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314 The Magnetic Field 

The ancient Chinese knew that the iron oxide magnetite 
(FesO 4 ) attracted small pieces of iron. The first application of 
this effect was the navigation compass, which was not 
developed until the thirteenth century. No major advances 
were made again until the early nineteenth century when 
precise experiments discovered the properties of the 
magnetic field. 

5-1 FORCES ON MOVING CHARGES 

5-1-1 The Lorentz Force Law 

It was well known that magnets exert forces on each other, 
but in 1820 Oersted discovered that a magnet placed near a 
current carrying wire will align itself perpendicular to the 
wire. Each charge q in the wire, moving with velocity v in the 
magnetic field B [teslas, (kg-s 2 -A-')], felt the empirically 
determined Lorentz force perpendicular to both v and B 

f =q(vx B) (1) 

as illustrated in Figure 5-1. A distribution of charge feels a 
differential force df on each moving incremental charge 
element dq: 

df = dq(vx B) (2) 

V 

B q 

f q(v x B) 

Figure 5-1 A charge moving through a magnetic field experiences the Lorentz force 
perpendicular to both its motion and the magnetic field. 
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Moving charges over a line, surface, or volume, respectively 
constitute line, surface, and volume currents, as in Figure 5-2, 
where (2) becomes 

pfv x B dV= Jx B dV (J = pfv, volume current density) 

df= a-vxB dS=KXB dS 

(K = orfv, surface current density) (3) 

AfvxB dl =IxB dl (I=Afv, line current) 
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Figure 5-2 Moving line, surface, and volume charge distributions constitute currents. 
(a) In metallic wires the net charge is zero since there are equal amounts of negative 
and positive charges so that the Coulombic force is zero. Since the positive charge is 
essentially stationary, only the moving electrons contribute to the line current in the 
direction opposite to their motion. (b) Surface current. (c) Volume current. 
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The total magnetic force on a current distribution is then 
obtained by integrating (3) over the total volume, surface, or 
contour containing the current. If there is a net charge with 
its associated electric field E, the total force densities include 
the Coulombic contribution: 

f=q(E+vxB) Newton 

FL=Af(E+vxB)=AfE+IXB N/m 

Fs=a'(E+vxB)=o-rE+KXB N/M2 

Fv=pf(E+vxB)=pfE+JXB N/M 3 

In many cases the net charge in a system is very small so that 
the Coulombic force is negligible. This is often true for 
conduction in metal wires. A net current still flows because of 
the difference in velocities of each charge carrier. 

Unlike the electric field, the magnetic field cannot change 
the kinetic energy of a moving charge as the force is perpen­
dicular to the velocity. It can alter the charge's trajectory but 
not its velocity magnitude. 

5-1-2 Charge Motions in a Uniform Magnetic Field 

The three components of Newton's law for a charge q of 
mass m moving through a uniform magnetic field Bi, are 

dv. 
m -d = qv,B,

di 

dv dv,m-=qvxB4' m--=-qv.B. (5)
dt dt 

dv. 
m =0 * v, = const 

The velocity component along the magnetic field is 
unaffected. Solving the first equation for v, and substituting 
the result into the siecond equation gives us a single equation 
in v.: 

d v +2 1 dv. qB. 
- , w=-m (6)S+WoV. = 0, V, =-

where Wo is called the Larmor angular velocity or the cyclo­
tron frequency (see Section 5-1-4). The solutions to (6) are 

v. =A sin wot + A 2 COS (7) 

1 dv, 
v, -- =A1 cos wot-A2 sin coot 

wo dt 
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where A I and A 2 are found from initial conditions. If at t =0, 

v(t = 0) = voi (8) 

then (7) and Figure 5-3a show that the particle travels in a 
circle, with constant speed vo in the xy plane: 

v = vo(cos aoti. -sin woti,) (9) 

with radius 

R = volwo (10) 

If the particle also has a velocity component along the 
magnetic field in the z direction, the charge trajectory 
becomes a helix, as shown in Figure 5-3b. 
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Figure 5-3 (a) A positive charge q, initially moving perpendicular to a magnetic field, 
feels an orthogonal force putting the charge into a circular motion about the magnetic 
field where the Lorentz force is balanced by the centrifugal force. Note that the charge 
travels in the direction (in this case clockwise) so that its self-field through the loop [see 
Section 5-2-1] is opposite in direction to the applied field. (b) A velocity component in 
the direction of the magnetic field is unaffected resulting in a helical trajectory. 
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5-1-3 The Mass Spectrograph 

The mass spectrograph uses the circular motion derived in 
Section 5-1-2 to determine the masses of ions and to measure 
the relative proportions of isotopes, as shown in Figure 5-4. 
Charges enter between parallel plate electrodes with a y-
directed velocity distribution. To pick out those charges with 
a particular magnitude of velocity, perpendicular electric and 
magnetic fields are imposed so that the net force on a charge 
is 

q. (11.)q(E. +vB.) 

For charges to pass through the narrow slit at the end of the 
channel, they must not be deflected by the fields so that the 
force in (11) is zero. For a selected velocity v, = vo this 
requires a negatively x directed electric field 

V 
E. =- = - voBo (12)

S 

which is adjusted by fixing the applied voltage V. Once the 
charge passes through the slit, it no longer feels the electric 
field and is only under the influence of the magnetic field. It 
thus travels in a circle of radius 

r= = m (13) 
wo qBo 

+ v­

B0 i, 

Photographic 
plate 

Iq 

y 

insulator qBo -Ex 

Figure 5-4 The mass spectrograph measures the mass of an ion by the radius of its 
trajectory when moving perpendicular to a magnetic field. The crossed uniform 
electric field selects the ion velocity that can pass through the slit. 
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which is directly proportional to the mass of the ion. By 
measuring the position of the charge when it hits the photo­
graphic plate, the mass of the ion can be calculated. Different 
isotopes that have the same number of protons but different 
amounts of neutrons will hit the plate at different positions. 

For example, if the mass spectrograph has an applied 
voltage of V= -100 V across a 1-cm gap (E. = -- 10 V/m) with 
a magnetic field of 1 tesla, only ions with velocity 

v,=-EIBo= 104 m/sec (14) 

will pass through. The three isotopes of magnesium, 12 Mg24 
25 26 

12Mg , 12Mg , each deficient of one electron, will hit the 
photographic plate at respective positions: 

2 x 10 4N(1.67 x 10- 27)d=2r= 1.610-'(1) 2X10 N 

= 0.48, 0.50, 0.52cm (15) 

where N is the number of protons and neutrons (m = 1.67 x 
10-27 kg) in the nucleus. 

5-1-4 The Cyclotron 

A cyclotron brings charged particles to very high speeds by 
many small repeated accelerations. Basically it is composed of 
a split hollow cylinder, as shown in Figure 5-5, where each 
half is called a "dee" because their shape is similar to the 

_ -- D2 

Y 

Figure 5-5 The cyclotron brings ions to high speed by many small repeated accelera­
tions by the electric field in the gap between dees. Within the dees the electric field is 
negligible so that the ions move in increasingly larger circular orbits due to an applied
magnetic field perpendicular to their motion. 

http:104N(1.67
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fourth letter of the alphabet. The dees are put at a sinusoi­
dally varying potential difference. A uniform magnetic field 
Boi, is applied along the axis of the cylinder. The electric field 
is essentially zero within the cylindrical volume and assumed 
uniform E, = v(t)/s in the small gap between dees. A charge 
source at the center of D, emits a charge q of mass m with zero 
velocity at the peak of the applied voltage at t = 0. The electric 
field in the gap accelerates the charge towards D2 . Because the 
gap is so small the voltage remains approximately constant at 
VO while the charge is traveling between dees so that its 
displacement and velocity are 

dv, q Vo qVO 
dt s Sm 

dy qVot 2 (16) 
dt 2ms 

The charge thus enters D2 at time t = [2ms 2/qV 0]" 2 later with 
velocity v, = -,12qVo/m. Within D 2 the electric field is negligible 
so that the charge travels in a circular orbit of radius r = 
v,/co = mvIqBo due to the magnetic field alone. The 
frequency of the voltage is adjusted to just equal the angular 
velocity wo = qBo/m of the charge, so that when the charge 
re-enters the gap between dees the polarity has reversed 
accelerating- the charge towards D, with increased 
velocity. This process is continually repeated, since every time 
the charge enters the gap the voltage polarity accelerates the 
charge towards the opposite dee, resulting in a larger radius 
of travel. Each time the charge crosses the gap its velocity is 
increased by the same amount so that after n gap traversals its 
velocity and orbit radius are 

V = , R1 = = (2nm Vo) 1/2 (17)
M - 0o qBO 

If the outer radius of the dees is R, the maximum speed of 
the charge 

Vma. =oR = -R (18) 

is reached after 2n = qB2R 2/mVo round trips when R. = R. 
For a hydrogen ion (q = 1.6x 10-' 9 coul, m = 1.67X 10-27 kg), 
within a magnetic field of 1 tesla (wo= 9.6 X 107 radian/sec) 
and peak voltage of 100 volts with a cyclotron radius of one 

9 6meter, we reach vma,= . x 10 7 m/s (which is about 30% of 
the speed of light) in about 2n -9.6 x 105 round-trips, which 
takes a time r=4nir/w, 27r/100-0.06 sec. To reach this 

http:27r/100-0.06
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speed with an electrostatic accelerator would require 
2 

b mv2 =qV4 Vmvma 4 8 x 106 Volts (19) 
2q 

The cyclotron works at much lower voltages because the 
angular velocity of the ions remains constant for fixed qBo/m 
and thus arrives at the gap in phase with the peak of the 
applied voltage so that it is sequentially accelerated towards 
the opposite dee. It is not used with electrons because their 
small mass allows them to reach relativistic velocities close to 
the speed of light, which then greatly increases their mass, 
decreasing their angular velocity wo, putting them out of 
phase with the voltage. 

5-1-5 HaDl Effect 

When charges flow perpendicular to a magnetic field, the 
transverse displacement due to the Lorentz force can give rise 
to an electric field. The geometry in Figure 5-6 has a uniform 
magnetic field Boi, applied to a material carrying a current in 
the y direction. For positive charges as for holes in a p-type 
semiconductor, the charge velocity is also in the positive y 
direction, while for negative charges as occur in metals or in 
n-type semiconductors, the charge velocity is in the negative y 
direction. In the steady state where the charge velocity does 
not vary with time, the net force on the charges must be zero, 

BO i, 

Figure 5-6 A magnetic field perpendicular to a current flow deflects the charges
transversely giving rise to an electric field and the Hall voltage. The polarity of the 
voltage is the same as the sign of tbe charge carriers. 
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which requires the presence of an x-directed electric field 

E+vx B=0->Ex = -v,Bo (20) 

A transverse potential difference then develops across the 
material called the Hall voltage: 

Vh=- Exdx =vBod (21) 

The Hall voltage has its polarity given by the sign of v,; 
positive voltage for positive charge carriers and negative 
voltage for negative charges. This measurement provides an 
easy way to determine the sign of the predominant charge 
carrier for conduction. 

5-2 MAGNETIC FIELD DUE TO CURRENTS 

Once it was demonstrated that electric currents exert forces 
on magnets, Ampere immediately showed that electric cur­
rents also exert forces on each other and that a magnet could 
be replaced by an equivalent current with the same result. 
Now magnetic fields could be turned on and off at will with 
their strength easily controlled. 

5-2-1 The Biot-Savart Law 

Biot and Savart quantified Ampere's measurements by 
showing that the magnetic field B at a distance r from a 
moving charge is 

goqv X i-
B= 47r2 teslas (kg-s -A') (1) 

as in Figure 5-7a, where go is a constant called the permeabil­
ity of free space and in SI units is defined as having the exact 
numerical value 

o= 47T X 10-7 henry/m (kg-m-A-2s 2 ) (2) 

The 47r is introduced in (1) for the same reason it was intro­
duced in Coulomb's law in Section 2-2-1. It will cancel out a 
47r contribution in frequently used laws that we will soon 
derive from (1). As for Coulomb's law, the magnetic field 
drops off inversely as the square of the distance, but its direc­
tion is now perpendicular both to the direction of charge flow 
and to the line joining the charge to the field point. 

In the experiments of Ampere and those of Biot and 
Savart, the charge flow was constrained as a line current 
within a wire. If the charge is distributed over a line with 
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Figure 5-7 The magnetic field generated by a current is perpendicular to the current 
and the unit vector joining the current element to the field point; (a) point charge; (b) 
line current; (c) surface current; (d) volume current. 

current I, or a surface with current per unit length K, or over 
a volume with current per unit area J, we use the differential-
sized current elements, as in Figures 5-7b-5-7d: 

I dl (line current) 

dq v = K dS (surface current) (3) 

I jdV (volume current) 

The total magnetic field for a current distribution is then 
obtained by integrating the contributions from all the incre­
mental elements: 

__ I dl x io-AO JL 2 (line current) 
41r QP 

so KdSXIQP
B-- -u--- (surface current) (4)

41r is rQP 

__ 

i-AoJJdVxiQP
­ (volume current) 

41r f rQp 
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The direction of the magnetic field due to a current element 
is found by the right-hand rule, where if the forefinger of the 
right hand points in the direction of current and the middle 
finger in the direction of the field point, then the thumb 
points in the direction of the magnetic field. This magnetic 
field B can then exert a force on other currents, as given in 
Section 5-1-1. 

5-2-2 Line Currents 

A constant current I, flows in the z direction along a wire of 
infinite extent, as in Figure 5-8a. Equivalently, the right-hand 
rule allows us to put our thumb in the direction of current. 
Then the fingers on the right hand curl in the direction of B, 
as shown in Figure 5-8a. The unit vector in the direction of 
the line joining an incremental current element I, dz at z to a 
field point P is 

r z
iQp = i,.cos 0 -i, sin 0=.- (5)

rQP rQP 
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Figure 5-8 (a) The magnetic field due to an infinitely long z-directed line current is 
in the 0 direction. (b) Two parallel line currents attract each other if flowing in the 
same direction and repel if oppositely directed. 
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with distance 

r 2=(z2+r2)1/2 (6) 

The magnetic field due to this current element is given by (4) 
as 

dB=. I dz(i XiQp) - AoIr dz 
247r rQp 41r(z 2+r ( 

The total magnetic field from the line current is obtained by 
integrating the contributions from all elements: 

AoIir [ dz 
B,-=BI 4r .Lc (z 2+r)2 3/2 

pjz1r z 
-2(Z2 2 1/247r r (z+r ) 10 

= 'o'i (8)
21rr 

If a second line current 12 of finite length L is placed at a 
distance a and parallel to I, as in Figure 5-8b, the force on 12 
due to the magnetic field of I, is 

+L/2 

f=J 12 dzi.xB 

-L/2 
+4L/2 lpoIi 

= I 2dz (iXi)
L/2 2ara 

_4 _1 1oi2L . 
(9)2ra ir 

If both currents flow in the same direction (1112>0), the 
force is attractive, while if they flow in opposite directions 
(1112<0), the force is repulsive. This is opposite in sense to 
the Coulombic force where opposite charges attract and like 
charges repel. 

5-2-3 Current Sheets 

(a) Single Sheet of Surface Current 
A constant current Koi, flows in the y =0 plane, as in 

Figure 5-9a. We break the sheet into incremental line cur­
rents Ko dx, each of which gives rise to a magnetic field as 
given by (8). From Table 1-2, the unit vector is is equivalent 
to the Cartesian components 

i' = -sin Oi. 2+cos 4i, (10) 
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Figure 5-9 (a) A uniform surface current of infinite extent generates a uniform 
magnetic field oppositely directed on each side of the sheet. The magnetic field is 
perpendicular to the surface current but parallel to the plane of the sheet. (b) The 
magnetic field due to a slab of volume current is found by superimposing the fields 
due to incremental surface currents. (c) Two parallel but oppositely directed surface 
current sheets have fields that add in the region between the sheets but cancel outside 
the sheet. (d) The force on a current sheet is due to the average field on each side of 
the sheet as found by modeling the sheet as a uniform volume current distributed over 
an infinitesimal thickness A. 



Magnetic FieldDue to Currents 327 

z 

K, = Koi ,K2 = -Koi 
Ao lim JO A = KO 

J, o 
A-O 

B 

.-

!;,OK. 
"I I 

- d 

-~ AO 

BI 
A2 ADK 0 

- oKo = + 
(d) 

B=B 
1 

+B 
2 

(c) 

Figure 5-9 

The symmetrically located line charge elements a distance x 
on either side of a point P have y magnetic field components 
that cancel but x components that add. The total magnetic 
field is then 

Bx +0 AoKo sin iod 
B=--. 2 r (x2 + 2 )1/2 

-oKoy +0 dx 
2
21w . (x2 +y

- oKo tanIx 
21r y -cc 

_ -joKo/2, y> 0 (11)l.oKo/2, y <0 

The field is constant and oppositely directed on each side of 
the sheet. 

(b) Slab of Volume Current 
If the z-directed current Joi, is uniform over a thickness d, 

as in Figure 5-9b, we break the slab into incremental current 
sheets Jo dy'. The magnetic field from each current sheet is 
given by (11). When adding the contributions of all the 
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differential-sized sheets, those to the left of a field point give a 
negatively x directed magnetic field while those to the right 
contribute a positively x-directed field: 

. +d/2 -ojody' -oJod d 

Id/2 2 2 ' 2 
B==< -- jOd y <-- (12) 

J-d 2 2' 2
2 

p oo dy'+yfd/ oodyp Ajy 
2yfdy' d poJo dy' d d 

,/2 2 , 2 2 2 

The total force per unit area on the slab is zero: 
+d/2 +d/2 

Fs,=[ JoB dy=-, Jof y dy 

2 +d/2 

= 21fld =0 (13)
2 -d/2 

A current distribution cannot exert a net force on itself. 

(c) Two Parallel Current Sheets 
If a second current sheet with current flowing in the 

opposite direction - Koi, is placed at y = d parallel to a cur­
rent sheet Koi, at y = 0, as in Figure 5-9c, the magnetic field 
due to each sheet alone is 

-oKo .oKo. 
2 2 X, y >O 22 12o, y> d 

Bj= B2=' (14) 

_oKo < -/oKo.12 2, y'<0 22 ', y<d 

Thus in the region outside the sheets, the fields cancel while 
they add in the region between: 

B =, +2 -/yLKoi , 0<y d (5
B0, y<, (15) 

The force on a surface current element on the second sheet 
is 

df = -Koi dSxB (16) 

However, since the magnetic field is discontinuous at the 
current sheet, it is not clear which value of magnetic field to 
use. Tp take the limit properly, we model the current sheet at 
y = d as a thin volume current with density Jo and thickness A, 
as in Figure 5-9d, where KO = JoA. 
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The results of (12) show that in a slab of uniform volume 
current, the magnetic field changes linearly to its values at the 
surfaces 

B.(y = d -A)= -soKo (17) 
B.(y =d)=0 

so that the magnetic field within the slab is 

B. =loKo(y d) (18) 

The force per unit area on the slab is then 

Fs A Jo(y - d)i, dy 

-poKojo(y-d)2 . d 

Id-AA 2 

joKoJoA. poKo . 
2 2 (19) 

The force acts to separate the sheets because the currents are 
in opposite directions and thus repel one another. 

Just as we found for the electric field on either side of a 
sheet of surface charge in Section 3-9-1, when the magnetic 
field is discontinuous on either side of a current sheet K, 

B2being B, on one side and on the other, the average 
magnetic field is used to compute the force on the sheet: 

(Bi+ B2) (20)df=KdS x (20
2 

In our case 

Bi =- LoKoi., B2=0 (21) 

5-2-4 Hoops of Line Current 

(a) Single hoop 
A circular hoop of radius a centered about the origin in the 

xy plane carries a constant current I, as in Figure 5-1Oa. The 
distance from any point on the hoop to a point at z along the z 
axis is 

r 2(Z2+a2 1/2 (22) 

in the direction 

(-ai,+zi.) 
(23)Q (z2+ 2) 2 
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Figure 5-10 (a) The magnetic field due to a circular current loop is z directed along 
the axis of the hoop. (b) A Helmholtz coil, formed by two such hoops at a distance 
apart d equal to their radius, has an essentially uniform field 'iear the center at z = d/2. 
(c) The magnetic field on the axis of a cylinder with a 45-directed surface current is 
found by integrating the fields due to incremental current loops. 

so that the incremental magnetic field due to a current ele­
ment of differential size is 

dB= ""Ia d4a i)xiQP
4,rrto, 

= oIad (+
2 E)s/2(aiz+zir) (24)

47r(z +a 

The radial unit vector changes direction as a function of 4, 
being oppositely directed at -0, so that the total magnetic 
field due to the whole hoop is purely z directed: 

B ola2 2d 
2B 41r(z2 +a) 

2 
poIa 

(25)
2(z 2 +a 2)512 

The direction of the magnetic field can be checked using 
the right-hand rule. Curling the fingers on the right hand in 
the direction of.the current puts the thumb in the direction of 
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the magnetic field. Note that the magnetic field along the z axis 
is positively z directed both above and below the hoop. 

(b) Two Hoops (Hehnholtz Coil) 
Often it is desired to have an accessible region in space with 

an essentially uniform magnetic field. This can be arianged 
by placing another coil at z = d, as in Figure 5-1 Ob. Then the 
total magnetic field along the z axis is found by superposing 
the field of (25) for each hoop: 

I0 Ia2 1 1 
B.= 2 \(z2+a2)/2+ ((z - d)2+a )S/2) (26) 

We see then that the slope of B., 

aB. 3 oIa2 ( -z (z -d) \ 
2az 2 \(z 2 +a) 5 ((z -d) 2 +a 2)5/2) (27) 

is zero at z = d/2. The second derivative, 

a2B. 3poIa2 ( 5z 2 

az 2 (z 2+a )7/ (z 2 +a 2 )5 /2 

5(z-d)2 
1 (

((z - d) +a 2) ((z - d)2+ a 2)/2 

can also be set to zero at z = d/2, if d = a, giving a highly 
uniform field around the center of the system, as plotted in 
Figure 5-10b. Such a configuration is called a Helmholtz coil. 

(c) Hollow Cylinder of Surface Current 
A hollow cylinder of length L and radius a has a uniform 

surface current K0i* as in Figure 5-10c. Such a configuration 
is arranged in practice by tightly winding N turns of a wire 
around a cylinder and imposing a current I through the wire. 
Then the current per unit length is 

Ko= NIIL (29) 

The magnetic field along the z axis at the position z due to 
each incremental hoop at z' is found from (25) by replacing z 
by (z - z') and I by Ko dz': 

B.t a2Ko dz'
dB. 2[(z - Z')2+ a 2/ 
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The total axial magnetic field is then 

B 12 Oa2 dz' 
B.=-.2 2 [(z - z')+a' 

Jsoa2 Ko (z'-z) +02 

2 a _[(z,) +a2]I .'---/2 
_ioKo( -z+L/2 

2 \[(z - L/2)2 + a2 ]m 
+ 

[(z+L/2)2 +a2]"2 (31) 

As the cylinder becomes very long, the magnetic field far 
from the ends becomes approximately constant 

lim B.=p, K0 (32) 

DIVERGENCE AND CURL OF THE MAGNETIC FIELD 

Because of our success in examining various vector opera­
tions on the electric field, it is worthwhile to perform similar 
operations on the magnetic field. We will need to use the 
following vector identities from Section 1-5-4, Problem 1-24 
and Sections 2-4-1 and 2-4-2: 

V - (V XA)=0 (1) 

Vx(Vf)=O (2) 

(3) 
rQP) rop 

2( dV= 0,41, rQp=Orap= 0(4 (4)V r V= -­

V (A x B)= B - (V x A)- A - V x B (5) 

V x (A XB)= (B - V)A -(A - V)B+(V - B)A -(V - A)B (6) 

V(A - B)= (A - V)B+(B - V)A+ A x (V XB)+B x (V x A) 
(7) 

Gauss's Law for the Magnetic Field 

Using (3) the magnetic field due to a volume distribution of 
current J is rewritten as 

B=E2 Jx()dV 

=2 JA xV( dV (8)
4r Jv rP 
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If we take the divergence of the magnetic field with respect to 
field coordinates, the del operator can be brought inside the 
integral as the integral is only over the source coordinates: 

V-B -. Jxv dV (9) 
v L rQp 

The integrand can be expanded using (5) 

v-Jxv-)]=v(-,)- -(VXJ)-J-Vx[V(-)=0 

0 
0 (10) 

The first term on the right-hand side in (10) is zero because j 
is not a function of field coordinates, while the second term is 
zero from (2), the curl of the gradient is always zero. Then (9) 
reduces to 

V-B=0 (11) 

This contrasts with Gauss's law for the displacement field 
where the right-hand side is equal to the electric charge 
density. Since nobody has yet discovered any net magnetic 
charge, there is no source term on the right-hand side of (11). 

The divergence theorem gives us the equivalent integral 
representation 

(12)B-dS=0tV-BdV= 

which tells us that the net magnetic flux through a closed 
surface is always zero. As much flux enters a surface as leaves 
it. Since there are no magnetic charges to terminate the 
magnetic field, the field lines are always closed. 

5-3-2 Ampere's Circuital Law 

We similarly take the curl of (8) to obtain 

VxB=- VxJxVkI dV (13)
47r v I rQP 

where again the del operator can be brought inside the 
integral and only operates on rQp. 

We expand the integrand using (6): 

Vx JxV )= v -1( 
rP rQP) ~ i-VV rQP) 

0 

rQC) 
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where two terms on the right-hand side are zero because J is 
not a function of the field coordinates. Using the identity of 
(7), 

V J-v = [V(-V J+( -V)V( 
rQP) rQP) IrQP)
 

+ V x )+Jx [x I (15) 

0 

the second term on the right-hand side of (14) can be related 
to a pure gradient of a quantity because the first and third 
terms on the right of (15) are zero since J is not a function of 
field coordinates. The last term in (15) is zero because the curl 
of a gradient is always zero. Using (14) and (15), (13) can be 
rewritten as 

VxB=- I J - V( I )-JVk dV (16)4 1 v L rQp/J rQp/ 

Using the gradient theorem, a corollary to the divergence 
theorem, (see Problem 1-15a), the first volume integral is 
converted to a surface integral 

VdS . JVB (17)
41r s I 

rar/ , vrQ7 

This surface completely surrounds the current distribution so 
that S is outside in a zero current region where J =0 so that 
the surface integral is zero. The remaining volume integral is 
nonzero only when rQp =0, so that using (4) we finally obtain 

V x B= goJ (18) 

which is known as Ampere's law. 
Stokes' theorem applied to (18) results in Ampere's circuital 

law: 

Vx--. dS= -- dl= J-dS (19) 
s Lo S 

Like Gauss's law, choosing the right contour based on sym­
metry arguments often allows easy solutions for B. 

If we take the divergence of both sides of (18), the left-hand 
side is zero because the divergence of the curl of a vector is 
always zero. This requires that magnetic field systems have 
divergence-free currents so that charge cannot accumulate. 
Currents must always flow in closed loops. 
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5-3-3 Currents With Cylindrical Symmetry 

(a) Surface Current 
A surface current Koi, flows on the surface of an infinitely 

long hollow cylinder of radius a. Consider the two sym­
metrically located line charge elements dI = Ko ad4 and their 
effective fields at a point P in Figure 5-1 la. The magnetic 
field due to both current elements cancel in the radial direc­
tion but add in the 4 direction. The total magnetic field can 
be found by doing a difficult integration over 4. However, 

dB = dB1 + dB 2 

dB, 
dl= Koado . dB2\ 

a 

C5 p= Ia2+ r2 _-2arCOS n1 

(rP- c O )r, + a sin i, 
IQP rQ P fraction of the current 

crosses this surface 

No current 
crosses this 

a surface 

All the current 
crosses this urface 

r iI III 
A 

K =Ko i, Koi 

2 B 0 r <a 2r r 2 r <a 

B rd$= f - rd$=f 0 27rKoa r>a 0 Po Joira2 

(a) (b) (c) 

Figure 5-11 (a) The magnetic field of an infinitely long cylinder carrying a surface 
current parallel to its axis can be found using the Biot-Savart law for each incremental 
line current element. Symmetrically located elements have radial field components 
that cancel but 4 field components that add. (b) Now that we know that the field is 
purely 4 directed, it is easier to use Ampere's circuital law for a circular contour 
concentric with the cylinder. For r <a no current passes through the contour while for 
r>a all the current passes through the contour. (c) If the current is uniformly 
distributed over the cylinder the smaller contour now encloses a fraction of the 
current. 
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using Ampere's circuital law of (19) is much easier. Since we 
know the magnetic field is 4 directed and by symmetry can 
only depend on r and not 4 or z, we pick a circular contour of 
constant radius r as in Figure 5-11 b. Since dl= r d4 i# is in the 
same direction as B, the dot product between the magnetic 
field and dl becomes a pure multiplication. For r <a no cur­
rent passes through the surface enclosed by the contour, 
while for r>a all the current is purely perpendicular to the 
normal to the surface of the contour: 

B w"B* 2vrrB_ Ko21ra=I, r>a 

-t.d o 0, r<a 
(20) 

where I is the total current on the cylinder. 
The magnetic field is thus 

IoKoa/r= joI/(2arr), r > a 
0, r<a 

Outside the cylinder, the magnetic field is the same as if all 
the current was concentrated along the axis as a line current. 

(b) Volume Current 
If the cylinder has the current uniformly distributed over 

the volume as Joi , the contour surrounding the whole cylin­
der still has the total current I = Joira2 passing through it. If 
the contour has a radius smaller than that of the cylinder, 
only the fraction of current proportional to the enclosed area 
passes through the surface as shown in Figure 5-1 1c: 

B4 2rrB Jora =I r>a 
- r d= 2rrB,= fJO (22)

Lgo go Jo7r=Ir/a2, r<a 

so that the magnetic field is 

gojoa 2 oI=~oo r>a 
2r 2vrr' 

B, = (3
B ojor soIr (23) 

2 2 

i,2, r<a 

5-4 THE VECTOR POTENTIAL 

5-4-1 Uniqueness 

Since the divergence of the magnetic field is zero, we may 
write the magnetic field as the curl of a vector, 

V -B =0=>B= V x A (1) 
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where A is called the vector potential, as the divergence of the 
curl of any vector is always zero. Often it is easier to calculate 
A and then obtain the magnetic field from (1). 

From Ampere's law, the vector potential is related to the 
current density as 

V x B=V x (V x A)=V(V -A)-V 2A = poJ (2) 

We see that (1) does not uniquely define A, as we can add 
the gradient of any term to A and not change the value of the 
magnetic field, since the curl of the gradient of any function is 
always zero: 

A-+A+Vf>B=Vx(A+Vf)=VxA (3) 

Helmholtz's theorem states that to uniquely specify a 
vector, both its curl and divergence must be specified and that 
far from the sources, the fields must approach zero. To prove 
this theorem, let's say that we are given, the curl and diver­
gence of A and we are to determine what A is. Is there any 
other vector C, different from A that has the same curl and 
divergence? We try C of the form 

C=A+a (4) 

and we will prove that a is zero. 
By definition, the curl of C must equal the curl of A so that 

the curl of a must be zero: 

VxC=Vx(A+a)=VxA=Vxa=0 (5) 

This requires that a be derivable from the gradient of a scalar 
function f: 

V x a= 0>a=Vf (6) 

Similarly, the divergence condition requires that the diver­
gence of a be zero, 

V - C=V - (A+a)=V - A>V - a=0 (7) 

so that the Laplacian of f must be zero, 

V-a=V 2f=0 (8) 

In Chapter 2 we obtained a similar equation and solution for 
the electric potential that goes to zero far from the charge 
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distribution: 

V2= _ _ pdV (9)E Jv4rerr(9) 

If we equate f to V, then p must be zero giving us that the 
scalar function f is also zero. That is, the solution to Laplace's 
equation of (8) for zero sources everywhere is zero, even 
though Laplace's equation in a region does have nonzero 
solutions if there are sources in other regions of space. With f 
zero, from (6) we have that the vector a is also zero and then 
C = A, thereby proving Helmholtz's theorem. 

5-4-2 The Vector Potential of a Current Distribution 

Since we are free to specify the divergence of the vector 
potential, we take the simplest case and set it to zero: 

V A=0 (10) 

Then (2) reduces to 

V2A= -oJ(11) 

Each vector component of (11) is just Poisson's equation so 
that the solution is also analogous to (9) 

- o J dV
A --d (12)

41r fv rQp 

The vector potential is often easier to use since it is in the 
same direction as the current, and we can avoid the often 
complicated cross product in the Biot-Savart law. For moving 
point charges, as well as for surface and line currents, we use 
(12) with the appropriate current elements: 

J dV-+K dS-+I dL -+qv (13) 

5-4-3 The Vector Potential and Magnetic Flux 

Using Stokes' theorem, the magnetic flux through a surface 
can be expressed in terms of a line integral of the vector 
potential: 

<D B - dS Vx A - dS A - dl (14) 
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(a) Finite Length Line Current 
The problem of a line current I of length L, as in Figure 

5-12a appears to be nonphysical as the current must be 
continuous. However, we can imagine this line current to be 
part of a closed loop and we calculate the vector potential and 
magnetic field from this part of the loop. 

The distance rQp from the current element I dz' to the field 
point at coordinate (r, <5, z) is 

r2 = [(Z 1Z /)2+ r2]"2 (15) 

The vector potential is then 

_1_I 1/2 dz' 
[(z -z') 

2 +r11/24A r u 

tpoI -z + L/2+[(z - L/2)2+r2 12 
2 1 1 2

47r -(z+ L/2)+[(z+L/2) 2 +r

pOI( -z+L/2 +sinh z+L/21 (16) 
47r r r 

2 

P(r, 0, z) 

' 
+ r2(zZ')21/2 Sr 

SIdz' 

L 

(a) 

Figure 5-12 (a) The magnetic field due to a finite length line current is most easily 
found using the vector potential, which is in the direction of the current. This problem 
is physical only if the line current is considered to be part of a closed loop. (b) The 
magnetic field from a length w of surface current is found by superposing the vector 
potential of (a) with L - oo. The field lines are lines of constant A. (c) The magnetic 
flux through a square current loop is in the -x direction by the right-hand rule. 

x 
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dx' .-

di = KodxKo i 

f (X - x'f +Y 2 112 
(x,y) 
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Magnetic field lines (lines of constant A,) 
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7; 
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Figure 5-12 
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with associated magnetic field 

B=VxA 
(1 aA. A aA aA 1 a aAr 

r 8o 
" 

az 
i,+ 

az 
-'i 

r 
+- (-

r \r 
(rA,) 

84 
i 

8A,, 
ar 

-poIr 
4 2 2] 2 

,7T \[(z - L/2)2 + r2] _ z + L/2 + [(z - L/2)2 + r

[(z + L/2) 2 + r2 ] 112 _ (z + L2)+ [(z + L/2)2 + r] 1/2) 

po1I -z + L/2 z + L/2 .( 
+4rr \[r 2+(Z - L/2)21/2+[r2+(Z + L/2()2)2 

For large L, (17) approaches the field of an infinitely long 
line current as given in Section 5-2-2: 

A,= _ Inr+const 
27T 

lim (18) 

ar 27rr 

Note that the vector potential constant in (18) is infinite, but 
this is unimportant as this constant has no contribution to the 
magnetic field. 

(b) Finite Width Surface Current 
If a surface current Koi,, of width w, is formed by laying 

together many line current elements, as in Figure 5-12b, the 
vector potential at (x, y) from the line current element KO dx' at 
position x' is given by (18): 

dA, =-oKo dx' In [(x - x') 2 +y 2] (19)4 7r 

The total vector potential is found by integrating over all 
elements: 
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A.=- -LoK +w/2 In [(x -x') 2 +y ] dx' 
41rI w12 

-LoKo (x'- x) In [(x-x')2 +y]2(x'-x)
41r 

+2y tan-

K2 - x Inx +y = r 1 

+2 +x ) n 2)x+ 2 2 

-2w +2y tan' g2 +X2 W / (20)*
-Wy _+ /41) 

The magnetic field is then 

ax ay _ 

= OKO 2 tanx+ln i +w/2)2 +Y247r -w2/4 (x-w/2)2+Y2 
(21) 

The vector potential in two-dimensional geometries is also 
useful in plotting field lines, 

dy = B, --8A/x (22) 
dx B. aA./ay 

for if we cross multiply (22), 

-'dx+ -'dy=dA=0->A.=const (23) 
ax ay 

we see that it is constant on a field line. The field lines in 
Figure 5-12b are just lines of constant A,. The vector poten­
tial thus plays the same role as the electric stream function in 
Sections 4.3.2b and 4.4.3b. 

(c) Flux Through a Square Loop 
The vector potential for the square loop in Figure 5-12c with 

very small radius a is found by superposing (16) for each side 
with each component of A in the same direction as the current 
in each leg. The resulting magnetic field is then given by four 

*tan (a - b)+ tan-' (a + b)= tan-' 1-a'2 
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terms like that in (17) so that the flux can be directly computed 
by integrating the normal component of B over the loop area. 
This method is straightforward but the algebra is cumber­
some. 

An easier method is to use (14) since we already know the 
vector potential along each leg. We pick a contour that runs 
along the inside wire boundary at small radius a. Since each 
leg is identical, we only have to integrate over one leg, then 
multiply the result by 4: 

-a+D/2 

4)=4 A, dz 
ra-D/2 

_ ,O -a+D/2 sinh +D/2 _ z+D/2 
irf.- D/2 aa ) 

= o _ 1 -D/+ --­- -z) sinh Z) +a 21/ 

V H 2 a [2 

D +z2 + 21/21 -a+D/2
D+Z sinW z+D/2+ 
2 a 2 a-D/2 

=2 oI -- a sinh- I +al+(D -a) sinhV D-a 

a) 2 + -[(D - a21/2) (24) 

As a becomes very small, (24) reduces to 

lim4D=2 LD sinh D 1) (25)
a-0 7r \a/ 

We see that the flux through the loop is proportional to the 
current. This proportionality constant is called the self-
inductance and is only a function of the geometry: 

1L = = 2 - sinh-' - )- 1 (26)
I 7T\( ( 

Inductance is more fully developed in Chapter 6. 

5-5 MAGNETIZATION 

Our development thus far has been restricted to magnetic 
fields in free space arising from imposed current dis­
tributions. Just as small charge displacements in dielectric 
materials contributed to the electric field, atomic motions 
constitute microscopic currents, which also contribute to the 
magnetic field. There is a direct analogy between polarization 
and magnetization, so our development will parallel that of 
Section 3-1. 
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5-5-1 The Magnetic Dipole 

Classical atomic models describe an atom as orbiting elec­
trons about a positively charged nucleus, as in Figure 5-13. 

Figure 5-13 Atomic currents arise from orbiting electrons in addition to the spin 
contributions from the electron and nucleus. 

The nucleus and electron can also be imagined to be spin­
ning. The simplest model for these atomic currents is analo­
gous to the electric dipole and consists of a small current loop 
of area dS carrying a current I, as in Figure 5-14. Because 
atomic dimensions are so small, we are only interested in the 
magnetic field far from this magnetic dipole. Then the shape 
of the loop is not important, thus for simplicity we take it to be 
rectangular. 

The vector potential for this loop is then 

I I I I 
A=-.i dx idy i, r4 rs (1)
41r r3 r 

where we assume that the distance from any point on each 
side of the loop to the field point P is approximately constant. 

z 

m = Idxdyi! m =IdS 

1P 

r3' 

r2 r1 

dSdxdyi, 

dy X ,
dx r4 X 

dS 

S ir i V COSX, 
A dy ,-(- )=COSX2 

Figure 5-14 A magnetic dipole consists of a small circulating current loop. The 
magnetic moment is in the direction normal to the loop by the right-hand rule. 
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Using the law of cosines, these distances are related as 

r=r2+ -Yrdycosi; r=r2+ ( Xdxc 

2 (2)r) = - r dy COS x1, r2 =r+ - +rdx COS X2() 
2 =2 d2()

2 2 (dy2
r 3 =r +) + rdycos X, r 4 r + -+rdx COS X2 

where the angles X, and X2 are related to the spherical coor­
dinates from Table 1-2 as 

i, i,=cosX =sin6 sin (3) 

-i,-ix= cos X2= -sin 6 cos k 

In the far field limit (1) becomes 

lim A = /.0I [dx( I 
>>dx 41r [r dy dy 1/2 

r>>dy 1 + -+2 cOSX 
S2r 2r 

1 1/2
1+-2 cosi 

r\ dx dx 1 112 
r + -(-+2 cos K2)
 

2r 2r
 

dx 1 1/2)]

1+- (--2 cos X2


2r 2r 

2~ 11rdxdy[cos Xiii +cos X2i,] (4) 

Using (3), (4) further reduces to 

MoI dS 
A = 47Tr 2 sin [ - sin i + cos 0i,] 

MoIdS 
2 (5)

= 4Tr sin Oi4, 

where we again used Table 1-2 to write the bracketed 
Cartesian unit vector term as is. The magnetic dipole 
moment m is defined as the vector in the direction perpen­
dicular to the loop (in this case i,) by the right-hand rule with 
magnitude equal to the product of the current and loop area: 

m= I dS i =I dS (6) 
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Then the vector potential can be more generally written as 

A = 7sinNO=7x, (7)4lrr 47rr2 

with associated magnetic field 

1 a i a
a(A,6sin O)i, - (rAs)ie B=VxA= ­

r sin 0 r area 

p.om 
- M [2 cos Oir+ sin i] (8)

4,7rr' 

This field is identical in form to the electric dipole field of 
Section 3-1-1 if we replace p/Eo by Mom. 

5-5-2 Magnetization Currents 

Ampere modeled magnetic materials as having the volume 
filled with such infinitesimal circulating current loops with 
number density N, as illustrated in Figure 5-15. The 
magnetization vector M is then defined as the magnetic dipole 
density: 

M= Nm= NI dS amp/m (9) 

For the differential sized contour in the xy plane shown in 
Figure 5-15, only those dipoles with moments in the x or y 
directions (thus z components of currents) will give rise to 
currents crossing perpendicularly through the surface 
bounded by the contour. Those dipoles completely within the 
contour give no net current as the current passes through the 
contour twice, once in the positive z direction and on its 
return in the negative z direction. Only those dipoles on 
either side of the edges-so that the current only passes 
through the contour once, with the return outside the 
contour-give a net current through the loop. 

Because the length of the contour sides Ax and Ay are of 
differential size, we assume that the dipoles along each edge 
do not change magnitude or direction. Then the net total 
current linked by the contour near each side is equal to the 
pioduct of the current per dipole I and the number of 
dipoles that just pass through the contour once. If the normal 
vector to the dipole loop (in the direction of m) makes an 
angle 0 with respect to the direction of the contour side at 
position x, the net current linked along the line at x is 

- INdS Ay cos 01,= -M,(x) Ay (10) 

The minus sign arises because the current within the contour 
adjacent to the line at coordinate x flows in the - z direction. 
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Figure 5-15 Many such magnetic dipoles within a material linking a closed contour 
gives rise to an effective magnetization current that is also a source of the magnetic 
field. 

Similarly, near the edge at coordinate x +Ax, the net current 
linked perpendicular to the contour is 

IN dSAy cos 01.+ =M,(x+Ax) Ay (11) 
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Along the edges at y and y + Ay, the current contributions are 

INdS Ax cos 01,= M,(y) Ax 

-INdS Ax cos 61,,A, = -M (y +Ay) Ax (12) 

The total current in the z direction linked by this contour is 
thus the sum of contributions in (10)-(12): 

Itot= AX AY(M, (x+AX)- M,(x)_ Mx(Y +AY)- M.(Y) 
I, ~A AY=AxA 

(13) 
If the magnetization is uniform, the net total current is zero 
as the current passing through the loop at one side is canceled 
by the current flowing in the opposite direction at the other 
side. Only if the magnetization changes with position can 
there be a net current through the loop's surface. This can be 
accomplished if either the current per dipole, area per dipole, 
density of dipoles, of angle of orientation of the dipoles is a 
function of position. 

In the limit as Ax and Ay become small, terms on the 
right-hand side in (13) define partial derivatives so that the 
current per unit area in the z direction is 

Iz ., / M, OM,\lim Im m= (V X M), (14)
A,-0 Ax Ay ax ayAy-0 

which we recognize as the z component of the curl of the 
magnetization. If we had orientated our loop in the xz or yz 
planes, the current density components would similarly obey 
the relations 

j,= , = (V xM)az ax) 
(15) 

(V x M)(=(aM. amy)jx = 
ay az 

so that in general 

Jm=VxM (16) 

where we subscript the current density with an m to represent 
the magnetization current density, often called the Amperian 
current density. 

These currents are also sources of the magnetic field and 
can be used in Ampere's law as 

V x -= 
B J_+J= J+V x M (17) 

where Jf is the free current due to the motion of free charges 
as contrasted to the magnetization current J_, which is due to 
the motion of bound charges in materials. 
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As we can only impose free currents, it is convenient to 
define the vector H as the magnetic field intensity to be 
distinguished from B, which we will now call the magnetic 
flux density: 

B 
H =--M=> B= o(H + M) (18)

Ao 

Then (17) can be recast as 

Vx - M) =V x H=J, (19)
Ao/ 

The divergence and flux relations of Section 5-3-1 are 
unchanged and are in terms of the magnetic flux density B. 
In free space, where M = 0, the relation of (19) between B and 
H reduces to 

B=pOH (20) 

This is analogous to the development of the polarization 
with the relationships of D, E, and P. Note that in (18), the 
constant parameter uo multiplies both H and M, unlike the 
permittivity eo which only multiplies E. 

Equation (19) can be put into an equivalent integral form 
using Stokes' theorem: 

(21)I (VH)-dS= H-dl= J,-dS 

The free current density J1 is the source of the H field, the 
magnetization current density J. is the source of the M field, 
while the total current, Jf+J., is the source of the B field. 

5-5-3 Magnetic Materials 

There are direct analogies between the polarization pro­
cesses found in dielectrics and magnetic effects. The consti­
tutive law relating the magnetization M to an applied 
magnetic field H is found by applying the Lorentz force to 
our atomic models. 

(a) Diamagnetism 
The orbiting electrons as atomic current loops is analogous 

to electronic polarization, with the current in the direction 
opposite to their velocity. If the electron (e = 1.6x 10- 9coul) 
rotates at angular speed w at radius R, as in Figure 5-16, the 
current and dipole moment are 

I=- m=IrR2= R (22)
2,fr 2 
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L=m, wR 2i=- m 

-eB 

ID 2 
2'2 

2m =-IrR20 ~w 

Figure 5-16 The orbiting electron has its magnetic moment m in the direction 
opposite to its angular momentum L because the current is opposite to the electron's 
velocity. 

Note that the angular momentum L and magnetic moment m 
are oppositely directed and are related as 

L = mRi, x v=moR2 i.= -2m, (23) 
e 

where m, = 9.1 X 10-3' kg is the electron mass. 
Since quantum theory requires the angular momentum to 

be quantized in units of h/2w, where Planck's constant is 
4h=6.62xi0 'joule-sec, the smallest unit of magnetic 

moment, known as the Bohr magneton, is 

mB = A ~9.3 x 10 24 amp-m2 (24)
41rm, 

Within a homogeneous material these dipoles are 
randomly distributed so that for every electron orbiting in 
one direction, another electron nearby is orbiting in the 
opposite direction so that in the absence of an applied 
magnetic field there is no net magnetization. 

The Coulombic attractive force on the orbiting electron 
towards the nucleus with atomic number Z is balanced by the 
centrifugal force: 

Ze2 

m.10 2R = 4eo2 2 (25) 
41reoR 

Since the left-hand side is just proportional to the square of 
the quantized angular momentum, the orbit radius R is also 
quantized for which the smallest value is 

47T- 0 h 2 5X10 " 
R = M,-e2 m (26) 
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with resulting angular speed 

C = Z2e sM. 1 3 X 10' 6 Z2 (27) 
(4re)2(h/2Fr 

When a magnetic field Hoi, is applied, as in Figure 5-17, 
electron loops with magnetic moment opposite to the field 
feel an additional radial force inwards, while loops with 
colinear moment and field feel a radial force outwards. Since 
the orbital radius R cannot change because it is quantized, 
this magnetic force results in a change of orbital speed Aw: 

e +(w +AwI)RIoHo) m,(w +Awl) 2 R= e 
(41reoR 

m,(W +AW 2)2R = e Ze 2-(W +AW 2)RyoHo (28)
(47rsoR 

where the first electron speeds up while the second one slows 
down. 

Because the change in speed Aw is much less than the 
natural speed w, we solve (28) approximately as 

ewApoHoAwl = 
2ma - ejoHo (29) 

- epi oHo 

2mpw + eyoHo 

where we neglect quantities of order (AW)2 . However, even 
with very high magnetic field strengths of Ho= 106 amp/m we 
see that usually 

eI.oHo< 2mwo 

(1.6 X 10~ 19)(41r X 101).106 < 2(9.1 X 10-3")(1.3 X I 0'r)(30) 

Hoi, Hoi, 

-e v x B 

evxR + 

Figure 5-17 Diamagnetic effects, although usually small, arise in all materials because 
dipoles with moments parallel to the magnetic field have an increase in the orbiting 
electron speed while those dipoles with moments opposite to the field have a decrease 
in speed. The loop radius remains constant because it is quantized. 
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so that (29) further reduces to 

Aw - Aw 2 " eyoHo _1. 1X I 5 Ho (31)
2m, 

The net magnetic moment for this pair of loops, 

eR2 2_ p oR 2 

M 2 (w2 -oi)=-eR2 Aw e Ho (32)
2 2m, 

is opposite in direction to the applied magnetic field. 
If we have N such loop pairs per unit volume, the 

magnetization field is 

NesioR2 
M=Nm= - Hoi. (33)

2m,
 

which is also oppositely directed to the applied magnetic field. 
Since the magnetization is linearly related to the field, we 

define the magnetic susceptibility Xm as 

M= XmH, X- = -2 0R (34) 
2m,
 

where X, is negative. The magnetic flux density is then 

B = AO(H +M)= po(1+Xm)H = Aog H = yH (35) 

where , = 1 +Xm is called the relative permeability and A is 
the permeability. In free space Xm = 0 so that ji,= 1 and 
A = yLo. The last relation in (35) is usually convenient to use, as 
all the results in free space are still correct within linear 
permeable material if we replace ylo by 1L. In diamagnetic 
materials, where the susceptibility is negative, we have that 
y, < 1, y < jO. However, substituting in our typical values 

Ne2oR 4.4 X 10 35 

Xm = - 2 z2 N (36)
2m ­

we see that even with Nz 1030 atoms/M3 , Xy is much less than 
unity so that diamagnetic effects are very small. 

(b) Paramagnetism 
As for orientation polarization, an applied magnetic field 

exerts a torque on each dipole tending to align its moment 
with the field, as illustrated for the rectangular magnetic 
dipole with moment at an angle 0 to a uniform magnetic field 
B in Figure 5-18a. The force on each leg is 

dfI = - df2 = I Ax i. X B = I Ax[Bi, - Bzi,] 
df3 = -df 4 = I Ay i, B= I Ay(- B.+Bj+,j) 

In a uniform magnetic field, the forces on opposite legs are 
equal in magnitude but opposite in direction so that the net 
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2 

df4 =-Ii xBAy=-IAy(-Bxi, +Bi 2 ) 

df1 =Iix BAx = IAx [By i, -B , i _ 

AxB B >2 

df2 -Iii x BAx =- Ax(B i, -B, i 

d =Iiy x BAy = Ay-B, i + B, ii 

B 

BB 

Ayx 

Figure 5-18 (a) A torque is exerted on a magnetic dipole with moment at an angle 9 
to an applied magnetic field. (b) From Boltzmann statistics, thermal agitation opposes 
the alignment of magnetic dipoles. All the dipoles at an angle 0, together have a net 
magnetization in the direction of the applied field. 

force on the loop is zero. However, there is a torque: 

4 

T= l',rxdf. 

(-i,xdf 1 +,,xd 2 )+ 2 (i~xdfi- df4 ) 

= I Ax Ay(B.i,-B,i.)=:mXB (38) 
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The incremental amount of work necessary to turn the 
dipole by a small angle dO is 

dW = Td = myzoHo sin 0 dO (39) 

so that the total amount of work necessa'ry to turn the dipole 
from 0 =0 to any value of 0 is 

W= TdO= -myoH cos 0I = mj.oHo(1-cos 0) 

(40) 

This work is stored as potential energy, for if the dipole is 
released it will try to orient itself with its moment parallel to 
the field. Thermal agitation opposes this alignment where 
Boltzmann statistics describes the number density of dipoles 
having energy W as 

n = ne -WAT = n I mpoHO(I-cos 0)/kT = noemoLOHo cos 0/hT 

(41) 

where we lump the constant energy contribution in (40) 
within the amplitude no, which is found by specifying the 
average number density of dipoles N within a sphere of 
radius R: 

2w R1 r 
N=i- I noe's*0r2sin 0 drdOdo 

rR 9 o .o f-0 

=no sin 0e' "**dO (42) 

where we let 
a = myoHo/kT (43) 

With the change of variable 

u =acos 0, du = -a sin 9 dO (44) 

the integration in (42) becomes 

N= e' du =-s sinh a (45)
2a a 

so that (41) becomes 

Na e (46) 
sinh a 

From Figure 5-18b we see that all the dipoles in the shell 
over the interval 0 to 0 + dO contribute to a net magnetization. 
which is in the direction of the applied magnetic field: 

dM= cos 0 r2 sin drdO do (47)
3irR 
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so that the total magnetization due to all the dipoles within 
the sphere is 

maN a 
M=I sin 0 cos Oec de (48)

2 sinh a J.= 

Again using the change of variable in (44), (48) integrates 
to 

--nN C"
M= ue" du 

2a sinh aI 

-mN u _-" 
2a sinh a 
= m [e -( -- )a

-inN 
2a siha[e-a(-a-1)-ea(a -l)I 

-ainN 

= [-a cosh a+sinh a] 
a sinh a 

= mN[coth a - 1/a] (49) 

which is known as the Langevin equation and is plotted as a 
function of reciprocal temperature in Figure 5-19. At low 
temperatures (high a) the magnetization saturates at M = mN 
as all the dipoles have their moments aligned with the field. 
At room temperature, a is typically very small. Using the 
parameters in (26) and (27) in a strong magnetic field of 
Ho= 106 amps/m, a is much less than unity: 

a=mkoHo R2 OHO=8x 10-4 (50)
kT 2 kT 

M 

IMmNa MI3 

M = mN(cotha--a) 

5 10 15 

a- kT 

Figure 5-19 The Langevin equation describes the net magnetization. At low 
temperatures (high a) all the dipoles align with the field causing saturation. At high 
temperatures (a << 1) the magnetization increases linearly with field. 
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In this limit, Langevin's equation simplifies to 

lim M- M 1+a2/2 1 
aI La+a3/6 a] 

MN((I+a 2/2)(1-a/6) 1 
a a] 

mNa ptom2 N 
3 kTH (51)3 3hT 0 

In this limit the magnetic susceptibility Xm is positive: 

o2N 

M=X.H, X.= 3T (52) 

but even with N 1030 atoms/M3 , it is still very small: 

X-7 X 10-4 (53) 

(c) Ferromagnetism 
As for ferroelectrics (see Section 3-1-5), sufficiently high 

coupling between adjacent magnetic dipoles in some iron 
alloys causes them to spontaneously align even in the absence 
of an applied magnetic field. Each of these microscopic 
domains act like a permanent magnet, but they are randomly 
distributed throughout the material so that the macroscopic 
magnetization is zero. When a magnetic field is applied, the 
dipoles tend to align with the field so that domains with a 
magnetization along the field grow at the expense of non­
aligned domains. 

The friction-like behavior of domain wall motion is a lossy 
process so that the magnetization varies with the magnetic 
field in a nonlinear way, as described by the hysteresis loop in 
Figure 5-20. A strong field aligns all the domains to satura­
tion. Upon decreasing H, the magnetization lags behind so 
that a remanent magnetization M, exists even with zero field. 
In this condition we have a permanent magnet. To bring the 
magnetization to zero requires a negative coercive field - H,. 

Although nonlinear, the main engineering importance of 
ferromagnetic materials is that the relative permeability s,. is 
often in the thousands: 

IL= IIO= B/H (54) 

This value is often so high that in engineering applications we 
idealize it to be infinity. In this limit 

lim B=tyH=>H=0, B finite (55) 

the H field becomes zero to keep the B field finite. 
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M 

- Hl 

/H, 

Figure 5-20 Ferromagnetic materials exhibit hysteresis where the magnetization 
saturates at high field strengths and retains a net remanent magnetization M, even 
when H is zero. A coercive field -H, is required to bring the magnetization back to 
zero. 

EXAMPLE 5-1 INFINITE LINE CURRENT WITHIN A 
MAGNETICALLY PERMEABLE CYLINDER 

A line current I of infinite extent is within a cylinder of 
radius a that has permeability 1L, as in Figure 5-21. The 
cylinder is surrounded by free space. What are the B, H, and 
M fields everywhere? What is the magnetization current? 

t i 

BO 
I-, 

2rr t Line current 

( -1)1 
2rr 

Sr r 

Surface current 

K. =-(A -- 1) 

Figure 5-21 A free line current of infinite extent placed within a permeable cylinder 
gives rise to a line magnetization current along the axis and an oppositely directed 
surface magnetization current on the cylinder surface. 
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SOLUTION 

Pick a circular contour of radius r around the current. 
Using the integral form of Ampere's law, (21), the H field is 
of the same form whether inside or outside the cylinder: 

H -d1= H,27rr= I=>H =-­
L 27rr 

The magnetic flux density differs in each region because the 
permeability differs: 

pgH=-, 0<r<a 
2wrr 

Bo H 4= A r > a
27rr' 

The magnetization is obtained from the relation 

B
M=--_ H 

go 
as 

I) H, - O<r<a 
Mo = (Ao / o 21rr' 

10, r>a 

The volume magnetization current can be found using 
(16): 

J =VM = i, +-(rMs)i,=0, 0<r<a 
az r ar 

There is no bulk magnetization current because there are no 
bulk free currents. However, there is a line magnetization 
current at r =0 and a surface magnetization current at r = a. 
They are easily found using the integral form of (16) from 
Stokes' theorem: 

J.dSJsVxM-dS= LM-dl= 

Pick a cortour around the center of the cylinder with r <a: 

M4s27rr = ( oI= IM 

where I. is the magnetization line current. The result 
remains unchanged for any radius r <a as no more current is 
enclosed since J.=0 for 0<r<a., As .soon as r>a, Mo 
becomes zero so that the total magnetization current becomes 
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zero. Therefore, at r = a a surface magnetization current 
must flow whose total current is equal in magnitude but 
opposite in sign to the line magnetization current: 

= - (Z-u)K.,. = ---­
2ra so2ira 

5-6 BOUNDARY CONDITIONS 

At interfacial boundaries separating materials of differing 
properties, the magnetic fields on either side of the boundary 
must obey certain conditions. The procedure is to use the 
integral form of the field laws for differential sized contours, 
surfaces, and volumes in the same way as was performed for 
electric fields in Section 3-3. 

To summarize our development thus far, the field laws 
for magnetic fields in differential and integral form are 

VxH=Jf, fH-di= Jf-dS (1) 

VxM=J,., fM-dl= J,.-dS (2) 

V-B=0, JB-dS=0 (3) 

5-6-1 Tangential Component of H 

We apply Ampere's circuital law of (1) to the contour of 
differential size enclosing the interface, as shown in Figure 
5-22a. Because the interface is assumed to be infinitely thin, 
the short sides labelled c and d are of zero length and so offer 

B2 

Free surface current K 1 n
 
H2 perpendicular to contour L Area dS
 up out of the page.
 

d 2 

'P L H2--H,) K, n - (81 - B2) = 0 

2 
C 

H, (a) (b) 

Figure 5-22 (a) The tangential component of H can be discontinuous in a free 
surface current across a boundary. (b) The normal component of B is always continu­
ous across an interface. 
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no contribution to the line integral. The remaining two sides 
yield 

fH -dl=(H,- H2,) dl = KA.dl (4) 

where KA. is the component of free surface current perpen­
dicular to the contour by the right-hand rule in this case up out 
of the page. Thus, the tangential component of magnetic field 
can be discontinuous by a free surface current, 

(HI - H2,)= Kf.>n X(H2 - H)= Kf (5) 

where the unit normal points from region 1 towards region 2. 
If there is no surface current, the tangential component of H 
is continuous. 

5-6-2 Tangential Component of M 

Equation (2) is of the same form as (6) so we may use the 
results of (5) replacing H by M and Kf by K,,, the surface 
magnetization current: 

(Mi- M 2,)=K,., nX(M2-Ml)=K. (6) 

This boundary condition confirms the result for surface 

magnetization current found in Example 5-1. 

5-6-3 Normal Component of B 

Figure 5-22b shows a small volume whose upper and lower 
surfaces are parallel and are on either side of the interface. 
The short cylindrical side, being of zero length, offers no 
contribution to (3), which thus reduces to 

B-dS= (B2 ,1-B 1 ) dS=0 (7) 

yielding the boundary condition that the component of B 
normal to an interface of discontinuity is always continuous: 

B1. - B2.=0>n - (BI - B2 )= 0 (8) 

EXAMPLE 5-2 MAGNETIC SLAB WITHIN A UNIFORM MAGNETIC 
FIELD 

A slab of infinite extent in the x and y directions is placed 
within a uniform magnetic field Hoi, as shown in Figure 5-23. 
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I
 
i 

i,t Hoi 0 tHo 

Mo Mo 

Mai , H -- (Ho -Mo) 

Mo Mo 

Hoia Ho(i 

(a) (b) 

Figure 5-23 A (a) permanently magnetized or (b) linear magnetizable material is 
placed within a uniform magnetic field. 

Find the H field within the slab when it is 
(a) permanently magnetized with magnetization Moi, 
(b) a linear permeable material with permeability A. 

SOLUTION 

For both cases, (8) requires that the B field across the 
boundaries be continuous as it is normally incident. 

(a) For the permanently magnetized slab, this requires that 

y0 H 0 =po(H + Mo)>H = Ho-Mo 

Note that when there is no externally applied field (Ho = 0), 
the resulting field within the slab is oppositely directed to the 
magnetization so that B = 0. 

(b) For a linear permeable medium (8) requires 

yxoHo = IH=>H = A0Ho 

For p. >po the internal magnetic field is reduced. If H0 is set 
to zero, the magnetic field within the slab is also zero. 

5-7 MAGNETIC FIELD BOUNDARY VALUE PROBLEMS 

5-7-1 The Method of Images 

A line current I of infinite extent in the z direction is a 
distance d above a plane that is either perfectly conducting or 
infinitely permeable, as shown in Figure 5-24. For both cases 
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2 x + - d) 
2 

= Const 
x2 +(y +d)2110 Y d 

[x 2 2 2 
+ (y-d) 1 [X + (y+ d = Const 

0o (y d 
A. t 

JA* d 

(b) 

Figure 5-24 (a) A line current above a perfect conductor induces an oppositely 
directed surface current that is equivalent to a symmetrically located image line 
current. (b) The field due to a line current above an infinitely permeable medium is the 
same as if the medium were replaced by an image current now in the same direction as 
the original line current. 

the H field within the material must be zero but the boundary 
conditions at the interface are different. In the perfect 
conductor both B and H must be zero, so that at the interface 
the normal component of B and thus H must be continuous 
and thus zero. The tangential component of H is dis­
continuous in a surface current. 

In the infinitely permeable material H is zero but B is finite. 
No surface current can flow because the material is not a 
conductor, so the tangential component of H is continuous 
and thus zero. The B field must be normally incident. 

Both sets of boundary conditions can be met by placing an 
image current I at y = - d flowing in the opposite direction 
for the conductor and in the same direction for the perme­
able material. 



Magnetic Field Boundary Value Problems 363 

Using the upper sign for the conductor and the lower sign 
for the infinitely permeable material, the vector potential due 
to both currents is found by superposing the vector potential 
found in Section 5-4-3a, Eq. (18), for each infinitely long line 
current: 

-IO 
2A.= -

21r 
{ln [x2 +(y -d) 21"2 FIn [x2 +(y+d)211 1 

= {ln [x 2+(y -d)2] F In [x +(y +d) 2 ]} (1)4 1w 

with resultant magnetic field 

1 1~.A. aAz)H =-IVxA=--I(X a i,--AAo pAo ()y 8x 

- II (y -d)i. -xi,, (y +d)i. -xA, (2
21r[x 2+(y-d)2] [X2+(y+d)2 (2) 

The surface current distribution for the conducting case is 
given by the discontinuity in tangential H, 

Id
K. =-H.(y=)= [2 2 (3) 

which has total current 

I + Id + dx 
I=K~dx=J(
 2 21r L (x +d ) 

-- tan ­ - (4)
ir d d I-­

just equal to the image current. 
The force per unit length on the current for each case is 

just due to the magnetic field from its image: 

2 

f *.OI (5)
47rd 

being repulsive for the conductor and attractive for the 
permeable material. 

The magnetic field lines plotted in Figure 5-24 are just lines 
of constant A, as derived in Section 5-4-3b. Right next to the 
line current the self-field term dominates and the field lines 
are circles. The far field in Figure 5-24b, when the line and 
image current are in the same direction, is the same as if we 
had a single line current of 21. 
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5-7-2 Sphere in a Uniform Magnetic Field 

A sphere of radius R is placed within a uniform magnetic 
field Hoi.. The sphere and surrounding medium may have 
any of the following properties illustrated in Figure 5-25: 

(i) 	 Sphere has permeability /12 and surrounding medium 
has permeability pr. 

(ii) 	 Perfectly conducting sphere in free space. 
(iii) 	 Uniformly magnetized sphere M2i, in a uniformly 

magnetized medium Mli.. 

For each of these three cases, there are no free currents in 
either region so that the governing equations in each region 
are 

V-B=0 

VxH=O 	 (5) 

K 

2 
+_ (_)2 sin o = Const[.fr 2 R 

R 

(a) 	 Hoi = Ho(i, cosO - i0 sin6) 

Figure 5-25 Magnetic field lines about an (a) infinitely permeable and (b) perfectly 
conducting sphere in a uniform magnetic field. 
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Z 

[- + (1)2] sin
2

0 = Constr R 

R 

I) 

Ho i , =Ho(icos - i sinel y 

Figure 5-25 
(b) 

Because the curl of H is zero, we can define a scalar magnetic 
potential 

H =VX (6) 

where we avoid the use of a negative sign as is used with the 
electric field since the potential x is only introduced as a 
mathematical convenience and has no physical significance. 
With B proportional to H or for uniform magnetization, the 
divergence of H is also zero so that the scalar magnetic 
potential obeys Laplace's equation in each region: 

v2x =0 (7) 

We can then use the same techniques developed for the 
electric field in Section 4-4 by trying a scalar potential in each 
region as 

Ar cos 0, r<R{ 
(8)

(Dr+C/r2) cos 0 r>R 
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The associated magnetic field is then 

H=V XIi,+ ,+ 1 IX4-i

Or r 80 r sin084 

(D-2C/r3)cosTi,-(D+ C/r)sin Oig, r>R (9){A(i, cos 0-io sin 0)= Ai, 
r<R 

For the three cases, the magnetic field far from the sphere 
must approach the uniform applied field: 

H(r=c0)=Hoi.=Ho(i,.cose-io sin 0)>D=Ho (10) 

The other constants, A and C, are found from the boundary 
conditions at r = R. The field within the sphere is uniform, in 
the same direction as the applied field. The solution outside 
the sphere is the imposed field plus a contribution as if there 
were a magnetic dipole at the center of the sphere with 
moment m, - 4rC. 

(i) If the sphere has a different permeability from the sur­
rounding region, both the tangential components of H and 
the normal components of B are continuous across the 
spherical surface: 

He(r=R)= H,(r= R_)' A = D +C/R 3 

B,(r= R+) =B,(r = R-)=iH,(r = R,) = y 2H,(r =R-) 

which yields solutions 

A = pI___, C - A2-A R5Ho (12)
p2+2pi 2+ 2 MI 

The magnetic field distribution is then 

3pi1Ho .3. SpHoi.
(i,Cos 0 - , sin )= , r < R 

92+ 2 1L p2+2pJ 

I]C i, (13) H=- Ho 1+2 (.2- s1 r pI2+2AI J 

-/ NJ sin }, r>R 
r 3 p2+ 21A ) 

The magnetic field lines are plotted in Figure 5-25a when 
IA2-*O. In this limit, H within the sphere is zero, so that the 
field lines incident on the sphere are purely radial. The field 
lines plotted are just lines of constant stream function 1, 
found in the same way as for the analogous electric field 
problem in Section 4-4-3b. 
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.(ii) If the sphere is perfectly conducting, the internal 
magnetic field is zero so that A = 0. The normal component 
of B right outside the sphere is then also zero: 

H,(r = R) = 0> C = HOR3 /2 (14) 

yielding the solution 

H=Ho 1 3 cosir- I+3) sin ioj, r>R 
R)2rr 

(15) 

The interfacial surface current at r = R is obtained from the 
discontinuity in the tangential component of H: 

K5= He(r=R)=-2H sin 6 (16) 

The current flows in the .negative < direction around the 
sphere. The right-hand rule, illustrated in Figure 5-25b, 
shows that the resulting field from the induced current acts in 
the direction opposite to the imposed field. This opposition 
results in the zero magnetic field inside the sphere. 

The field lines plotted in Figure 5-25b are purely tangential 
to the perfectly conducting sphere as required by (14). 

(iii) If both regions are uniformly magnetized, the bound­
ary conditions are 

Ho(r = R,)= Ho(r=R_)4A = D+C/R 3 

B,(r = R ) = B,(r R)) H,(r = R+) + M 1 cos 0 

=H,(r=R_)+M2 cos9 (17) 

with solutions 

A = H,+A(Mi - M 2) (18)
R3 

C=- (MI - M2) 

so that the magnetic field is 

[Ho+ - (M1 - M2 )][cos Oi, - sin io]
3 

=[H0 +-(M1-M 2)]i. r<R
3 

3 (19)2RH=(H0 - 3 (M1 -M 2 )lcos~i,
3r3 

R 3 

r3HOMl +-M2))sin Oi0, r>R 

Because the magnetization is uniform in each region, the 
curl of M is zero everywhere but at the surface of the sphere, 
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so that the volume magnetization current is zero with a sur­
face magnetization current at r = R given by 

Km = n x (Mi - M2 ) 

= i, x (MI - M 2)i.
 

= i, x (MI - M 2)(i, cos 0 - sin Oio)
 

= - (MI - M 2) sin Oik (20) 

5-8 MAGNETIC FIELDS AND FORCES 

5-8-1 Magnetizable Media 

A magnetizable medium carrying a free current J1 is placed 
within a magnetic field B, which is a function of position. In 
addition to the Lorentz force, the medium feels the forces on 
all its magnetic dipoles. Focus attention on the rectangular 
magnetic dipole shown in Figure 5-26. The force on each 
current carrying leg is 

f = i dl x (Bi + Byi, + Bi ) 

> f(x)= -i Ay[-Bji + Bri] 

f(x + Ax) =i Ay[ - Bi, + Bix]j \. 

f(y) = i Ax[Byi, -Bi,]j , 

f(y +Ay) = - i Ax[Byi, - Bzi,]l ,A, (1) 

so that the total force on the dipole is 

f = f(x)+f(x+Ax)+f(y)+f(y +Ay) 

. B,(x +Ax)-B,(x ) .Bx(x+ Ax )-B (x ). , Ax AY 1 Ax Ax 

B.(y+Ay)-Bz(y) . B,(y+Ay)--B,(y).
+ Ay 1i (2) 

B 

/t 

Sx 

Figure 5-26 A magnetic dipole in a magnetic field B. 
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In the limit of infinitesimal Ax and Ay the bracketed terms 
define partial derivatives while the coefficient is just the 
magnetic dipole moment m = i Ax Ay i : 

lim f= M.--LB.-_8.a (3)+- ,+---,,
Ay-0 ax ax ay ay 

Ampere's and Gauss's law for the magnetic field relate the 
field components as 

V - B =0 = - ( + (4) 
az \Ox ay 

VxB=pto(Jf+VxM)= OJT -- = AOJT. 
ay az 

aB. aB. 
----- = AoJT,Oz Ox 

- = AoJ. (5)
Ox Oy 

which puts (3) in the form 

f = m, -- I + i I - O(JTi, -JT.i,).Oz z I z 

=(m - V)B+pomX JT (6) 

where JT is the sum of free and magnetization currents. 
If there are N such dipoles per unit volume, the force 

density on the dipoles and on the free current is 

F=Nf= (M- V)B+iLoMXJT+J!XB 

= lo(M - V)(H+M)+AoM x (Jf+V X M)+poJJ X (H+M) 

= po(M - V)(H+M)+ oM x (V x M) +IJ x H (7) 

Using the vector identity 

M x (V x M)= -(M - V)M+1V(M - M) (8) 

(7) can be reduced to 

F= Lo(M - V)H +lojf XH +V (M -M) (9) 

The total force on the body is just the volume integral of F: 

f = fv F dV (10) 
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In particular, the last contribution in (9) can be converted 
to a surface integral using the gradient theorem, a corollary 
to the divergence theorem (see Problem 1-15a): 

V( "M - M dV=f M - MdS (11) 

Since this surface S surrounds the magnetizable medium, it 
is in a region where M = 0 so that the integrals in (11) are 
zero. For this reason the force density of (9) is written as 

F= io(M - V)H + oJfX H (12) 

It is the first term on the right-hand side in (12) that accounts 
for an iron object to be drawn towards a magnet. Magnetiz­
able materials are attracted towards regions of higher H. 

5-8-2 Force on a Current Loop 

(a) Lorentz Force Only 
Two parallel wires are connected together by a wire that is 

free to move, as shown in Figure 5-27a. A current I is 
imposed and the whole loop is placed in a uniform magnetic 
field Boi.. The Lorentz force on the moveable wire is 

f, = IBol (13) 

where we neglect the magnetic field generated by the current, 
assuming it to be much smaller than the imposed field B0 . 

(b) Magnetization Force Only 
The sliding wire is now surrounded by an infinitely 

permeable hollow cylinder of iliner radius a and outer radius 
b, both being small compared to the wire's length 1, as in 
Figure 5-27b. For distances near the cylinder, the solution is 
approximately the same as if the wire were infinitely long. For 
r>0 there is no current, thus the magnetic field is curl and 
divergence free within each medium so that the magnetic 
scalar potential obeys Laplace's equation as in Section 5-7-2. 
In cylindrical geometry we use the results of Section 4-3 and 
try a scalar potential of the form 

x=(Ar+ )cos (14) 
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Figure 5-27 (a) The Lorentz-force on a current carrying wire in a magnetic field. (b) 
If the current-carrying wire is surrounded by an infinitely permeable hollow cylinder, 
there is no Lorentz force as the imposed magnetic field is zero where the current is. 
However, the magnetization force on the cylinder is the same as in (a). (c) The total 
force on a current-carrying magnetically permeable wire is also unchanged. 

in each region, where B = VX because V x B = 0. The 
constants are evaluated by requiring that the magnetic field 
approach the imposed field Boi. at r = 0 and be normally 
incident onto the infinitely permeable cylinder at r =a and 
r = b. In addition, we must add the magnetic field generated 
by the line current. The magnetic field in each region is then 
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(see Problem 32a): 

sII 4, O<r<a 

2Bob2 
2 2b -a [ 

as22IL 
r 2 

rr +- Is-sin 0i,n2arr 
B=­

a<r<b (15) 

B 21+yCos #I ­ sin di, +.E- i', 
R r r 27rr 

r>b 

Note the infinite flux density in the iron (A - oo) due to the 
line current that sets up the finite H field. However, we see 
that none of the imposed magnetic field is incident upon the 
current carrying wire because it is shielded by the infinitely 
permeable cylindrical shell so that the Lorentz force contri­
bution on the wire is zero. There is, however, a magnetization 
force on the cylindrical shell where the internal magnetic field 
H is entirely due to the line current, H, = I/27rr because with 
i - oo, the contribution due to BO is negligibly small: 

F = o(M - V)H 

(aM, 
= (A) (16)(3r r aw 

Within the infinitely permeable shell the magnetization and 
H fields are 

H#21rr 

AoMr=Br-oflrH=b2- a ) cos4 (17) 

2Bob2 / \ ( - o)IM~oM = Bo - &oH= 2- 1+- sin 4+
(b 2 - r/ 2irr 

Although Hs only depends on r, the unit vector i, depends on 

i,=(-sini.+cosi,) (18) 

so that the force density of (16) becomes 

F= - Bj I6+ (B.0 - ~oH#)I d00 
22? 21rr2 d4 

= [- B(- sin Oi.+cos Oi,) 

+ (B,* - p~oH#)(- cos 46i. - sin Oi,)] 
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I 2Bobe2t 2 

=2 21r2-bs -as -L2r) cos 0(-sin Oi. +cos Oi,)irr r 

--(1 +- sin O(cos Oi. + sin i,) 

+ (/ - AO) (cos ) ijI +sin Oil)

21rrI
 

2a2I (2Bob 2 
=Fr2L b-2 -2 sin 0 cos 0 i. r2 i') 

+ O - I 1(cos i. +sin Oi,)] (19)
27rr 

The total force on the cylinder is obtained by integrating 
(19) over r and 4: 

2w J b 

f= Flrdrdo (20) 
-=0 r=a 

All the trigonometric terms in (19) integrate to zero over 4 so 
that the total force is 

2Bob 2Il ar2
 
A, 2 2 -3 dr


(b -a ) .. ar 

22Bob2I1 a

(b -a) r2a 

=IB01 (21) 

The force on the cylinder is the same as that of an unshield­
ed current-carrying wire given by (13). If the iron core has a 
finite permeability, the total force on the wire (Lorentz force) 
and on the cylinder (magnetization force) is again equal to 
(13). This fact is used in rotating machinery where current-
carrying wires are placed in slots surrounded by highly 
permeable iron material. Most of the force on the whole 
assembly is on the iron and not on the wire so that very little 
restraining force is necessary to hold the wire in place. The 
force on a current-carrying wire surrounded by iron is often 
calculated using only the Lorentz force, neglecting the 
presence of the iron. The correct answer is obtained but for 
the wrong reasons. Actually there is very little B field near the 
wire as it is almost surrounded by the high permeability iron 
so that the Lorentz force on the wire is very small. The force 
is actually on the iron core. 
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(c) Lorentz and Magnetization Forces 
If the wire itself is highly permeable with a uniformly 

distributed current, as in Figure 5-27c, the magnetic field is 
(see Problem 32a) 

2B0 Ir(, OrCOS 4 - is sin 0) + Ir2 4
A +jo l2rb 

2B0 I 
= i.+ 2(-yi.+xi,), r<b 

H= /+ IL rb (22) 
B0 + bo2i 

A0 R r2 + OS 

- A -1- sin Oi,6 + I i, r> b 
r2 A +A0o) 2r 

It is convenient to write the fields within the cylinder in 
Cartesian coordinates using (18) as then the force density 
given by (12) is 

F = pO(M -V)H +Aojf X H 

= (A - A0)(H - V)H + iL x H 

= (A - IAO) (H. ax+ H, T~y)(H.i. + Hi,)+ ;b2(H.i, - Hi.) 

(23) 

Since within the cylinder (r < b) the partial derivatives of H 
are 

,3H. aH, 
ax ay(24) 

aH. aH, I 
ay - ax -ib 

(23) reduces to 

F=(IA-o)(H. i,+H, H + A (H.,-Hi.)lxay rbT 

=2 (IA+ho)(H.i,-Hi.) 

I(p+po) 2B, -y \. Ix 1 
2'rb2 +po/A+ A 0 (25) 

Realizing from Table 1-2 that 

yi, +xi = r[sin Oi, +cos 4i.] = r26) (26) 
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the force density can be written as 

F=IB, I 2(st+y0) 

F 2 2 2 r (sin ki, +cos 0i ) (27)
-rbrb (2 Irb ) 

The total force on the permeable wire is 

2,r b 

f = Flrdr do (28) 

We see that the trigonometric terms in (27) integrate to zero 
so that only the first term contributes: 

2,IB 01 b 

f,= 2 rdrdo 

=IB1 (29) 

The total force on the wire is independent of its magnetic 
permeability. 

PROBLEMS 

Section 5-1 
1. A charge q of mass m moves through a uniform magnetic 
field Boi,. At t =0 its velocity and displacement are 

v(t = 0) = vooi + VYoi, + v~o0z 

r(t = 0) = xoi. + yoi, + zoi 

(a) What is the subsequent velocity and displacement? 
(b) Show that its motion projected onto the xy plane is a 

circle. What is the radius of this circle and where is its center? 
(c) What is the time dependence of the kinetic energy of 

the charge 2mlvI 2? 

2. A magnetron is essentially a parallel plate capacitor 
stressed by constant voltage Vo where electrons of charge -e 
are emitted at x = 0, y = 0 with zero initial velocity. A trans­
verse magnetic field Boi, is applied. Neglect the electric and 
magnetic fields due to the electrons in comparison to the 
applied field. 

(a) What is the velocity and displacement of an electron, 
injected with zero initial velocity at t = 0? 

(b) What value of magnetic field will just prevent the elec­
trons from reaching the other electrode? This is the cut-off 
magnetic field. 
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