chapter 4

electric field boundary
value problems
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The electric field distribution due to external sources is
disturbed by the addition of a conducting or dielectric body
because the resulting induced charges also contribute to the
field. The complete solution must now also satisfy boundary
conditions imposed by the materials.

4-1 THE UNIQUENESS THEOREM

Consider a linear dielectric material where the permittivity
may vary with position:

D=¢(r)E=—¢(r)VV (D)

The special case of different constant permittivity media
separated by an interface has £(r) as a step function. Using (1)
in Gauss’s law yields

V- le(r)VV]=—p; (2)

which reduces to Poisson’s equation in regions where ¢(r) is a
constant. Let us call V, a solution to (2).
The solution V. to the homogeneous equation

V- [le(mVVi=0 (3)

which reduces to Laplace’s equation when &(r) is constant,
can be added to V, and still satisfy (2) because (2) is linear in
the potential:

V- [eMV(V,+ V)=V [e(r)VV,]+V - [e(r)VVL] =—pf
0 4)

Any linear physical problem must only have one solution
yet (3) and thus (2) have many solutions. We need to find
what boundary conditions are necessary to uniquely specify
this solution. Our method is to consider two different solu-
tions V, and V5 for the same charge distribution

V- (eVV)=~p, V- (eVVy)=—p; (3)

so that we can determine what boundary conditions force
these solutions to be identical, V,= V.
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The difference of these two solutions V= V,— V, obeys
the homogeneous equation

V-(eVVr)=0 (6)
We examine the vector expansion
V. (eVeVVr)= ViV (eVV)+eVVr - VVr=¢|VV® (7)
0

noting that the first term in the expansion is zero from (6) and
that the second term is never negative.

We now integrate (7) over the volume of interest V, which
may be of infinite extent and thus include all space

Lv-(evrvvr)dv=§ eVTVVT-dS=I e|VVr2dV  (8)
S \"2

The volume integral is converted to a surface integral over
the surface bounding the region using the divergence
theorem. Since the integrand in the last volume integral of (8)
is never negative, the integral itself can only be zero if V7 is
zero at every point in the volume making the solution unique
(V=0 V= V). To force the volume integral to be zero,
the surface integral term in (8) must be zero. This requires
that on the surface S the two solutions must have the same
value (V;=V;) or their normal derivatives must be equal
[VVi-n=VV,-n]. This last condition is equivalent to
requiring that the normal components of the electric fields be
equal (E=-VV).

Thus, a problem is uniquely posed when in addition to
giving the charge distribution, the potential or the normal
component of the electric field on the bounding surface sur-
rounding the volume is specified. The bounding surface can
be taken in sections with some sections having the potential
specified and other sections having the normal field
component specified.

If a particular solution satisfies (2) but it does not satisfy
the boundary conditions, additional homogeneous solutions
where p;= 0, must be added so that the boundary conditions
are met. No matter how a solution is obtained, even if
guessed, if it satisfies (2) and all the boundary conditions, it is
the only solution.

4-2 BOUNDARY VALUE PROBLEMS IN CARTESIAN GEOMETRIES

For most of the problems treated in Chapters 2 and 3 we
restricted ourselves to one-dimensional problems where the
electric field points in a single direction and only depends on
that coordinate. For many cases, the volume is free of charge
so that the system is described by Laplace’s equation. Surface
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charge is present only on interfacial boundaries separating
dissimilar conducting materials. We now consider such
volume charge-free problems with two- and three dimen-
sional variations.

4-2-1 Separation of Variables

Let us assume that within a region of space of constant
permittivity with no volume charge, that solutions do not
depend on the z coordinate. Then Laplace’s equation reduces
to

3’V 'V
—_— 8_=0 (1
ax®  3y*

We try a solution that is a product of a function only of the x
coordinate and a function only of y:

Vix, y)=X(x) Y(3) (2)

This assumed solution is often convenient to use if the system
boundaries lay in constant x or constant y planes. Then along
a boundary, one of the functions in (2) is constant. When (2) is
substituted into (1) we have

’x _d%Y 1d*X 1d%
Yddx2+Xd2 O:>§7d-x—2-+7?=0 3)

where the partial derivatives become total derivatives because
each function only depends on a single coordinate. The
second relation is obtained by dividing through by XY so that
the first term is only a funcuon of x while the second is only a
function of y.

The only way the sum of these two terms can be zero for all
values of x and y is if each term is separately equal to a
constant so that (3) separates into two equations,

1 d*°X 1d%Y
o= alUE oS hl @

where &* is called the separation constant and in general can
be a complex number. These equations can then be rewritten
as the ordinary differential equations:

2
d—X—k2X=O,

2 +k Y=0 (5)
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4-2.2 Zero Separation Constant Solutions

When the separation constant is zero (k%= 0) the solutions
to (5) are

X=alx+b|, Y=Cly+d1 (6)

where a,, by, ¢1, and d, are constants. The potential is given by
the product of these terms which is of the form

V=a2+b2x+02y+d2xy (7)

The linear and constant terms we have seen before, as the
potential distribution within a parallel plate capacitor with no

fringing, so that the electric field is uniform. The last term we
have not seen previously.

(a) Hyperbolic Electrodes

A hyperbolically shaped electrode whose surface shape
obeys the equation xy =ab is at potential V, and is placed
above a grounded right-angle corner as in Figure 4-1. The
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Figure 4-1

The equipotential and field lines for a hyperbolically shaped electrode at
potential V; above a right-angle conducting corner are orthogonal hyperbolas.
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boundary conditions are
Vix=0)=0, V(@=0)=0, V(xy=ab)=Vo (8)
so that the solution can be obtained from (7) as
V(x, y) = Voxyl(ab) 9)
The electric field is then

E=—VV=—21yi, +xi,] (10)
ab

The field lines drawn in Figure 4-1 are the perpendicular
family of hyperbolas to the equipotential hyperbolas in (9):
dy_E, x

Sy X2 2
& E. y:}y x“ = const (11)

(b) Resistor in an Open Box

A resistive medium is contained between two electrodes,
one of which extends above and is bent through a right-angle
corner as in Figure 4-2. We try zero separation constant

dy _Ex _ -«
dx E;  s—y

=y —5)2 = (x — )% = const.

P

Depth w

| |

= X

0 _ 1

Figure 4-2 A resistive medium partially fills an open conducting box.
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solutions given by (7) in each region enclosed by the elec-
trodes:

_ a)+byx+cyt+tdixy, o<y=<d
d=y=s

12
as+ box + coy + doxy, (12)

With the potential constrained on the electrodes and being
continuous across the interface, the boundary conditions are

Vx=0)=Vo=a1+cy>a=V,, =0 (0=y=d)
0
a +bil+dy+dilyb,=—Vo/l, di=0
Vix=0)=0=<¥V, / 0=y=d)
ag+bol+coy+daly Das+bal=0, co+dol=0
(d=y=<s)
Viy=s)=0=ag+box +cos +doxs Das+ces =0, bot+dsys=0
0 0
Vy=d)=Vi=d)=a+bix+1 d+/¢i1 xd
=ag+b2x+62d+d2xd (13)
$a1=V0=a2+62d, b1=_V0/l=b2+d2d
so that the constants in (12) are
a;=V, b=-Vy/l, ¢,=0, d,=0
Vo Vo
= , be=——— 14
T A=asy T I —dis) (14)
Vo d Vo
C T e ————eee = —
2T os(l=dis)y TP is(1—dls)
The potential of (12) is then
Vo(l —x/1), O=y=<
~ of ) y (15)
s—d\ 1 s 1) 477
with associated electric field
Vo.
Tl,, O0=sy=d

E=-VV=

V()S [i—x(l
s—dll

(16)

—%+5@—%} d<y<s
s/ s {

Note that in the dc steady state, the conservation of charge

boundary condition of Section 3-3-5 requires that no current
cross the interfaces at y = 0 and y = d because of the surround-
ing zero conductivity regions. The current and, thus, the
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electric field within the resistive medium must be purely
tangential to the interfaces, E,(y=d_-)=E,(y=0,)=0. The
surface charge density on the interface aty = d is then due only
to the normal electric field above, as below, the field is purely

tangential:
0

Ve g0V X
oy =d)= o,y =d) =5k, G =d)=""2(1-3)  a7)
The interfacial shear force is then
! 2
E()Vo
— = = 18
F, J;afE,(y d)w dx 5 —d) w (18)

If the resistive material is liquid, this shear force can be used
to pump the fluid.*

4-2-3 Nonzero Separation Constant Solutions

Further solutions to (5) with nonzero separation constant
2
(k" #0) are

X=A,sinh kx+Ascoshkx =B, e +Boe”
Y=C,sinky+Cocos ky=D, ™ +Dye™™

kx

(19)

When k& is real, the solutions of X are hyperbolic or
equivalently exponential, as drawn in Figure 4-3, while those
of Y are trigonometric. If k is pure imaginary, then X
becomes trigonometric and Y is hyperbolic (or exponential).

The solution to the potential is then given by the product

of X and Y:
V = E, sin ky sinh kx + E5 sin ky cosh kx 20)
+Ej5 cos ky sinh kx + E4 cos ky cosh kx

or equivalently

V=F,sinkye™+Fosinkye ™ + Fscos kye™ + Fy cos kye ™
(21)

We can always add the solutions of (7) or any other
Laplacian solutions to (20) and (21) to obtain a more general

*See J. R. Melcher and G. I. Taylor, Electrohydrodynamics: A Review of the Role of
Interfacial Shear Stresses, Annual Rev. Fluid Mech., Vol. 1, Annual Reviews, Inc., Palo
Alto, Calif., 1969, ed. by Sears and Van Dyke, pp. 111-146. See also J. R. Melcher, “ Electric
Fields and Moving Media”, film produced for the National Committee on Electrical
Engineering Films by the Educational Development Center, 39 Chapel St., Newton, Mass.
02160. This film is described in 1EEE Trans. Education E-17, (1974) pp. 100-110.
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Figure 4-3 The exponential and hyperbolic functions for positive and negative
arguments.

solution because Laplace’s equation is linear. The values of
the coefficients and of k& are determined by boundary condi-
tions.

When regions of space are of infinite extent in the x direc-
tion, it is often convenient to use the exponential solutions in
(21) as it is obvious which solutions decay as x approaches +co,
For regions of finite extent, it is usually more convenient to
use the hyperbolic expressions of (20). A general property of
Laplace solutions are that they are oscillatory in one direction
and decay in the perpendicular direction.

4-2-4 Spatially Periodic Excitation

A sheet in the x =0 plane has the imposed periodic poten-
tial, V = Vg sin ay shown in Figure 4-4. In order to meet this
boundary condition we use the solution of (21) with £ =a.
The potential must remain finite far away from the source so
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V = Vg sinaye®® V = Vg sin aye %

ax

E=— Voae"[cosayiy + sinayi_ | E=—Voae " [cosayi, —sinayi,]

cosaye®* = const

field lines

ax

cos aye” = const

Figure 4-4 The potential and electric field decay away from an infinite sheet with
imposed spatially periodic voltage. The field lines emanate from positive surface
charge on the sheet and terminate on negative surface charge.

we write the solution separately for positive and negative x as

Vosinaye ™, x=0

V= { (22)

Vosinaye™, x=0

where we picked the amplitude coefficients to be continuous
and match the excitation at x = 0. The electric field is then

—Voa e”*[cos ayi, —sin ayi,], x>0

E=—vv={ (23)

—Voa e™[cos ayi, +sin ayi,], x<0

The surface charge density on the sheet is given by the dis-
continuity in normal component of D across the sheet:

or(x =0)=¢e[Ey(x =04) — Ex(x=0)]
=2¢ Voa sin ay (24)
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The field lines drawn in Figure 4-4 obey the equation

d E x>0
D _3_ % coray=> cos aye™ = const {

dx E, x<0 (25)

4.2.5 Rectangular Harmonics

When excitations are not sinusoidally periodic in space,
they can be made so by expressing them in terms of a trig-
onometric Fourier series. Any periodic function of y can be
expressed as an infinite sum of sinusoidal terms as

© 2
f(y)=%bo+ b (a,. sin Tr‘v+b,. cos 27;ﬂ) (26)
n=1

where A is the fundamental period of f(y).

The Fourier coefficients a, are obtained by multiplying
both sides of the equation by sin (2p#7y/A)and integrating over
a period. Since the parameter g is independent of the index n,
we may bring the term inside the summation on the right
hand side. Because the trigonometric functions are orthog-
onal to one another, they integrate to zero except when the
function multiplies itself:

A 9pmy . 2nmy 0, p#n
sin sin—=dy =
0 A A/?, p=n
N 27
I sin 2pmy cos 2nmy dy=0
N A A Y

Every term in the series for n # p integrates to zero. Only the
term for n = p is nonzero so that

2 (* .2
aﬁxL f(y) sin iﬂdy (28)

To obtain the coefficients b,, we similarly multiply by
cos (2pmy/A) and integrate over a period:

2r* 2
b,=—jo fy) cos £ ay 29)

Consider the conducting rectangular box of infinite extent
in the x and z directions and of width d in the y direction
shown in Figure 4-5. The potential along the x =0 edge is V)
while all other surfaces are grounded at zero potential. Any
periodic function can be used for f(y) if over the interval
0=y=d, f(y) has the properties

f=Vo,0<y<d; f3=0)=f(y=d)=0 30)
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where n? is the second separation constant. The angular
dependence thus has the same solutions as for the two-
dimensional case

¢={Bl sin n¢ + Bocosng, n#0
n:

B3¢ + By, 0 (36)

The resulting differential equation for the radial dependence
d ({ dR
r—~<r——>+(k2r2—n2)R=0 (37)
dr \ dr

is Bessel’s equation and for nonzero & has solutions in terms

Iotx)=77"J, (jx)

_Iz(x)

N i |

&/
[}
®
\
é
=

(a)

Figure 4-9 The Bessel functions (a) J,(x) and I,,(x), and (b) Y,.(x) and K, (x).
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Figure 4-5 An open conducting box of infinite extent in the x and z directions and of
finite width d in the y direction, has zero potential on all surfaces except the closed end
at x =0, where V=V,

In particular, we choose the periodic square wave function
with A =24 shown in Figure 4-6 so that performing the
integrations in (28) and (29) yields

2% -
a,= o (cospmr—1)

_ { 0, p even
4 Vo/pﬂ', p Odd
b,=0

Thus the constant potential at x =0 can be written as the
Fourier sine series

3D

o o
Vix=0)= V= 4V, 5 sin (nmy/d)
T a=1 n
n odd

In Figure 4-6 we plot various partial sums of the Fourier
series to show that as the number of terms taken becomes
large, the series approaches the constant value V, except for
the Gibbs overshoot of about 18% at y =0 and y =d where the
function is discontinuous.

The advantage in writing V, in a Fourier sine series is that
each term in the series has a similar solution as found in (22)
where the separation constant for each term is &, = nar/d with
associated amplitude 4 Vy/(nr).

The solution is only nonzero for x >0 so we immediately
write down the total potential solution as

<1 _
n odd

(32)

Vix,y)=
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Figure 4-6 Fourier series expansion of the imposed constant potential along the x =0
edge in Figure 4-5 for various partial sums. As the number of terms increases, the
series approaches a constant except at the boundaries where the discontinuity in
potential gives rise to the Gibbs phenomenon of an 18% overshoot with narrow width.

The electric field is then

_ 4Vo 3 . nmy, nmy.\ .
E-'VV=‘T"_I (—san,+cosTu,)e e (34)

n odd
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The field and equipotential lines are sketched in Figure 4-5.
Note that for x »d, the solution is dominated by the first
harmonic. Far from a source, Laplacian solutions are insensi-
tive to the details of the source geometry.

4-2-6 Three-Dimensional Solutions

If the potential depends on the three coordinates (x, y, z),
we generalize our approach by trying a product solution of
the form

Vix,y,2) = X(x) Y(y) Z(z) (35)

which, when substituted into Laplace’s equation, yields after
division through by XYZ

1d°X 1d°Y 1d°Z
——S+———5+=——%=0 36
Xd® Ydy Zd? (36)
three terms each wholly a function of a single coordinate so
that each term again must separately equal a constant:

1d°X 14’y 14’2
}?=_3, Ydy2=—k3’ ET—k =kI+k}  (37)

We change the sign of the separation constant for the z
dependence as the sum of separation constants must be zero.
The solutions for nonzero separation constants are

X=A,sinkx+Ascos kx

Y = B, sin k)y + Bg cos kyy (38)
k2

Z=C, sinh kz +Cs cosh kz =D, e + Dy e ™

The solutions are written as if k,, %,, and %, are real so that
the x and y dependence is trigonometric while the z depen-
dence is hyperbolic or equivalently exponential. However, £,,
ky, or k, may be imaginary converting hyperbolic functions to
trigonometric and vice versa. Because the squares of the
separation constants must sum to zero at least one of the
solutions in (38) must be trigonometric and one must be
hyperbolic. The remaining solution may be either trigono-
metric or hyperbolic depending on the boundary conditions.
If the separation constants are all zero, in addition to the
solutions of (6) we have the similar addition

Z=€17-+f1 (39)
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4-3 SEPARATION OF VARIABLES IN CYLINDRICAL GEOMETRY

Product solutions to Laplace’s equation in cylindrical

coordinates
19 aV) 1 a V 3? V
——\r—)+= = 1

ror (r ar/ r 6¢ 0 ()

also separate into solvable ordinary differential equations.

4-3-1 Polar Solutions

If the system geometry does not vary with z, we try a
solution that is a product of functions which only depend on
the radius r and angle ¢:

V(r, )=R(NP(4) 2

which when substituted into (1) yields

®d( dR\ Rd®
r dr( )+r de* =0 3
This assumed solution is convenient when boundaries lay at a
constant angle of ¢ or have a constant radius, as one of the
functions in (2) is then constant along the boundary.

For (3) to separate, each term must only be a function of a
single variable, so we multiply through by r /R<b and set each
term equal to a constant, which we write as n

dR\ 1d2d>_2
Rdr( dr) " pdet " )

The solution for ® is easily solved as

¢={A1sinn¢+A2cosn¢, n#0

B,¢ + By, n=0 ®)

The solution for the radial dependence is not as obvious.
However, if we can find two independent solutions by any
means, including guessing, the total solution is uniquely given
as a linear combination of the two solutions. So, let us try a
power-law solution of the form

R=Ar’ (6)
which when substituted into (4) yields

p*=n’Dp=xn )
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For n #0, (7) gives us two independent solutions. When n =0
we refer back to (4) to solve

dR
rE=const$R=D1 Inr+ Dy 8)

so that the solutions are

_JCir"+Cor™, n#0
R_{Dl lnr+D2, n=0 (9)

We recognize the n = 0 solution for the radial dependence
as the potential due to a line charge. The n =0 solution for
the ¢ dependence shows that the potential increases linearly
with angle. Generally n can be any complex number,
although in usual situations where the domain is periodic and
extends over the whole range 0=<¢ =<2, the potential at
¢ =27 must equal that at ¢ = 0 since they are the same point.
This requires that n be an integer.

EXAMPLE 4-1 SLANTED CONDUCTING PLANES

Two planes of infinite extent in the z direction at an angle a
to one another, as shown in Figure 4-7, are at a potential
difference v. The planes do not intersect but come sufficiently
close to one another that fringing fields at the electrode ends
may be neglected. The electrodes extend from r=g to r=b.
What is the approximate capacitance per unit length of the
structure?

Figure 4-7 Two conducting planes at angle a stressed by a voltage v have a
@-directed electric field.
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SOLUTION

We try the n = 0 solution of '(5) with no radial dependence
as
V=18 1¢ + 32

The boundary conditions impose the constraints
V(e =0)=0, Vid=a)=v>V=vd/a
The electric field is

rdd)— ra

The surface charge density on the upper electrode is then
ev
of(¢=a)=—cEs(d =a)=—
ra
with total charge per unit length

b
- b
Ao =a)=J’ of¢=a)dr="In~
r=a a 4
so that the capacitance per unit length is
A ¢ In (b/a)
v a

C=

4-3-2 Cylinder in a Uniform Electric Field

(a) Field Solutions

An infinitely long cylinder of radius a, permittivity €5, and
Ohmic conductivity o, is placed within an infinite medium of
permittivity £, and conductivity ;. A uniform electric field at
infinity E = Eyi, is suddenly turned on at ¢ =0. This problem
is analogous to the series lossy capacitor treated in Section
3-6-3. As there, we will similarly find that:

(i) At t=0 the solution is the same as for two lossless
dielectrics, independent of the conductivities, with no
interfacial surface charge, described by the boundary
condition

oi(r=a)=D (r=a.)—D.(r=a-)=0
e E(r=a.)=¢esE,(r=a_) (10)

(i As t—> 00, the steady-state solution depends only on
the conductivities, with continuity of normal current



274

Electric Field Boundary Value Problems

at the cylinder interface,

J(r=a)=J(r=a)>0E(r=a,)=0E(r=a_)
_ (11)

(iti) The time constant describing the transition from the
initial to steady-state solutions will depend on some
weighted average of the ratio of permittivities to
conductivities.

To solve the general transient problem we must find the
potential both inside and outside the cylinder, joining the
solutions in each region via the boundary conditions at r=a.

Trying the nonzero n solutions of (5) and (9), n must be an
integer as the potential at ¢ =0 and ¢ =27 must be equal,
since they are the same point. For the most general case, an
infinite series of terms is necessary, superposing solutions
withn=1,2,3,4,---. However, because of the form of the
uniform electric field applied at infinity, expressed in cylin-
drical coordinates as

E(r - a0) = Epi, = E[i, cos ¢ —ig4 sin @] (12)

we can meet all the boundary conditions using only the n =1
solution.

Keeping the solution finite at r =0, we try solutions of the
form

Ve ¢)_{A(t)rcos¢, rsa (19)
ner= [B()r+C(t)/rlcos d, r=a

with associated electric field

—A(t)[cos @i, —sin pig}=—A(),, r<a
E=-VV ={—[B(t)- C(t)/r*] cos di, (14)
+[B()+ C(t)/r*] sin dig, r>a

We do not consider the sin ¢ solution of (5) in (13) because at
infinity the electric field would have to be y directed:

V=Drsin ¢ DE=-VV =—DIi,sin ¢ +is cos ¢] = —Di,
' (15)

The electric field within the cylinder is x directed. The
solution outside is in part due to the imposed x-directed
uniform field, so that as r » oo the field of (14) must approach
(12), requiring that B(t)=—E,. The remaining contribution
to the external field is equivalent to a two-dimensional line
dipole (see Problem 3.1), with dipole moment per unit length:

p. = Ad =2meC(t) (16)
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The other time-dependent amplitudes A(t) and C(t) are
found from the following additional boundary conditions:

(i) the potential is continuous at r = a, which is the same
as requiring continuity of the tangential component of

Vir=a.)=V(r=a_) Es(r=a_)=E4(r=a.)
>Aa=Ba+Cla 17

(i) charge must be conserved on the interface:
il
Jr=a)-Jr=a.) +£—' =0
>oE(r=a,)—0E(r=a-)

d

+5-‘- [e1Efr=a.)—eE(r=a_)]=0

(18)

In the steady state, (18) reduces to (11) for the continuity of
normal current, while for ¢t =0 the time derivative must be
noninfinite so oy is continuous and thus zero as given by (10).

Using (17) in (18) we obtain a single equation in C(¢):

2

ac (0'] +0'2) —-a ( dE())
—+ = — +(e1—€£0) —
@ e +eg C P, Eo(o1—0g)+(e1—€2) 2

(19)

Since E, is a step function in time, the last term on the
right-hand side is an impulse function, which imposes the
initial condition

o (E1—€9)

(t=0)=-a 1t eg

E, (20)

so that the total solution to (19) is

C(t)=a2Eo(al_a2 2(0 69— 02€}) _,,,) ,e g,+€2
o1+oz (o1+09) (e1+¢&) o +0o3
(21)

The interfacial surface charge is

gir=a,t)=¢g,E(r=a,)—esE (r=a-)

=[—e|(B —;(‘;)‘+ e2A] cos ¢

=[(€l_€2)Eo+(€|+£2) a_C‘z] cos ¢

_2(g3e1—01£2)

L
pra Eo[l—e ""1cos ¢ (22)
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The upper part of the cylinder (—#/2=< d: =m/2) is charged of

one sign while the lower half (#/2=<¢ <3n) is charged with

the opposite sign, the net charge on the cylinder being zero.

The cylinder is uncharged at each point on its surface if the

relaxation times in each medium are the same, €,/0, = e9/02
The solution for the electric field at t =0 is

2£1E N
e, (Ot H il =T e
2
E(t = 0) ={ E(,[(l+"—2'32 G)cosqsi, (23)
r g, +es
a“ es—e€ . .
{ (1—?£f+£;)sm¢l¢], r=e

The field inside the cylinder is in the same direction as the
applied field, and is reduced in amplitude if g2>#£, and
increased in amplitude if €3 <¢), up to a limiting factor of two
as €, becomes large compared to go. If e53=¢,, the solution
reduces to the uniform applied field everywhere.

The dc steady-state solution is identical in form to (23) if we
replace the permittivities in each region by their conduc-

tivities;
20"1 0 20‘1Eo,
—— [cos @i, ~sin piy] = i, r<a
ol ton [cos i dis]= pr—
a“ oy—0o
E(t—»oo)=<Eo[(1+— 2 ‘)cos¢i, (24)
r o +os
a’oe—ar\ . .
( - - l)smdné], r>a
| r-o+o2

(b) Field Line Plotting

Because the region outside the cylinder is charge free, we
know that V:-E=0. From the identity derived in Section
1-5-45, that the divergence of the curl of a vector is zero, we
thus know that the polar electric field with no z component
can be expressed in the form

E(r, $) = VX2(r, $)i,

162, 42
=== - 25
ra¢l or 14 (25)

where 2 is called the stream function. Note that the stream
function vector is in the direction perpendicular to the elec-
tric fiéld so that its curl has components in the same direction
as the field.
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Along a field line, which is always perpendicular to the
equipotential lines,
d E, 182
rd¢ E, r 0X/dr
By cross multiplying and grouping terms on one side of the
equation, (26) reduces to
> >
d2=a—dr+a—d¢=0:>2=const (27)
ar 7]
Field lines are thus lines of constant X.
For the steady-state solution of (24), outside the cylinder

102 2oy~
_a_=E,=Eo(1+a—202 0‘)cos¢
r o¢ r o t+os
o3 (28)
- - _a o2—0,
o E, Eo( 2 py 2) sin ¢
we find by integration that
2 —
3= Eofr+-22 "‘)sin¢ (29)
r o,+0o9

The steady-state field and equipotential lines are drawn in
Figure 4-8 when the cylinder is perfectly conducting (o2 » )
or perfectly insulating (o2 = 0).

If the cylinder is highly conducting, the internal electric
field is zero with the external electric field incident radially, as
drawn in Figure 4-8a. In contrast, when the cylinder is per-
fectly insulating, the external field lines must be purely
tangential to the cylinder as the incident normal current is
zero, and the internal electric field has double the strength of
the applied field, as drawn in Figure 4-8b.

4-3-3 Three-Dimensional Solutions

If the electric potential depends on all three coordinates,
we try a product solution of the form

V(r, ¢, z) = R(r)P(¢)Z(z) (30)
which when substituted into Laplace’s equation yields
Z® d ( dR\ Rzd’® d*z
—— —_— 4 e, 1
r dr (rJF) r? de¢? R® dz* 0 31

We now have a difficulty, as we cannot divide through by a
factor to make each term a function only of a single variable.
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dg ~ E, 2 .

_a
(1 rT) 0 r<a
E=—VV=

2 2
Eo {1+ - ) cosgi, — (1 — -} singi, ] r >a
r r

2
<
L A x v-1% . ra
dr_ r . cot¢ Egal= — =) cos¢ r=2gq
¢ r a

V/Eqa)

2.75

4.25

Egi, = Egli, cos¢ — iy sing)

Figure 4-8 Steady-state field and equipotential lines about a (a) perfectly conducting
or (b) perfectly insulating cylinder in a uniform electric field.

However, by dividing through by V =R®Z,

1 R 1 d°® 14z
d ( g_) d*® 1d ~o 32)

Rrdr\' dr) r°®dp> Z di®
— ~— N o
—k*? k?

we see that the first two terms are functions of r and ¢ while
the last term is only a function of z. This last term must
therefore equal a constant:

2 A sinhkz+Ascoshkz, k#0
ld Z__k2 _
ZaZ FPEs (33)
ASZ+A4) k 0
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—2Eqrcos¢ r<a
V=

a  r
— a.,r >
an(r +a)cos¢ rza
2Eq {cosoi, — singi,) = 2Eqi r<a
E=—-Vy= 0 arz ® 02r
Eo [(1 — 5 )cos¢i, — (1 +a7)sin¢i,,] r>a
r r

v
Eoa

-~ —4.25

--—3.33

—~25

t——20

r— 3.33

t— 4.25
dr E, 1 7r£7)

dé " E, .2 coto
Egix = Egli,cos® — iy sing) * “ +:L2)

) =>(;r —lr)sin¢ = const

Figure 4-86

The first two terms in (32) must now sum to —k? so that after
multiplying through by r* we have

d { dR 1d°®
'i;—;i—r(r:i—;)+k2r2+——§=0 (34)

Now again the first two terms are only a function of r, while
the last term is only a function of ¢ so that (34) again
separates:

rd(dR) 28 9 1d°® .

——|r—)+kr" = ——=—

Rar\'ar/ " T 7" dpr " (35)
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of tabulated functions:

CiJ.(kr)+CoY, (kr), k%0
R=<¢Csr"+Cyr 7, k=0, n#0 (38)
C5lnr+C5, k=0, n=0

where [, is called a Bessel function of the first kind of order n
and Y, is called the nth-order Bessel function of the second
kind. When n = 0, the Bessel functions are of zero order while
if £ =0 the solutions reduce to the two-dimensional solutions
of (9).

Some of the properties and limiting values of the Bessel
functions are illustrated in Figure 4-9. Remember that k

K o (x) = (/20 "V () + Y ()]

Figure 4-96

(b)
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can also be purely imaginary as well as real. When £ is real so
that the z dependence is hyperbolic or equivalently exponen-
tial, the Bessel functions are oscillatory while if & is imaginary
so that the axial dependence on z is trigonometric, it is con-
venient to define the nonoscillatory modified Bessel functions
as

L(kr) =] (k1)
K,ur)="§'j"“un<jkr>+fyn<jkr>1

(39)

As in rectangular coordinates, if the solution to Laplace’s
equation decays in one direction, it is oscillatory in the
perpendicular direction.

4-3-4 High Voltage Insulator Bushing

The high voltage insulator shown in Figure 4-10 consists
of a cylindrical disk with Ohmic conductivity o supported
by a perfectly conducting cylindrical post above a ground
plane.*

The plane at z =0 and the post at r = a are at zero potential,
while a constant potential is imposed along the circumference
of the disk at r = b. The region below the disk is free space so
that no current can cross the surfaces at z=L and z =L —d.
Because the boundaries lie along surfaces at constant z or
constant r we try the simple zero separation constant solutions

in (33) and (38), which are independent of angle ¢:
V( )_{A11+Blzlnr+Cllnr+D1, L—-d<z<L
27 Agz+BozInr+Cylnr+Dy, O0sz=<L—d (40)

Applying the boundary conditions we relate the coefficients
as

V(z=0)=0>Cys=Dy=0

As+Bylna=0
Vir=a)=0>JA,+B;lna=0
C1 lna+D|=0

A1+B;Inb=0
C] lnb+D1= Vo

Viz=(L—-d)-)=V(Ez=(L—-d),)>(L~d)(As+BzInr)
=(L—-d)(A,+ B, Inr)+C,Inr+D,

V(r=b,z>L—d)=Vo=>{ @1

* M. N. Horenstein, *Particle Contamination of High Voltage DC Insulators,” PhD thesis,
Massachusetts Institute of Technology, 1978.
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V=Vy@r=5%

(a)

2
b
e
L
T T T T TT7 1T 1T 71 1 |
V=v ! ! (. '|!1 ity ooy I V="V,
° A A B A ey o by
T :r > At [ :% : +—t+— : t t
| €0} AN LJat 11 leoy ]
! ) =T 11 T T T T
+ + 44+ + e 1] 1lr-4 R E S T L A T o C A S S O
7 V4 t \ VO
~
. X ~{ Foe
K < ~ ~los
[ ) N ' 5
v\ N\ ~ ~0.7
; 4 N ~
\ ~o ~~
\ \\ N ~o 0.6
\ \ S ~ =~
L X oy i 0.5
l ) ~~ “=qo04
\ ~ ~_
\ - - ~=-103
N T —-H02
I e Bl [ X
Field lines 0o
32 = r?[In{r/a) -—zl] + const
—~ —~ Equipotential |, _ VozIn(ria)
lines (L —d}In{b/a)
b)

Figure 4-10 (a) A finitely conducting disk is mounted upon a perfectly conducting
cylindrical post and is placed on a perfectly conducting ground plane. (b) Field and
equipotential lines.
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which yields the values

Vo Vo In a
A =B =0, = y IS e mer—
1=B,=0. Ci=1 (bla) D=1 (bla) “2)
—__ Volna e Vo Do
Az= (L—d)In (6/a)’ B"(L—d) In (4/a)’ C:=D:=0
The potential of (40) is then
M’ L d <1< L
In (b/a)
Vi, z)= 43)
Voz In (r/a) i<l—d
(L ~d)1n (b/a) -
with associated electric field
—#ir, L-d<z<L
E--vy=] "9 (44)
Vo

r
m—)m(n—lz+—1,), O<z<L-—d

The field lines in the free space region are

dr E, z 9 2[ r l]
—_—_—— = = In——=(+ 45
d: E, rln (r/a):>z i a 2 const (45)

and are plotted with the equipotential lines in Figure 4-10b.

4-4 PRODUCT SOLUTIONS IN SPHERICAL GEOMETRY

In spherical coordinates, Laplace’s equation is

L2 (W) et 2 (ine 2 1 _3&v_,
r2or ar 2 sin 6 96 a8 r sin208¢2

()

4-4.1 One-Dimensional Solutions

If the solution only depends on a single spatial coordinate,
the governing equations and solutions for each of the three
coordinates are

2 (2470

i - A
O =(r=Y)=03vn=2a @
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d av(e
(ii) 20 (sin 0'—d;—)) =0=>V(8)=B,In (tang)+B2
(3)
2
(iii) 4 d‘;‘f) =0 V()=Cid+C; (4)

We recognize the radially dependent solution as the poten-
tial due to a point charge. The new solutions are those which
only depend on 6 or ¢.

EXAMPLE 4-2 TWO CONES

Two identical cones with surfaces at angles § =a and 8=
o —a and with vertices meeting at the origin, are at a poten-
tial difference v, as shown in Figure 4-11. Find the potential
and electric field.

I—%B

In(tan %)

2rsing In(tan% )

Figure 4-11 Two cones with vertices meeting at the origin are at a potential
difference v.
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SOLUTION

Because the boundaries are at constant values of 8, we try
(3) as a solution:

V(8)= B, In [tan (6/2)]+ B2

From the boundary conditions we have

V(o=a)=§

v

21n [tan (a/2)]’ B:=0

V(0=1r-a)=-_2—v$Bl=

so that the potential is
v In [tan (6/2)]

V()= 3 1n (an (@/2)]
with electric field
—v .
E=-VV= 2r sin @ In [tan (a/2)] e

4-4-2 Axisymmetric Solutions

If the solution has no dependence on the coordinate ¢, we
try a product solution

V(r, 8)= R(r)©(0) (5)

which when substituted into (1), after multiplying through by
r*/RO, yields

1d{,d 1 dy. de)_
Rdr (' ar) *esinods (s"‘odo =0 ©)

Because each term is again only a function of a single vari-
able, each term is equal to a constant. Anticipating the form
of the solution, we choose the separation constant as n(n + 1)
so that (6) separates to

d{ od

adl Yo = 7

dr( —)-nn+DR=0 Q)
d(. d& s
E(s:noﬁ)+n(n+l)esm0—0 (8)
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For the radial dependence we try a power-law solution
R=Ar* 9
which when substituted back into (7) requires
p(p+1)=n(n+1) (10)
which has the two solutions

p=n  p=—(n+l) (11)

When n =0 we re-obtain the 1/r dependence due to a point
charge.

To solve (8) for the 8 dependence it is convenient to intro-
duce the change of variable

B=cos 0 (12)
so that
d® dedg . d® = 5 ,2d0
BB smadﬁ— (1-8%) 8 (13)
Then (8) becomes
%((1_32)%)+n(n+1)9=0 (14)

which is known as Legendre’s equation. When 7 is an integer,
the solutions are written in terms of new functions:

O = B.Pn(B)+ CaQn(B) (15)

where the P,(B8) are called Legendre polynomials of the first
kind and are tabulated in Table 4-1. The Q, solutions are
called the Legendre functions of the second kind for which
the first few are also tabulated in Table 4-1. Since all the Q,
are singular at 8 =0 and 8 = w, where 8 = *1, for all problems
which include these values of angle, the coefficients C,, in (15)
must be zero, so that many problems only involve the Legen-
dre polynomials of first kind, P,(cos 8). Then using (9)-(11)
and (15) in (5), the general solution for the potential with no
¢ dependence can be written as

Vi(r, 6)= f; (Anr™ + Br V)P, (cos 8) (16)

n=0
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Table 4-1 Legendre polynomials of first and second kind

n P,(B=cos @) Q.(B =cos 8)
1. (1+B
0 1 2'"(1—3)
1 B=cosé :}Bln(lli-g)—l
1+
2 882~ 1) iep*-1in (125) -7
=53 cos’6-1)
LraS_ _ +B\ 542 2
3 §56°-38) 68*~38) In (125) -4+

=3 (5cos® 63 cos 9)

47 g1y
mizgm &

4-4-3 Conducting Sphere in a Uniform Field

(a) Field Solution

A sphere of radius R, permittivity &2, and Ohmic conduc-
tivity o, is placed within a medium of permittivity £, and
conductivity o,. A uniform dc electric field E,i, is applied at
infinity. Although the general solution of (16) requires an
infinite number of terms, the form of the uniform field at
infinity in spherical coordinates,

E(r -» ) = Egi, = Eo(i, cos 8 —ig sin ) an

suggests that all the boundary conditions can be met with just
the n =1 solution:

Vi ‘0) {Ar cos 6, r=R 18)
7, =
(Br+C/r®)cos6, r=R

We do not include the 1/7? solution within the sphere (r <R)
as the potential must remain finite at r =0. The associated
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electric field is

—A(i, cos 8 —i4 sin 8) = —Ai,, r<R

—(B—2C/r’) cos 8i,+ (B +C/r® sin 8is, r>R
(19)

The electric field within the sphere is uniform and z direct-
ed while the solution outside is composed of the uniform
z-directed field, for as r » o0 the field must approach (17) so
that B = —E,, plus the field due to a point dipole at the origin,
with dipole moment

--vv={

p.=4me, C (20)

Additional steady-state boundary conditions are the
continuity of the potential at r = R [equivalent to continuity of
tangential E(r = R)], and continuity of normal current at
r=R,

Vir=R,)=V(r=R_)>Ey(r=R,)=E¢(r=R.)
>AR=BR+C/R? el
J(r=R)=].(r=R.)>0cE,(r=R,)=03E,(r=R.)
>01(B-2C/R%) = aA
for which solutions are

30, (02—0)R®
A=- E,, =—E,, C=———r
20'1+0'2 ° ° 20’1+0’2

Eo, (22)

The electric field of (19) is then

30Ey . . 30, E,
—_— (i, 0_ =_—'l’ <
Cy— 2(1 cos ig sin @) 90+ 21 r<R
2Rs(02—01))
= 1.+.____ H
E JEO[( Q0+ 03) cos 0i, (23)
R3(02"¢71)) . ]
—_ 1_____ H
\ ( r3(2 o) sin Oy, r>R

The interfacial surface charge is

oi(r=R)=¢€,E,(r=R,)—eqE,(r=R.)

_ 3(oee1—a1£9)Eg

os 6 (24)

20’1+0’2

which is of one sign on the upper part of the sphere and of
opposite sign on the lower half of the sphere. The total
charge on the entire sphere is zero. The charge is zero at
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every point on the sphere if the relaxation times in each
region are equal:
3] Eg

—=—= (25)

oy 02

The solution if both regions were lossless dielectrics with
no interfacial surface charge, is similar in form to (23) if we
replace the conductivities by their respective permittivities.

(b) Field Line Plotting

As we saw in Section 4-3-2b for a cylindrical geometry, the
electric field in a volume charge-free region has no diver-
gence, so that it can be expressed as the curl of a vector. For
an axisymmetric field in spherical coordinates we write the
electric field as

2(r, 25

E(r, 0)=Vx(r -

NN ST S,
Zsin030 " rsnfar?

Note again, that for a two-dimensional electric field, the
stream function vector points in the direction orthogonal to
both field components so that its curl has components in the
same direction as the field. The stream function £ is divided
by 7 sin 8 so that the partial derivatives in (26) only operate on
3.

The field lines are tangent to the electric field

dr E, 10Z/06

——— i —— 7
rdd E, r 93/ar @7
which after cross multiplication yields
d2=9—2-'dr+?—2—d0=0=>2=const (28)
ar a0

so that again ¥ is constant along a field line.
For the solution of (23) outside the sphere, we relate the
field components to the stream function using (26) as

1 8% 2R*(oy—01y)
= —g————=E (1 +————) 0
r2sin 0 96 ° (o +09) cos 29)
E ———l a—2*—-—E ( ———Rs(a2—a'))sin0
e rsin 0 or ° r*(201 + 079)
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so that by integration the stream function is

o (1 R~ . 4
E—EO(E-Fm) sin“ @ (30)

The steady-state field and equipotential lines are drawn in
Figure 4-12 when the sphere is perfectly insulating (o2 = 0) or
perfectly conducting (o; > ©0).

—%Eorcoso r<R
V= , R?
‘EoR[E+;-;] cosé r>=R
2 Eqli, coso — i, sind) = 3 o, r<R
E=—VV= 3

3
Eoll1 — 25 ) costi, — 1 +;’-‘;)sanoi,1 r>R
r

dr Er

Egi, = Eglipcosd — iy sing)
(a)

Figure 4-12 Steady-state field and equipotential lines about a (a) perfectly insulating
or (b) perfectly conducting sphere in a uniform electric field.
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0 r<R
V= 2
X |4 R
_ r_ & >
EOR(R ) Jcos§ r=R

0 r<R

E=—-VV= 3
Eoll1 + 2R
2 r

R3
Jcos@i, —{1—=3)sinfigl r>R
r
£ 3
(1+2R%

dr £ __,3_ cotd

R
=’[_,+ % (‘% 121sin?8 = const

F———|—————=275

———t——— 025 EoR

b———f-——— 2.75

Egi, = Egli,cosf — iy sind)

(b)
Figure 4-126

If the conductivity of the sphere 1s less than that of the
surrounding medium (o9 <0o,), the electric field within the
sphere is larger than the applied field. The opposite is true
for (o2>0). For the insulating sphere in Figure 4-12q, the
field lines go around the sphere as no current can pass
through.

For the conducting sphere in Figure 4-125, the electric field
lines must be incident perpendicularly. This case is used as a
polarization model, for as we see from (23) with o3> 00, the
external field is the imposed field plus the field of a point
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dipole with moment,
p. =4me R°E, (31)

If a dielectric is modeled as a dilute suspension of nonin-
teracting, perfectly conducting spheres in free space with
number density N, the dielectric constant is

€0E0+P €0E0+sz
6 = =

=go(1+4mR?
E E ol TR3N) (32)

4-4-4 Charged Particle Precipitation Onto a Sphere

The solution for a perfectly conducting sphere surrounded
by free space in a uniform electric field has been used as a
model for the charging of rain drops.* This same model has
also been applied to a new type of electrostatic precipitator
where small charged particulates are collected on larger
spheres.t

Then, in addition to the uniform field Eyi, applied at
infinity, a uniform flux of charged particulate with charge
density py, which we take to be positive, is also injected, which
travels along the field lines with mobility . Those field lines
that start at infinity where the charge is injected and that
approach the sphere with negative radial electric field,
deposit charged particulate, as in Figure 4-13. The charge
then redistributes itself uniformly on the equipotential sur-
face so that the total charge on the sphere increases with time.
Those field lines that do not intersect the sphere or those that
start on the sphere do not deposit any charge.

We assume that the self-field due to the injected charge is
very much less than the applied field Ey. Then the solution of
(23) with g9 = o is correct here, with the addition of the radial
field of a uniformly charged sphere with total charge Q(¢):

3

R
Q 2} ir“Eo(l ——3> sin 0ig,
r

3

9R
E= [Eo(l +—3) cos 6 +
r

4mer
r>R (33)
Charge only impacts the sphere where E,(r =R) is nega-
tive:
- Py Q
E.(r=R)=3F,cos 6+ 5<0 (34)
4meR

*See: F. J. W. Whipple and J. A. Chalmers, On Wilson’s Theory of the Collection of Charge
by Falling Drops, Quart. J. Roy. Met. Soc. 70, (1944), p. 103.

t See: H. J. White, Industrial Electrostatic Precipitation Addison-Wesley, Reading. Mass.
1963, pp. 126-137.
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Figure 4-13 Electric field lines around a uniformly charged perfectly conducting sphere in a uniform electric field with continuous
positive charge injection from z = —00. Only those field lines that impact on the sphere with the electric field radially inward [E,(R)<0]
deposit charge. (a) If the total charge on the sphere starts out as negative charge with magnitude greater or equal to the critical charge,
the field lines within the distance y. of the z axis impact over the entire sphere. (b)—(d) As the sphere charges up it tends to repel some of
the incident charge and only part of the sphere collects charge. With increasing charge the angular window for charge collection

decreases as does y.. (¢) For Q = Q, no further charge collects on the sphere so that the charge remains constant thereafter. The angular
window and y, have shrunk to zero.
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which gives us a window for charge collection over the range
of angle, where

Q

12meEoR? (35)

cos 0 <-—

Since the magnitude of the cosine must be less than unity, the
maximum amount of charge that can be collected on the
sphere is

Q.= 127eEoR? (36)

As soon as this saturation charge is reached, all field lines
emanate radially outward from the sphere so that no more
charge can be collected. We define the critical angle 6, as the
angle where the radial electric field is zero, defined when (35)
is an equality cos 8, = —Q/Q,. The current density charging
the sphere is

J:=popE.(r=R)
= 3pouE, (cos 6 +Q/Q.), 0.<0<m 37

The total charging current is then

Q_ —I J.27R*sin 046
dt 0=,

”

=—6mpouEoR? J (cos 8 +Q/Q,) sin 8 d6

0=,
= —6mpopuEoR*(—1 cos 20 — (Q/Q.) cos 8)| 5-s,

= —6mpouEoR*(—3(1 —cos 26,) +(Q/Q,) (1 +cos 6.))
(38)

As long as | Q| < Q,, 6. is defined by the equality in (35). If Q
exceeds Q,, which can only occur if the sphere is intentionally
overcharged, then 6, = 7 and no further charging can occur
as dQ/dt in (38) is zero. If Q is negative and exceeds Q, in
magnitude, Q <—Q,, then the whole sphere collects charge as
8. =0. Then for these conditions we have

-1, Q>Qs
cos 8, = _Q/Qs _Qs < Q < Qs (39)
1, Q<—Qs

1, lQl>Q

40
2(Q/Qx)2_lr 'QI <QJ ( )

c0s 20, =2cos* 9, — 1 = {
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so that (38) becomes
fo, > ,
ng Polk Q 2 o
-5 (1-5) . -e<e<a (1)
_Pok Q _
e e<@
with integrated solutions
=, Q>Q,
Qo (‘—to)( Qo)
—_—_—r— ] -
Q_je" 4 \"o) _
2" 1+(t—:o)(l_g)’ Q<< @
4r Q.
o Q<-Q,

where Q is the initial charge at ¢ =0 and the characteristic
charging time is

T=¢/(pott) (43)

If the initial charge Q) is less than —Q,, the charge magni-
tude decreases with the exponential law in (42) until the total
charge reaches —Q, at ¢t =¢,. Then the charging law switches
to the next regime with Qo= —Q,, where the charge passes
through zero and asymptotically slowly approaches Q = Q,.
The charge can never exceed Q, unless externally charged. It
then remains constant at this value repelling any additional
charge. If the initial charge Qp has magnitude less than Q,,
thén t,=0. The time dependence of the charge is plotted in
Figure 4-14 for various initial charge values Q. No matter
the initial value of Q, for Q < Q,, it takes many time constants
for the charge to closely approach the saturation value Q..
The force of repulsion on the injected charge increases as the
charge on the sphere increases so that the charging current
decreases.

The field lines sketched in Figure 4-13 show how the fields
change as the sphere charges up. The window for charge
collection decreases with increasing charge. The field lines
are found by adding the stream function of a uniformly
charged sphere with total charge Q to the solution of (30)
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Figure 4-14 There are three regimes describing the charge build-up on the sphere. It
takes many time constants [7 = g/(pop )] for the charge to approach the saturation value
Q.. because as the sphere charges up the Coulombic repulsive force increases so that
most of the charge goes around the sphere. If the sphere is externally charged to a
value in excess of the saturation charge, it remains constant as all additional charge is
completely repelled.

with o> 00:

R 1/r\? Qcos 8
)
0 FTo\R sin” @ dme (44)
The streamline intersecting the sphere at r=R, 8=,
separates those streamlines that deposit charge onto the
sphere from those that travel past.

4-5 A NUMERICAL METHOD—SUCCESSIVE RELAXATION

In many cases, the geometry and boundary conditions are
irregular so that closed form solutions are not possible. It
then becomes necessary to solve Poisson’s equation by a
computational procedure. In this section we limit ourselves to
dependence on only two Cartesian coordinates.

4-5-1 Finite Difference Expansions

The Taylor series expansion to second order of the poten-
tial V, at points a distance Ax on either side of the coordinate
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(x, ), is
2
Vis-+A5,9)~ Vi, y>+—) M+ gl (a?
oV 182v] )
—_ == —_— —_— 2
Vix—Ax,y) V(x,y} W ”Ax+2ax2 ”(Ax)

If we add these two equations and solve for the second
derivative, we have

a V Vix+Ax, y)+ V(x—Ax, y)-2V(x, y)

s (Ax)® @)
Performing similar operations for small variations from y
yields

PV _V(xy+8y)+V(x,y—Ay)—2V(x,y) 3)

a° (Ay)?

If we add (2) and (3) and furthermore let Ax = Ay, Poisson’s
equation can be approximated as

aV aV

1
axz —— [V(x+Ax,y)+ V(x—Ax, y)

" (Ax)
pf(xs y)
€

4)

so that the potential at (x, y) is equal to the average potential
of its four nearest neighbors plus a contribution due to any
volume charge located at (x, y):

V(x,y) =3 V(x+Ax, y)+ V(x —Ax, y)

+V(x,y+Ay)+ V(x,y—Ay)—4V(x,y)]=—

pe(x, y) (Ax)®
4¢

The components of the electric field are obtained by taking
the difference of the two expressions in (1)

+ V(x, y+Ay)+ V(x,y—Ay)]+ (5)

|74
Eg(x,y)=—';—x| ~——-—[V(x+Ax y)— V(x—Ax, y)]

*3 (6)
E,(x,y)= _3v

oy, z—m [V(x, y+Ay)— V(x, y—Ay)]

4.5-2 Potential Inside a Square Box

Consider the square conducting box whose sides are con-
strained to different potentials, as shown in Figure (4-15). We
discretize the system by drawing a square grid with four
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Figure 4-15 The potentials at the four interior points of a square conducting box
with imposed potentials on its surfaces are found by successive numerical relaxation.
The potential at any charge free interior grid point is equal to the average potential of
the four adjacent points.

interior points. We must supply the potentials along the
boundaries as proved in Section 4-1:

VI:i V(L J=1)=1, Vs:i V(I,J=4)=3
I=1 I=1
()

Vo= i Vii=4,])=2, V= i Vi=1,)=4
J= I=1

Note the discontinuity in the potential at the corners.
We can write the charge-free discretized version of (5) as

VLD =4VI+1, D+ VU -1, D+ VI J+ 1)+ V(I J-1)]
8)

We then guess any initial value of poiential for all interior
grid points not on the boundary. The boundary potentials
must remain unchanged. Taking the interior points one at a
time, we then improve our initial guess by computing the
average potential of the four surrounding points.

We take our initial guess for all interior points to be zero
inside the box:

V(2,2)=0, V(3,3)=0

9
V(3,2)=0, V(2,3)=0

Then our first improved estimate for V(2, 2) is

V2, 2)=3V(@, )+ V(2 3+ V1, 2)+ V3, 2)]
=41+0+44+0]=1.25 (10



300

Electric Field Boundary Value Problems

Using this value of V(2,2) we improve our estimate for
V(3,2)as

V(3,2)=4V(@2,2)+ V(4,2)+ V(3, 1)+ V(3, 3)]
=31.25+2+1+0]=1.0625 (11)

Similarly for V(3, 3),
V(3,3)=1[V(3,2)+ V(3,4)+ V(2,3)+ V(4, 3)]

=4[1.0625+3+0+2]=1.5156 (12)
and V(2,3)
V(2,3)=4V(©2 2)+ V(@ 9+ V(, 3)+ VS, 3)]
=41.25+3+4+1.5156]=2.4414 (18)

We then continue and repeat the procedure for the four
interior points, always using the latest values of potential. As
the number of iterations increase, the interior potential
values approach the correct solutions. Table 4-2 shows the
first ten iterations and should be compared to the exact solu-
tion to four decimal places, obtained by superposition of the
rectangular harmonic solution in Section 4-2-5 (see problem

4-4):
S % [an™(yginh ™™

Vix 9= ,.z-:1 nr sinh mr[sm d (VgSll’lh d

n odd

-V sinhl"u)

d
in TX LNy mr(y—d))]
+sin 4 (V2 sinh p, Va smh—-—d (14)

where V,, Vs, V5 and V, are the boundary potentials that for
this case are

Vi=1, Ve=2, Vs=3, V=4 (15)
To four decimal places the numerical solutions remain

unchanged for further iterations past ten.

Table 4-2 Potential values for the four interior points in
Figure 4-15 obtained by successive relaxation for the first
ten iterations

0 1 2 3 4 5
1%} 0 1.2500 2.1260 2.3777 2.4670 2.4911
Ve 0 1.0625 1.6604 1.9133 1.9770 1.9935
Vs 0 1.5156 2.2755 2.4409 2.4829 2.4952
Vs 0 24414 2.8504 29546 2.9875 2.9966




0; = gg cos ay

Problems 3 01

6 7 8 9 10 Exact

Vi 24975 2.4993 2.4998 2.4999 2.5000 2.5000
Vo 1.9982 1.9995 1.9999 2.0000 2.0000 1.9771
Vs 2.4987 2.4996 24999 2.5000 2.5000 2.5000
Ve 29991 29997 2.9999 3.0000 3.0000 3.0229

The results are surprisingly good considering the coarse
grid of only four interior points. This relaxation procedure
can be used for any values of boundary potentials, for any
number of interior grid points, and can be applied to other
boundary shapes. The more points used, the greater the
accuracy. The method is easily implemented as a computer
algorithm to do the repetitive operations.

PROBLEMS

Section 4.2
1. The hyperbolic electrode system of Section 4-2-2a only
extends over the range 0 =<x <x,, 0 <y =<y, and has adepth D.

(a) Neglecting fringing field effects what is the approxi-
mate capacitance?

(b) A small positive test charge ¢ (image charge effects are
negligible) with mass m is released from rest from the surface
of the hyperbolic electrode at x = xy, y = ab/x,. What is the
velocity of the charge as a function of its position?

(c) What is the velocity of the charge when it hits the
opposite electrode?

2. A sheet of free surface charge at x =0 has charge dis-
tribution

Of = 09 COS ay
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