
chapter 2
 

the electricfield 



50 The Electric Field 

The ancient Greeks observed that when the fossil resin 
amber was rubbed, small light-weight objects were attracted. 
Yet, upon contact with the amber, they were then repelled. 
No further significant advances in the understanding of this 
mysterious phenomenon were made until the eighteenth 
century when more quantitative electrification experiments 
showed that these effects were due to electric charges, the 
source of all effects we will study in this text. 

2-1 ELECTRIC CHARGE 

2-1-1 Charging by Contact 

We now know that all matter is held together by the attrac­
tive force between equal numbers of negatively charged elec­
trons and positively charged protons. The early researchers 
in the 1700s discovered the existence of these two species of 
charges by performing experiments like those in Figures 2-1 
to 2-4. When a glass rod is rubbed by a dry cloth, as in Figure 
2-1, some of the electrons in the glass are rubbed off onto the 
cloth. The cloth then becomes negatively charged because it 
now has more electrons than protons. The glass rod becomes 
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Figure 2-1 A glass rod rubbed with a dry cloth loses some of its electrons to the cloth. 
The glass rod then has a net positive charge while the cloth has acquired an equal 
amount of negative charge. The total charge in the system remains zero. 
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positively charged as it has lost electrons leaving behind a 
surplus number of protons. If the positively charged glass rod 
is brought near a metal ball that is free to move as in Figure 
2-2a, the electrons in the ball near the rod are attracted to the 
surface leaving uncovered positive charge on the other side of 
the ball. This is called electrostatic induction. There is then an 
attractive force of the ball to the rod. Upon contact with the 
rod, the negative charges are neutralized by some of the 
positive charges on the rod, the whole combination still 
retaining a net positive charge as in Figure 2-2b. This transfer 
of charge is called conduction. It is then found that the now 
positively charged ball is repelled from the similarly charged 
rod. The metal ball is said to be conducting as charges are 
easily induced and conducted. It is important that the 
supporting string not be conducting, that is, insulating, 
otherwise charge would also distribute itself over the whole 
structure and not just on the ball. 

If two such positively charged balls are brought near each 
other, they will also repel as in Figure 2-3a. Similarly, these 
balls could be negatively charged if brought into contact with 
the negatively charged cloth. Then it is also found that two 
negatively charged balls repel each other. On the other hand, 
if one ball is charged positively while the other is charged 
negatively, they will attract. These circumstances are sum­
marized by the simple rules: 

Opposite Charges Attract. Like Charges Repel. 
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Figure 2-2 (a) A charged rod near a neutral ball will induce an opposite charge on 
the near surface. Since the ball is initially neutral, an equal amount of positive charge 
remains on the far surface. Because the negative charge is closer to the rod, it feels a 
stronger attractive force than the repelling force due to the like charges. (b) Upon 
contact with the rod the negative charge is neutralized leaving the ball positively 
charged. (c) The like charges then repel causing the ball to deflect away. 
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Figure 2-3 (a) Like charged bodies repel while (b) oppositely charged bodies attract. 

In Figure 2-2a, the positively charged rod attracts the 
negative induced charge but repels the uncovered positive 
charge on the far end of the ball. The net force is attractive 
because the positive charge on the ball is farther away from 
the glass rod so that the repulsive force is less than the 
attractive force. 

We often experience nuisance frictional electrification 
when we walk across a carpet or pull clothes out of a dryer. 
When we comb our hair with a plastic comb, our hair often 
becomes charged. When the comb is removed our hair still 
stands up, as like charged hairs repel one another. Often 
these effects result in sparks because the presence of large 
amounts of charge actually pulls electrons from air molecules. 

2-1-2 Electrostatic Induction 

Even without direct contact net charge can also be placed 
on a body by electrostatic induction. In Figure 2-4a we see 
two initially neutral suspended balls in contact acquiring 
opposite charges on each end because of the presence of a 
charged rod. If the balls are now separated, each half retains 
its net charge even if the inducing rod is removed. The net 
charge on the two balls is zero, but we have been able to 
isolate net positive and negative charges on each ball. 
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Figure 2-4 A net charge can be placed on a body without contact by electrostatic 
induction. (a) When a charged body is brought near a neutral body, the near side 
acquires the opposite charge. Being neutral, the far side takes on an equal but opposite 
charge. (b) If the initially neutral body is separated, each half retains its charge. 

2-1-3 Faraday's "Ice-Pail" Experiment 

These experiments showed that when a charged conductor 
contacted another conductor, whether charged or not, the 
total charge on both bodies was shared. The presence of 
charge was first qualitatively measured by an electroscope 
that consisted of two attached metal foil leaves. When 
charged, the mutual repulsion caused the leaves to diverge. 

In 1843 Michael Faraday used an electroscope to perform 
the simple but illuminating "ice-pail" experiment illustrated 
in Figure 2-5. When a charged body is inside a closed isolated 
conductor, an equal amount of charge appears on the outside 
of the conductor as evidenced by the divergence of the elec­
troscope leaves. This is true whether or not the charged body 
has contacted the inside walls of the surrounding conductor. 
If it has not, opposite charges are induced on the inside wall 
leaving unbalanced charge on the outside. If the charged 
body is removed, the charge on the inside and outside of the 
conductor drops to zero. However, if the charged body does 
contact an inside wall, as in Figure 2-5c, all the charge.on the 
inside wall and ball is neutralized leaving the outside charged. 
Removing the initially charged body as in Figure 2-5d will 
find it uncharged, while the ice-pail now holds the original 
charge. 

If the process shown in Figure 2-5 is repeated, the charge 
on the pail can be built up indefinitely. This is the principle of 
electrostatic generators where large amounts of charge are 
stored by continuous deposition of small amounts of charge. 

http:charge.on
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Figure 2-5 Faraday first demonstrated the principles of charge conservation by 
attaching an electroscope to an initially uncharged metal ice pail. (a) When all charges 
are far away from the pail, there is no charge on the pail nor on the flexible gold leaves 
of the electroscope attached to the outside of the can, which thus hang limply. (b) As a 
charged ball comes within the pail, opposite charges are induced on the inner surface. 
Since the pail and electroscope were originally neutral, unbalanced charge appears on 
the outside of which some is on the electroscope leaves. The leaves being like charged 
repel each other and thus diverge. (c) Once the charged ball is within a closed 
conducting body, the charge on the outside of the pail is independent of the position 
of the charged ball. If the charged ball contacts the inner surface of the pail, the inner 
charges neutralize each other. The outside charges remain unchanged. (d) As the now 
uncharged ball leaves the pail, the distributed charge on the outside of the pail and 
electroscope remains unchanged. 

This large accumulation of charge gives rise to a large force 
on any other nearby charge, which is why electrostatic 
generators have been used to accelerate charged particles to 

very high speeds in atomic studies. 

2-2 THE COULOMB FORCE LAW BETWEEN STATIONARY 
CHARGES 

2-2-1 Coulomb's Law 

It remained for Charles Coulomb in 1785 to express these 
experimental observations in a quantitative form. He used a 
very sensitive torsional balance to measure the force between 
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two stationary charged balls as a function of their distance 
apart. He discovered that the force between two small charges 
q, and q2 (idealized as point charges of zero size) is pro­
portional to their magnitudes and inversely proportional to 
the square of the distance r 12 between them, as illustrated in 
Figure 2-6. The force acts along the line joining the charges 
in the same or opposite direction of the unit vector i 12 and is 
attractive if the-charges are of opposite sign and repulsive if 
like charged. The force F2 on charge q2 due to charge qi is 
equal in magnitude but opposite in direction to the force F, 
on q1, the net force on the pair of charges being zero. 

1 i2 2nt[kg­
4-rso r 12 

2-2-2 Units 

The value of the proportionality constant 1/4irsE depends 
on the system of units used. Throughout this book we use SI 
units (Systeme International d'Unit6s) for which the base 
units are taken from the rationalized MKSA system of units 
where distances are measured in meters (m), mass in kilo­
grams (kg), time in seconds (s), and electric current in 
amperes (A). The unit of charge is a coulomb where 1 
coulomb= 1 ampere-second. The adjective "rationalized" is 
used because the factor of 47r is arbitrarily introduced into 
the proportionality factor in Coulomb's law of (1). It is done 
this way so as to cancel a 41r that will arise from other more 
often used laws we will introduce shortly. Other derived units 
are formed by combining base units. 

qlq2 
q2 F2 4 '12 

r12 

F1 =-F 
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Figure 2-6 The Coulomb force between two point charges is proportional to the 
magnitude of the charges and inversely proportional to the square of the distance 
between them. The force on each charge is equal in magnitude but opposite in 
direction. The force vectors are drawn as if q, and q 2 are of the same sign so that the 
charges repel. If q, and q2 are of opposite sign, both force vectors would point in the 
opposite directions, as opposite charges attract. 
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The parameter Eo is called the permittivity of free space 
and has a value 

2eo= (47r X 10- 7c ­

10;: 8.8542 X 12 farad/m [A 2 _S 4-- kg' - m 3 ] (2)
367r 

where c is the speed of light in vacuum (c -3 X 10" m/sec). 
This relationship between the speed of light and a physical 

constant was an important result of the early electromagnetic 
theory in the late nineteenth century, and showed that light is 
an electromagnetic wave; see the discussion in Chapter 7. 

To obtain a feel of how large the force in (1) is, we compare 
it with the gravitational force that is also an inverse square law 
with distance. The smallest unit of charge known is that of an 
electron with charge e and mass m, 

e - 1.60X 10- 19 Coul, m, =9.11 X 10-3' kg 

Then, the ratio of electric to gravitational force magnitudes 
for two electrons is independent of their separation: 

F, e'/(47reor2 ) e2 1 42 -= - 2 -4.16 x 10 (3)
F9 GM/r m, 47reoG 

where G = 6.67 x 101 [m 3 -s~ 2-kg'] is the gravitational 
constant. This ratio is so huge that it exemplifies why elec­
trical forces often dominate physical phenomena. The minus 
sign is used in (3) because the gravitational force between two 
masses is always attractive while for two like charges the 
electrical force is repulsive. 

2-2-3 The Electric Field 

If the charge qi exists alone, it feels no force. If we now 
bring charge q2 within the vicinity of qi, then q2 feels a force 
that varies in magnitude and direction as it is moved about in 
space and is thus a way of mapping out the vector force field 
due to qi. A charge other than q2 would feel a different force 
from q2 proportional to its own magnitude and sign. It 
becomes convenient to work with the quantity of force per 
unit charge that is called the electric field, because this quan­
tity is independent of the particular value of charge used in 
mapping the force field. Considering q2 as the test charge, the 
electric field due to qi at the position of q2 is defined as 

E2 = lim F= q2 112 volts/m [kg-m-s 3 - A ] (4) 
2-o. q2 4ireor12 
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In the definition of (4) the charge qi must remain stationary. 
This requires that the test charge q2 be negligibly small so that 
its force on qi does not cause qi to move. In the presence of 
nearby materials, the test charge q2 could also induce or cause 
redistribution of the charges in the material. To avoid these 
effects in our definition of the electric field, we make the test 
charge infinitely small so its effects on nearby materials and 
charges are also negligibly small. Then (4) will also be a valid 
definition of the electric field when we consider the effects of 
materials. To correctly map the electric field, the test charge 
must not alter the charge distribution from what it is in the 
absence of the test charge. 

2-2-4 Superposition 

If our system only consists of two charges, Coulomb's law 
(1) completely describes their interaction and the definition of 
an electric field is unnecessary. The electric field concept is 
only useful when there are large numbers of charge present 
as each charge exerts a force on all the others. Since the forces 
on a particular charge are linear, we can use superposition, 
whereby if a charge qi alone sets up an electric field El, and 
another charge q2 alone gives rise to an electric field E2 , then 
the resultant electric field with both charges present is the 
vector sum E1 +E 2. This means that if a test charge q, is 
placed at point P in Figure 2-7, in the vicinity of N charges it 
will feel a force 

F,= qEp (5) 

E2 

/rNP 

. . .... ..N E = E,+E2 + .... +EN 

Figure 2-7 The electric field due to a collection of point charges is equal to the vector 
sum of electric fields from each charge alone. 
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where Ep is the vector sum of the electric fields due to all the 
N-point charges, 

Ep= -2 + 2__2P + S1P + Np)+ 24 eo rip r2P rp rNp 

= N -, 	 (6) 

Note that Ep has no contribution due to q, since a charge 
cannot exert a force upon itself. 

EXAMPLE 2-1 TWO-POINT CHARGES 

Two-point charges are a distance a apart along the z axis as 
shown in Figure 2-8. Find the electric field at any point in the 
z =0 plane when the charges are: 

(a) 	 both equal to q 
(b) 	 of opposite polarity but equal magnitude * q. This 

configuration is called an electric dipole. 

SOLUTION 

(a) In the z =0 plane, each point charge alone gives rise to 
field components in the ir and i, directions. When both 
charges are equal, the superposition of field components due 
to both charges cancel in the z direction but add radially: 

Er(Z=0)= q 2r 
47ET	 0 [r + (a/2)23I 2 

As a check, note that far away from the point charges (r >> a) 
the field approaches that of a point charge of value 2q: 

lim Er(z = 0)= 2 r. 4ireor 

(b) When the charges have opposite polarity, the total 
electric field due to both charges now cancel in the radial 
direction but add in the z direction: 

-q aE.(z = 0)=-q 2 )214 1TEo [r +(a/2) 2 

Far away from the point charges the electric field dies off as 
the inverse cube of distance: 

limE,(z =O)= -qa 
ra 4w7or 
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Figure 2-8 Two equal magnitude point charges are a distance a apart along the z 
axis. (a) When the charges are of the same polarity, the electric field due to each is 
radially directed away. In the z = 0 symmetry plane, the net field component is radial. 
(b) When the charges are of opposite polarity, the electric field due to the negative 
charge is directed radially inwards. In the z = 0 symmetry plane, the net field is now -z 
directed. 

The faster rate of decay of a dipole field is because the net 
charge is zero so that the fields due to each charge tend to 
cancel each other out. 

2-3 CHARGE DISTRIBUTIONS 

The method of superposition used in Section 2.2.4 will be 
used throughout the text in relating fields to their sources. 
We first find the field due to a single-point source. Because 
the field equations are linear, the net field due to many point 
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sources is just the superposition of the fields from each source 
alone. Thus, knowing the electric field for a single-point 
charge-at an arbitrary position immediately gives us the total 
field for any distribution of point charges. 

In typical situations, one coulomb of total charge may be 
present requiring 6.25 x 10' elementary charges (e -=1.60 x 
10-'9 coul). When dealing with such a large number of par­
ticles, the discrete nature of the charges is often not 
important and we can consider them as a continuum. We can 
then describe the charge distribution by its density. The same 
model is used in the classical treatment of matter. When we 
talk about mass we do not go to the molecular scale and count 
the number of molecules, but describe the material by its mass 
density that is the product of the local average number of 
molecules in a unit volume and the mass per molecule. 

2-3-1 Line, Surface, and Volume Charge Distributions 

We similarly speak of charge densities. Charges can dis­
tribute themselves on a line with line charge density 
A (coul/m), on a surface with surface charge density 
a- (coul/m2 ) or throughout a volume with volume charge 
density p (coul/m3 ). 

Consider a distribution of free charge dq of differential size 
within a macroscopic distribution of line, surface, or volume 
charge as shown in Figure 2-9. Then, the total charge q within 
each distribution is obtained by summing up all the differen­
tial elements. This requires an integration over the line, sur­
face, or volume occupied by the charge. 

A di J Adi (line charge) 

dq= o-dS ->q =< a-dS (surface charge) (1) 

p dV J p dV (volume charge) 

EXAMPLE 2-2 CHARGE DISTRIBUTIONS 

Find the total charge within each of the following dis­
tributions illustrated in Figure 2-10. 

(a) Line charge A 0 uniformly distributed in a circular hoop 
of radius a. 
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Figure 2-9 Charge distributions. (a) Point charge; (b) Line charge; (c) Surface 
charge; (d) Volume charge. 

SOLUTION 

A dl= jAoad0=21raAoq= 

(b) Surface charge o0 uniformly distributed on a circular 
disk of radius a. 

SOLUTION 

a 2w 

q=Jo-dS= oor dr do = 1ra200 

(c) Volume charge po uniformly distributed throughout a 
sphere of radius R. 
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Figure 2-10 Charge distributions of Example 2-2. (a) Uniformly distributed line 
charge on a circular hoop. (b) Uniformly distributed surface charge on a circular disk. 
(c) Uniformly distributed volume charge throughout a sphere. (d) Nonuniform line 
charge distribution. (e) Smooth radially dependent volume charge distribution 
throughout all space, as a simple model of the electron cloud around the positively 
charged nucleus of the hydrogen atom. 

SOLUTION 

2s4= r q= pdV= f ' ' por sin drdO do = 37TR P0 
S= =0 =0 

(d) A line charge of infinite extent in the z direction with 
charge density distribution 

A 0A =jl(l)
[I +(z/a) 2 

1 

SOLUTION 

q A dl=2 = A 0a tan - Aoira 
q j -cj [1+(z/a)2] a 
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(e) The electron cloud around the positively charged 
nucleus Q in the hydrogen atom is simply modeled as the 
spherically symmetric distribution 

p(r)=- Q3e 2r/a
Tra 

where a is called the Bohr radius. 

SOLUTION 

The total charge in the cloud is 

q= JvpdV 

=- f -e -2r/'r 2 sin 0 drdO do 
,.=, 1=0 f,"- ira 

= -- : ~e2T/r2 dr 
=- -oae -2'' r 2 

-3 (~ e~' [r2 -- ) 1)] 1_0 

= -Q 

2-3-2 The Electric Field Due to a Charge Distribution 

Each differential charge element dq as a source at point Q 
contributes to the electric field at. a point P as 

dq
dE= 2 iQp (2)

41rEorQ' 

where rQp is the distance between Q and P with iQp the unit 
vector directed from Q to P. To find the total electric field, it 
is necessary to sum up the contributions from each charge 
element. This is equivalent to integrating (2) over the entire 
charge distribution, remembering that both the distance rQp 
and direction iQp vary for each differential element 
throughout the distribution 

dq
E = q Q2 (3)

111, 417rEor Qp 

where (3) is a line integral for line charges (dq = A dl), a 
surface integral for surface charges (dq = o-dS), a volume 
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integral for a volume charge distribution (dq = p dV), or in 
general, a combination of all three. 

If the total charge distribution is known, the electric field is 
obtained by performing the integration of (3). Some general 
rules and hints in using (3) are: 

1. 	 It is necessary to distinguish between the coordinates of 
the field points and the charge source points. Always 
integrate over the coordinates of the charges. 

2. 	 Equation (3) is a vector equation and so generally has 
three components requiring three integrations. Sym­
metry arguments can often be used to show that partic­
ular field components are zero. 

3. 	 The distance rQp is always positive. In taking square 
roots, always make sure that the positive square root is 
taken. 

4. 	 The solution to a particular problem can often be 
obtained by integrating the contributions from simpler 
differential size structures. 

2-3-3 Field Due to an Infinitely Long Line Charge 

An infinitely long uniformly distributed line charge Ao 
along the z axis is shown in Figure 2-11. Consider the two 
symmetrically located charge elements dq1 and dq2 a distance z 
above and below the point P, a radial distance r away. Each 
charge element alone contributes radial and z components to 
the electric field. However, just as we found in Example 2-la, 
the two charge elements together cause equal magnitude but 
oppositely directed z field components that thus cancel leav­
ing only additive radial components: 

Aodz Aordz 
dEr= 4eo(z2 + r2 cos e = 4reo(z2 + r2) (4) 

To find the total electric field we integrate over the length 
of the line charge: 

-Aor *( dz 
Er I~+0 2 23/2
4 reo (z +r ) 

Aor z +G 
241weo r2(z 2 +r 2)1 

Ao (5)
2virr 
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Figure 2-11 An infinitely long uniform distribution of line charge only has a radially 
directed electric field because the z components of the electric field are canceled out by 
symmetrically located incremental charge elements as also shown in Figure 2-8a. 

2-3-4 Field Due to Infinite Sheets of Surface Charge 

(a) Single Sheet 
A surface charge sheet of infinite extent in the y =0 plane 

has a uniform surface charge density cro as in Figure 2-12a. 
We break the sheet into many incremental line charges of 
thickness dx with dA = O-o dx. We could equivalently break the 
surface into incremental horizontal line charges of thickness 
dz. Each incremental line charge alone has a radial field 
component as given by (5) that in Cartesian coordinates 
results in x and y components. Consider the line charge dA 1, a 
distance x to the left of P, and the symmetrically placed line 
charge dA 2 the same distance x to the right of P. The x 
components of the resultant fields cancel while the y 
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Figure 2-12 (a) The electric field from a uniformly surface charged sheet of infinite 
extent is found by summing the contributions from each incremental line charge 
element. Symmetrically placed line charge elements have x field components that 
cancel, but y field components that add. (b) Two parallel but oppositely charged sheets 
of surface charge have fields that add in the region between the sheets but cancel 
outside. (c) The electric field from a volume charge distribution is obtained by sum­
ming the contributions from each incremental surface charge element. 
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components add: 

(O dx Cooy dxdE (6)
21reo(x 2 

+y2)/2 2cro(x2+y2) 

The total field is then obtained by integration over all line 
charge elements: 

r'"
EOY dx
E = 2 2

21reo L x +y 

0 y 1 tan-I+co 
= - tan ­2 ITeoYy 1 x=-wo 

o-o/2eo, y>O 
(7)

-o-o/2eo, y <0 

where we realized that the inverse tangent term takes the sign 
of the ratio x/y so that the field reverses direction on each side 
of the sheet. The field strength does not decrease with dis­
tance from the infinite sheet. 

(b) Parallel Sheets of Opposite Sign 
A capacitor is formed by two oppositely charged sheets of 

surface charge a distance 2a apart as shown in Figure 2-12b. 



poy a P0

68 The Electric Field 

The fields due to each charged sheet alone are obtained from 
(7) as 

0., 

2Eo 
y > -a i,,

2EO 
y>a 

E1=< E2= (8) 

- i,,2EO y <-a 
2EO 

,, y<a 

Thus, outside the sheets in regions I and III the fields cancel 
while they add in the enclosed region II. The nonzero field is 
confined to the region between the charged sheets and is 
independent of the spacing: 

E=E1 +E 2 = 0 
O jyj>a 

(9) 

(c) Uniformly Charged Volume 
A uniformly charged volume with charge density po of 

infinite extent in the x and z directions and of width 2a is 
centered about the y axis, as shown in Figure 2-12c. We break 
the volume distribution into incremental sheets of surface 
charge of width dy' with differential surface charge density 
do- = po dy'. It is necessary to distinguish the position y' of the 
differential sheet of surface charge from the field point y. The 
total electric field is the sum of all the fields due to each 
differentially charged sheet. The problem breaks up into 
three regions. In region I, where y 5 -a, each surface charge 
element causes a field in the negative y direction: 

E,= -
-a 

dy'= ­
2E0 

poa,
6o 

y:5 -a (10) 

Similarly, in region III, where y a, each charged sheet gives 
rise to a field in the positive y direction: 

E,= 
_-a 2EO 

poa,
EO 

y>a (11) 

f dy'_P0Y, -a 5y 5a (12) 

For any position y in region II, where -a 5 y a, the charge 
to the right of y gives rise to a negatively directed field while 
the charge to the left of y causes a positively directed field: 

I 
E,= +2y _ 

2 2EO EO 

The field is thus constant outside of the volume of charge and 
in opposite directions on either side being the same as for a 
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surface charged sheet with the same total charge per unit 
area, aO = po2a. At the boundaries y = a, the field is 
continuous, changing linearly with position between the 
boundaries: 

-- oa, y!-a 

E,= , -a 5y5 a (13)
So 

-oa 
, y a6 0 

2-3-5 Superposition of Hoops of Line Charge 

(a) Single Hoop 
Using superposition, we can similarly build up solutions 

starting from a circular hoop of radius a with uniform line 
charge density Ao centered about the origin in the z = 0 plane 
as shown in Figure 2-13a. Along the z axis, the distance to the 
hoop perimeter (a 2+Z2112 is the same for all incremental 

point charge elements dq=Aoad4. Each charge element 
alone contributes z- and r-directed electric field components. 
However, along the z axis symmetrically placed elements 180* 
apart have z components that add but radial components that 
cancel. The z-directed electric field along the z axis is then 

E.f2 Aoa d4cos 0 Aoaz
E = = 2(14)

0 47rEo(z + a ) 2Eo(a +Z )s/ 
The electric field is in the -z direction along the z axis below the 
hoop. 

The total charge on the hoop is q = 2waXo so that (14) can 
also be written as 

qz
E 4areo(a2 +z2 )3 2  (15) 

When we get far away from the hoop (I z I > a), the field 
approaches that of a point charge: 

q Jz >0

lim E. = * q 2 Iz<0 (16)

1%1,.a 47rEoz z <O 

(b) Disk of Surface Charge 
The solution for a circular disk of uniformly distributed 

surface charge o- is obtained by breaking the disk into 
incremental hoops of radius r with line charge dA = -o dr as in 
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a
 
j 

dE + dE2 
/b 

I OP 
dE dE 

2 

cos = (a 
2 

+ 2)1/2 
P 

1a
2 

+ 22)1 
o 

dq2 = XOado a dq, = XoadO 
a- ~ . 

A = oodr 
y 

xo 
dr 

X Hoop of line charge Disk of surface charge 
(a) (b) 

dr, do = po dr 

- 3z 

7 1 ds', do = Pa dz'WI
2L 2L 

:-it- T
00 

-x­
-L - ­

Hollow cylinder of Cylinder of 
surface charge volume charge 

(c) (d) 

Figure 2-13 (a) The electric field along the symmetry z axis of a uniformly dis­
tributed hoop of line charge is z directed. (b) The axial field from a circular disk of 
surface charge is obtained by radially summing the contributions of incremental hoops 
of line charge. (c) The axial field from a hollow cylinder of surface charge is obtained 
by axially summing the contributions of incremental hoops of line charge. (d) The axial 
field from a cylinder of volume charge is found by summing the contributions of axial 
incremental disks or of radial hollow cylinders of surface charge. 

Figure 2-13b. Then the incremental z-directed electric field 
along the z axis due to a hoop of radius r is found from (14) as 

arrz dr (127)dE.= (17)dE.~ r 
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where we replace a with r, the radius of the incremental 
hoop. The total electric field is then 

a rdr 
O-oz 2 2 1/2 
2EE Jo (r +z ) 

oJoz 
2eo(r2 +Z2V1 2 o 
_ ( _ z z 

2E (2eo '(a 2 +z2) )u1/2 I+z Izi/ 
_roz 

(18)z >0 
2eo 2eo(a 2+z2) 1z<0 (1 

where care was taken at the lower limit (r = 0), as the magni­
tude of the square root must always be used. 

As the radius of the disk gets very large, this result 
approaches that of the uniform field due to an infinite sheet 
of surface charge: 

lim E = z>0(19) 
a-00 2co 1 z <0 

(c) Hollow Cylinder of Surface Charge 
A hollow cylinder of length 2L and radius a has its axis 

along the z direction and is centered about the z =0 plane as 
in Figure 2-13c. Its outer surface at r=a has a uniform 
distribution of surface charge ao. It is necessary to distinguish 
between the coordinate of the field point z and the source 
point at z'(-L sz':5L). The hollow cylinder is broken up 
into incremental hoops of line charge dA = ordz'. Then, the 
axial distance from the field point at z to any incremental 
hoop of line charge is (z -z'). The contribution to the axial 
electric field at z due to the incremental hoop at z' is found 
from (14) as 

dE = aoa(z - z') dz' (20)- z') 2]31 2 
2Eo[a 2 +(z 

which when integrated over the length of the cylinder yields 

ooa [L (z - z') dz'
 
Ez 2eO .L [a2 +(z - z') 23 1 2
 

o-oa *1 
2eo [a2 +(z -z') 2 

'L 

[a L) 2 [a2+( +L)211/2) (21)2 +(z 1/2 
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(d) Cylinder of Volume Charge 
If this same cylinder is uniformly charged throughout the 

volume with charge density po, we break the volume into 
differential-size hollow cylinders of thickness dr with incre­
mental surface charge do-=po dr as in Figure 2-13d. Then, the 
z-directed electric field along the z axis is obtained by integra­
tion of (21) replacing a by r: 

E. =-LO- f r( 2 -2122 2 12 dr 
2E 0 Jo \[r +(z -L) [r +(z+L) I / 

[r2+(Z+L)2]1/21 = {[r2+(Z -L)1/2 2 

2eo 

=-- -{[a2+(z -L)2 ]1-Iz -LI -[a 2 +(z +L) 2 1/2 

2Eo 

+Iz+LL} (22) 

where at the lower r=0 limit we always take the positive 
square root. 

This problem could have equally well been solved by 
breaking the volume charge distribution into many differen­
tial-sized surface charged disks at position z'(-L z':L), 
thickness dz', and effective surface charge density do =po dz'. 
The field is then obtained by integrating (18). 

2-4 GAUSS'S LAW 

We could continue to build up solutions for given charge 
distributions using the coulomb superposition integral of 
Section 2.3.2. However, for geometries with spatial sym­
metry, there is often a simpler way using some vector prop­
erties of the inverse square law dependence of the electric 
field. 

2-4-1 Properties of the Vector Distance Between Two Points, rop 

(a) rop 
In Cartesian coordinates the vector distance rQp between a 

source point at Q and a field point at P directed from Q to P 
as illustrated in Figure 2-14 is 

r2p= (x -XQ)i + (y - yQ)i, +(z - Z()I (1) 

with magnitude 

rQp=[(x xQ)2+(y yQ)2 +(z -ZQ)2 ]1 (2) 

The unit vector in the direction of rQp is 

IQP = rQP (3) 
rQP 
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Q 
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I ~ ~ j .T' - Q 
Y 

xI 
XQ-

Figure 2-14 The vector distance rQp between two points Q and P. 

(b) Gradient of the Reciprocal Distance, V(l/rQp) 
Taking the gradient of the reciprocal of (2) yields 

aV(I = ij- . a I I 
rQP) ax (QP Oy aY QP) +%i.- QP) 

= -r3 [(x -XQ)i. +(Y -YQ)i + (z -ZQ)i-I
rQP 

= -iQP/rQp (4) 

which is the negative of the spatially dependent term that we 
integrate to find the electric field in Section 2.3.2. 

(c) Laplacian of the Reciprocal Distance 
Another useful identity is obtained by taking the diver­

gence of the gradient of the reciprocal distance. This opera­
tion is called the Laplacian of the reciprocal distance. Taking 
the divergence of (4) yields 

=v (7QP 

IQP 
rQp 

x xQ ) y -Q )lz QP) 

3 535 

rQp rQP 
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Using (2) we see that (5) reduces to 

s( 1_) 0,dre T # 0 (6)
r/ =I undefined rQp=0 

Thus, the Laplacian of the inverse distance is zero for all 
nonzero distances but is undefined when the field point is 
coincident with the source point. 

2-4-2 Gauss's Law In Integral Form 

(a) Point Charge Inside or Outside a Closed Volume 
Now consider the two cases illustrated in Figure 2-15 where 

an arbitrarily shaped closed volune V either surrounds a 
point charge q or is near a point charge q outside the surface 
S. For either case the electric field emanates radially from the 
point charge with the spatial inverse square law. We wish to 
calculate the flux of electric field through the surface S sur­
rounding the volume V: 

(D= E -dS 

=f s2 i -dS
.41reorop 

-.dS	 (7)oV= 

dS 
f eoE -dS=0	 # eoE -dS=# eoE dS=q 

S S. 

SS 
dS 

F lux ofE nrn r
surf.c 

Flux of E leaving 
surface 

(a)	 (b) 

Figure 2-15 (a) The net flux of electric field through a closed surface S due to an 
outside point charge is zero because as much flux enters the near side of the surface as 
leaves on the far side. (b) All the flux of electric field emanating from an enclosed point 
charge passes through the surface. 
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where we used (4). We can now use the divergence theorem 
to convert the surface integral to a volume integral: 

fE -dS= q V -[V( -- dV (8)
S 41rE0 IV rP 

When the point charge q is outside the surface every point in 
the volume has a nonzero value of rQp. Then, using (6) with 
rQp #0, we see that the net flux of E through the surface is 
zero. 

This result can be understood by examining Figure 2-15a. 
The electric field emanating from q on that part of the sur­
face S nearest q has its normal component oppositely directed 
to dS giving a negative contribution to the flux. However, on 
the opposite side of S the electric field exits with its normal 
component in the same direction as dS giving a positive 
contribution to the flux. We have shown that these flux 
contributions are equal in magnitude but opposite in sign so 
that the net flux is zero. 

As 3llustrated in Figure 2-15b, assuming q to be positive, we 
see that when S surrounds the charge the electric field points 
outwards with normal component in the direction of dS 
everywhere on S so that the flux must be positive. If q were 
negative, E and dS would be oppositely directed everywhere 
so that the flux is also negative. For either polarity with 
nonzero q, the flux cannot be zero. To evaluate the value of 
this flux we realize that (8) is zero everywhere except where 
rQp =0 so that the surface S in (8) can be shrunk down to a 
small spherical surface S' of infinitesimal radius Ar sur­
rounding the point charge; the rest of the volume has rqp 0 0 
so that V -V(l/rQp) = 0. On this incremental surface we know 
the electric field is purely radial in the same direction as dS' 
with the field due to a point charge: 

E -2dS=f E-dS' q 4ir(&r)2 q (g) 
S s 41reo(Ar)2 E ( 

If we had many point charges within the surface S, each 
charge qi gives rise to a flux qsEo so that Gauss's law states that 
the net flux of eoE through a closed surface is equal to the net 
charge enclosed by the surface: 

eoE - dS )q.' (10)
fS all qj 

inside S 

Any charges outside S do not contribute to the flux. 

(b) 	 Charge Distributions 
For continuous charge distributions, the right-hand side of 

(10) includes the sum of all enclosed incremental charge 
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elements so that the total charge enclosed may be a line, 
surface, and/or volume integral in addition to the sum of 
point charges: 

feoE -dS= _ q + dq 
S all qi all q 

inside S inside S 

~~QqtfdIJ~s= q+f Adl+f jd) (11)-dS+tpdV) 
all charge 
inside S 

Charges outside the volume give no contribution to the total 
flux through the enclosing surface. 

Gauss's law of (11) can be used to great advantage in 
simplifying computations for those charges distributed with 
spatial symmetry. The trick is to find a surface S that has 
sections tangent to the electric field so that the dot product is 
zero, or has surfaces perpendicular to the electric field and 
upon which the field is constant so that the dot product and 
integration become pure multiplications. If the appropriate 
surface is found, the surface integral becomes very simple to 
evaluate. 

Coulomb's superposition integral derived in Section 2.3.2 is 
often used with symmetric charge distributions to determine 
if any field components are zero. Knowing the direction of 
the electric field often suggests the appropriate Gaussian sur­
face upon which to integrate (11). This integration is usually 
much simpler than using Coulomb's law for each charge 
element. 

2-4-3 Spherical Symmetry 

(a) Surface Charge 
A sphere of radius R has a uniform distribution of surface 

charge o-o as in Figure 2-16a. Measure the angle 0 from the 
line joining any point P at radial distance r to the sphere 
center. Then, the distance from P to any surface charge 
element on the sphere is independent of the angle 4. Each 
differential surface charge element at angle 0 contributes 
field components in the radial and 0 directions, but sym­
metrically located charge elements at -4 have equal field 
magnitude components that add radially but cancel in the 0 
direction. 

Realizing from the symmetry that the electric field is purely 
radial and only depends on r and not on 0 or 4, we draw 
Gaussian spheres of radius r as in Figure 2-16b both inside 
(r < R) and outside (r>R) the charged sphere. The Gaussian 
sphere inside encloses no charge while the outside sphere 
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dE 

dq2=aoR 2sin 0ddA.. - d 
Er Q 

41ror 2 
Total 

surface 
S- charge 

2 
.\ Q=47rR o0rgp + 

0 R + r + 

dqi =ooR
2 sinOdOdo 

/ 

+ + 
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Q =4aR2)0 GaussianNo IagNo c harge (spheres

enclosed s 
(a) (b) 

Figure 2-16 A sphere of radius R with uniformly distributed surface charge o-,. (a) 
Symmetrically located charge elements show that the electric field is purely radial. (b) 
Gauss's law, applied to concentric spherical surfaces inside (r < R) and outside (r > R) 
the charged sphere, easily shows that the electric field within the sphere is zero and 
outside is the same as if all the charge Q = 47rR Oro were concentrated as a point charge 
at the origin. 

encloses all the charge Q = o-o4-irR 2 

}ro47rR 2 = Q, r>R 

EOE - dS = EOE,47r2 = (12) 

0, r<R 

so that the electric field is 

o-oR2 
2= ] 2, r>R 

E= eor 47eor (13) 
0, r<R 

The integration in (12) amounts to just a multiplication of 
eoE, and the surface area of the Gaussian sphere because on 
the sphere the electric field is constant and in the same direc­
tion as the normal ir. The electric field outside the sphere is 
the same as if all the surface charge were concentrated as a 
point charge at the origin. 

The zero field solution for r <R is what really proved 
Coulomb's law. After all, Coulomb's small spheres were not 
really point charges and his measurements did have small 
sources of errors. Perhaps the electric force only varied 
inversely with distance by some power close to two, r-2 
where 8 is very small. However, only the inverse square law 
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gives a zero electric field within a uniformly surface charged 
sphere. This zero field result-is true for any closed conducting 
body of arbitrary shape charged on its surface with no 
enclosed charge. Extremely precise measurements were made 
inside such conducting surface charged bodies and the 
electric field was always found to be zero. Such a closed 
conducting body is used for shielding so that a zero field 
environment can be isolated and is often called a Faraday 
cage, after Faraday's measurements of actually climbing into 
a closed hollow conducting body charged on its surface to 
verify the zero field results. 

To appreciate the ease of solution using Gauss's law, let us 
redo the problem using the superposition integral of Section 
2.3.2. From Figure 2-16a the incremental radial component 
of electric field due to a differential charge element is 

c-oR2 sin eded
dE,- 42sn cos a (14) 

From the law of cosines the angles and distances are related as 
2 2 2rQp r +R -2rR cos 0 

2 2 2 (5
R =r +rQP-2rrQpcosa 

so that a is related to 0 as 

r-R cos 0 
[r +R -2rR cos9] 2 (16) 

Then the superposition integral of Section 2.3.2 requires us 
to integrate (14) as 

r. f 2 o-oR2 sin 8(r-R cos 0) d0d4 
E 6=0 = 41reo[r +R-2rR cos 01 (' 

After performing the easy integration over 4 that yields the 
factor of 21r, we introduce the change of variable: 

u =r2 +R 2-2rR cos 6 

du = 2rR sin dG (18) 

which allows us to rewrite the electric field integral as 
(r+R)2 2 2 dU

Er oR[u+r -R]d 
= 2 3/2 

2 -R2 ) (r+R)2OR U1/2 _(r

4eUr 2 112 I I(r-R)2 

o-oR (r+R)-|r-RI -(r 2 -R) (rR_ 12)
\ R -RI) 

(19) 
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where we must be very careful to take the positive square root 
in evaluating the lower limit of the integral for r <R. Evalu­
ating (19) for r greater and less than R gives us (13), but with 
a lot more effort. 

(b) Volume Charge Distribution 
If the sphere is uniformly charged throughout with density 

po, then the Gaussian surface in Figure 2-17a for r>R still 
encloses the total charge Q =l rR 3po. However, now the 
smaller Gaussian surface with r <R encloses a fraction of the 
total charge: 

Po irr3=Q(r/R) 3 , r<R 

f eoE - dS= eoE,42rr2 3 (20) 
S poirR 3 Q, r>R 

E, = 
2 

(r>R) 

Total
 
volume
 
charge \
 

Q + r - Enclosed 

S+g+ + \RI+ R2~) 

Q R31 ++/r + \+ 47reR= PO(1)
 
Enclosed + + + +
 

P+ 

R 
Er r (r3 < R)

47ref)R3 

(a) 

R do podr' 

dr'2 

dE, = p r 2 r>r' 
Eeor 

0 r < r' 

(b) 

Figure 2-17 (a) Gaussian spheres for a uniformly charged sphere show that the 
electric field outside the sphere is again the same as if all the charge Q =irRspowere 
concentrated as a point charge at r =0. (b) The solution is also obtained by summing 
the contributions from incremental spherical shells of surface charge. 
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so that the electric field is 

rpor =Qr 
Er [SeO 47reOR3 'R'21 

poR3 (21)
-

2 
= - , r>R 

3e0 r 47rEor2 

This result could also have been obtained using the results 
of (13) by breaking the spherical volume into incremental 
shells of radius r', thickness dr', carrying differential surface 
charge do- = po dr'as in Figure 2-17b. Then the contribution to 
the field is zero inside each shell but nonzero outside: 

0, r < r' 
(22)

dE,r= por2 dr', 
2 , r>r' 

Eor 

The total field outside the sphere is due to all the differential 
shells, while the field inside is due only to the enclosed shells: 

r12odr' p0r Qr1 2 = - 3, r<R 
eor 3 =4ire0R

E,= p dr' poR3 Q (23) 

- 2' r>R
E 0r2 3eor2 lreor 

which agrees with (21). 

2-4-4 Cylindrical Symmetry 

(a) Hollow Cylinder of Surface Charge 
An infinitely long cylinder of radius a has a uniform dis­

tribution of surface charge a-0, as shown in Figure 2-18a. The 
angle 0 is measured from the line joining the field point P to 
the center of the cylinder. Each incremental line charge ele­
ment dA = a0a do contributes to the electric field at P as given 
by the solution for an infinitely long line charge in Section 
2.3.3. However, the symmetrically located element at -4 
gives rise to equal magnitude field components that add 
radially as measured from the cylinder center but cancel in 
the 4 direction. 

Because of the symmetry, the electric field is purely radial 
so that we use Gauss's law with a concentric cylinder of radius 
r and height L, as in Figure 2-18b where L is arbitrary. There 
is no contribution to Gauss's law from the upper and lower 
surfaces because the electric field is purely tangential. Along 
the cylindrical wall at radius r, the electric field is constant and 
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dE1 dET = dE1 + dE 2 

2 =OadO -	 dE E= 0 (r < a) 

S-- + 00 
+ r 

Er = r>a 	 + + + 
+ + 

A = acadp	 -" I 

S r 

I
L

IG	 Gaussian
 
surfaces
 

(a) 

+U + 

do = po dr'	 (b)
PO 

+ ++ + 
+ dr' dE, eo r '{por'dr'r>

0 r<r' 

(C) 

Figure 2-18 (a) Symmetrically located line charge elements on a cylinder with uni­
formly distributed surface charge show that the electric field is purely radial. (b) 
Gauss's law applied to concentric cylindrical -surfaces shows that the field inside the 
surface charged cylinder is zero while outside it is the same as if all the charge per unit 
length a-0o 27ra were concentrated at the origin as a line charge. (c) In addition to using 
the surfaces of (b) with Gauss's law for a cylinder of volume charge, we can also sum 
the contributions from incremental hollow cylinders of surface charge. 

purely normal so that Gauss's law simply yields 

127raL, r > a 

eoE - dS= eoL27rrL =	 (24) 

0 r<a 

where for r <a no charge is enclosed, while for r> a all the 
charge within a height L is enclosed. The electric field outside 
the cylinder is then the same as if all the charge per unit 
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length A = o-o27ra were concentrated along the axis of the 
cylinder: 

o-oa A 
_ r>a 

Er= -Eor 21Teor (25) 
0, r<a 

Note in (24) that the arbitrary height L canceled out. 

(b) Cylinder of Volume Charge 
If the cylinder is uniformly charged with density po, both 

Gaussian surfaces in Figure 2-18b enclose charge 

~E~d=E2-Ip 0 ra2L, r~a 
Eo E - dS = EOE, 21rrL =or L~ (26)

poirr2L, r<a 

so that the electric field is 

poa A 
= , r>a 

2eor 21reor (27) 
por _ Ar 2 r<a 
2e0 27reoa 

where A =poira2 is the total charge per unit length on the 
cylinder. 

Of course, this result could also have been obtained by 
integrating (25) for all differential cylindrical shells of radius 
r' with thickness dr' carrying incremental surface charge do-= 
po dr', as in Figure 2-18c. 

por' dr'= pa= , r>a 

Er= r 2eor 27reor'ArJor eor 2r ~ (28) 
por' dr'=o = 2,A r r<a 

fo Eor 2eO 2reoa 

2-4-5 Gauss's Law and the Divergence Theorem 

If a volume distribution of charge p is completely sur­
rounded by a closed Gaussian surface S, Gauss's law of (11) is 

fEoE -dS= tpdV (29) 

The left-hand side of (29) can be changed to a volume 
integral using the divergence theorem: 

fEoE-dS= V-(EoE)dV= pdV (30) 
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Since (30) must hold for any volume, the volume integrands 
in (30) must be equal, yielding the point form of Gauss's law: 

V - (-oE)= p (31) 

Since the permittivity of free space Eo is a constant, it can 
freely move outside the divergence operator. 

2-4-6 Electric Field Discontinuity Across a Sheet of Surface Charge 

In Section 2.3.4a we found that the electric field changes 
direction discontinuously on either side of a straight sheet of 
surface charge. We can be more general by applying the 
surface integral form of Gauss's law in (30) to the differential-
sized pill-box surface shown in Figure 2-19 surrounding a 
small area dS of surface charge: 

fEoE.dS= o-dS >o(E 2.- E1.)dS=o-dS (32) 

where E2 . and El. are the perpendicular components of 
electric field on each side of the interface. Only the upper and 
lower surfaces of the pill-box contribute in (32) because the 
surface charge is assumed to have zero thickness so that the 
short cylindrical surface has zero area. We thus see that the 
surface charge density is proportional to the discontinuity in 
the normal component of electric field across the sheet: 

so(E2, - E.) = o-n - Eo(E 2 - Ei) = o- (33) 

where n is perpendicular to the interface directed from 
region 1 to region 2. 

1E2 

dS= n dS 

1I 

E h n-- co ( E2-- E) =I 

"dS = -ndS 

Figure 2-19 Gauss's law applied to a differential sized pill-box surface enclosing some 
surface charge shows that the normal component of EOE is discontinuous in the surface 
charge density. 
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2-5 THE ELECTRIC POTENTIAL 

If we have two charges of opposite sign, work must be done 
to separate them in opposition to the attractive coulomb 
force. This work can be regained if the charges are allowed to 
come together. Similarly, if the charges have the same sign, 
work must be done to push them together; this work can be 
regained if the charges are allowed to separate. A charge 
gains energy when moved in a direction opposite to a force. 
This is called potential energy because the amount of energy 
depends on the position of the charge in a force field. 

2-5-1 Work Required to Move a Point Charge 

The work W required to move a test charge q, along any 
path from the radial distance r. to the distance rb with a force 
that just overcomes the coulombic force from a point charge 
q, as shown in Figure 2-20, is 

rb 
W=- F-dI 

r. 

4 ,.- (1) 

No work to move
 
charge along spherical
 

paths because F - dl = 0
 

41reo rb ra 
rb 

q 

Spherical 
equipotential 
surfaces
 

Figure 2-20 It takes no work to move a test charge q, along the spherical surfaces 
perpendicular to the electric field due to a point charge q. Such surfaces are called 
equipotential surfaces. 
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The minus sign in front of the integral is necessary because 
the quantity W represents the work we must exert on the test 
charge in opposition to the coulombic force between charges. 
The dot product in (1) tells us that it takes no work to move 
the test charge perpendicular to the electric field, which in 
this case is along spheres of constant radius. Such surfaces are 
called equipotential surfaces. Nonzero work is necessary to 
move q to a different radius for which dl = dr i,. Then, the 
work of (1) depends only on the starting and ending positions 
(r. and rb) of the path and not on the shape of the path itself: 

qq, f'6 dr 
41reo r 

qqt (1 1 (2)
4ireo \rb r. 

We can convince ourselves that the sign is correct by examin­
ing the case when rb is bigger than r, and the charges q and q, 
are of opposite sign and so attract each other. To separate the 
charges further requires us to do work on q, so that W is 
positive in (2). If q and q, are the same sign, the repulsive 
coulomb force would tend to separate the charges further 
and perform work on q,. For force equilibrium, we would 
have to exert a force opposite to the direction of motion so 
that W is negative. 

If the path is closed so that we begin and end at the same 
point with ra = rb, the net work required for the motion is 
zero. If the charges are of the opposite sign, it requires 
positive work to separate them, but on the return, equal but 
opposite work is performed on us as the charges attract each 
other. 

If there was a distribution of charges with net field E, the 
work in moving the test charge against the total field E is just 
the sum of the works necessary to move the test charge 
against the field from each charge alone. Over a closed path 
this work remains zero: 

W= -qE -dl=0- E- d=0 (3) 

which requires that the line integral of the electric field 
around the closed path also be zero. 

2-5-2 The Electric Field and Stokes' Theorem 

Using Stokes' theorem of Section 1.5.3, we can convert the 
line integral of the electric field to a surface integral of the 
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curl of the electric field: 

E -dl= (V XE) -dS (4) 

From Section 1.3.3, we remember that the gradient of a scalar 
function also has the property that its line integral around a 
closed path is zero. This means that the electric field can be 
determined from the gradient of a scalar function V called 
the potential having units of volts [kg-m 2-s-3-A-]: 

E = -V V (5) 

The minus sign is introduced by convention so that the elec­
tric field points in the direction of decreasing potential. From 
the properties of the gradient discussed in Section 1.3.1 we 
see that the electric field is always perpendicular to surfaces of 
constant potential. 

By applying the right-hand side of (4) to an area of 
differential size or by simply taking the curl of (5) and using 
the vector identity of Section 1.5.4a that the curl of the 
gradient is zero, we reach the conclusion that the electric field 
has zero curl: 

VxE=O (6) 

2-5-3 The Potential and the Electric Field 

The potential difference between the two points at ra and rb 

is the work per unit charge necessary to move from ra to rb: 

w 
V(rb)- V(ra)=-

Jrb fS 7 

=f E - dl= + E - dl (7) 

Note that (3), (6), and (7) are the fields version of Kirchoff's 
circuit voltage law that the algebraic sum of voltage drops 
around a closed loop is zero. 

The advantage to introducing the potential is that it is a 
scalar from which the electric field can be easily calculated. 
The electric field must be specified by its three components, 
while if the single potential function V is known, taking its 
negative gradient immediately yields the three field 
components. This is often a simpler task than solving for each 
field component separately. Note in (5) that adding a constant 
to the potential does not change the electric field, so the 
potential is only uniquely defined to within a constant. It is 
necessary to specify a reference zero potential that is often 
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taken at infinity. In actual practice zero potential is often 
assigned to the earth's surface so that common usage calls the 
reference point "ground." 

The potential due to a single point charge q is 

' qdr 2 q
V(rb)- V(r.)= - = 

J,47rer 47rEor,. 

= ( I _ 1 (8)
47reo \rb r./ 

If we pick our reference zero potential at r. = 00, V(r.) =0 so 
that rb = r is just the radial distance from the point charge. 
The scalar potential V is then interpreted as the work per 
unit charge necessary to bring a charge from infinity to some 
distance r from the point charge q: 

V(r) 4 (9)
A1reor 

The net potential from many point charges is obtained by 
the sum of the potentials from each charge alone. If there is a 
continuous distribution of charge, the summation becomes an 
integration over all the differential charge elements dq: 

V= d (10)
II q4 reorQp 

where the integration is a line integral for line charges, a 
surface integral for surface charges, and a volume integral 
for volume charges. 

The electric field formula of Section 2.3.2 obtained by 
superposition of coulomb's law is easily re-obtained by taking 
the negative gradient of (10), recognizing that derivatives are 
to be taken with respect to field positions (x, y, z) while the 
integration is over source positions (xQ, yQ, zQ). The del 
operator can thus be brought inside the integral and operates 
only on the quantity rQp: 

dq ( I
E=-VV 

JaIIq 4 reo rQp 

dq 

ai QP (I 

where we use the results of Section 2.4. 1b for the gradient of 
the reciprocal distance. 

M M 
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2-5-4 Finite Length Line Charge 

To demonstrate the usefulness of the potential function, 
consider the uniform distribution of line charge Ao of finite 
length 2L centered on the z axis in Figure 2-21. Distinguish­
ing between the position of the charge element dq = Ao dz' at 
z' and the field point at coordinate z, the distance between 
source and field point is 

rQp=[r2+(z -z) )1/2 (12) 

Substituting into (10) yields 

L Ao dz'
V=JL 47reo[r2+(z- z')2 1/2 

2 1/2 
L +[r2 +(zZ -L)Ao z ­

+ L ) /41rco (z + L + [r+( 

AO -z-L . 1z+L 
= sinh -- -smh- (13)

47rEo\ r r 

-L 
dq X0dz' 

[r
2 

+ - 12(z' 1)2 

r\\ 2odz'd 
Vp 4veo [r2 

+ (z' - 21Y11/
P(r, ., z) 

xe 

Figure 2-21 The potential from a finite length of line charge is obtained by adding 
the potentials due to each incremental line charge element. 



The Electric Potential 89 

The field components are obtained from (13) by taking the 
negative gradient of the potential: 

aV Ao 1 1 
E. = --- = -- 2 (Z + L )21/2z 4E [r2+(Z - L )21/2 

aVBr 4wreo\[rAor +(z -L)2 ]sz- I +[r+(zL)2 
Er=- = 2+ Z )11[ +Z 2l2 

ar 47reo \[r +(-L) 2 "[-L+[r (-)]] 

[r2+(z+L)2 2[z+L+[r +(z+L)2]/2 

SAo( z-L z+L\
 

47reor \[r2 +(z -L) 2]1 2 [r2+(+L)2]1 2) (14) 

As L becomes large, the field and potential approaches that 
of an infinitely long line charge: 

E= 0

=A
oE, =k (15) 
lim 27reor 

-V= (In r -ln 2L)
21rso 

The potential has a constant term that becomes infinite 
when L is infinite. This is because the zero potential reference 
of (10) is at infinity, but when the line charge is infinitely long 
the charge at infinity is nonzero. However, this infinite 
constant is of no concern because it offers no contribution to 
the electric field. 

Far from the line charge the potential of (13) approaches 
that of a point charge 2AoL: 

lim V=Ao(2L) (16)2 2>L2 r +z 47rEor 
Other interesting limits of (14) are 

E. =0 

lim AL 

rE 27reor(r2+L2)2 

AoL z>L 
A 2reo(z2 -L 2)' z<-L 

~E =A-( 1 ___ ­

lim 47rEo L |z+L| z -LIL|
r= rE(L2 Z2), -LzsL 

Er=0 (17) 

M
 



90 ne Electric Field 

2-5-5 	 Charged Spheres 

(a) Surface Charge 
A sphere of radius R supports a uniform distribution of 

surface charge ao with total charge Q = ao4wR2, as shown in 
Figure 2-22a. Each incremental surface charge element 
contributes to the potential as 

sin 6 ded4dV=-OR 4	 
(18) 

reorp 

where from the law of cosines 

rQP=R +r -2rR cose (19) 

so that the differential change in rQp about the sphere is 

2rQpdrQp= 2rR. sin 0d	 (20) 

r>r' 
dV= 	 Cor 

de r <r' 

dq =ooR
2 sin-dOd- 2Rco*l 

+ + + t 2	 d =podr' 

+ + r R dr' 
R 

+ r' + PO 

(a) 

Figure 2-22 (a) A sphere of radius R supports a uniform distribution of surface 
charge a-0o. (b) The potential due to a uniformly volume charged sphere is found by 
summing the potentials due to differential sized shells. 
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Therefore, the total potential due to the whole charged 
sphere is 

r+R 2w gyR 
aV= drop d4 

v =Pr-R=I 6==o4veor 

toR r+R 

2eor jr-RI 

a-oR2 Q 
eor 41reor' r>R 

a-OR Q(21) 
so 41reoR' 

Then, as found in Section 2.4.3a the electric field is 

c-oR 2 Q
E aV_ 6 = 2, r>R
 
Er eor 4ireor (22) 

0 r<R 

Outside the sphere, the potential of (21) is the same as if all 
the charge Q were concentrated at the origin as a point 
charge, while inside the sphere the potential is constant and 
equal to the surface potential. 

(b) Volume Charge 
If the sphere is uniformly charged with density po and total 

charge Q = 'PrR~po, the potential can be found by breaking 
the sphere into differential size shells of thickness dr' and 
incremental surface charge de = po dr'. Then, integrating (21) 
yields 

R-rdr'=- = , r>R 
e or 3eOr 4ireor 

= ,o R pr' o ( 2 2 (23) 
Por dr'+ dr'= ""{R L) (3 
Eor , 0s 2Eo\ 3/ 

3Q / 22 
= R ) r<R 

81reoRS 3 

where we realized from (21) that for r < R the interior shells 
have a different potential contribution than exterior shells. 

Then, the electric field again agrees with Section 2.4.3b: 

poR3 Q
=2' r>R 

E, = =- Sor 4irEor (24) 

r pr Qr r<R
3eo 4ireoR5 ' 
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(c) Two Spheres 
Two conducting spheres with respective radii R1 and R 2 

have their centers a long distance D apart as shown in Figure 
2-23. Different charges Q, and Q2 are put on each sphere. 
Because D w R1+ R2 , each sphere can be treated as isolated. 
The potential on each sphere is then 

V= eOR1 , V2 47rOR2 (25) 

If a wire is connected between the spheres, they are forced 
to be at the same potential: 

VO = q, = q2 (26)
41reOR, 41reoR2 

causing a redistribution of charge. Since the total charge in 
the system must be conserved, 

q+ q2 = Q1+Q2 (27) 

Eq. (26) requires that the charges on each sphere be 

R 1(Q 1 +Q 2) R 2(Q 1+Q 2) (28) 
qi= , 42 (8

R,+R2 Rj+R2 

so that the system potential is 

VO= Q1+Q2(29)
41r.eo(R1 + R2) 

Even though the smaller sphere carries less total charge, from 
(22) at r = R, where E,(R)= oo/eo, we see that the surface 
electric field is stronger as the surface charge density is larger: 

q Q1+Q2 VO 
41reoRI 41reoRj(Rj+R2) R1 (30) 

q2 Q1+Q2 Vo 
41rEoR2 41reoR2(RI +R 2) R2 

For this reason, the electric field is always largest near 
corners and edges of equipotential surfaces, which is why 

q1 V1 -g,
47reoRI 

R, 2 22 

R2 V2 41reoR 2 

OE, (r) =Er E2()2E( V 2 R 2 
r2 

D 

Figure 2-23 The charges on two spheres a long distance apart (D >> RI + R 2) must 
redistribute themselves when connected by a wire so that each sphere is at the same 
potential. The surface electric field is then larger at the smaller sphere. 
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sharp points must be avoided in high-voltage equipment. 
When the electric field exceeds a critical amount Eb, called the 
breakdown strength, spark discharges occur as electrons are 
pulled out of the surrounding medium. Air has a breakdown 
strength of E 3 X 106 volts/M. If the two spheres had the 
same radius of I cm (10-2 M), the breakdown strength is 
reached when VO-30,000 volts. This corresponds to a total 
system charge of Q, + Q2 6.7 x 10~" coul. 

2-5-6 Poisson's and Laplace's Equations 

The general governing equations for the free space electric 
field in integral and differential form are thus summarized as 

feoE - dS= tp dV>V - E =p/Eo (31) 

E -dl=0=VxE=0>E= -VV (32) 

The integral laws are particularly useful for geometries 
with great symmetry and with one-dimensional fields where 
the charge distribution is known. Often, the electrical poten­
tial of conducting surfaces are constrained by external 
sources so that the surface charge distributions, themselves 
sources of electric field are not directly known and are in part 
due to other charges by induction and conduction. Because of 
the coulombic force between charges, the charge distribution 
throughout space itself depends on the electric field and it is 
necessary to self-consistently solve for the equilibrium 
between the electric field and the charge distribution. These 
complications often make the integral laws difficult to use, 
and it becomes easier to use the differential form of the field 
equations. Using the last relation of (32) in Gauss's law of (31) 
yields a single equation relating the Laplacian of the potential 
to the charge density: 

V - (V V)= V 2 V = -p/eo 	 (33) 

which is called Poisson's equation. In regions of zero charge 
(p = 0) this equation reduces to Laplace's equation, V 2 

V =0. 

2-6 	 THE METHOD OF IMAGES WITH LINE CHARGES AND 
CYLINDERS 

2-6-1 Two Parallel Line Charges 

The potential of an infinitely long line charge A is given in 
Section 2.5.4 when the length of the line L is made very large. 
More directly, knowing the electric field of an infinitely long 
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line charge from Section 2.3.3 allows us to obtain the poten­
tial by direct integration: 

av A A r 
Er= - >V=- In- (1)

ar 21Teor 27reo ro 

where ro is the arbitrary reference position of zero potential. 
If we have two line charges of opposite polarity A a 

distance 2a apart, we choose our origin halfway between, as 
in Figure 2-24a, so that the potential due to both charges is 
just the superposition of potentials of (1): 

A y2+(x+ a)212 (2)
V= - 2ireo In y 2 +(xa)(2) 

where the reference potential point ro cancels out and we use 
Cartesian coordinates. Equipotential lines are then 

y +(x+a) -4, V/=K (3)0 

y +(xa)2e 

where K1 is a constant on an equipotential line. This relation is 
rewritten by completing the squares as 

a(+K) 2 2= 4Ka2(4)
Ki1(I-K')2 

which we recognize as circles of radius r=2a/ Ki I-Kd 
with centers at y=0,x=a(1+K1)/(Ki-1), as drawn by 
dashed lines in Figure 2-24b. The value of K1 = 1 is a circle of 
infinite radius with center at x = 0 and thus represents the 
x=0 plane. For values of K 1 in the interval OsK11 1 the 
equipotential circles are in the left half-plane, while for 1:5 
K1 ! oo the circles are in the right half-plane. 

The electric field is found from (2) as 

A (-4axyi+2a(y2 +a2_ 2
E=-VV= 221 (5)

27rEn [y2+(x+a)2 ][Y2 +(x-a)2 

One way to plot the electric field distribution graphically is 
by drawing lines that are everywhere tangent to the electric 
field, called field lines or lines of force. These lines are 
everywhere perpendicular to the equipotential surfaces and 
tell us the direction of the electric field. The magnitude is 
proportional to the density of lines. For a single line charge, 
the field lines emanate radially. The situation is more compli­
cated for the two line charges of opposite polarity in Figure 
2-24 with the field lines always starting on the positive charge 
and terminating on the negative charge. 



The Method of Images with Line Chargesand Cylinders 95 
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Figure 2-24 (a) Two parallel line charges of opposite polarity a distance 2a apart. (b) 
The equipotential (dashed) and field (solid) lines form a set of orthogonal circles. 
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For the field given by (5), the equation for the lines tangent 
to the electric field is 

dy E 2xy d(x2 +y) 
= E 2+a2 2> 2 2 2 + d(Iny)=O (6)dx E. y+a-x a -(x +y") 

where the last equality is written this way so the expression 
can be directly integrated to 

2 

x2 +(y -acotK) 2 a 
sin2 K2 (7) 

where K2 is a constant determined by specifying a single 
coordinate (xo, yo) along the field line of interest. The field 
lines are also circles of radius a/sin K2 with centers at x 
0, y = a cot K2 as drawn by the solid lines in Figure 2-24b. 

2-6-2 The Method of Images 

(a) General properties 
When a conductor is in the vicinity of some charge, a 

surface charge distribution is induced on the conductor in 
order to terminate the electric field, as the field within the 
equipotential surface is zero. This induced charge dis­
tribution itself then contributes to the external electric field 
subject to the boundary condition that the conductor is an 
equipotential surface so that the electric field terminates 
perpendicularly to the surface. In general, the solution is 
difficult to obtain because the surface charge distribution 
cannot be known until the field is known so that we can use 
the boundary condition of Section 2.4.6. However, the field 
solution cannot be found until the surface charge distribution 
is known. 

However, for a few simple geometries, the field solution 
can be found by replacing the conducting surface by 
equivalent charges within the conducting body, called images, 
that guarantee that all boundary conditions are satisfied. 
Once the image charges are known, the problem is solved as if 
the conductor were not present but with a charge distribution 
composed of the original charges plus the image charges. 

(b) Line Charge Near a Conducting Plane 
The method of images can adapt a known solution to a new 

problem by replacing conducting bodies with an equivalent 
charge. For instance, we see in Figure 2-24b that the field 
lines are all perpendicular to the x =0 plane. If a conductor 
were placed along the x =0 plane with a single line charge A 
at x = -a, the potential and electric field for x <0 is the same 
as given by (2) and (5). 
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A surface charge distribution is induced on the conducting 
plane in order to terminate the incident electric field as the 
field must be zero inside the conductor. This induced surface 
charge distribution itself then contributes to the external 
electric field for x <0 in exactly the same way as for a single 
image line charge -A at x =+a. 

The force per unit length on the line charge A is due only to 
the field from the image charge - A; 

22 

f= AE(-a, 0)= i. . (8)
2ireo(2a) 41rEoa 

From Section 2.4.6 we know that the surface charge dis­
tribution on the plane is given by the discontinuity in normal 
component of electric field: 

-Aa 
Or(x=0)=-EoE (x=0)= i(y2 +a 2 (9) 

where we recognize that the field within the conductor is zero. 
The total charge per unit length on the plane is obtained by 
integrating (9) over the whole plane: 

AT= a(x =0) dy 

Aa +* dy 

ir J, y 
2 

+a 
2 

Aa I -' y +* 
=----tan -- I

ir a a 1_ 

=-A (10) 

and just equals the image charge. 

2-6-3 Line Charge and Cylinder 

Because the equipotential surfaces of (4) are cylinders, the 
method of images also works with a line charge A a distance D 
from the center of a conducting cylinder of radius R as in 
Figure 2-25. Then the radius R and distance a must fit (4) as 

2a,/KI a(1+KI)
I-l' La+KI1= D (11) R = , 

where the upper positive sign is used when the line charge is 
outside the cylinder, as in Figure 2-25a, while the lower 
negative sign is used when the line charge is within the cylin­
der, as in Figure 2-25b. Because the cylinder is chosen to be in 
the right half-plane, 1 : K1 :5 oo, the unknown parameters K, 

M 
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Figure 2-25 The electric field surrounding a line charge A a distance D from the 
center of a conducting cylinder of radius R is the same as if the cylinder were replaced 
by an image charge -A, a distance b = R 2ID from the center. (a) Line charge outside 
cylinder. (b) Line charge inside cylinder. 

and a are expressed in terms of the given values R and D 
from (11) as 

D2-R2
K1 = (D 2 *, (12)a= 2D 

For either case, the image line charge then lies a distance b 
from the center of the cylinder: 

R 2
a(1-+ K1) 

(13)
K=-F= D 

being inside the cylinder when the inducing charge is outside 
(R < D), and vice versa, being outside the cylinder when the 
inducing charge is inside (R >D). 
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The force per unit length on the cylinder is then just due to 
the force on the image charge: 

A2 A 2D 
(14)2feo(D-b) 27reo(D 2 -R 2 ) 

2-6-4 Two Wire Line 

(a) Image Charges 
We can continue to use the method of images for the case 

of two parallel equipotential cylinders of differing radii R, 
and R 2 having their centers a distance D apart as in Figure 
2-26. We place a line charge A a distance b, from the center of 
cylinder 1 and a line charge -A a distance b 2 from the center 
of cylinder 2, both line charges along the line joining the 
centers of the cylinders. We simultaneously treat the cases 
where the cylinders are adjacent, as in Figure 2-26a, or where 
the smaller cylinder is inside the larger one, as in Figure 
2-26b. 

The position of the image charges can be found using (13) 
realizing that the distance from each image charge to the 
center of the opposite cylinder is D - b so that 

R 2 

bi= ,2 b2= i (15)
D-F b2 D-b 

where the upper signs are used when the cylinders are 
adjacent and lower signs are used when the smaller cylinder is 
inside the larger one. We separate the two coupled equations 
in (15) into two quadratic equations in b, and b 2: 

bi - b,+R =0 

b2- D b2+R2 0 

with resulting solutions 

2 2 2 2 2 112[D -R +R 2 ] D -R +R2 2
b2= 2D 2D )-)R2 

S2 2 2(17) 

b=[D +R 1 -R 2 ] D +R -R(17)
2D L\ 2D / i 

We were careful to pick the roots that lay outside the region 
between cylinders. If the equal magnitude but opposite 
polarity image line charges are located at these positions, the 
cylindrical surfaces are at a constant potential. 
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b,= b2 A2 D-b 

Figure 2-26 The solution for the electric field between two parallel conducting 
cylinders is found by replacing the cylinders by their image charges. The surface 
charge density is largest where the cylinder surfaces are closest together. This is called 
the proximity effect. (a) Adjacent cylinders. (b) Smaller cylinder inside the larger one. 

(b) Force of Attraction 
The attractive force per unit length on cylinder 1 is the 

force on the image charge A due to the field from the 
opposite image charge -A: 

A 2 

27reo[ (D - bi)- b2] 

A 2 

D2 -R2+R 2 1 2 

417Eo 2D R 

A 2 

22 2 2 - ~ 2]1/ (18)
D -R2+Rl 2 v 

ITEoR 2D R 
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IA 

\ 

Fig. 2-26(b) 
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(c) Capacitance Per Unit Length 
The potential of (2) in the region between the two cylinders 

depends on the distances from any point to the line charges: 

V= In-n (19) 
27rEO S2 

To find the voltage difference between the cylinders we pick 
the most convenient points labeled A and B in Figure 2-26: 

A B 

sV(R-bIn) S = (D-bITR2) (20) 

S2 =(DFb 2 -R 1) s2 =R 2 -b 2 

although any two points on the surfaces could have been 
used. The voltage difference is then 

A I (R 1-b,)(R 2-b 2) (
V-V 2 -ln ( (21)

2ireo (D~b2 --R1)(D-b1 TR2 )/ 1 



D 2- 2R 
(24)
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This expression can be greatly reduced using the relations 

DFb 2 = , D-b =:- (22)
bI 1

b2 

to 

A bib2 
Vi- V2=- In i 

21reo R1R 2 
2 2 2A I [D -R 1 -R 2 1 

2	 reo1 2R 1R 2
[(D 2 -R 2 2 2 1/2 

+ 	 D R )-1]} (23)
R2RIR2 

The potential difference V1 - V2 is linearly related to the 
line charge A through a factor that only depends on the 
geometry of the conductors. This factor is defined as the 
capacitance per unit length and is the ratio of charge per unit 
length to potential difference: 

'r-
2
t 2reo1/2 C A 222 2 

I - V2n E [D -R1-R + D-R, -Ri 1* 
2R1R 2 2R1R 2 

21reo 

cosh~ 1 
2 

\2RIR2 

where we use the identity* 

_ 	1)1 2
In [y+(y 2 ]= cosh~1 y (25) 

We can examine this result in various simple limits. 
Consider first the case for adjacent cylinders (D > R1 + R2 ). 

1. 	 If the distance D is much larger than the radii, 

lim C In 2reo 2ro (26)
Dm(RA+RO In [D2/(RIR 2)] cosh-' [D2/(2RIR2)] 

2. 	 The capacitance between a cylinder and an infinite plane 
can be obtained by letting one cylinder have infinite 
radius but keeping finite the closest distance s = 

*y =cosh x= ex + e 
2
 

(e')2 -2ye"+ 1= 0 

e' = y / 
2n(y2) 1 

x =cosh-'y =In [y: (y 2- 1)"12] 
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D-RI-R 2 between cylinders. If we let R1 become 
infinite, the capacitance becomes 

lim C = 2 s+R 2 1/2 

D-R,-R 
2 = (finite) In sR 

2 + R 2 

27TEo (27) 

coshW ( +R )2 

3. 	 If the cylinders are identical so that R 1 =R2 =R, the 
capacitance per unit length reduces to 

lim C= 2 1 = (28) 
R,=R 2 =R D sDh _ D

In T+1- 1- cosh' D 28 
2R L\2R) 2R 

4. 	 When the cylinders are concentric so that D=0, the 
capacitance per unit length is 

21m)o 27rE o
lim 	C= = 2 2 (29)
D O In (R]/R2) cosh- [(RI + R2)/(2R, R2)] 

2-7 THE METHOD OF IMAGES WITH POINT CHARGES AND 
SPHERES 

2-7-1 Point Charge and a Grounded Sphere 

A point charge q is a distance D from the center of the 
conducting sphere of radius R at zero potential as shown in 
Figure 2-27a. We try to use the method of images by placing a 
single image charge q' a distance b from the sphere center 
along the line joining the center to the point charge q. 

We 	need to find values of q' and b that satisfy the zero 
potential boundary condition at r = R. The potential at any 
point P outside the sphere is 

(1 	 !+ 
4,reo s s 

where the distance from P to the point charges are obtained 
from the law of cosines: 

s =[r2+ 2 -2rD cos 6]0 2 ( 

s'= [b 2 +r 2 -2rb cos 011/2 
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Figure 2-27 (a) The field due to a point charge q, a distance D outside a conducting 
sphere of radius R, can be found by placing a single image charge -qRID at a distance 
b = R'ID from the center of the sphere. (b) The same relations hold true if the charge 
q is inside the sphere but now the image charge is outside the sphere, since D < R. 

At r = R, the potential in (1) must be zero so that q and q' 
must be of opposite polarity: 

+S) = > 9) = (3) 

where we square the equalities in (3) to remove the square 
roots when substituting (2), 

q 2 [b 2 + R 2-2Rb cos 6] = q'2 [R 2+D2 -2RD cos 0] (4) 
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Since (4) must be true for all values of 0, we obtain the 
following two equalities: 

q2 (b 2+R 2 ) q 2(R 2 +D 2) 

qub=q'2D(5 

Eliminating q and q' yields a quadratic equation in b: 

b2-bD 1+ R +R 2 =0 (6) 

with solution 

Db 2 ] + -2
b=- - [1+-1-

2 L R\2/2 

-{1+( )I1(R (7) 

We take the lower negative root so that the image charge is 
inside the sphere with value obtained from using (7) in (5): 

R2 R
b= , q= -q (8)

DD 

remembering from (3) that q and q' have opposite sign. We 
ignore the b = D solution with q'= -q since the image charge 
must always be outside the region of interest. If we allowed 
this solution, the net charge at the position of the inducing 
charge is zero, contrary to our statement that the net charge 
is q. 

The image charge distance b obeys a similar relation as was 
found for line charges and cylinders in Section 2.6.3. Now, 
however, the image charge magnitude does not equal the 
magnitude of the inducing charge because not all the lines of 
force terminate on the sphere. Some of the field lines 
emanating from q go around the sphere and terminate at 
infinity. 

The force on the grounded sphere is then just the force on 
the image charge -q' due to the field from q: 

qq _ q2 R _ q2RD 
2 2)24vreo(D - b) 2 

- 41reoD(D-b) 4irEo(D2 -R (9) 
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The electric field outside the sphere is found from (1) using 
(2) as 

E= -V V= (![(r-D cos 0)i,+Dsin i,]
4vreos 

+- [(r - b cos 6)i, +b sin ie]) (10) 

On the sphere where s'= (RID)s, the surface charge dis­
tribution is found from the discontinuity in normal electric 
field as given in Section 2.4.6: 

q(D2 - R2)
o-(r = R)= eoE,(r = R)= 41rR[R2 +D 2 -2RD cos 013/2 

(11) 
The total charge on the sphere 

qT= o-(r=R)2rR2 sin 0dG 

= -R (D2- R 2) 22 sin 0 d 2 (12)
2 0 [R +D -2RD cos 

can be evaluated by introducing the change of variable 

u=R2+D -2RD cos 0, du = 2RD sin 0 d6 (13) 

so that (12) integrates to 

q(D 2 -R 2 ) (D+R9 du 
24D (D-R) U 

2q(D 2 -R 2 ) 2 (D+R) qR 
4D u / 1(D-R) 

2 D (14) 

which just equals the image charge q'. 
If the point charge q is inside the grounded sphere, the 

image charge and its position are still given by (8), as illus­
trated in Figure 2-27b. Since D < R, the image charge is now 
outside the sphere. 

2-7-2 Point Charge Near a Grounded Plane 

If the point charge is a distance a from a grounded plane, 
as in Figure 2-28a, we consider the plane to be a sphere of 
infinite radius R so that D = R + a. In the limit as R becomes 
infinite, (8) becomes 

R
lim q'= -q, b R =R-a (15) 
R00 (1+a/R) 

D=R+a 
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.­ Eo.i. 
q 

image charge 

image charge 
(a) (b) 

Figure 2-28 (a) A point charge q near a conducting plane has its image charge --q 
symmetrically located behind the plane. (b) An applied uniform electric field causes a 
uniform surface charge distribution on the conducting plane. Any injected charge 
must overcome the restoring force due to its image in order to leave the electrode. 

so that the image charge is of equal magnitude but opposite 
polarity and symmetrically located on the opposite side of the 
plane. 

The potential at any point (x, y, z) outside the conductor is 
given in Cartesian coordinates as 

IV=q I 
47rEo ([(x + a)2 +y2 + Z2112 [(x -- a)2+y2 + z2 112) (6 

with associated electric field 

E=-VV= q (x +a)i.+ yi, +zi, (x-a)i,+yi,+zi*., 
47reo \[(x + a )2+y2 + Z2]s12- _( +zZ 29-a)2 +y2 

(17) 

Note that as required the field is purely normal to the 
grounded plane 

E,(x = 0) =0, E,(x = 0) = 0 (18) 

The surface charge density on the conductor is given by the 
discontinuity of normal E: 

or(x = 0)=-eoE.(x= 0) 

_q 2a 

41r [y 2+ z 2+a2]3/2 

(19)27rr4qa 23/2; r2=2+ Z2 

where the minus sign arises because the surface normal 
points in the negative x direction. 
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The total charge on the conducting surface is obtained by 
integrating (19) over the whole surface: 

q-= o-(x = 0)2vr dr 

rdr(""qaI (r 2+a) 

(20)= (r+a)12 =-q 

As is always the case, the total charge on a conducting surface 
must equal the image charge. 

The force on the conductor is then due only to the field 
from the image charge: 

2 
q 

x (21)= irsoa21 

This attractive force prevents charges from escaping from 
an electrode surface when an electric field is applied. Assume 
that an electric field -Eoi. is applied perpendicular to the 
electrode shown in Figure (2-28b). A uniform negative sur­
face charge distribution a = - 0 E as given in (2.4.6) arises to 
terminate the electric field as there is no electric field within 
the conductor. There is then an upwards Coulombic force on 
the surface charge, so why aren't the electrons pulled out of 
the electrode? Imagine an ejected charge -q a distance x 
from the conductor. From (15) we know that an image charge 
+q then appears at -x which tends to pull the charge -q back 
to the electrode with a force given by (21) with a = x in 
opposition to the imposed field that tends to pull the charge 
away from the electrode. The total force on the charge -q is 
then 

2 

S= qEo- q (22)
4reo(2x) 

The force is zero at position x, 

0=>x, = [ E 1
/
2 (23)

1161eoEol 

For an electron (q= 1.6 X 10- 1 coulombs) in a field of Eo= 
10 v/m, x,~ 1.9X 10- 8 m. For smaller values of x the net 
force is negative tending to pull the charge back to the elec­
trode. If the charge can be propelled past x, by external 
forces, the imposed field will then carry the charge away from 
the electrode. If this external force is due to heating of the 
electrode, the process is called thermionic emission. High 
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field emission even with a cold electrode occurs when the 
electric field Eo becomes sufficiently large (on the order of 
10 v/m) that the coulombic force overcomes the quantum 
mechanical binding forces holding the electrons within the 
electrode. 

2-7-3 Sphere With Constant Charge 

If the point charge q is outside a conducting sphere (D > R) 
that now carries a constant total charge Qo, the induced 
charge is still q'= -qRID. Since the total charge on the sphere 
is Qo, we must find another image charge that keeps the 
sphere an equipotential surface and has value Qo+qR/D. 
This other image charge must be placed at the center of the 
sphere, as in Figure 2-29a. The original charge q plus the 
image charge q'= -qRID puts the sphere at zero potential. 
The additional image charge at the center of the sphere raises 
the potential of the sphere to 

V = oqRD(24)
41reoR 

The force on the sphere is now due to the field from the point 
charge q acting on the two image charges: 

q /Df q qR (Q 

4ireo D(D-b)2+ (Qo+ RID) 

q qRD (Qo+ qRD)) (25) 
D'241rEo\ (D2 - R2)2+ 

V = V, 

Do + Qo = 4xEORV 
q -qR/D q -qR/D 

Sphere with constant Sphere at constant 
charge Qo voltage Vo 

(a) (b) 

Figure 2-29 (a) If a conducting sphere carries a constant charge Qo or (b) is at a 
constant voltage Vo, an additional image charge is needed at the sphere center when a 
charge q is nearby. 
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2-7-4 Constant Voltage Sphere 

If the sphere is kept at constant voltage V0 , the image 
charge q'= -qRID at distance b = R 2/D from the sphere 
center still keeps the sphere at zero potential. To raise the 
potential of the sphere to Vo, another image charge, 

Qo=41reoRVo 	 (26) 

must be placed at the sphere center, as in Figure 2-29b. The 
force on the sphere is then 

S qR +(27) (74vreo\ D(D-b)2 D2 

PROBLEMS 

Section 2.1 
1. Faraday's "ice-pail" experiment is repeated with the 
following sequence of steps: 

(i) 	 A ball with total charge Q is brought inside an 
insulated metal ice-pail without touching. 

(ii) 	 The outside of the pail is momentarily connected to 
the ground and then disconnected so that once again 
the pail is insulated. 

(iii) 	Without touching the pail, the charged ball is removed. 

(a) Sketch the charge distribution on the inside and outside 
of the pail during each step. 

(b) What is the net charge on the pail after the charged ball 
is removed? 

2. A sphere initially carrying a total charge Q is brought into 
momentary contact with an uncharged identical sphere. 

(a) How much charge is on each sphere? 
(b) This process is repeated for N identical initially 

uncharged spheres. How much charge is on each of the 
spheres including the original charged sphere? 

(c) What is the total charge in the system after the N 
contacts? 

Section 2.2 
3. The charge of an electron was first measured by Robert A. 
Millikan in 1909 by measuring the electric field necessary to 
levitate a small charged oil drop against its weight. The oil 
droplets were sprayed and became charged by frictional 
electrification. 
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