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The electric field distribution due to external sources is 
disturbed by the addition of a conducting or dielectric body 
because the resulting induced charges also contribute to the 
field. The complete solution must now also satisfy boundary 
conditions imposed by the materials. 

4-1 THE UNIQUENESS THEOREM 

Consider a linear dielectric material where the permittivity 
may vary with position: 

D=e (r)E = -e (r)VV (1) 

The special case of different constant permittivity media 
separated by an interface has e (r) as a step function. Using (1) 
in Gauss's law yields 

V - [e(r)V V]= -pf (2) 

which reduces to Poisson's equation in regions where e (r) is a 
constant. Let us call V, a solution to (2). 

The solution VL to the homogeneous equation 

V - [e(r)VV= 0 (3) 

which reduces to Laplace's equation when e(r) is constant, 
can be added to V, and still satisfy (2) because (2) is linear in 
the potential: 

V - [e (r)V(V, + VL)] = V - [e (r)V V.]+V - [e (r)V V] = -pf 
0 (4) 

Any linear physical problem must only have one solution 
yet (3) and thus (2) have many solutions. We need to find 
what boundary conditions are necessary to uniquely specify 
this solution. Our method is to consider two different solu­
tions V, and V2 for the same charge distribution 

V (eVVi)=-p, V - (eVV2)=-Pf (5) 

so that we can determine what boundary conditions force 
these solutions to be identical, V, = V2 . 
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The difference of these two solutions VT = V, - V2 obeys 
the homogeneous equation 

V - (EVVT)=0 (6) 

We examine the vector expansion 

V-(eVTVVT)= VTV - (EVVT)+eVVT . VVT=6eVVT (7) 
0 

noting that the first term in the expansion is zero from (6) and 
that the second term is never negative. 

We now integrate (7) over the volume of interest V, which 
may be of infinite extent and thus include all space 

.V.-(eVVVT)dV= eVTVVT-dS= JIVVTI2dV (8) 

The volume integral is converted to a surface integral over 
the surface bounding the region using the divergence 
theorem. Since the integrand in the last volume integral of (8) 
is never negative, the integral itself can only be zero if VT is 
zero at every point in the volume making the solution unique 
(VT =0> V = V2). To force the volume integral to be zero, 
the surface integral term in (8) must be zero. This requires 
that on the surface S the two solutions must have the same 
value (VI = V2) or their normal derivatives must be equal 
[V V - n = V V2 -n]. This last condition is equivalent to 
requiring that the normal components of the electric fields be 
equal (E = -V V). 

Thus, a problem is uniquely posed when in addition to 
giving the charge distribution, the potential or the normal 
component of the electric field on the bounding surface sur­
rounding the volume is specified. The bounding surface can 
be taken in sections with some sections having the potential 
specified and. other sections having the normal field 
component specified. 

If a particular solution satisfies (2) but it does not satisfy 
the boundary conditions, additional homogeneous solutions 
where pf =0, must be added so that the boundary conditions 
are met. No matter how a solution is obtained, even if 
guessed, if it satisfies (2) and all the boundary conditions, it is 
the only solution. 

4-2 BOUNDARY VALUE PROBLEMS IN CARTESIAN GEOMETRIES 

For most of the problems treated in Chapters 2 and 3 we 
restricted ourselves to one-dimensional problems where the 
electric field points in a single direction and only depends on 
that coordinate. For many cases, the volume is free of charge 
so that the system is described by Laplace's equation. Surface 
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charge is present only on interfacial boundaries separating 
dissimilar conducting materials. We now consider such 
volume charge-free problems with two- and three dimen­
sional variations. 

4-2-1 Separation of Variables 

Let us assume that within a region of space of constant 
permittivity with no volume charge, that solutions do not 
depend on the z coordinate. Then Laplace's equation reduces 
to 

a2V a2V 
-- y+ 2=0(1)8x y 

We try a solution that is a product of a function only of the x 
coordinate and a function only of y: 

V(x, y) = X(x) Y(y) (2) 

This assumed solution is often convenient to use if the system 
boundaries lay in constant x or constant y planes. Then along 
a boundary, one of the functions in (2) is constant. When (2) is 
substituted into (1) we have 

Yd 2X d2Yy d2X I d2'y
Y- +X =0,+2 = 0=>_ 0 (3)

S dy" X Yy 

where the partial derivatives become total derivatives because 
each function only depends on a single coordinate. The 
second relation is obtained by dividing through by XY so that 
the first term is only a function of x while the second is only a 
function of y. 

The only way the sum of these two terms can be zero for all 
values of x and y is if each term is separately equal to a 
constant so that (3) separates into two equations, 

1 d 2X 2 1 d2 Y_2 
= k =-kY (4) 

where k2 is called the separation constant and in general can 
be a complex number. These equations can then be rewritten 
as the ordinary differential equations: 

2d2X dY (5) 
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4-2-2 Zero Separation Constant Solutions 

When the separation constant is zero (k2 =0) the solutions 
to (5) are 

X = alx +bl, Y=cly+dl (6) 

where a,, b1 , cl, and dl are constants. The potential is given by 
the product of these terms which is of the form 

V= a2 +b 2x+c 2y+d 2xy (7) 

The linear and constant terms we have seen before, as the 
potential distribution within a parallel plate capacitor with no 
fringing, so that the electric field is uniform. The last term we 
have not seen previously. 

(a) Hyperbolic Electrodes 
A hyperbolically shaped electrode whose surface shape 

obeys the equation xy = ab is at potential Vo and is placed 
above a grounded right-angle corner as in Figure 4-1. The 

y 
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Equipotential lines ­ - -

VO ab 

Field lines -

-r x 
y2 -X2 = const. 

Figure 4-1 The equipotential and field lines for a hyperbolically shaped electrode at 
potential Vo above a right-angle conducting corner are orthogonal hyperbolas. 
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boundary conditions are 

V(x=0)= 0, V(y = 0)=0, V(xy = ab)= Vo (8) 

so that the solution can be obtained from (7) as 

V(x, y) Voxy/(ab) (9) 

The electric field is then 

V0E=-VV= L [yi.+xi,] (10)
ab 

The field lines drawn in Figure 4-1 are the perpendicular 
family of hyperbolas to the equipotential hyperbolas in (9): 

dy -=-->E. x 

dx E. y 
-= -x 22 =const (11) 

(b) Resistor in an Open Box 
A resistive medium is contained between two electrodes, 

one of which extends above and is bent through a right-angle 
corner as in Figure 4-2. We try zero separation constant 

S -0.0 - ­

0.1 - - -- EO, a 0 

03 - dx E s-y 
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solutions given by (7) in each region enclosed by the elec­
trodes: 

V={al+bix+cy+dixy, o!ysd (12) 
a2 +b 2 x +c 2y +d 2xy, d:5 y 5 s 

With the potential constrained on the electrodes and being 
continuous across the interface, the boundary conditions are 

V(x =0)= Vo= a 1+c 1y > a1 = Vo, c 1 =0 (0!5 y S d) 

+b11+c y+djly>bj=-Vo/I, d1 =O 
V(x=l)= vo (O:sy d) 

a2+bul+c2y+d2ly =>a 2 +b 2 l=0, c2 +d 2 l=0 
(dSy ss) 

V(y=s)=O=a2 +b 2x+c2s+d2xs =>a2 +c 2s=O, b 2 +d 2s=O 

7070 
V(y=d,)=V(y =d-)=a1+bx+1 d+,d1 xd 

=a 2 +b 2 x +c 2d +d 2xd (13) 

=>a =Vo=a2 +c2d, b 1 = -Vo/l =b2 +d 2 d 

so that the constants in (12) are 

a1 = V0 , bi=-V0/l, c 1=0, d1 =0 

V0 V0 
a2 = , b2 =- (14)

(I - d/s) l(I - d/s)' 

V0 V0C2 =- d2 = 
s(1 - d/s)' Is(1 - d/s) 

The potential of (12) is then 

VO( - x/1), 0:5y!5d (5 
V - I- xy+-), d:yss 

s -d ( SIs/s 

with associated electric field 

V0 . VOix, 0:5 y:5 d 
E = -- V V = (16) 

ss) +!- -x , d<y<s 
s -d I s s 1)3 

Note that in the dc steady state, the conservation of charge 
boundary condition of Section 3-3-5 requires that no current 
cross the interfaces at y = 0 and y = d because of the surround­
ing zero conductivity regions. The current and, thus, the 
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electric field within the resistive medium must be purely 
tangential to the interfaces, E,(y=d..)=E,(y=0+)=0. The 
surface charge density on the interface at y = d is then due only 
to the normal electric field above, as below, the field is purely 
tangential: 

Of(y=d)=EoE,(y=d)--E, (y=d_)=E V - (17)
/s-d 	 1) 

The interfacial shear force is then 

1 	 2 

Fx= oyE.(y-d)wdx= w (18)
0 	 2(s-d) 

If the resistive material is liquid, this shear force can be used 
to pump the fluid.* 

4-2-3 Nonzero Separation Constant Solutions 

Further solutions to (5) with nonzero separation constant 
(k 2 

0 0) are 

X = A sinhkx +A 2 cosh kx = B1 e*+B2 e 
Y= C1 sin ky+C2 cos ky =D1 eiky+D2e-ky 

When k is real, the solutions of X are hyperbolic or 
equivalently exponential, as drawn in Figure 4-3, while those 
of Y are trigonometric. If k is pure imaginary, then X 
becomes trigonometric and Y is hyperbolic (or exponential). 

The solution to the potential is then given by the product 
of X and Y: 

V = E1 sin ky sinh kx + E2 sin ky cosh kx 

+E3 cos ky sinh kx + E4 cos ky cosh kx 

or equivalently 

V = F1 sin ky e"* + F2 sin ky e~k' + F3 COS ky e"* + F4 COS ky e *x 
(21) 

We can always add the solutions of (7) or any other 
Laplacian solutions to (20) and (21) to obtain a more general 

* 	See J. R. Melcher and G. I. Taylor, Electrohydrodynamics: A Review of the Role of 
InterfacialShear Stresses, Annual Rev. Fluid Mech., Vol. 1, Annual Reviews, Inc., Palo 
Alto, Calif., 1969, ed. by Searsand Van Dyke, pp. 111-146. See also J. R. Melcher, "Electric 
Fields and Moving Media", film produced for the National Committee on Electrical 
EngineeringFilms by the EducationalDevelopment Center, 39 Chapel St., Newton, Mass. 
02160. This film is describedin IEEE Trans. Education E-17, (1974) pp. 100-110. 
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Figure 4-3 The exponential and hyperbolic functions for positive and negative 
arguments. 

solution because Laplace's equation is linear. The values of 
the coefficients and of k are determined by boundary condi­
tions. 

When regions of space are of infinite extent in the x direc­
tion, it is often convenient to use the exponential solutions in 
(21) as it is obvious which solutions decay as x approaches co. 
For regions of finite extent, it is usually more convenient to 
use the hyperbolic expressions of (20). A general property of 
Laplace solutions are that they are oscillatory in one direction 
and decay in the perpendicular direction. 

4-2-4 Spatialy Periodic Excitation 

A sheet in the x =0 plane has the imposed periodic poten­
tial, V = Vo sin ay shown in Figure 4-4. In order to meet this 
boundary condition we use the solution of (21) with k = a. 
The potential must remain finite far away from the source so 
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Figure 4-4 The potential and electric field decay away from an infinite sheet with 
imposed spatially periodic voltage. The field lines emanate from positive surface 
charge on the sheet and terminate on negative surface charge. 

we write the solution separately for positive and negative x as 

", x-0V=sinaye 	 (22)
I Vo sin aye , xS0 

where we picked the amplitude coefficients to be continuous 
and match the excitation at x = 0. The electric field is then 

E=VV - Voae"[cosayi,-sinayix] x >0 
-Voae-[cos ayi +sin ayi], x<0 ( 

The surface charge density on the sheet is given by the dis­
continuity in normal component of D across the sheet: 

o(x =0) = e[E.(x = 0+) - E.(x = 0)] 

= 2E Voa sin ay	 (24) 
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The field lines drawn in Figure 4-4 obey the equation 

dy-y= E,,= x>O 25-F cot ay -:>cos ay e "=const >0 (25)
& E. x0 

4-2-5 Rectangular Harmonics 

When excitations are not sinusoidally periodic in space, 
they can be made so by expressing them in terms of a trig­
onometric Fourier series. Any periodic function of y can be 
expressed as an infinite sum of sinusoidal terms as 

f(y)= -bo + . a.sin +bn cos ) (26) 

where A is the fundamental period of f(y). 
The Fourier coefficients an are obtained by multiplying 

both sides of the equation by sin (2piry/A ) and integrating over 
a period. Since the parameter p is independent of the index n, 
we may bring the term inside the summation on the right 
hand side. Because the trigonometric functions are orthog­
onal to one another, they integrate to zero except when the 
function multiplies itself: 

pin si 2ntry dy=0, p +n 
fA i A snA d=A/2, P=n (7(27)~~2 

sin 2p[ cos 2niy dy=0
J" A A 

Every term in the series for n # p integrates to zero. Only the 
term for n = p is nonzero so that 

a,= f(y) sin 2pjdy (28)
A .A 

To obtain the coefficients b., we similarly multiply by 
cos (2piry/A) and integrate over a period: 

2 2pr
b,=- f(y)cos-p! dy (29)

A 0A 

Consider the conducting rectangular box of infinite extent 
in the x and z directions and of width d in the y direction 
shown in Figure 4-5. The potential along the x = 0 edge is Vo 
while all other surfaces are grounded at zero potential. Any 
periodic function can be used for f(y) if over the interval 
0:s y5 d, f(y) has the properties 

f(y)=Vo,0<y<d;f(y=0)=f(y=d)= ((30) 
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where n 2 is the second separation constant. The angular 
dependence thus has the same solutions as for the two-
dimensional case 

{Bsin n +B 2 cosnO, n=O (36)
B30 + B4, n =O 

The resulting differential equation for the radial dependence 

d dR 22 
r- (r- +(k2r2-n2)R=O (37)
dr dr) 

is Bessel's equation and for nonzero k has solutions in terms 

6. ­

5. ­ 1, (x) =j- J, (jx) 

4. 

3. 

2. 

1 2 (x)
 
Io (x)
 

1. 

2 2x 

-1. 

(a) 

Figure 4-9 The Bessel functions (a) J,(x) and I,(x), and (b) Y,(x) and K,,(x). 
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In particular, we choose the periodic square wave function 
with A==2d shown in Figure 4-6 so that performing the 
integrations in (28) and (29) yields 

S2Vo 

pir 

0, P even (1
 
4 VO/pir, p odd 

Thus the constant potential at x =0 can be written as the 
Fourier sine series 

4 VO 0" sin (ntry/d)V(x = 0)= VOw= - (32)
1r n..1 n 

n odd 
In Figure 4-6 we plot various partial sums of the Fourier 

series to show that as the number of terms taken becomes 
large, the series approaches the constant value VO except for 
the Gibbs overshoot of about 18% at y = 0 and y = d where the 
function is discontinuous. 

The advantage in writing VO in a Fourier sine series is that 
each term in the series has a similar solution as found in (22) 
where the separation constant for each term is k,, = nir/d with 
associated amplitude 4 Vo/(nir). 

The solution is only nonzero for x > 0 so we immediately 
write down the total potential solution as 

n " (31)s e)v=V(x, ed33
Ir n=i n 
, 
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Figure 4-6 Fourier series expansion of the imposed constant potential along the x = 0 
edge in Figure 4-5 for various partial sums. As the number of terms increases, the 
series approaches a constant except at the boundaries where the discontinuity in 
potential gives rise to the Gibbs phenomenon of an 18% overshoot with narrow width. 

The electric field is then 

E=-VV= -V- (-sin i o ­ (34)d dd 
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The field and equipotential lines are sketched in Figure 4-5. 
Note that for x d, the solution is dominated by the first 
harmonic. Far from a source, Laplacian solutions are insensi­
tive to the details of the source geometry. 

4-2-6 Three-Dimensional Solutions 

If the potential depends on the three coordinates (x, y, z), 
we generalize our approach by trying a product solution of 
the form 

V(x, y, z) = X(x) Y(y) Z(z) (35) 

which, when substituted into Laplace's equation, yields after 
division through by XYZ 

I d 2X 1 d 2Y l d2 Z 
Xd2+- +- 2=0 (36)X x Y dy Zd 

three terms each wholly a function of a single coordinate so 
that each term again must separately equal a constant: 

I d k2X2 1 d2Y 2 1 d2Z 2 

Xd Ydy Zdzkk+k (37) 

We change the sign of the separation constant for the z 
dependence as the sum of separation constants must be zero. 
The solutions for nonzero separation constants are 

X=A1 sin kx+A2 coskx 

Y=B1 sin ky+B2 cos k~y (38) 

Z= C1 sinh k~z+C2 cosh kaz =D1 ekz+D2 ek 

The solutions are written as if k, k,, and k. are real so that 
the x and y dependence is trigonometric while the z depen­
dence is hyperbolic or equivalently exponential. However, k.,
k,, or k. may be imaginary converting hyperbolic functions to 
trigonometric and vice versa. Because the squares of the 
separation constants must sum to zero at least one of the 
solutions in (38) must be trigonometric and one must be 
hyperbolic. The remaining solution may be either trigono­
metric or hyperbolic depending on the boundary conditions. 
If the separation constants are all zero, in addition to the 
solutions of (6) we have the similar addition 

Z = e z +f3) (39) 
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4-3 SEPARATION OF VARIABLES IN CYLINDRICAL GEOMETRY 

Product solutions to Laplace's equation in cylindrical 
coordinates 

18 (rV 1 a2 V a2V 
r r r )r r2O4V 8z 

also separate into solvable ordinary differential equations. 

4-3-1 Polar Solutions 

If the system geometry does not vary with z, we try a 
solution that is a product of functions which only depend on 
the radius r and angle 4: 

V(r, 4) = R(r)b(4) (2) 

which when substituted into (1) yields 

4) d dR Rd2.0 
r + 2=0 (3) 

r dr dr r* do 

This assumed solution is convenient when boundaries lay at a 
constant angle of 46 or have a constant radius, as one of the 
functions in (2) is then constant along the boundary. 

For (3) to separate, each term must only be a function of a 
single variable, so we multiply through by r2/R and set each 
term equal to a constant, which we write as n2: 

r d d 2 1 d4 2- r - n - - = -_n (4)
R dr ( dr ' (D do2 

The solution for 4) is easily solved as 

( A Isin n4+A2 cos n46, n00 5)
B 14+B2 , n=0 

The solution for the radial dependence is not as obvious. 
However, if we can find two independent solutions by any 
means, including guessing, the total solution is uniquely given 
as a linear combination of the two solutions. So, let us try a 
power-law solution of the form 

R = A r (6) 

which when substituted into (4) yields 

7p2= n 2 ->p = n (7) 
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For n # 0, (7) gives us two independent solutions. When n =0 
we refer back to (4) to solve 

dR 
r -= const* R= D ln r+D2 (8)

dr 

so that the solutions are 

RCjr"+C2 r-", n 

Dllnr+D, n=0 

We recognize the n =0 solution for the radial dependence 
as the potential due to a line charge. The n =0 solution for 
the 46 dependence shows that the potential increases linearly 
with angle. Generally n can be any complex number, 
although in usual situations where the domain is periodic and 
extends over the whole range 0 = 4 t 2wr, the potential at 
4 = 21r must equal that at 4 = 0 since they are the same point. 
This requires that n be an integer. 

EXAMPLE 4-1 SLANTED CONDUCTING PLANES 

Two planes of infinite extent in the z direction at an angle a 
to one another, as shown in Figure 4-7, are at a potential 
difference v. The planes do not intersect but come sufficiently 
close to one another that fringing fields at the electrode ends 
may be neglected. The electrodes extend from r = a to r = b. 
What is the approximate capacitance per unit length of the 
structure? 

+ o 

0 ab 

Figure 4-7 Two conducting planes at angle a stressed by a voltage v have a 
4-directed electric field. 
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SOLUTION 

We try the n =0 solution of (5) with no radial dependence 
as 

V=B 1 4+B2 

The boundary conditions impose the constraints 

V('0=0)=0, V(4=a)=v =v a 

The electric field is 

l dV v 
-=--­E= = 

r do ra 

The surface charge density on the upper electrode is then 

sv 
oy(f a) = -- E.*(-0 = a)=--­

ra 

with total charge per unit length 

E ev 	 b
A (,= a)= of(4 =a) dr =-ln-

J. 	 c a 

so that the capacitance per unit length is 

A e In (b/a) 
V a 

4-3-2 Cylinder in a Uniform Electric Field 

(a) Field Solutions 
An infinitely long cylinder of radius a, permittivity E2, and 

Ohmic conductivity 0-2 is placed within an infinite medium of 
permittivity E1 and conductivity o,-. A uniform electric field at 
infinity E = Eoi, is suddenly turned on at t =0. This problem 
is analogous to the series lossy capacitor treated in Section 
3-6-3. As there, we will similarly find that: 

(i) 	 At t = 0 the solution is the same as for two lossless 
dielectrics, independent of the conductivities, with no 
interfacial surface charge, described by the boundary 
condition 

o f(r = a) = Dr(r= a+)- Dr(r= a-) =0 

=eiEr(r=a,)=82 Er(r=a-) (10) 

(ii) 	 As t ->o , the steady-state solution depends only on 
the conductivities, with continuity of normal current 
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at the cylinder interface, 

erE,(r = a.) = c-2Er(r = a-) Jr(r= a,) = J,(r = a-) ­
(11) 

(iii) 	 The time constant describing the transition from the 
initial to steady-state solutions will depend on some 
weighted average of the ratio of permittivities to 
conductivities. 

To solve the general transient problem we must find the 
potential both inside and outside the cylinder, joining the 
solutions in each region via the boundary conditions at r = a. 

Trying the nonzero n solutions of (5) and (9), n must be an 
integer as the potential at 4 =0 and 4 = 21r must be equal, 
since they are the same point. For the most general case, an 
infinite series of terms is necessary, superposing solutions 
with n = 1, 2, 3, 4, - - - . However, because of the form of the 
uniform electric field applied at infinity, expressed in cylin­
drical coordinates as 

E(r- o)= Eoi.= E0 [i, cos 4-# sin 4] (12) 

we can meet all the boundary conditions using only the n = 1 
solution. 

Keeping the solution finite at r =0, we try solutions of the 
form 

V(r, 4)= A MrCOS4,r (13) 
I[B(t)r+C(t)/r] cos 4, r-I-a 

with associated electric field 

-A (t)[cos 4i, - sin 4i]= -A(t)i, r <a 

E= -VV= -[B(t)-Ct)/r2] cos Oir 	 (14) 

1 +[B(()+C(t)r21 sin 46id,, r>a 

We do not consider the sin 4 solution of (5) in (13) because at 
infinity the electric field would have to be y directed: 

V= Drsin 4 > E = -V V= -D[i, sin 4+i cos 4] = -Di, 
(15) 

The electric field within the cylinder is x directed. The 
solution outside is in part due to the imposed x-directed 
uniform field, so that as r - co the field of (14) must approach 
(12), requiring that B(t) = -Eo. The remaining contribution 
to the external field is equivalent to a two-dimensional line 
dipole (see Problem 3.1), with dipole moment per unit length: 

p.= Ad = 2'rsC(t)	 (16) 
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The other time-dependent amplitudes A (t) and C(t) are 
found from the following additional boundary conditions: 

(i) 	 the potential is continuous at r= a, which is the same 
as requiring continuity of the tangential component of 
E: 

V(r= a.)= V(r = a-)>E6(r= a-)=E#(r = a+) 

> Aa = Ba + C/a (17) 

(ii) charge must be conserved on the interface: 

Jr(r = a+) -J,(r = a)+ = 0 
at 

> a-1Er(r = a,) - 0-2Er(r = a-) 

+a 	 [e 1E,(r = a+)- e 2E,(r=a)] = 0 
at 

(18) 

In the steady state, (18) reduces to (11) for the continuity of 
normal current, while for t =0 the time derivative must be 
noninfinite so o is continuous and thus zero as given by (10). 

Using (17) in (18) we obtain a single equation in C(t): 

dC (0-1+0-2)= -a2 dEo)
d + + 2 C = -a (Eo(o l--0-2 )+(I-E 2 )-­
dt 61e1+E2 	 dt 

(19) 

Since EO is a step function in time, the last term on the 
right-hand side is an impulse function, which imposes the 
initial condition 

C(t = 0) = -a 2 ( 2) Eo (20) 

so that the total solution to (19) is 

+ 61+E2C(t) = aEo (2 2(o62-0261) 
\0.-+02 (0-j+02)(81+82) / 0-3+O-2 

(21) 
The interfacial surface charge is 

of(r = a, t) = e E,(r=a+) - E2E,(r a) 

= -e B--)+e 2A] cos q 

2(021-2)Eo+(ei+E2) Cos 

=2(o-2- 0-162)Eo[1-e-I]cosk (22)
0-1 + 02 
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The upper part of the cylinder (-r/250 7r/2) is charged of 
one sign while the lower half (7r/2:5 46 i ir) is charged with 
the opposite sign, the net charge on the cylinder being zero. 
The cylinder is uncharged at each point on its surface if the 
relaxation times in each medium are the same, E/o-1= e2/0-2 

The solution for the electric field at t =0 is 

2______ 2e1 E[eos[CS:r -sm die0]=26Eo., r< a 0 

61+62 E1+62 

Et=0 Eo[ 1+- 61+62 COS ,ir (23) 
[ ( r 61+62) 

-- ) sin Oi.], r>a 

The field inside the cylinder is in the same direction as the 
applied field, and is reduced in amplitude if 62>El and 
increased in amplitude if E2 <6 1, up to a limiting factor of two 
as e1 becomes large compared to E2. If E2 = E1, the solution 
reduces to the uniform applied field everywhere. 

The dc steady-state solution is identical in form to (23) if we 
replace the permittivities in each region by their conduc­
tivities; 

[cos 4O,- sin 40ij= i., r<a 
a-1+0-2 471+0-2
 

2
[( 02-2~ i 
E(t -+ co)=<Eo 1+- 0 cos Oi (24) 

r -I+E-2) 

- 1--,2,rl smin.0 , r>a 
r O-l+O-2 

(b) Field Line Plotting 
Because the region outside the cylinder is charge free, we 

know that V- E =0. From the identity derived in Section 
1-5-4b, that the divergence of the curl of a vector is zero, we 
thus know that the polar electric field with no z component 
can be expressed in the form 

E(r, 4)= VX X(r, O)i. 

I aY. aY. 
-,--14 (25) 

r a4 ar 

where x is called the stream function. Note that the stream 
function vector is in the direction perpendicular to the elec­
tric field so that its curl has components in the same direction 
as the field. 
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Along a field line, which is always perpendicular to the 
equipotential lines, 

dr = Er I o84 (26) 
r d4 Es rX/8r 

By cross multiplying and grouping terms on one side of the 

equation, (26) reduces to 

a1 al 
d =-dr+-dO =0>Y=const (27) 

ar 84 

Field lines are thus lines of constant 1. 
For the steady-state solution of (24), outside the cylinder 

=Er=Eo 1+ 2 cos 
r or+o2 (28) 

- =E4s=-Eo ( -a 22-O sin4 
ar r 2 Ol+0-2/ 

we find by integration that 

I= Eo( r+ ai2 ii sin# (29) 

The steady-state'field and equipotential lines are drawn in 
Figure 4-8 when the cylinder is perfectly conducting (- 2 -> x) 
or perfectly insulating (o-2 = 0). 

If the cylinder is highly conducting, the internal electric 
field is zero with the external electric field incident radially, as 
drawn in Figure 4-8a. In contrast, when the cylinder is per­
fectly insulating, the external field lines must be purely 
tangential to the cylinder as the incident normal current is 
zero, and the internal electric field has double the strength of 
the applied field, as drawn in Figure 4-8b. 

4-3-3 Three-Dimensional Solutions 

If the electric potential depends on all three coordinates, 
we try a product solution of the form 

V(r, 4-, z) = R(r)4(.)Z(z) (30) 

which when substituted into Laplace's equation yields 

ZF d dR RZd2 + d2Z (31) 
r dr\r + r2 dY2+R dz-2 = 0 (r-d r) 0dZ 

We now have a difficulty, as we cannot divide through by a 
factor to make each term a function only of a single variable. 
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2 r<a+ ) 0dr =- E - r- AV ao ar COSO r>a 
rdO E, 2) r a 

(i-'-) - r<ar0 
E=-V V= 2+ 2 

a + [(1 + _a- ) COS Ir 
-

(1 a () ia r > asin 

- ----------- - ---- 4.25 

- - --- -- 2.75 

~- --- - _---__.. 5~ .~~~~~~ - - 0.5 

V/(Eoa) 
--- 0.165- -- 02-- ------ 0.16- - - 0.0---- 0.5 

2.75 

a--------------------------------4.25 

Eoi =E-

Figure 4-8 Steady-state field and equipotential lines about a (a) perfectly conducting 
or (b) perfectly insulating cylinder in a uniform electric field. 

However, by dividing through by V = R(bZ, 

I d dR I d 24 1 d 2Z 
(32)

Rr dr (r +r)2 do2+Z dz2 0 

-k 2 k2 

we see that the first two terms are functions of r and 4 while 
the last term is only a function of z. This last term must 
therefore equal a constant: 

2 Alsinhkz+A 2 coshkz, k O 
I d Z (33)
Z dz LZ+A, 

k =0 

http:a--------------------------------4.25
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r<a
=-2Eorcos$ 

-Eoa(a + )cosO r l a 

sinOiO)=2EOi,E = r<as 
V [ sa2 (+ sa2 

r>a r Sir -0 r2)ioI 

V 
Ea 

-- -4.25 

- -	 -------- 3.33 

- -- -- -- 2.5 

--	 - - ------- -2.0 

- C2 , 
---

2 -0 
-- --- - - ---­

------­0.5 
0.0 

---------­ 0.5 
-- a -

E1, 01 

- - ------­ 2.0 
-- ­

-

- -
---

--
- -

-
-

2.0 
2.5 

-	 3.33 

4.25 2 
a 

dr Er ___Coto 

rdo ~ E 2 cot$ 
Eoi= E6 (i, coso - i, sin$) ( r 

(b) 	 =>(- _ a)sin$ const 

Figure 4-8b 

The first two terms in (32) must now sum to -k 2 so that after 
multiplying through by r2 we have 

r 	d dR 2 2 1 d2 
D 

R r--rdr +k r +- =0 (34) 

Now again the first two terms are only a function of r, while 
the last term is only a function of 0 so that (34) again 
separates: 

r 	 d dR 2 2 
2 1 d 23 2rr- +k r =n -- n (5

dr dr ' D2 



Separationof Variables in Cylindrical Geometry 281 

of tabulated functions: 

C1.J(kr)+C2 Y(kr), k *0 
R= 	 C3r"+C4r-', k=0, n 0 (38) 

C5 In r+C6 , k=0, n=O 

where J. is called a Bessel function of the first kind of order n 
and Y, is called the nth-order Bessel function of the second 
kind. When n = 0, the Bessel functions are of zero order while 
if k =0 the solutions reduce to the two-dimensional solutions 
of (9). 

Some of the properties and limiting values of the Bessel 
functions are illustrated in Figure 4-9. Remember that k 

2.5 

Ko x) 
2.0 

K, (x) K,(x) 7r/2)j J, (jx) + Y (jx)] 

K2 (x) 

1.5 

1.0 

Yo(x)
 

0.5 Y (x) Y (X)
2
 

4 6 8 10 

0.5 ­
7 22 

Figure 4-9b 
(b) 

-1.0 
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can also be purely imaginary as well as real. When k is real so 
that the z dependence is hyperbolic or equivalently exponen­
tial, the Bessel functions are oscillatory while if k is imaginary 
so that the axial dependence on z is trigonometric, it is con­
venient to define the nonoscillatory modified Bessel functions 
as 

I.(kr)=j "J.(jkr) 

K.(kr)j= u+j1 J(jkr)+jY.(jkr)] 

As in rectangular coordinates, if the solution to Laplace's 
equation decays in one direction, it is oscillatory in the 
perpendicular direction. 

4-3-4 High Voltage Insulator Bushing 

The high voltage insulator shown in Figure 4-10 consists 
of a cylindrical disk with Ohmic conductivity o- supported 
by a perfectly conducting cylindrical post above a ground 
plane.* 

The plane at z = 0 and the post at r = a are at zero potential, 
while a constant potential is imposed along the circumference 
of the disk at r = b. The region below the disk is free space so 
that no current can cross the surfaces at z = L and z = L - d. 
Because the boundaries lie along surfaces at constant z or 
constant r we try the simple zero separation constant solutions 
in (33) and (38), which are independent of angle 4: 

L-d<z<LV(rz) =Az+Blz lnr+C1 lnr+D1 , 
' A 2 z+B2zlnr+C2lnr+D2 , 0tz!L-d (40) 

Applying the boundary conditions we relate the coefficients 
as 

V(z =0)=0>C 2 =D 2 =0 

[A 2 +B 2 In a=0 
V(r=a)=0> A 1 +B 1lna=0 

IC1 Ina+D,=0 

V(r=b,z>L-d)=Vo> (41)
IC1 Inb+D = Vo 

V(z=(L-d).)=V(z=(L-d)+)='(L-d)(A2 +B2 lnr) 

=(L-d)(A1 +Bllnr)+Cilnr+Dj 

* M. N. Horenstein, "ParticleContaminationof High Voltage DC Insulators," PhD thesis, 
MassachusettsInstitute of Technology, 1978. 
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b 
a 

L E. 

V=VO@r= b 

E= 0 
cv- -c 

(a) I 
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0.8 
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Z2 = r 2 [In(r/a) ]
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+ const 

- - - - Equipotential V _ Vozln(r/a) 
lines (L -d)In(b/a) 

(b) 

Figure 4-10 (a) A finitely conducting disk is mounted upon a perfectly conducting 
cylindrical post and is placed on a perfectly conducting ground plane. (b) Field and 
equipotential lines. 



284 Electric Field Boundary Value Problems 

which yields the values 

0 ,V Vo In a
A, = B, = 0, Cl= 

In (b/a)' In (b/a) (42) 

B2 =(L- (/ C2 = D2=0(L -d) In (b/a)' (L - d) In (b/a)' 

The potential of (40) is then 

Vo In (r/a) 
L-dszsLJ
n(b/a) 

V(r, z)= (43)
Voz In (r/a) 0_zSL-d 

(L - d) In (b/a) 

with associated electric field 

V0 i L-d<z<L 
rIn(b/a)E=-VV= (44) 

0<z<L-d
(- ) n- b/V) In r+ 0, 

The field lines in the free space region are 

dr r r/z)Z2= r2 In r- +const (45)dzE,,r n (ra) I.a 2J 

and are plotted with the equipotential lines in Figure 4-10b. 

4-4 PRODUCT SOLUTIONS IN SPHERICAL GEOMETRY 

In spherical coordinates, Laplace's equation is 

Iar 2 V 2 s a (sin1 +1 V 

r~r\8/ r inG ao r2 sin 
(1) 

4-4-1 One-Dimensional Solutions 

If the solution only depends on a single spatial coordinate, 
the governing equations and solutions for each of the three 
coordinates are 

d r2 dV(r)= A( 
(i) (r r 1=> V(r)=- +A 2 (2) 
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(ii) (sin 6 dVG) = 0 =V(0)=B1 In (tan +B 2 

(3) 

d2 V(O)
(iii) d => V(O) = CIO4+ C2 (4) 

We recognize the radially dependent solution as the poten­
tial due to a point charge. The new solutions are those which 
only depend on 0 or 4. 

TWO CONES 

Two identical cones with surfaces at angles 0 = a and 0= 
ir -a and with vertices meeting at the origin, are at a poten­
tial difference v, as shown in Figure 4-11. Find the potential 
and electric field. 

SIn (tan k) 
.. (.)..=. - ­

2 In(tan ) 

E 2rsinO ln(tan ) 

.. .2 . .. .. . . 

Figure 4-11 Two cones with vertices meeting at the origin are at a potential 
difference v. 
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SOLUTION 

Because the boundaries are at constant values of 0, we try 
(3) as a solution: 

V(O)= B In [tan (0/2)1+ B2 

From the boundary conditions we have 

V(O = a) =v2 
-v v 

V(O = r - a) = -=>
2 

Bl = 
2 In [tan (&/2)] 

B2=0 

so that the potential is 

V(O)= v In [tan (0/2)] 
2 In [tan (a/2)] 

with electric field 

-v
E = -v V=i 

2r sin 9 In [tan (a/2)] 

4-4-2 Axisymmetric Solutions 

If the solution has no dependence on the coordinate 4, we 
try a product solution 

V(r, 9) = R(r)9(0) (5) 

which when substituted into (1), after multiplying through by 
r2 IRO, yields 

/dR d .dO I d 2 
- r 

R dr( 
-+ 

dr - 9n 
W-
d9 

sin -- =0 (6) 

Because each term is again only a function of a single vari­
able, each term is equal to a constant. Anticipating the form 
of the solution, we choose the separation constant as n(n + 1) 
so that (6) separates to 

r2 -n(n + 1)R =0 (7) 

d(snd9+<n(n+1)esine=0 
d9' dM 

(8) 

I 
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For the radial dependence we try a power-law solution 

R=Arp (9) 

which when substituted back into (7) requires 

p(p +1)=n(n +1) (10) 

which has the two solutions 

p =n, p =-(n +1) (1 

When n = 0 we re-obtain the I/r dependence due to a point 
charge. 

To solve (8) for the 9 dependence it is convenient to intro­
duce the change of variable 

i=cos9 (12) 

so that 

dO ----
dO 

dO dp =-si 
d16 dO 

dO -. -= _( ) -P)/ 2d 
dp 

sd(13) 
dp 

Then (8) becomes 

- (I-p2)- +n(n+1)0=0 (14)
dp ( dp 

which is known as Legendre's equation. When n is an integer, 
the solutions are written in terms of new functions: 

e= B.P.(P)+ C.Q.(P) (15) 

where the P.(P) are called Legendre polynomials of the first 
kind and are tabulated in Table 4-1. The Q. solutions are 
called the Legendre functions of the second kind for which 
the first few are also tabulated in Table 4-1. Since all the Q. 
are singular at 9=0 and 9= r, where P = * 1, for all problems 
which include these values of angle, the coefficients C. in (15) 
must be zero, so that many problems only involve the Legen­
dre polynomials of first kind, P.(cos 0). Then using (9)-(11) 
and (15) in (5), the general solution for the potential with no 
* dependence can be written as 

V(r,o)= Y (A.r"+Br~"+I))P.(cos0) (16) 
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Table 4-1 Legendre polynomials of first and second kind 

n P.(f= Cos 6) Q.(P =cos 6) 

0 1 -2LIn(jj) 

1 is =cos 6 
1 -2 

-4(3 _ 1) In2 2(3#2-1) 
+ 13) -p2 

='(3 cos2 0 _ 1) -4(53 - 3) In 1+# 3 

3 2(505-39) 

-1 (5 cos 6-3 cos 6) 

m Im(p2_ )
2'm! dpm 

4-4-3 Conducting Sphere in a Uniform Field 

(a) Field Solution 
A sphere of radius R, permittivity s2,and Ohmic conduc­

tivity a2 is placed within a medium of permittivity El and 
conductivity o1. A uniform dc electric field Eoi. is applied at 
infinity. Although the general solution of (16) requires an 
infinite number of terms, the form of the uniform field at 
infinity in spherical coordinates, 

E(r - 00) = Eoi. = Eo(i. cos 6 -ie sin 6) (17) 

suggests that all the boundary conditions can be met with just 
the n = 1 solution: 

r:sR 
V(r, 0).= (Ar cos 0, (18)

V(Br+ C/r2 )cos 0, r R 

We do not include the I/r2 solution within the sphere (r< R) 
as the potential must remain finite at r =0. The associated 

I 
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electric field is 

0-iO sin 0)=-Ai,, r<R 
E=-VV= 	 -A(ircos 

-(B -2Cr3 ) cos Oit+(B+C/r3)sin i., r>R 

(19) 

The electric field within the sphere is uniform and z direct­
ed while the solution outside is composed of the uniform 
z-directed field, for as r->o the field must approach (17) so 
that B = -Eo, plus the field due to a point dipole at the origin, 
with dipole moment 

p =41re 1C 	 (20) 

Additional steady-state boundary conditions are the 
continuity of the potential at r = R [equivalent to continuity of 
tangential E(r =R)], and continuity of normal current at 
r= R, 

V(r = R)= V(r = R-)=>Ee(r= R,)= E(r= R-) 

> AR=BR+C/R2 

J,(r= R+)= J,(r= R-):>o-E,(r= R+) = o-2E,(r = R-) (21) 

=c> 1 (B -2C/R)= Or 2A 

for which solutions are 

A = - 3- 1 Eo, B = -Eo, C = (c 2 -co 1 )R3 Eo (22)
2o-1 + 0-2 	 2o-+-2 

The electric field of (19) is then 

3c-1E0 	 3c-1E0(i cos 6-ie 	 sin 6)= .i, r<R
20-1 + -2 	 2a- + -2 

E=I Eo 1+2 R3-2 ) cos 6i, (23) 
r3(2o- + -2)) 

( 3(0-2 -a1) 	 s ]i, r>R 
r 3(2cr-1+ 0-2)) 

The interfacial surface charge is 

orf(r= R)= eiE,(r= R+)-e 2E,(r= R-) 

3(- 2s1 -1 0-1E2)Eo cos 0 (24)
2r, + 0r2 

which is of one sign on the upper part of the sphere and of 
opposite sign on the lower half of the sphere. The total 
charge on the entire sphere is zero. The charge is zero at 



290 Electric Field Boundary Value Problems 

every point on the sphere if the relaxation times in each 
region are equal: 

=9 2(25) 
O*l 02 

The solution if both regions were lossless dielectrics with 
no interfacial surface charge, is similar in form to (23) if we 
replace the conductivities by their respective permittivities. 

(b) Field Line Plotting 
As we saw in Section 4-3-2b for a cylindrical geometry, the 

electric field in a volume charge-free region has no diver­
gence, so that it can be expressed as the curl of a vector. For 
an axisymmetric field in spherical coordinates we write the 
electric field as 

E'8'-Vx (X(r, 0). 

sr,,- r sin 0/ 

1 81, 1 a1, 
= 2 -IT- . i (26)

r sin 08o r sin0 ar 

Note again, that for a two-dimensional electric field, the 
stream function vector points in the direction orthogonal to 
both field components so that its curl has components in the 
same direction as the field. The stream function I is divided 
by r sin 0 so that the partial derivatives in (26) only operate on 
1. 

The field lines are tangent to the electric field 

dr = E, . 1 81180 (27) 
r d6 Es r81,1r 

which after cross multiplication yields 

d1=-dr+-d =0::>I=const (28)
8r 80 

so that again I is constant along a field line. 
For the solution of (23) outside the sphere, we relate the 

field components to the stream function using (26) as 

1 81, 2R_____-_
E,.= -=E= 1+ 3, cos8 

r2 sin 0 aO r (2o-1+ 2)) 

1 81, / R 3 (o,2 - 1 ) sine 
r sin 6 ar r3(2oi + 02)) 
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so that by integration the stream function is 

I= Eo 2+ sin2 8 (30)
2 r(2a + a2)) 

The steady-state field and equipotential lines are drawn in 
Figure 4-12 when the sphere is perfectly insulating (Or 2 = 0) or 
perfectly conducting (o2-00). 

v 2 
r> REoR[ + R2 I cos 

{EO(i, Cos 0- i.sinO)= EOi, r<R 

r ) Cos-i- - ( 1 + 2r ) s in i, } r > R 
E3 [ 

(1 
9
 

rd6 E
 
r3Coto 

R+ 

2-R I sin 20 const To RR r 
4.0 

------ -3.1 

-2.1 
-- -- -- - 1. 

- - - - -- .- - ---- ­

- -- -- - -0.45 
- - - - - - - - -*-.-- -- - - - - - - -- 0. 4

-0.75 
--- Eoi4 - -- ------ 1.4-

--------- ------ -- 0o.75 
- - - - --- - - - - --.-..--.-1.1 

----- 1.3 

_ 2.1 

----- .. ­

EO i, = E O(ir cos - i. sin 0) 

(a) 

Figure 4-12 Steady-state field and equipotential lines about a (a) perfectly insulating 
or (b) perfectly conducting sphere in a uniform electric field. 
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0 
r<R 

-EOR(r - )COS6 r>R 
t 

r<R 

E=-V V= ~ 2R3 
R3 

- V oi,' 1 _ ) sinioI r>REo[(1 + )Z ~ r 3 r 

(1+ 2R3 
dr E, r

3 coto 
rdO E0 (0 Re3 

r 

( )2]sin2 6 constr 2 -R 

- -2.75 

-1.75 
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------- 1.0 

1.75 
- - '~- 02-­
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2.75 

Eoi ,= Eo(icos -i sinG) 

(b) 

Figure 4-12b 

If the conductivity of the sphere is less than that of the 
surrounding medium (0-2<-1), the electric field within the 
sphere is larger than the applied field. The opposite is true 
for (U2 >o1 ). For the insulating sphere in Figure 4-12a, the 
field lines go around the sphere as no current can pass 
through. 

For the conducting sphere in Figure 4-12b, the electric field 
lines must be incident perpendicularly. This case is used as a 
polarization model, for as we see from (23) with 0-2 - O, the 
external field is the imposed field plus the field of a point 
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dipole with moment, 

p, = 47r 1R3 Eo (31) 

If a dielectric is modeled as a dilute suspension of nonin­
teracting, perfectly conducting spheres in free space with 
number density N, the dielectric constant is 

eoEo-+-P eoEo+ Np,E = = = Eo(1+4TR 3N) (32) 

4-4-4 Charged Particle Precipitation Onto a Sphere 

The solution for a perfectly conducting sphere surrounded 
by free space in a uniform electric field has been used as a 
model for the charging of rain drops.* This same model has 
also been applied to a new type of electrostatic precipitator 
where small charged particulates are collected on larger 
spheres.t 

Then, in addition to the uniform field Eoi, applied at 
infinity, a uniform flux of charged particulate with charge 
density po, which we take to be positive, is also injected, which 
travels along the field lines with mobility A. Those field lines 
that start at infinity where the charge is injected and that 
approach the sphere with negative radial electric field, 
deposit charged particulate, as in Figure 4-13. The charge 
then redistributes itself uniformly on the equipotential sur­
face so that the total charge on the sphere increases with time. 
Those field lines that do not intersect the sphere or those that 
start on the sphere do not deposit any charge. 

We assume that the self-field due to the injected charge is 
very much less than the applied field E0 . Then the solution of 
(23) with O-2 = C is correct here, with the addition of the radial 
field of a uniformly charged sphere with total charge Q(t): 

S 2R 3 R3 

E [EO cosO+ Q iEO(1 sin io,)+3) )
r 4 7r--r ) 

r>R (33) 

Charge only impacts the sphere where E,(r=R) is nega­
tive: 

Q
E,(r = R)= 3EO cos 9+ 2<0 (34)

4ireR 

* See: F. J. W. Whipple and J. A. Chalmers, On Wilson's Theory of the Collection of Charge 
by FallingDrops, Quart. J. Roy. Met. Soc. 70, (1944), p. 103.
 
t See: H. J. White, Industrial Electrostatic Precipitation Addison-Wesley, Reading. Mass.
 

1963, pp. 126-137. 
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Figure 4-13 Electric field lines around a uniformly charged perfectly conducting sphere in a uniform electric field with continuous
 
positive charge injection from z = -oo. Only those field lines that impact on the sphere with the electric field radially inward [E,(R) <0]
 
deposit charge. (a) If the total charge on the sphere starts out as negative charge with magnitude greater or equal to the critical charge,
 
the field lines within the distance y. of the z axis impact over the entire sphere. (b)-(d) As the sphere charges up it tends to repel some of
 
the incident charge and only part of the sphere collects charge. With increasing charge the angular window for charge collection
 
decreases as does y.,. (e) For Q - Q, no further charge collects on the sphere so that the charge remains constant thereafter. The angular
 
window and y, have shrunk to zero.
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which gives us a window for charge collection over the range 
of angle, where 

2- (35) cosO 2 Q
121reER 

Since the magnitude of the cosine must be less than unity, the 
maximum amount of charge that can be collected on the 
sphere is 

Q = 127reEoR 2 (36) 

As soon as this saturation charge is reached, all field lines 
emanate radially outward from the sphere so that no more 
charge can be collected. We define the critical angle 6. as the 
angle where the radial electric field is zero, defined when (35) 
is an equality cos 0, = -Q/Q,. The current density charging 
the sphere is 

J, = popE,(r= R) 

=3pogEo(cosO+QQ,), 0,<0< (37) 

The total charging current is then 

dQ r 2 
-=- J,2R2 sin 0dO 

= -6rpoAEoR 2 (cos 0 + Q/Q3 ) sin 0 dB 

= -6rposEoR 2 (-- cos 20 - (Q/Q,) cos 6) |=.. 

= -6irpop.EoR (- (1-cos 20,) +(Q/Q,) (1 +cos 0.)) 
(38) 

As long as IQ1 <Q, 0, is defined by the equality in (35). If Q 
exceeds Q,, which can only occur if the sphere is intentionally 
overcharged, then 0, = 7r and no further charging can occur 
as dQldt in (38) is zero. If Q is negative and exceeds Q, in 
magnitude, Q < -Q, then the whole sphere collects charge as 
0, =0. Then for these conditions we have 

-I , Q>Q, 

cos0,= -QIQ, -Q,<Q<Q, (39) 

1, Q<-Q, 

cos20,=2cos2 -C1={_1 )2 Q1> Q (40) 
12(Q/Q,)I'IQ<2 
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so that (38) becomes 

0, Q>Q. 

1 , Q,<Q<Q, (41)
dtj4s i,2 

d PoI Q 
6 Q, 

with integrated solutions 

Qo
 
Q1,
 
Qo+ (0t){
 

Q Q. 4 \ Q,/
Q= , -Q,<Q<Q, (42) 

1+ 1 _o 
4r Q, 

Qo Q <-Q
Q , 

where Qo is the initial charge at t=0 and the characteristic 
charging time is 

r = E/(Po) (43) 

If the initial charge Qo is less than -Q,, the charge magni­
tude decreases with the exponential law in (42) until the total 
charge reaches -Q, at t = to. Then the charging law switches 
to the next regime with Qo = -Q., where the charge passes 
through zero and asymptotically slowly approaches Q = Q,. 
The charge can never exceed Q, unless externally charged. It 
then remains constant at this value repelling any additional 
charge. If the initial charge Qo has magnitude less than Q., 
then to=0. The time dependence of the charge is plotted in 
Figure 4-14 for various initial charge values Qo. No matter 
the initial value of Qo for Q < Q,, it takes many time constants 
for the charge to closely approach the saturation value Q,. 
The force of repulsion on the injected charge increases as the 
charge on the sphere increases so that the charging current 
decreases. 

The field lines sketched in Figure 4-13 show how the fields 
change as the sphere charges up. The window for charge 
collection decreases with increasing charge. The field lines 
are found by adding the stream function of a uniformly 
charged sphere with total charge Q to the solution of (30) 
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2.0 

_____ = 15 1_Q _ QoQ0 QS Qs 
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Q
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a. =QD, 
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Figure 4-14 There are three regimes describing the charge build-up on the sphere. It 
takes many time constants ['r = e/(pos)] for the charge to approach the saturation value 
Q, because as the sphere charges up the Coulombic repulsive force increases so that 
most of the charge goes around the sphere. If the sphere is externally charged to a 
value in excess of the saturation charge, it remains constant as all additional charge is 
completely repelled. 

with 0-2->00: 

I= EoR 2 [!!+I sin 2 _Q coS 
(44)r 2 R 47re 

The streamline intersecting the sphere at r = R, 0 = 0,
separates those streamlines that deposit charge onto the 
sphere from those that travel past. 

4-5 A NUMERICAL METHOD-SUCCESSIVE RELAXATION 

In many cases, the geometry and boundary conditions are 
irregular so that closed form solutions are not possible. It 
then becomes necessary to solve Poisson's equation by a 
computational procedure. In this section we limit ourselves to 
dependence on only two Cartesian coordinates. 

4-5-1 Finite Difference Expansions 

The Taylor series expansion to second order of the poten­
tial V, at points a distance Ax on either side of the coordinate 
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(x, y), is 

2(1 
a V A. I 2V 

V(x+-Ax, y)' V(x, y)+ x+-V(x+-AX, y) -V(x'y)+- - Ax+---2- (,&X)2(Ax) 2 

ax 2Ox 
X.y 

If we add these two equations and solve for the second 
derivative, we have 

a
2V V(x+Ax, y)+ V(x -Ax, y)-2V(x, y) (2) 

ixT (Ax) 2 

Performing similar operations for small variations from y 
yields 

a9V V(x, y+Ay)+ V(x, y -Ay)-2V(x, y) 

y* (Ay) 2 (3) 

If we add (2) and (3) and furthermore let Ax = Ay, Poisson's 
equation can be approximated as 

a2 V 02 V 1
 
-y -' _iY _2 [V(x +Ax, y)+ V(x - Ax, y)
 

+V(x, y +Ay)+ V(x, y - Ay)-4V(x, y)] = 

(4) 

so that the potential at (x, y) is equal to the average potential 
of its four nearest neighbors plus a contribution due to any 
volume charge located at (x, y): 

V(x, y)= 4[V(x +Ax, y)+ V(x - Ax, y) 

pj(x y) (Ax)2 5 
+ V(x, y+ Ay)+ V(x, y- Ay)]+ 4 (5)

4e 

The components of the electric field are obtained by taking 
the difference of the two expressions in (1) 

E.(x,y)=- - [V(x+Ax, y)-V(x-Ax,y)]ax 2 AxL~xY 
(6) 

OV 1 
E,(x, y) = -- aV - -- ,[V(x, y + AY)- V(x, y - Ay)

ay MAy 

4-5-2 Potential Inside a Square Box 

Consider the square conducting box whose sides are con­
strained to different potentials, as shown in Figure (4-15). We 
discretize the system by drawing a square grid with four 
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d 

= 2V2 

V(3, 2) V(3, 3) 

3V V3 = 3 d 

2 - V(2, 2) V(2, 3) 

1 2 3 4 

Figure 4-15 The potentials at the four interior points of a square conducting box 
with imposed potentials on its surfaces are found by successive numerical relaxation. 
The potential at any charge free interior grid point is equal to the average potential of 
the four adjacent points. 

interior points. We must supply the potentials along the 
boundaries as proved in Section 4-1: 

4 4 

Vl= Y V(I, J= 1)= 1, V 3 = Y V(I, J= 4)=3 
I=1 1=1 

4 (7) 
V2= Y V(I=4,J)=2, V4 = Y V(I=1,J)=4 

4 

J=1 J=1 

Note the discontinuity in the potential at Che corners. 
We can write the charge-free discretized version of (5) as 

V(I, J) = 4[ V(I + 1, J) + V(I - 1, J) + V(I, J+ 1) + V(I, J - 1)] 

(8) 

We then guess any initial value of potential for all interior 
grid points not on the boundary. The boundary potentials 
must remain unchanged. Taking the interior points one at a 
time, we then improve our initial guess by computing the 
average potential of the four surrounding points. 

We take our initial guess for all interior points to be zero 
inside the box: 

V(2, 2) = 0, V(3, 3) = 0 
V(3, 2) = 0, V(2, 3) = 0 

Then our first improved estimate for V(2, 2) is 

V(2, 2)= [ V(2, 1)+ V(2, 3)+ V(1, 2)+ V(3, 2)] 

= [1+0+4+0]= 1.25 (10) 
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Using this value of V(2, 2) we improve our estimate for 
V(3, 2) as 

V(3, 2)= [V(2, 2)+ V(4, 2)+ V(3, 1)+ V(3, 3)] 
=4A1.25+2+1+0]= 1.0625 (11) 

Similarly for V(3, 3), 

V(3, 3)= [V(3, 2)+ V(3, 4)+ V(2, 3)+ V(4, 3)] 

=;[1.0625+3+0+2]= 1.5156 (12) 
and V(2, 3) 

V(2, 3)=1[ V(2, 2)+ V(2, 4)+ V(1, 3)+ V(3, 3)] 

=f[1.25+3+4+1.5156]=2.4414 (13) 

We then continue and repeat the procedure for the four 
interior points, always using the latest values of potential. As 
the number of iterations increase, the interior potential 
values approach the correct solutions. Table 4-2 shows the 
first ten iterations and should be compared to the exact solu­
tion to four decimal places, obtained by superposition of the 
rectangular harmonic solution in Section 4-2-5 (see problem 
4-4): 

VOx, y)= I . sin !!f'y(Vssinh 
.. n smh n s d d 

n odd 

- V, sinh nr(x-d)) 

+sin n( V2 sinh V4sinh n(y - d) (14) 

where Vi, V2, Vs and V4 are the boundary potentials that for 
this case are 

V 1=1, V2=2, Vs=3, V4=4 (15) 

To four decimal places the numerical solutions remain 
unchanged for further iterations past ten. 

Table 4-2 Potential values for the four interior points in 
Figure 4-15 obtained by successive relaxation for the first 
ten iterations 

0 1 2 3 4 5 

V1 0 1.2500 2.1260 2.3777 2.4670 2.4911 
V2 0 1.0625 1.6604 1.9133 1.9770 1.9935 

0 1.5156 2.2755 2.4409 2.4829 2.4952V3 

V4 0 2.4414 2.8504 2.9546 2.9875 2.9966 
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6 7 8 9 10 Exact 

2.4975 2.4993 2.4998 2.4999 2.5000 2.5000V1 
1.9982 1.9995 1.9999 2.0000 2.0000 1.9771V 2 

2.4987 2.4996 2.4999 2.5000 2.5000 2.5000V3 

2.9991 2.9997 2.9999 3.0000 3.0000 3.0229V4 

The results are surprisingly good considering the coarse 
grid of only four interior points. This relaxation procedure 
can be used for any values of boundary potentials, for any 
number of interior grid points, and can be applied to other 
boundary shapes. The more points used, the greater the 
accuracy. The method is easily implemented as a computer 
algorithm to do the repetitive operations. 

PROBLEMS 

Section 4.2 
1. The hyperbolic electrode system of Section 4-2-2a only 
extends over the range 0 : x : xo, 0 ! y t yo and has a depth D. 

(a) Neglecting fringing field effects what is the approxi­
mate capacitance? 

(b) A small positive test charge q (image charge effects are 
negligible) with mass m is released from rest from the surface 
of the hyperbolic electrode at x = xo, y = ab/xo. What is the 
velocity of the charge as a function of its position? 

(c) What is the velocity of the charge when it hits the 
opposite electrode? 

2. A sheet of free surface charge at x = 0 has charge dis­
tribution 

of = oo cos ay 

o =o cos ay 

)x 
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