-1: 

F= sO(M - V)H +poJf x H 

= (A - o)(H - V)H + oJfX H (30) 

For our case with H = H,(x)i,, the magnetization force density 
has no contribution so that (30) reduces to 

F= AoJf X H 

= Ao(V x H) x H 

=so(H -V)H -V(2 0oH - H) 
d1 2. 

(31)dx (bxoH )i 

Integrating (31) over the slab volume with the magnetic 
field independent of y and z, 

d d 1 
f- sD-(WoH ) dx 

dx 

= -ioHsD 

2 s (32)
D 

gives us a constant force with time that is independent of the 
permeability. Note that our approach of expressing the cur­
rent density in terms of the magnetic field in (31) was easier 
than multiplying the infinite series of (27) and (29), as the 
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result then only depended on the magnetic field at the 
boundaries that are known from the boundary conditions of 
(20). The resulting integration in (32) was easy because the 
force density in (31) was expressed as a pure derivative of x. 

6-4-4 The Sinusoidal Steady State (Skin Depth) 

We now place an infinitely thick conducting slab a distance 
d above a sinusoidally varying current sheet Ko cos ti,, which 
lies on top of a perfect conductor, as in Figure 6-27a. The 

X 

-yMo - H.= -Ko coswt 

d -n. O
YA 

Kocaswti, 
(a) 

1Wt 

0 

1.0 - Wt H. (x, t 
KO 

12 

-2 3 

44 

K0 / 

-1.0 -0 

(b) 

Figure 6-27 (a) A stationary conductor lies above a sinusoidal surface current placed 
upon a perfect conductor so that H =0 for x < - d. (b) The magnetic field and current 
density propagates and decays into the conductor with the same characteristic length 
given by the skin depth 8= 12/(wiA-). The phase speed of the wave is wo. 
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magnetic field within the conductor is then also sinusoidally 
varying with time: 

H.(x, t)=Re [A.(x) e*l] (33) 

Substituting (33) into (14) yields 

d2 A'. 
(34).2-jOs = 0 

with solution 

I.(x)= A, e(+i)x O+A2 e-(l+)xa (35) 

where the skin depth 8 is defined as 

8 = l2/(a(w-) (36) 

Since the magnetic field must remain finite far from the 
current sheet, A I must be zero.. The magnetic field is also 
continuous across the x =0 boundary because there is no 
surface current, so that the solution is 

H,(x, t) = Re [-Ko e-(I+i)xa elo ] 

= -Ko cos (wt -x/8) e 1, x-0 (37) 

where the magnetic field in the gap is uniform, determined 
by the discontinuity in tangential H at x = -d to be H, = -K, 
for -d <x - 0 since within the perfect conductor (x <-d)H = 

0. The magnetic field diffuses into the conductor as a strongly 
damped propagating wave with characteristic penetration 
depth 8. The skin depth 8 is also equal to the propagating 
wavelength, as drawn in Figure 6-27b. The current density 
within the conductor 

JfX=VxH= i,ax 

= + K " [sin (wt -- cos (Wt -)i, (38) 

is also drawn in Figure 6-27b at various times in the cycle, 
being confined near the interface to a depth on the order of 8. 
For a perfect conductor, 8 -*0, and the volume current 
becomes a surface current. 

Seawater has a conductivity of -4 siemens/m so that at a 
frequency of f =1 MHz (w = 2-rf) the skin depth is 8 
0.25 m. This is why radio communications to submarines are 
difficult. The conductivity of copper is cr 6 x 107 siemens/m 
so that at 60 Hz the skin depth is8 - 8 mm. Power cables with 
larger radii have most of the current confined near the sur­
face so that the center core carries very little current. This 
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reduces the cross-sectional area through which the current 
flows, raising the cable resistance leading to larger power 
dissipation. 

Again, the magnetization force density has no contribution 
to the force density since H only depends on x: 

F = so(M - V)H + lioJf x H 

= o(V XH) x H 

= -V(-2stoH - H) (39) 

The total force per unit area on the slab obtained by 
integrating (39) over x depends only on the magnetic field at 
x = 0: 

f(L= -- H ) dx 

1 2 2 
=ijoK0 cos Wt (40) 

because again H is independent of y and z and the x 
component of the force density of (39) was written as a pure 
derivative with respect to x. Note that this approach was easier 
than integrating the cross product of (38) with (37). 

This force can be used to levitate the conductor. Note that 
the region for x >8 is dead weight, as it contributes very little 
to the magnetic force. 

6-4-5 Effects of Convection 

A distributed dc surface current -Koi, at x =0 flows along 
parallel electrodes and returns via a conducting fluid moving 
to the right with constant velocity voi., as shown in Figure 
6-28a. The flow is not impeded by the current source at x = 0. 
With the neglect of fringing, the magnetic field is purely z 
directed and only depends on the x coordinate, so that (13) in 
the dc steady state, with U = voi. being a constant, becomes* 

d2H. dH(. 
T -Avo---= 0 (41) 

Solutions of the form 

Hx(x) =A eo" (42) 

- V)H = dH 
*V x (U x H) x =(V) - /)+ / - (U= U (V/)- H(V /1) - (]V ) ( ) =-od 
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Figure 6-28 (a) A conducting material moving through a magnetic field tends to pull 
the magnetic field and current density with it. (b) The magnetic field and current 
density are greatly disturbed by the flow when the magnetic Reynolds number is large, 
R. = oyUI > 1. 

when substituted back into (41) yield two allowed values of p, 

P-- 2rvop=0:P=0, P= pOvo (43) 

Since (41) is linear, the most general solution is just the sum 
of the two allowed solutions, 

H,(x )= A I e R-X +A2 (44) 
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where the magnetic Reynold's number is defined as 

R.= ovol 2(45) 

and represents the ratio of a representative magnetic 
diffusion time given by (28) to a fluid transport time (1/vo). 
The boundary conditions are 

H,(x =0)=Ko, H.(x=L)=0 (46) 

so that the solution is 

H.x=Ko R_1H.()KeR0 (e~n/ eR ~ (47)
1-e 

The associated current distribution is then 

Jt=VxH= H.i, 

KoR - ., (48)
_e eI1-e - (48 

The field and current distributions plotted in Figure 6-28b 
for various R., show that the magnetic field and current are 
pulled along in the direction of flow. For small R_ the 
magnetic field is hardly disturbed from the zero flow solution 
of a linear field and constant current distribution. For very 
large R. >> 1, the magnetic field approaches a uniform dis­
tribution while the current density approaches a surface cur­
rent at x = 1. 

The force on the moving fluid is independent of the flow 
velocity: 

f JJx pHsDdx 

1, m~K R____ R.XR~x11 
R d_ ilaiIAOIsDfeR-xl 

(1-e _)2 2 10K20osD R_cIL (eR3 
-1 . 2 

= ioKosDi. (49) 

6-4-6 A Linear Induction Machine 

The induced currents in a conductor due to a time varying 
magnetic field give rise to a force that can cause the conductor 
to move. This describes a motor. The inverse effect is when 
we cause a conductor to move through a time varying 
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magnetic field generating a current, which describes a 
generator. 

The linear induction machine shown in Figure 6-29a 
assumes a conductor moves to the right at constant velocity 
Ui. Directly below the conductor with no gap is a surface 
current placed on top of an infinitely permeable medium 

K(t) = -K 0 cos (wt - kz)i, = Re [-K0 e !(Wk)i,] (50) 

which is a traveling wave moving to the right at speed wk. 
For x >0, the magnetic field will then have x and z components 
of the form 

H.(x, z, t) = Re [A. (x) e'("" )] 

H.(x, z, t) = Re [A.(x) e'(" t k)] 

H, 

a, 4: U 
x 

Y ' kz) 
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Figure 6-29 (a) A traveling wave of surface current induces currents in a conductor 
that is moving at a velocity U different from the wave speed a>k. (b) The resulting 
forces can levitate and propel the conductor as a function of the slip S, which measures 
the difference in speeds of the conductor and traveling wave. 
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where (10) (V - B= 0) requires these components to be related 
as 

--- jk,=0 (52)
dx 

The z component of the magnetic diffusion equation of 
(13) is 

-k 2 =jo-(w-AkU)H (53) 

which can also be written as 

- . 2fz = 0 (54) 

where 

2 = k2(l+jS), S (W-kU) (55) 

and S is known as the slip. Solutions of (54) are again 

exponential but complex because y is complex: 

A = A ie'+A 2 e~' (56) 

Because H. must remain finite far from the current sheet, 
A1 =0, so that using (52) the magnetic field is of the form 

H=Koe-" -k (57) 

where we use the fact that the tangential component of H is discon­
tinuous in the surface current, with H = 0 for x<0. 

The current density in the conductor is 

=V x H = ( 8 ) =-jkH 

2)(Y 
2-k 

-Kok2e-7 

Kokej--w (58) 

If the conductor and current wave travel at the same speed 
(w/k = U), no current is induced as the slip is zero. Currents 
are only induced if the conductor and wave travel at different 
velocities. This is the principle of all induction machines. 
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The force per unit area on the-conductor then has x and z 
components: 

f= IJ oHdx 

= jtoJ,(H.i.- H.i.) dx (59) 

These integrations are straightforward but lengthy because 
first the instantaneous field and current density must be 
found from (51) by taking the real parts. More important is 
the time-average force per unit area over a period of excita­
tion: 

2w/w 

<f>=f- fdt (60)
2v o 

Since the real part of a complex quantity is equal to half the 
sum of the quantity and its complex conjugate, 

tA = Re [A e "'] = 2(A e "+ A* ei"') (61)
B = e[ -]=-L, -+A e-i") 

the time-average product of two quantities is 

ABdte 
2wr 4 21r 

+A*A* e-1ivt) dt 

=:(A *+ A*) 

= IRe (AE*) (62) 

which is a formula often used for the time-average power in 
circuits where A and B are the voltage and current. 

Then using (62) in (59), the x component of the time-
average force per unit area is 

<f.>=4Re fLoffk*dx) 

=2 KokS Re ( e+* dx 

- 2Kok S R 
2 \Y(Y +-y*)/2 

=-I soK S 2 
1 2 -1+S 2 -I\zoos =; ,so 1 (63)

4 [1 +S2+(l +S2)12 I1S 

where the last equalities were evaluated in terms of the slip S 
from (55). 
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We similarly compute the time-average shear force per unit 
area as 

< f,>= -- Re 00yojH* dx) 

k 5 e=po K 

2 yy* ( I 
2=- y Re )cd) 

-2 * *Re (Re *) 

2oKS 
= jiT? (64)
4M +S2 Re (,[I+ jS) 

When the wave speed exceeds the conductor's speed (w/k > 
U), the force is positive as S >0 so that the wave pulls the 
conductor along. When S <0, the slow wave tends to pull the 
conductor back as <f.> <0. The forces of (63) and (64), 
plotted in Figure 6-29b, can be used to simultaneously lift and 
propel a conducting material. There is no force when the 
wave and conductor travel at the same speed (w/k = U) as the 
slip is zero (S = 0). For large S, the levitating force <f.> 
approaches the constant value IiyoKo while the shear force 
approaches zero. There is an optimum value of S that maxi­
mizes <f,>. For smaller S, less current is induced while for 
larger S the phase difference between the imposed and 
induced currents tend to decrease the time-average force. 

6-4-7 Superconductors 

In the limit of infinite Ohmic conductivity (o-->-oo), the 
diffusion time constant of (28) becomes infinite while the skin 
depth of (36) becomes zero. The magnetic field cannot 
penetrate a perfect conductor and currents are completely 
confined to the surface. 

However, in this limit the Ohmic conduction law is no 
longer valid and we should use the superconducting consti­
tutive law developed in Section 3-2-2d for a single charge 
carrier: 

aj= w 2E (65)
at 

Then for a stationary medium, following the same pro­
cedure as in (12) and (13) with the constitutive law of (65), 
(8)-(1 1) reduce to 

V2a 2 H =0=>V2(-Ho) Ey(-Ho)=O
t 6)t 

(66) 
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where Ho is the instantaneous magnetic field at t =0. If the 
superconducting material has no initial magnetic field when 
an excitation is first turned on, then Ho =0. 

If the conducting slab in Figure 6-27a becomes super-
conducting, (66) becomes 

d2H. w2 
-- H =0, c = (67) 

where c is the speed of light in the medium. 
The solution to (67) is 

H = A1 e'c +A 2 e'** 

=-Kocos wt e ,"'c (68) 

where we use the boundary condition of continuity of 
tangential H at x = 0. 

The current density is then 

ax 

= Kow, cos wt e (69) 

For any frequency w, including dc (w = 0), the field and 
current decay with characteristic length: 

Ic= c/W, (70) 

Since the plasma frequency w, is typically on the order of 

1 0 15 radian/sec, this characteristic length is very small, 1, ­
3 x 10/10' 5-3x 10- m. Except for this thin sheath, the 
magnetic field is excluded from the superconductor while the 
volume current is confined to this region near the interface. 

There is one experimental exception to the governing 
equation in (66), known as the Meissner effect. If an ordinary 
conductor is placed within a dc magnetic field Ho and then 
cooled through the transition temperature for superconduc­
tivity, the magnetic flux is pushed out except for a thin sheath 
of width given by (70). This is contrary to (66), which allows 
the time-independent solution H = Ho, where the magnetic 
field remains trapped within the superconductor. Although 
the reason is not well understood, superconductors behave as 
if Ho =0 no matter what the initial value of magnetic field. 

6-5 ENERGY STORED IN THE MAGNETIC FIELD 

6-5-1 A Single Current Loop 

The differential amount of work necessary to overcome 
the electric and magnetic forces on a charge q moving an 
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incremental distance ds at velocity v is 

dW, = -q(E+v X B) -ds (1) 

(a) Electrical Work 
If the charge moves solely under the action of the electrical 

and magnetic forces with no other forces of mechanical ori­
gin, the incremental displacement in a small time dt is related 
to its velocity as 

ds = v dt (2) 

Then the magnetic field cannot contribute to any work on the 
charge because the magnetic force is perpendicular to the 
charge's displacement: 

dW, = -qv - E dt (3) 

and the work required is entirely due to the electric field. 
Within a charge neutral wire, the electric field is not due to 
Coulombic forces but rather arises from Faraday's law. The 
moving charge constitutes an incremental current element, 

qv= idl>dW,=-iE -d dt (4) 

so that the total work necessary to move all the charges in the 
closed wire is just the sum of the work done on each current 
element, 

dw=fdW, =-i dt fE -dl 

d
=idt- B-dS 

dt s 

= i dt 
dt 

=idD (5) 

which through Faraday's law is proportional to the change of 
flux through the current loop. This flux may be due to other 
currents and magnets (mutual flux) as well as the self-flux due 
to the current i. Note that the third relation in (5) is just 
equivalent to the circuit definition of electrical power 
delivered to the loop: 

P dW d=V (6)
dt dt 

All of this energy supplied to accelerate the charges in the 
wire is stored as no energy is dissipated in the lossless loop 
and no mechanical work is performed if the loop is held 
stationary. 
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(b) Mechanical Work 
The magnetic field contributed no work in accelerating the 

charges. This is not true when the current-carrying wire is 
itself moved a small vector displacement ds requiring us to 
perform mechanical work, 

dW= -(idXB) -ds=i(BXdl) -ds 

= iB - (dxds) (7) 

where we were able to interchange the dot and the cross using 
the scalar triple product identity proved in Problem 1-10a. 
We define S, as the area originally bounding the loop and S2 
as the bounding area after the loop has moved the distance 
ds, as shown in Figure 6-30. The incremental area dS3 is then 
the strip joining the two positions of the loop defined by the 
bracketed quantity in (7): 

dS3 = dl x ds (8) 

The flux through each of the contours is 

I= IB - dS, ( 2 =1 B -dS (9) 

where their difference is just the flux that passes outward 
through dSs: 

dF=4 1-( 2 =B-dS3 (10) 

The incremental mechanical work of (7)-necessary to move 
the loop is then identical to (5): 

dW= iB - dS3 =id4 (11) 

Here there was no change of electrical energy input, with 
the increase of stored energy due entirely to mechanical work 
in moving the current loop. 

S2 

ds
 
dS3 di x ds
 

d \ 

idi 

fB 

Figure 6-30 The mechanical work necessary to move a current-carrying loop is 
stored as potential energy in the magnetic field. 
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6-5-2 Energy and Inductance 

If the loop is isolated and is within a linear permeable 
material, the flux is due entirely to the current, related 
through the self-inductance of the loop as 

D= Li (12) 

so that (5) or (11) can be integrated to find the total energy in 
a loop with final values of current I and flux (D: 

W= j i d4 

= -dQ 

1 D2 1=---=-_L12I-I (13)
2L 2 2 

6.5-3 Current Distributions 

The results of (13) are only true for a single current loop. 
For many interacting current loops or for current dis­
tributions, it is convenient to write the flux in terms of the 
vector potential using Stokes' theorem: 

= sB -dS= s(V x A) - dS A - dl (14) 

Then each incremental-sized current element carrying a 
current I with flux d(l has stored energy given by (13): 

dW =2I d(l=I - A di (15) 

For N current elements, (15) generalizes to 

W=2(I -A 1 dl 1+I2 -A 2 dl2 +- +IN *AN d N) 

N 

I.- A.din (16) = ,
n=1 

If the current is distributed over a line, surface, or volume, 
the summation is replaced by integration: 

j If -A dl (line current) 

W=- sKf A dS (surface current) (17) 

J, A dV (volume current) 
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Remember that in (16) and (17) the currents and vector 
potentials are all evaluated at their final values as opposed to 
(11), where the current must be expressed as a function of 
flux. 

6-5-4 Magnetic Energy Density 

This stored energy can be thought of as being stored in the 
magnetic field. Assuming that we have a free volume dis­
tribution of current Jf, we use (17) with Ampere's law to 
express Jf in terms of H, 

W=f Jf-AdV=f (VXH)-AdV (18) 

where the volume V is just the volume occupied by the 
current. Larger volumes (including all space) can be used in 
(18), for the region outside the current has Jf = 0 so that no 
additional contributions arise. 

Using the vector identity 

V - (A x H)= H - (V x A) -A - (V x H) 

=H - B-A - (V X H) (19) 

we rewrite (18) as 

W=I v[H - B-V - (A x H)] dV (20) 

The second term on the right-hand side can be converted 
to a surface integral using the divergence theorem: 

(A xH) -dS (21)V - (A x H) dV = 

It now becomes convenient to let the volume extend over all 
space so that the surface is .at infinity. If the current dis­
tribution does not extend to infinity the vector potential dies 
off at least as I/r and the magnetic field as I/r Then, even 
though the area increases as r2 , the surface integral in (21) 
decreases at least as I/r and thus is zero when S is at infinity. 
Then (20) becomes simply 

W=1jH -BdV=Ij LH2dV= -dV (22) 

where the volume V now extends over all space. The 
magnetic energy density is thus 

1 B 2 

w=HB=iH A 2 - (23) 
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These results are only true for linear materials where yA 
does not depend on the magnetic field, although it can 
depend on position. 

For a single coil, the total energy in (22) must be identical to 
(13), which gives us an alternate method to calculating the 
self-inductance from the magnetic field. 

6-5-5 The Coaxial Cable 

(a) External Inductance 
A typical cable geometry consists of two perfectly conduct­

ing cylindrical shells of radii a and b and length 1, as shown in 
Figure 6-31. An imposed current I flows axially as a surface 
current in opposite directions on each cylinder. We neglect 
fringing field effects near the ends so that the magnetic field is 
the same as if the cylinder were infinitely long. Using 
Ampere's law we find that 

I 
H4=--, a<r<b (24)

2ir 

The total magnetic flux between the two conductors is 

(D f goH.ldr 

I.oIL b 
= In a (25)
2w a 

2irb
HO 0
 

KK, a "H,(r)
 

Depth I H = 

a b r 

Figure 6-31 The magnetic field between two current-carrying cylindrical shells 
forming a coaxial cable is confined to the region between cylinders. 
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giving the self-inductance as 

) A1o b 
L = - = - In - (26)

I 2,7r a 

The same result can just as easily be found by computing 
the energy stored in the magnetic field 

W LI2 =jio H21Trldr 

p4 ln b 2W A1 In (b/a) 
= AOI n-=>L- 2 -(27)

47r a I 27r 

(b) Internal Inductance 
If the inner cylinder is now solid, as in Figure 6-32, the 

current at low enough frequencies where the skin depth is 
much larger than the radius, is uniformly distributed with 
density 

J= - (28)
Ta 

so that a linearly increasing magnetic field is present within 
the inner cylinder while the outside magnetic field is 

* Depth 

X Xdi . 21r dr 

ra2r 

** . 7aj/ * J 
_.1dr H, 21rr2HO . K a 0a b > 

Figure 6-32 At low frequencies the current in a coaxial cable is uniformly distributed 
over the solid center conductor so that the internal magnetic field increases linearly with 
radius. The external magnetic field remains unchanged. The inner cylinder can be 
thought of as many incremental cylindrical shells of thickness dr carrying a fraction of 
the total current. Each shell links its own self-flux-as well as the mutual flux of the other 
shells of smaller radius. The additional flux within the current-carrying conductor 
results in the internal inductance of the cable. 
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unchanged from (24): 

Ir 
2 , O<r<a27ra 

H, = (29) 

r',O a<r<b 
2,7r r 

The self-inductance cannot be found using the flux per 
unit current definition for a current loop since the current is 
not restricted to a thin filament. The inner cylinder can be 
thought of as many incremental cylindrical shells, as in Figure 
6-32, each linking its own self-flux as well as the mutual flux 
of the other shells of smaller radius. Note that each shell is at 
a different voltage due to the differences in enclosed flux, 
although the terminal wires that are in a region where the 
magnetic field is negligible have a well-defined unique voltage 
difference. 

The easiest way to compute the self-inductance as seen by 
the terminal wires is to use the energy definition of (22): 

W= jyo I H2rlrdr 

= rl 0[ 2 1r dr+ I r dr 
2o(7ra2 a 271rr 

A'jI2 1 b 
= -+ln - (30)

4,7r 4 a) 

which gives the self-inductance as 

2W Ayol b 
L = - = -+ln- (31)

I 2ir\4 aI 

The additional contribution of g~ol/87r is called the internal 
inductance and is due to the flux within the current-carrying 
conductor. 

6-5-6 Self-Inductance, Capacitance, and Resistance 

We can often save ourselves further calculations for the 
external self-inductance if we already know the capacitance or 
resistance for the same two-dimensional geometry composed 
of highly conducting electrodes with no internal inductance 
contribution. For the arbitrary geometry shown in Figure 
6-33 of depth d, the capacitance, resistance, and inductance 
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are defined as the ratios of line and surface integrals: 

ed is E -n, ds 

IL E - dl 

R j1 E -di (2 
cR~ -nd(32)n, dso-d fs E 

L d JL H - ni di 
Ls H - ds 

Because the homogeneous region between electrodes is 
charge and current free, both the electric and magnetic fields 
can be derived from a scalar potential that satisfies Laplace's 
equation. However, the electric field must be incident 
normally onto the electrodes while the magnetic field is 
incident tangentially so that E and H are perpendicular 
everywhere, each being along the potential lines of the other. 
This is accounted for in (32) and Figure 6-33 by having n, ds 
perpendicular to ds and ni dl perpendicular to dl. Then since 
C, R, and L are independent of the field strengths, we can 
take E and H to both have unit magnitude so that in the 
products of LC and LIR the line and surface integrals cancel: 

LC etd2 
= d2/c 2, c 1(E3 

2 (33)
LIR=wo-d2 , RC=elo-

These products are then independent of the electrode 
geometry and depend only on the material parameters and 
the depth of the electrodes. 

We recognize the LIR ratio to be proportional to the 
magnetic diffusion time of Section 6-4-3 while RC is just the 
charge relaxation time of Section 3-6-1. In Chapter 8 we see 
that the NIC product is just equal to the time it takes an 
electromagnetic wave to propagate a distance d at the speed 
of light c in the medium. 

/E
L---. 

L dl Q
-Q \ 

-ds 

ns Depth d 

Figure C-33 The electric and magnetic fields in the two-dimensional homogeneous 
charge and current-free region between hollow electrodes can be derived from a scalar 
potential that obeys Laplace's equation. The electric field lines are along the magnetic 
potential lines and vice versa so E and H are perpendicular. The inductance-capaci­
tance product is then a constant. 
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6-6 THE ENERGY METHOD FOR FORCES 

6-6-1 The Principle of Virtual Work 

In Section 6-5-1 we calculated the energy stored in a 
current-carrying loop by two methods. First we calculated the 
electric energy input to a loop with no mechanical work done. 
We then obtained the same answer by computing the 
mechanical work necessary to move a current-carrying loop 
in an external field with no further electrical inputs. In the 
most general case, an input of electrical energy can result in 
stored energy dW and mechanical work by the action of a 
force f. causing a small displacement dx: 

idO=dW+f.dx (1) 

If we knew the total energy stored in the magnetic field as a 
function of flux and position, the force is simply found as 

8W
f.= a (2) 

We can easily compute the stored energy by realizing that 
no matter by what process or order the system is assembled, if 
the final position x and flux 0 are the same, the energy is the 
same. Since the energy stored is independent of the order 
that we apply mechanical and electrical inputs, we choose to 
mechanically assemble a system first to its final position x with 
no electrical excitations so that 0 =0. This takes no work as 
with zero flux there is no force of electrical origin. Once the 
system is mechanically assembled so that its position remains 
constant, we apply the electrical excitation to bring the system 
to its final flux value. The electrical energy required is 

W=J idO (3) 
x const 

For linear materials, the flux and current are linearly 
related through the inductance that can now be a function of 
x because the inductance depends on the geometry: 

-i =/L(x) (4) 

Using (4) in (3) allows us to take the inductance outside the 
integral because x is held constant so that the inductance is 
also constant: 

W= 0 dO 
L((x) 

= =c L(x)i)
2L(x)2(5 

http:idO=dW+f.dx
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The stored energy is the same as found in Section 6-5-2 even 
when mechanical work is included and the inductance varies 
with position. 

To find the force on the moveable member, we use (2) with 
the energy expression in (5), which depends only on flux and 
position: 

aW 

8x . 
,t2 d[ IL (x)] 

2 dx 

1 D2 dL(x) 
2 L 2(x) dx 

1i 2 dL(x) 
dx 

6-6-2 Circuit Viewpoint 

This result can also be obtained using a circuit description 
with the linear flux-current relation of (4): 

di
V=­

dt 

di .dL(x) 
=x+ dt 

di .dL(x)dx (7) 
=x+ dx d7 

The last term, proportional to the speed of the moveable 
member, just adds to the usual inductive voltage term. If the 
geometry is fixed and does not change with time, there is no 
electromechanical coupling term. 

The power delivered to the system is 

d 

which can be expanded as 

d 1 .2 2 dL(x)dx 
d (9) P=-(iL(x)i )+Ai ­di )+id di 

This is in the form 

dW dx W=2L(x)i2 (10) 
p= +2dL(x)dt dt f.=-1 
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which states that the power delivered to the inductor is equal 
to the sum of the time rate of energy. stored and mechanical 
power performed on the inductor. This agrees with the 
energy method approach. If the inductance does not change 
with time because the geometry is fixed, all the input power is 
stored. as potential energy W. 

Example 6-2 MAGNETIC FIELDS AND FORCES 

(a) Relay 
Find the force on the moveable slug in the magnetic circuit 

shown in Figure 6-34. 

SOLUTION 

It is necessary to find the inductance of the system as a 
function of the slug's position so'that we can use (6). Because 
of the infinitely permeable core and slug, the H field is non­
zero only in the air gap of length x. We use Ampere's law to 
obtain 

H= NI/x 

The flux through the gap 

(= yoNIA/x 

is equal to the flux through each turn of the coil yielding the 
inductance as 

NO yAoN2 A 
L(x)=-= 

Ix 

N turns H=N 

Mo Cross-sectional area A 
-*-I 

Figure 6-34 The magnetic field exerts a force on the moveable member in the relay 
pulling it into the magnetic circuit. 
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The force is then 

f 2 dL(x) 
dx 

2 2C 

i.L0N2A12 

2 2 

The minus sign means that the force is opposite to the direc­
tion of increasing x, so that the moveable piece is attracted to 
the coil. 

(b) One Turn Loop 
Find the force on the moveable upper plate in the one turn 

loop shown in Figure 6-35. 

SOLUTION 

The current distributes itself uniformly as a surface current 
K = I/D on the moveable plate. If we neglect nonuniform 
field effects near the corners, the H field being tangent to the 
conductors just equals K: 

H = IID 

The total flux linked by the current source is then 

(D= oHxl 

= I 
D 

which gives the inductance as 

x pDoxl 
L(x)=-=­I D 

K IID 

D 

Figure 6-35 the magnetic force on a current-carrying ioop tends to expand the ioop. 
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The force is then constant 

f=,l1dL(x)
dx 

1 olI 2 

2 D 

6-6-3 Magnetization Force 

A material with permeability A is partially inserted into the 
magnetic circuit shown in Figure 6-36. With no free current 
in the moveable material, the x-directed force density from 
Section 5-8-1 is 

F. = Mo(M - V)H. 

= (; - iMo)(H - V)H. 

aHH 
=(; -'UO) H. -+ H, 11(11)~IL~o)\axY ay ) 

where we neglect variations with z. This force arises in the 
fringing field because within the gap the magnetic field is 
essentially uniform: 

H, = NI/s (12) 

Because the magnetic field in the permeable block is curl free, 

V xH =>O--- 8 (13) 

0 p.y x 

-L a 

y
t= NI N 

xo 

Depth D 

(a) 

Figure 6-36 - A permeable material tends to be pulled into regions of higher magnetic 
field. 

11 
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(11) can be rewritten as 

F.= - o)(H+ H') (14)
2 8x 

The total force is then 

f =sD F.dx 

(I - I) N I2D = 1 &)NID(15) 
2 S 

where the fields at x = -oo are zero and the field at x= x0 is 
given by (12). High permeability. material is attracted to 
regions of stronger magnetic field. It is this force that causes 
iron materials to be attracted towards a magnet. Diamagnetic 
materials (A <po) will be repelled. 

This same result can more easily be obtained using (6) 
where the flux through the gap is 

NID
4D= HD[ipx +p o(a -x)] ---- [(p - po)x+ao] (16)

S 

so that the inductance is 

NO N2D 
L=-= -[( -po)x +aizo] (17)

I S 

Then the force obtained using (6) agrees with (15) 

f 2dL(x) 
dx 

=A2s A N2,2D (18)
2s 

PROBLEMS 

Section 6-1 
1. A circular loop of radius a with Ohmic conductivity a- and 
cross-sectional area A has its center a small distance D away 
from an infinitely long time varying current. 
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