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The ancient Chinese knew that the iron oxide magnetite
(FesO,) attracted small pieces of iron. The first application of
this effect was the navigation compass, which was not
developed until the thirteenth century. No major advances
were made again until the early nineteenth century when
precise experiments discovered the properties of the
magnetic field.

5-1 FORCES ON MOVING CHARGES

5-1-1 The Lorentz Force Law

f=¢q(vxB)

It was well known that magnets exert forces on each other,
but in 1820 Oersted discovered that a magnet placed near a
current carrying wire will align itself perpendicular to the
wire. Each charge ¢ in the wire, moving with velocity v in the
magnetic field B [teslas, (kg-s *-A7")], felt the empirically
determined Lorentz force perpendicular to both vand B

f=q(vXB) (1)

as illustrated in Figure 5-1. A distribution of charge feels a
differential force df on each moving incremental charge
element dq:

df =dq(vxB) (2)

Figure 5-1 A charge moving through a magnetic field experiences the Lorentz force
perpendicular to both its motion and the magnetic field.
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Moving charges over a line, surface, or volume, respectively
constitute line, surface, and volume currents, as in Figure 5-2,
where (2) becomes

pvXBdV=JxBdV (J=psv, volume current density)
ovXBdS=KxBdS
(K = oyv, surface current density) (3)

A;jvXBdl=IxBdl (I=A;v,linecurrent)

1dl = —ev

f dl
df =1dlxB
(a)

ds - yA)

4
Z
L

df=KdSx B
(b)

df =JdvxB
(c)

Figure 5-2 Moving line, surface, and volume charge distributions constitute currents.
(a) In metallic wires the net charge is zero since there are equal amounts of negative
and positive charges so that the Coulombic force is zero. Since the positive charge is
essentially stationary, only the moving electrons contribute to the line current in the
direction opposite to their motion. (§) Surface current. (¢) Volume current.
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The total magnetic force on a current distribution is then
obtained by integrating (3) over the total volume, surface, or
contour containing the current. If there is a net charge with
its associated electric field E, the total force densities include
the Coulombic contribution:

f=q(E+vxB) Newton

FL=A(E+vxB)=AE+IXB N/m
Fs=o{E+vXB)=0;E+KXB N/m?
Fy=p(E+vXB)=pE+]JXB N/m®

4)

In many cases the net charge in a system is very small so that
the Coulombic force is negligible. This is often true for
conduction in metal wires. A net current still flows because of
the difference in velocities of each charge carrier.

Unlike the electric field, the magnetic field cannot change
the kinetic energy of a moving charge as the force is perpen-
dicular to the velocity. It can alter the charge’s trajectory but
not its velocity magnitude.

5-1-2 Charge Motions in a Uniform Magnetic Field

The three components of Newton’s law for a charge g of
mass m moving through a uniform magnetic field B,i, are

[ dv,
mz-— qu,B,
dv dv
— =gvX dp 2=
m &t qvXB>Im 2 qu.B, (5)
dv, _
Lmz— 0=> v, = const

The velocity component along the magnetic field is
unaffected. Solving the first equation for v, and substituting
the result into the second equation gives us a single equation
in v,:

d2v‘ 2 1 dv: qu

—ztww:=0, v,=—=—=, wo=
dt 0 * wo dt " m

(6)

where wy is called the Larmor angular velocity or the cyclo-
tron frequency (see Section 5-1-4). The solutions to (6) are

Ux = A sin wot + Ao cOs wol
1 dv,

Uy, =——=A) cOs wol — As Sin wol
' wo di 1 o 2 o

(M
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where A and A, are found from initial conditions. If at ¢ =0,
VU = 0) = 'Uoi,, (8)

then (7) and Figure 5-3a show that the particle travels in a
circle, with constant speed v in the xy plane:

v = vo{Cos woti, — sin wotiy) (9)

with radius
R = vo/wo (10)
If the particle also has a velocity component along the

magnetic field in the z direction, the charge trajectory
becomes a helix, as shown in Figure 5-3b.

p=-2nm wp =282
wo m
ok

- 1
t—wo(2n+2)

X
=T
t= wo {2n +1)

(]

Figure 5-3 (a) A positive charge g, initially moving perpendicular to a magnetic field,
feels an orthogonal force putting the charge into a circular motion about the magnetic
field where the Lorentz force is balanced by the centrifugal force. Note that the charge
travels in the direction (in this case clockwise) so that its self-field through the loop [see
Section 5-2-1] is opposite in direction to the applied field. (b) A velocity component in
the direction of the magnetic field is unaffected resulting in a helical trajectory.

e
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5-1-3 The Mass Spectrograph

y

The mass spectrograph uses the circular motion derived in
Section 5-1-2 to determine the masses of ions and to measure
the relative proportions of isotopes, as shown in Figure 5-4.
Charges enter between parallel plate electrodes with a y-
directed velocity distribution. To pick out those charges with
a particular magnitude of velocity, perpendicular electric and
magnetic fields are imposed so that the net force on a charge
is

fx =q(Ex+vsz) (11)

For charges to pass through the narrow slit at the end of the
channel, they must not be deflected by the fields so that the
force in (11) is zero. For a selected velocity v,=w, this
requires a negatively x directed electric field

E,=‘;’= —voBo (12)

which is adjusted by fixing the applied voltage V. Once the
charge passes through the slit, it no longer feels the electric
field and is only under the influence of the magnetic field. It
thus travels in a circle of radius

Vo _Uom

=27 13
"= we_ 2B (13)

Photographic
plate

Figure 5-4 The mass spectrograph measures the mass of an ion by the radius of its
trajectory when moving perpendicular to a magnetic field. The crossed uniform
electric field selects the ion velocity that can pass through the slit.
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which is directly proportional to the mass of the ion. By
measuring the position of the charge when it hits the photo-
graphic plate, the mass of the ion can be calculated. Different
isotopes that have the same number of protons but different
amounts of neutrons will hit the plate at different positions.

For example, if the mass spectrograph has an applied
voltage of V =-100V across a 1-cm gap (E, = —10* V/m) with
a magnetic field of 1 tesla, only ions with velocity

v, = — E,/Bo=10* m/sec (14)

will pass through. The three isotopes of magnesium, ;sMg?*,
|2Mg25, ,2Mg2 , each deficient of one electron, will hit the
photographic plate at respective positions:

x 10*N(1.67x107% _
d=2r=2 St 0 )z2x10“N

1.6x107"%(1)
= 0.48,0.50,0.52cm (15)

where N is the number of protons and neutrons (m = 1.67 x
107 kg) in the nucleus.

5-1-4 The Cyclotron

A cyclotron brings charged particles to very high speeds by
many small repeated accelerations. Basically it is composed of
a split hollow cylinder, as shown in Figure 5-5, where each
half is called a “dee” because their shape is similar to the

Boi,

Figure 5-5 The cyclotron brings ions to high speed by many small repeated accelera-
tions by the electric field in the gap between dees. Within the dees the electric field is
negligible so that the ions move in increasingly larger circular orbits due to an applied
magnetic field perpendicular to their motion.
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fourth letter of the alphabet. The dees are put at a sinusoi-
dally varying potential difference. A uniform magnetic field
Byi. is applied along the axis of the cylinder. The electric field
is essentially zero within the cylindrical volume and assumed
uniform E, =v(t)/s in the small gap between dees. A charge
source at the center of D emits a charge ¢ of mass m with zero
velocity at the peak of the applied voltage at ¢t = 0. The electric
field in the gap accelerates the charge towards Ds. Because the
gap is so small the voltage remains approximately constant at
Vo while the charge is traveling between dees so that its
displacement and velocity are

d V. |4
mi=470,, 970,
dt s sm (16)
I 14T
a7 oms

The charge thus enters Dy at time ¢t =[2ms 2/qVo]"'? later with
velocity v, = v2q Vo/m. Within D, the electric field is negligible
so that the charge travels in a circular orbit of radius r=
v/wo=mvy/qBy due to the magnetic feld alone. The
frequency of the voltage is adjusted to just equal the angular
velocity wo= qBo/m of the charge, so that when the charge
re-enters the gap between dees the polarity has reversed
accelerating. the charge towards D, with increased
velocity. This process is continually repeated, since every time
the charge enters the gap the voltage polarity accelerates the
charge towards the opposite dee, resulting in a larger radius
of travel. Each time the charge crosses the gap its velocity is
increased by the same amount so that after n gap traversals its
velocity and orbit radius are

n

vn=(2qnvo>l/2’ R U, (2ano>”2 a7

m _wo_ qB(Q)

If the outer radius of the dees is R, the maximum speed of

the charge

4Bo o
m

Umax — wOR =

(18)

is reached after 2n —qBoR /mVo round trips when R, =R.
For a hydrogen ion (¢ =1.6X10""? coul, m = 1. 67 X 10-27 kg),
within a magnetic field of 1 tesla (wo=9.6X% 107 radian/sec)
and peak voltage of 100 volts w1th a cyclotron radius of one
meter, we reach vUmax=9.6X10" m/s (Wthh is about 30% of
the speed of light) in about 2n =9.6 X 10° round-trips, which
takes a time 7=4nw/w,=~27/100=0.06 sec. To reach this
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speed with an electrostatic accelerator would require
2
Lm?=qv> V=ﬂ;;i;ﬂz48x105vchs (19)

The cyclotron works at much lower voltages because the
angular velocity of the ions remains constant for fixed ¢By/m
and thus arrives at the gap in phase with the peak of the
applied voltage so that it is sequentially accelerated towards
the opposite dee. It is not used with electrons because their
small mass allows them to reach relativistic velocities close to
the speed of light, which then greatly increases their mass,
decreasing their angular velocity wy, putting them out of
phase with the voltage.

5-1-5 Hall Effect

When charges flow perpendicular to a magnetic field, the
transverse displacement due to the Lorentz force can give rise
to an electric field. The geometry in Figure 5-6 has a uniform
magnetic field Byi, applied to a material carrying a current in
the y direction. For positive charges as for holes in a p-type
semiconductor, the charge velocity is also in the positive y
direction, while for negative charges as occur in metals or in
n-type semiconductors, the charge velocity is in the negative y
direction. In the steady state where the charge velocity does
not vary with time, the net force on the charges must be zero,

Boi:
'
1 —_—
B, y__
4, Vi =vyBod
+
z /"_v E =__:

Figure 5-6 A magnetic field perpendicular to a current flow deflects the charges
transversely giving rise to an electric field and the Hall voltage. The polarity of the
voltage is the same as the sign of the charge carriers.
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which requires the presence of an x-directed electric field
E+vXB=0>E, = —v,B, (20)

A transverse potential difference then develops across the
material called the Hall voltage:
d

V;.=—J‘ E,.dx=v,Bod 21
0

The Hall voltage has its polarity given by the sign of v,;
positive voltage for positive charge carriers and negative
voltage for negative charges. This measurement provides an
easy way to determine the sign of the predominant charge
carrier for conduction.

5-2 MAGNETIC FIELD DUE TO CURRENTS

Once it was demonstrated that electric currents exert forces
on magnets, Ampere immediately showed that electric cur-
rents also exert forces on each other and that a magnet could
be replaced by an equivalent current with the same result.
Now magnetic fields could be turned on and off at will with
their strength easily controlled.

5-2-1 The Biot-Savart Law

Biot and Savart quantified Ampere’s measurements by
showing that the magnetic field B at a distance r from a
moving charge is

X1, o . _
=I'L0q7r+2lteslas (kg-s 2-A7h (1)

B
as in Figure 5-7a, where p, is a constant called the permeabil-
ity of free space and in SI units is defined as having the exact
numerical value

wo=4mx 107" henry/m (kg-m-A"2-57%) (2)

The 47 is introduced in (1) for the same reason it was intro-
duced in Coulomb’s law in Section 2-2-1. It will cancel out a
47 contribution in frequently used laws that we will soon
derive from (1). As for Coulomb’s law, the magnetic field
drops off inversely as the square of the distance, but its direc-
tion is now perpendicular both to the direction of charge flow
and to the line joining the charge to the field point.

In the experiments of Ampere and those of Biot and
Savart, the charge flow was constrained as a line current
within a wire. If the charge is distributed over a line with




Magnetic Field Due to Currents 323
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Tor Jdv

B (d)

Figure 5-7 The magnetic field generated by a current is perpendicular to the current
and the unit vector joining the current element to the field point; (a) point charge; (b)
line current; (¢) surface current; (d) volume current.

current I, or a surface with current per unit length K, or over
a volume with current per unit area J, we use the differential-
sized current elements, as in Figures 5-75-5-7d:

Idl (line current)
dgv={KdS (surfacecurrent) 3)
JdV (volume current)

The total magnetic field for a current distribution is then
obtained by integrating the contributions from all the incre-
mental elements:

r I X .
Ho J —‘-1-1——!9—? (line current)
L

4qr 7'2Qp
K dS xi
B =4 Ho j’ “or (surface current) (4)
47 s QP

(volume current)

&J' JdV Xige
v

\4m T2Qp
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The direction of the magnetic field due to a current element
is found by the right-hand rule, where if the forefinger of the
right hand points in the direction of current and the middle
finger in the direction of the field point, then the thumb
points in the direction of the magnetic field. This magnetic
field B can then exert a force on other currents, as given in
Section 5-1-1.

5-2-2 Line Currents

A constant current /, flows in the z direction along a wire of
infinite extent, as in Figure 5-8a. Equivalently, the right-hand
rule allows us to put our thumb in the direction of current.
Then the fingers on the right hand curl in the direction of B,
as shown in Figure 5-8a. The unit vector in the direction of
the line joining an incremental current element I, dz at z to a
field point P is

3 - . . r L3 Z
igp=1,cos §—1,sinf=1,——1i,— (5)
TQP TQP

z
_ por hdz
dB, = anrop
P\.,’OP
I, ]
b h B = o Iy
¢~ 2ma
D
. g/ _ R hhL
[ 2na
f "~~~ >
| \ z}
\y
( L_)— le——a ——
L >

(a) (b)

Figure 5-8 (a) The magnetic field due to an infinitely long z-directed line current is
in the ¢ direction. (b) Two parallel line currents attract each other if lowing in the
same direction and repel if oppositely directed.
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with distance

rop=(z2+r2)"2 6)
The magnetic field due to this current element is given by (4)
as
Mo Idz(i, X 1Qp) polrdz
dB = 7
47 r“ép T 4n(i 4+ 1o )

The total magnetic field from the line current is obtained by
integrating the contributions from all elements:

B _uollrj+m dz
¢ 4‘"' - (z2+r2)5/2
_wolir z e
47 P +r)", e
I
=S ®

If a second line current I, of finite length L is placed at a
distance a and parallel to I}, as in Figure 5-84, the force on I
due to the magnetic field of I, is

+L/2
f= J Indzi,XB
—L/2

+L/2
= J Iy dr 222 (l, Xig)
12 2

#01112L.
==,
2ma

9

If both currents flow in the same direction (I;15>0), the
force is attractive, while if they flow in opposite directions
(I:1;<0), the force is repulsive. This is opposite in sense to
the Coulombic force where opposite charges attract and like
charges repel.

5-2-83 Current Sheets

(a) Single Sheet of Surface Current

A constant current Koi, flows in the y=0 plane, as in
Figure 5-9a. We break the sheet into incremental line cur-
rents Ko dx, each of which gives rise to a magnetic field as
given by (8). From Table 1.2, the unit vector iy is equivalent
to the Cartesian components

iy = —sin @i, + cos @i, (10)
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Joig

g —>

(b)

Figure 5-9 (a) A uniform surface current of infinite extent generates a uniform
magnetic field oppositely directed on each side of the sheet. The magnetic field is
perpendicular to the surface current but parallel to the plane of the sheet. (§) The
magnetic field due to a slab of volume current is found by superimposing the fields
due to incremental surface currents. (¢) Two parallel but oppositely directed surface
current sheets have fields that add in the region between the sheets but cancel outside
the sheet. (d) The force on a current sheet is due to the average field on each side of
the sheet as found by modeling the sheet as a uniform volume current distributed over
an infinitesimal thickness A.
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x
Ky = Koiz | Ky = —Kois
Jo | tim pa=kKe
T ]o-éao
A-+0
<>
-—d—> B,
B,
———E——AT ,———E——— %MOKO T d-A d >y
| f —
d - / K
>9  _poKe | B =220 (y—g)
1
= e T T T BT T2 HoKo
—Hg Ko
B=B, +8, d)
(c)
Figure 5-9

The symmetrically located line charge elements a distance x
on either side of a point P have y magnetic field components
that cancel but x components that add. The total magnetic

field is then
B - _Jm poKo sin ¢
x . 2—17(x2+y_2)”2
e dx
L, (x"+y")

+ao

— —uoKoy
27

_“#oKo o _;x

27 y

—“0K0/2l . y>0
1oKo/2, y<0

The field is constant and oppositely directed on each side of

the sheet.

tan

—a0

(11)

(b) Slab of Volume Current

If the z-directed current Joi, is uniform over a thickness 4,
as in Figure 5-9b, we break the slab into incremental current
sheets Jody'. The magnetic field from each current sheet is
given by (11). When adding the contributions of all the
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differential-sized sheets, those to the left of a field point give a
negatively x directed magnetic field while those to the right
contribute a positively x-directed field:

(% — wolo d)"= — ofod >g
Jar 2 2 ’
o +d/2 '
d d
B, =1 | ” —__”'°]; 24 =—”'°2]° , y<-- (12
—wolo dy'+J'd/2 "‘°]°d_._y'__. — ol _£1.< <g
L2 L e TR ™S

The total force per unit area on the slab is zero:

+d/2 +d/2
Fo=|  JoB.dy=-uJ3| yay
—di2 —d/2
2. +d/2
= —noloy| =0 (13)
2 —d/2

A current distribution cannot exert a net force on itself.

(c) Two Parallel Current Sheets

If a second current sheet with current flowing in the
opposite direction — Koi, is placed at y =d parallel to a cur-
rent sheet Koi, at y =0, as in Figure 5-9¢, the magnetic field
due to each sheet alone is

— oK K
—-—————u; % i y>0 —“02 %, y>d
B, = By = (14)
K —poK
%—Oi,‘, y<0 __”'_;__Oin )’<d

Thus in the region outside the sheets, the fields cancel while
they add in the region between:

—poKol,, 0<y<d

0, y<0,y>d (15)

B=B,+By;= {
The force on a surface current element on the second sheet

is
df = —Ko1,dSXB (16)

However, since the magnetic field is discontinuous at the
current sheet, it is not clear which value of magnetic field to
use. Tp take the limit properly, we model the current sheet at
y =d as a thin volume current with density J, and thickness 4,
as in Figure 5-9d, where Ko= JoA.
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The results of (12) show that in a slab of uniform volume
current, the magnetic field changes linearly to its values at the
surfaces

B:(y =d _A) = —I"OKO
B,(y=d)=0
so that the magnetic field within the slab is

17)

_ 1oKo
A

The force per unit area on the slab is then

¢ #oKo .
Fs= —I Jo(y —d)i, dy
a-a A

_—poKoJo(y—d)®, 4
=7a g rle-a

B, (y—d) (18)

_poKoJoA, poKs,
== b5 b

The force acts to separate the sheets because the currents are
in opposite directions and thus repel one another.

Just as we found for the electric field on either side of a
sheet of surface charge in Section 3-9-1, when the magnetic
field is discontinuous on either side of a current sheet K,
being B, on one side and B; on the other, the average
magnetic field is used to compute the force on the sheet:

(19)

df =K dS X(B_n;M (20)
In our case
B, = —uoKoi,, By=0 (21)

5-2-4 Hoops of Line Current

(a) Single hoop
A circular hoop of radius a centered about the origin in the
xy plane carries a constant current I, as in Figure 5-10a. The
distance from any point on the hoop to a point at z along the z
axis is
roe = (2" +4*)"" (22)
in the direction

_(—ai,+zi,)
T @ +ad”

(23)

ior
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(a) (b) (c)

Figure 5-10 (a) The magnetic field due to a circular current loop is z directed along
the axis of the hoop. (b)) A Helmholtz coil, formed by two such hoops at a distance
apart d equal to their radius, has an essentially uniform field near the center at z = d/2.
(¢) The magnetic field on the axis of a cylinder with a ¢-directed surface current is
found by integrating the fields due to incremental current loops.

so that the incremental magnetic field due to a current ele-
ment of differential size is

[k . .
dB= 4‘"—’(;0}, Ia d¢l¢ X 1gp
__ Holadd

4722+ a?)?

(ai, +zi,) 24)

The radial unit vector changes direction as a function of ¢,
being oppositely directed at —¢, so that the total magnetic
field due to the whole hoop is purely z directed:

_ uoIa2 I2"
z 4'n'(z2+a2)3/2

d¢

0

— ﬂ-ola2 (25)
2 +a) "
The direction of the magnetic field can be checked using
the right-hand rule. Curling the fingers on the right hand in
the direction of the current puts the thumb in the direction of
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the magnetic field. Note that the magnetic field along the z axis
is positively z directed both above and below the hoop.

(b) Two Hoops (Helmholtz Coil)

Often it is desired to have an accessible region in space with
an essentially uniform magnetic field. This can be arianged
by placing another coil at z =d, as in Figure 5-105. Then the
total magnetic field along the z axis is found by superposing
the field of (25) for each hoop:

_ pola® 1 1
B.= 2 ((z.2 +¢12)§’§+ (z—d)*+ a2)312) (26)

We see then that the slope of B,,

3B, Suola®( -z (z—d) )
Y ((z2+a2)5’2 G=d+a)" 27
is zero at z = d/2. The second derivative,
a2B,_ S;LoIa2 ( 522 _ 1
922 9 E+a) " E+a) "
5z—d)’ 1 )
(G=dy+aD)” (a—dy+a)" (28)

can also be set to zero at z=d/2, if d =a, giving a highly
uniform field around the center of the system, as plotted in
Figure 5-105b. Such a configuration is called a Helmholtz coil.

(c) Hollow Cylinder of Surface Current

A hollow cylinder of length L and radius a has a uniform
surface current Kyig as in Figure 5-10¢. Such a configuration
is arranged in practice by tightly winding N turns of a wire
around a cylinder and imposing a current I through the wire.
Then the current per unit length is

Ko=NI/L (29)

The magnetic field along the z axis at the position z due to
each incremental hoop at z’ is found from (25) by replacing z
by (z—z') and I by K, dz":

2 ]
dB, = “oa,l‘z(o dz2 372
2[(z—2")"+a"]

30)
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The total axial magnetic field is then
I+L/2 #oa2Ko dz'
heie 2 [@—2)+a"T"
= Fvoa!Ko (z'—z) U
2 a’[(z 2 +g7" '=—L/2
=#0Ko( —z+L/2 + z+L/2 ) 3]
2 \[(z—L/2)*+a®"? " [(z+ L/2)*>+a?'" 31)

As the cylinder becomes very long, the magnetic field far
from the ends becomes approximately constant

lim B; = ﬂ.oKo (32)
Lo

B, =

5-3 DIVERGENCE AND CURL OF THE MAGNETIC FIELD

Because of our success in examining various vector opera-
tions on the electric field, it is worthwhile to perform similar
operations on the magnetic field. We will need to use the
following vector identities from Section 1-5-4, Problem 1-24
and Sections 2-4-1 and 2-4-2:

V- (VXA)=0 (1)
VX (VH=0 )
1 igp

v(—)=-

(TQp) ;QQ—; (3)
2 _1_ _ 0, pr#O

Ivv (pr) dv= {—411', TQp=0 (4)
V- (AXB)=B-(VxXA)-A-VxB (5)

VX(AXB)=(B-V)A—(A-V)B+(V-B)A—(V-A)B (6)

V(A-B)=(A-V)B+(B-V)A+AX(VXB)+BXx(VxA)
(7)

5-3-1 Gauss’s Law for the Magnetic Field

Using (3) the magnetic field due to a volume distribution of
current J is rewritten as

_Ho [ JXigr
B=yr ) Sz fav

_ ko LJ x v(—l—) v @)

QP
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If we take the divergence of the magnetic field with respect to
field coordinates, the del operator can be brought inside the
integral as the integral is only over the source coordinates:

v-B= ;FOLV. []xv(~l—)] v ©)

™ QP

The integrand can be expanded using (5)

o [ ol) @ v )] o
° (10)

The first term on the right-hand side in (10) is zero because J
is not a function of field coordinates, while the second term is
zero from (2), the curl of the gradient is always zero. Then (9)
reduces to

V-B=0 (11)

This contrasts with Gauss’s law for the displacement field
where the right-hand side is equal to the electric charge
density. Since nobody has yet discovered any net magnetic
charge, there is no source term on the right-hand side of (11).

The divergence theorem gives us the equivalent integral
representation

LV-BdV=§ B-dS=0 (12)
s

which tells us that the net magnetic flux through a closed
surface is always zero. As much flux enters a surface as leaves
it. Since there are no magnetic charges to terminate the
magnetic field, the field lines are always closed.

5-3-2 Ampere’s Circuital Law

We similarly take the curl of (8) to obtain

-~ 1
VXB=—“9-J. VX[JXV(—)]dV (1)
4 v TQp
where again the del operator can be brought inside the
integral and only operates on rgp.
We expand the integrand using (6):

VX[’”(:&;)] =[V(,Q%) LZ],J:(J'VW(EI»)

V]

) oo
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where two terms on the right-hand side are zero because J is
not a function of the field coordinates. Using the identity of

(7)!

oG- [0 wpra- o)

———

+V($)x(Vi}<__L)+JX[VXV(;é;)] (15)
0

the second term on the right-hand side of (14) can be related
to a pure gradient of a quantity because the first and third
terms on the right of (15) are zero since J is not a function of
field coordinates. The last term in (15) is zero because the curl
of a gradient is always zero. Using (14) and (15), (13) can be
rewritten as

womte{ I o(L)]- (D)) 0o

Using the gradient theorem, a corollary to the divergence
theorem, (see Problem 1-15a), the first volume integral is
converted to a surface integral

VxB=:—; [L] : v(r—;:) dS—L Jv“’(rq%) dV] (17)

0

This surface completely surrounds the current distribution so
that S is outside in a zero current region where J=0 so that
the surface integral is zero. The remaining volume integral is
nonzero only when rgp =0, so that using (4) we finally obtain

VXB = uo] (18)

which is known as Ampere’s law.
Stokes’ theorem applied to (18) results in Ampere’s circuital
law:

IVXE-dS= 3-dl=IJ-dS (19)
S Ho L 1O &

Like Gauss’s law, choosing the right contour based on sym-
metry arguments often allows easy solutions for B.

If we take the divergence of both sides of (18), the left-hand
side is zero because the divergence of the curl of a vector is
always zero. This requires that magnetic field systems have
divergence-free currents so that charge cannot accumulate.
Currents must always flow in closed loops.
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5-3-3 Currents With Cylindrical Symmetry

(a) Surface Current

A surface current Kji, lows on the surface of an infinitely
long hollow cylinder of radius a. Consider the two sym-
metrically located line charge elements dI = Kj ad¢ and their
effective fields at a point P in Figure 5-1la. The magnetic
field due to both current elements cancel in the radial direc-
tion but add in the ¢ direction. The total magnetic field can
be found by doing a difficult integration over ¢. However,

dB = dB, + dB,

rop=la® + r? — 2arcos 9}

. (r-acos¢)i, + asindi,
igp=
P .
¢ ‘op A fraction of the current
crosses this surface

No current
crosses this
/7\ a surface
r

All the current

!

|

/ I~ crosses this surface - :
N -

|

\< [ j <{< |

|
)
I
K = Kpi, Koi, / | Joi.
|
\_/ K\\J_,V w
2n 0 r<a 2" g Jomr? r<a
| 2erap- J =2rdp= )
o Mo 2nKga r1>a o Ko Joma r>a
(a) b) (c)

Figure 5-11 (a) The magnetic field of an infinitely long cylinder carrying a surface
current parallel to its axis can be found using the Biot-Savart law for each incremental
line current element. Symmetrically located elements have radial field components
that cancel but ¢ field components that add. (b) Now that we know that the field is
purely ¢ directed, it is easier to use Ampere’s circuital law for a circular contour
concentric with the cylinder. For r <a no current passes through the contour while for
r>a all the current passes through the contour. (¢) If the current is uniformly
distributed over the cylinder the smaller contour now encloses a fraction of the
current.
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using Ampere’s circuital law of (19) is much easier. Since we
know the magnetic field is ¢ directed and by symmetry can
only depend on r and not ¢ or z, we pick a circular contour of
constant radius r as in Figure 5-115. Since dl=r d¢ i, is in the
same direction as B, the dot product between the magnetic
field and dl becomes a pure multiplication. For r<a no cur-
rent passes through the surface enclosed by the contour,
while for r>a all the current is purely perpendicular to the

normal to the surface of the contour:

0,

where I is the total current on the cylinder.
The magnetic field is thus

B, = {p,oKoa/r =uol/(27r), r>a
¢ = )
0, r<a

2 =
B .dl= I B¢r dop = 21TI‘B¢ {K021ra =1,
0

(20)

21

Outside the cylinder, the magnetic field is the same as if all
the current was concentrated along the axis as a line current.

(b) Volume Current

If the cylinder has the current uniformly distributed over
the volume as Joi,, the contour surroundmg the whole cylin-
der still has the total current I = Joma® passing through it. If
the contour has a radius smaller than that of the cylinder,
only the fraction of current proportional to the enclosed area

passes through the surface as shown in Figure 5-11c:

§ Bs g = 27rBe {Jowa"‘= 1,
L Ko Ho
so that the magnetic field is

#ofoa _ kol r>a
9r  2nr’
B¢ =
tofor _ polr
2 2ma® T <6

5-4 THE VECTOR POTENTIAL

5-4-1 Uniqueness

]o1rr2 =1Ir/a®, r<a

(22)

(23)

Since the divergence of the magnetic field is zero, we may

write the magnetic field as the curl of a vector,

V:-B=0>B=VxA

1)
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where A is called the vector potential, as the divergence of the
curl of any vector is always zero. Often it is easier to calculate
A and then obtain the magnetic field from (1).

From Ampere’s law, the vector potential is related to the
current density as

UXB=VX(VXA)=V(V-A)—VZA = p,] (2)

We see that (1) does not uniquely define A, as we can add
the gradient of any term to A and not change the value of the
magnetic field, since the curl of the gradient of any function is
always zero:

A>A+Vf>B=Vx(A+Vf)=VxA (3)

Helmholtz’s theorem states that to uniquely specify a
vector, both its curl and divergence must be specified and that
far from the sources, the fields must approach zero. To prove
this theorem, let’s say that we are given.the curl and diver-
gence of A and we are to determine what A is. Is there any
other vector C, different from A that has the same curl and
divergence? We try C of the form

C=A+a 4)

and we will prove that a is zero.
By definition, the curl of C must equal the curl of A so that
the curl of a must be zero:

VXC=VxX(A+a)=VXA>VXa=0 (5)

This requires that a be derivable from the gradient of a scalar
function f:

Vxa=0=>a=Vf (6)

Similarly, the divergence condition requires that the diver-
gence of a be zero,

V-C=V:-(A+a)=V:-A>V:-a=0 )]
so that the Laplacian of f must be zero,
V-a=V3=0 (8)

In Chapter 2 we obtained a similar equation and solution for
the electric potential that goes to zero far from the charge
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distribution:

pdV
47T£TQP

Vv =—§:> V=L (9)

If we equate f to V, then p must be zero giving us that the
scalar function f is also zero. That is, the solution to Laplace’s
equation of (8) for zero sources everywhere is zero, even
though Laplace’s equation in a region does have nonzero
solutions if there are sources in other regions of space. With f
zero, from (6) we have that the vector a is also zero and then
C=A, thereby proving Helmholtz’s theorem.

5-4-2 The Vector Potential of a Current Distribution

Since we are free to specify the divergence of the vector
potential, we take the simplest case and set it to zero:

V-A=0 (10)
Then (2) reduces to
VZA = — o] (11)

Each vector component of (11) is just Poisson’s equation so
that the solution is also analogous to (9)

A_&Ili‘_’_

T 4 (12)

v TQP

The vector potential is often easier to use since it is in the
same direction as the current, and we can avoid the often
complicated cross product in the Biot-Savart law. For moving
point charges, as well as for surface and line currents, we use
(12) with the appropriate current elements:

JdV->KdS—->1dL-»qv (13)

5-4-3 The Vector Potential and Magnetic Flux

Using Stokes’ theorem, the magnetic flux through a surface
can be expressed in terms of a line integral of the vector
potential:

¢=jB-ds=JVxA-ds=cﬁA-dl (14)
S S L
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(a) Finite Length Line Current

The problem of a line current [ of length L, as in Figure
5-12a appears to be nonphysical as the current must be
continuous. However, we can imagine this line current to be
part of a closed loop and we calculate the vector potential and
magnetic field from this part of the loop.

The distance rop from the current element I dz' to the field
point at coordinate (r, ¢, z) is

rop=[(z—2")"+1°]"" (15)

The vector potential is then

_I.L_()IJL& dZ.’
Cdm Ll -2) )"
pol | ( “Z+L/2+[<z—L/2>“+r2]”2)
O m— n =
47 —(z+ LI2)+[(z+ L/2)% + )"
I —z4
:':—"(sinh“———Z L/2+sinh_'z+L/2) (16)
s r T

® P(r, ¢, z)

rop= [z —2")2 +21'2

(a)
Figure 5-12 (a) The magnetic field due to a finite length line current is most easily
found using the vector potential, which is in the direction of the current. This problem
is physical only if the line current is considered to be part of a closed loop. () The
magnetic field from a length w of surface current is found by superposing the vector
potential of (a) with L » 0. The field lines are lines of constans A,. (¢) The magnetic
flux through a square current loop is in the —x direction by the right-hand rule.
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Magnetic field lines (lines of constant A,)
(=20 (=57 +571 +(3 +x1in [(x+ 47 +57)
—1 wy
+2y tan [—-—-——-—— :I = Const

g -

.\'2 +y2——4—

(b)

d=/B-dS=¢A-dl
L

2

S/

Figure 5-12

> |«2a
D ! — | >y
- ¥
* L
-
D -
(c)
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with associated magnetic field

B=VxA
10A, oA 0A, 0A, 170 3A,
=(—-———4‘i)ir+( —~ )i,,, +—(—(rA,,,)— )iz
ri¢ oz dz ar r \dr ¢
A, .
= — i
or ¢

_—p,olr( 1
T 4 \[— L2+ 1)~z + L2 +{(z— L/2)* + %)%}

. 1 .
_[(Z+L/2)2+r2]”2{—(l+L/2)+[(1+L/2)2+r2]”2}) 14

I —z+L
:ﬁo_( z+L/2 z+L/2 )i¢ (17)

47 \[r*+(z —L/2)2]”2+[r2+(z +L/2)%)'?

For large L, (17) approaches the field of an infinitely long
line current as given in Section 5-2-2:

— — ol

A, In r+ const
T
lim (18)
g o 94 ol
¢ oar 27r

Note that the vector potential constant in (18) is infinite, but
this is unimportant as this constant has no contribution to the
magnetic field.

(b) Finite Width Surface Current

If a surface current Kji,, of width w, is formed by laying
together many line current elements, as in Figure 5-12b, the
vector potential at (x, y) from the line current element K, dx’ at
position x' is given by (18):

_ _[.LoKo dx'

dA,
4

In[(x—x')*+5%] (19).

The total vector potential is found by integrating over all
elements:
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— K +uw/2
Az=%J‘ In [(x —x")*+y%} dx’

T —w/2

~THoKof ,_ N2 4 27 Of
ypm ((x x)In[(x —x")"+y"]—2(x'—x)
. +u2
+2ytan“'(x—y—x—))
—~w2

-2 (o3 ]
(g ole-3) ]

—2w +2y tan”’ M%%} (20)*

The magnetic field is then

. 04, . 9A,
=i, —1i,
ay ax
_ "uoKo( -1 wy . (x+ w/2)2+y2,
=—22tan"' 5—5——i,+In——— 2
4r \28N JErE e ln(x—w/2)2+y2l’)

1)

The vector potential in two-dimensional geometries is also
useful in plotting field lines,

dy B, —0A,/ox

& B, 0AJay (22)
for if we cross multiply (22),
24, dx + 94, dy=dA,=0=>A, =const 23)
dax ay

we see that it is constant on a field line. The field lines in
Figure 5-12b are just lines of constant A,. The vector poten-
tial thus plays the same role as the electric stream function in
Sections 4.3.26 and 4.4.3b.

(¢) Flux Through a Square Loop

The vector potential for the square loop in Figure 5-12¢ with
very small radius a is found by superposing (16) for each side
with each component of A in the same direction as the current
in each leg. The resulting magnetic field is then given by four

*tan~! (a~ b)+tan™’ (q+b)=tan' 1=a’+5?
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terms like that in (17) so that the flux can be directly computed
by integrating the normal component of B over the loop area.
This method is straightforward but the algebra is cumber-
some.

An easier method is to use (14) since we already know the
vector potential along each leg. We pick a contour that runs
along the inside wire boundary at small radius a. Since each
leg is identical, we only have to integrate over one leg, then
multiply the result by 4:

—a+D/2

d=4 J A, dz
r=aa_D/2
I[meroe -2+ D +D
= Koo J (sinh™' A /2 +sinh™! e /2) dz
T Ja-D2 a a
I( (D —2+D 2 12
=’L—0{ - (—-~z) sinh™! Z—/2+ [(1—)— z) + a2]
ar 2 a 2
D + 2 1/2 —a+D/2
+ (—+z) sinh™' 2+ D2 [(2+Z) + a2] }
2 a 2 a=D/2
I _ o D-
=2u—0(—asinh 11+a\/§+(D—a)sinh ! ¢
o
~{(D-a)’+ a2]1/2) (24)
As a becomes very small, (24) reduces to
I
lim &= 2 2% psinh™" (l—))— 1) (25)
a-0 m a

We see that the flux through the loop is proportional to the
current. This proportionality constant is called the self-
inductance and is only a function of the geometry:

L=9=2"°D(sinh“ (1—)>—1> (26)

I T a

Inductance is more fully developed in Chapter 6.

5-5 MAGNETIZATION

Our development thus far has been restricted to magnetic
fields in free space arising from imposed current dis-
tributions. Just as small charge displacements in dielectric
materials contributed to the electric field, atomic motions
constitute microscopic currents, which also contribute to the
magnetic field. There is a direct analogy between polarization
and magnetization, so our development will parallel that of
Section 3-1.
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5-5-1 The Magnetic Dipole

Classical atomic models describe an atom as orbiting elec-
trons about a positively charged nucleus, as in Figure 5-13.

Figure 5-13 Atomic currents arise from orbiting electrons in addition to the spin
contributions from the electron and nucleus.

/

dx

s

X

e

The nucleus and electron can also be imagined to be spin-
ning. The simplest model for these atomic currents is analo-
gous to the electric dipole and consists of a small current loop
of area dS carrying a current I, as in Figure 5-14. Because
atomic dimensions are so small, we are only interested in the
magnetic field far from this magnetic dipole. Then the shape
of the loop is not important, thus for simplicity we take it to be
rectangular.
The vector potential for this loop is then

=£‘LI[ l_l)- l_l)-] :
A 47 dx(fg 3 1,+dy(r4 e b M

where we assume that the distance from any point on each
side of the loop to the field point P is approximately constant.

2z

m = ldxdyi, m=I1dS

Al :
! -

7,

ra

y
ra2 |ny
[ '/ 7
X2 dS = dxdyi,

T

dy

——

Xy

y
ds

1 i,-i_\,=t:os)(1
i, = (=i, ) =rcosx,

Figure 5-14 A magnetic dipole consists of a small circulating current loop. The
magnetic moment is in the direction normal to the loop by the right-hand rule.
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Using the law of cosines, these distances are related as

2 d 2
rf=r2+(d§y) —rdy cos x1; r§=r2+(§) —rdx cos yg
(2)

dy\? dx\*
r§=r2+(§y> +7dycos x,, r3=r2+(;> +7dx cos xo

where the angles y, and y. are related to the spherical coor-
dinates from Table 1-2 as

i, -i,=cos y;=sin @ sin ¢ 3)

—1i, i, =cos y2 = —sin 8 cos ¢

In the far field limit (1) becomes

I[d 1
limA=“—°[——’f(

ro»dx 4 dy/ d 1/2
ro>dy mer [1+—y(—y+2cosxl>]
2r\2r
1

‘[Hﬁ(éz_amsm)]“)]

2r\2r

I
~ T% dx dy[cos X 1ix +cos Xaiy] (4)

Using (3), (4) further reduces to

4mr®

1dS
=”::75in fiy (5)

A

sin 8] —sin @i, +cos ¢i,)

where we again used Table 1-2 to write the bracketed
Cartesian unit vector term as is The magnetic dipole
moment m is defined as the vector in the direction perpen-
dicular to the loop (in this case i,) by the right-hand rule with
magnitude equal to the product of the current and loop area:

m=/dSi,=1dS (6)
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Then the vector potential can be more generally written as

Hom Hom

A=gsinbiy =5 Xi, (7)

with associated magnetic field

0 10
B=VxA= Z (A sin 0)i, ——— (rA,)i
rsin060( s sin O)i ror (rs)is
= ;‘::_i, [2 cos i, + sin i) (8)

This field is identical in form to the electric dipole field of
Section 3-1-1 if we replace p/eo by pom.

5.5.2 Magnetization Currents

Ampere modeled magnetic materials as having the volume
filled with such infinitesimal circulating current loops with
number density N, as illustrated in Figure 5-15. The
magnetization vector M is then defined as the magnetic dipole
density: '

M= Nm= NI dS amp/m (9)

For the differential sized contour in the xy plane shown in
Figure 5-15, only those dipoles with moments in the x or ¥
directions (thus z components of currents) will give rise to
currents crossing perpendicularly through the surface
bounded by the contour. Those dipoles completely within the
contour give no net current as the current passes through the
contour twice, once in the positive z direction and on its
return in the negative z direction. Only those dipoles on
either side of the edges—so that the current only passes
through the contour once, with the return outside the
contour—give a net current through the loop.

Because the length of the contour sides Ax and Ay are of
differential size, we assume that the dipoles along each edge
do not change magnitude or direction. Then the net total
current linked by the contour near each side is equal to the
psoduct of the current per dipole I and the humber of
dipoles that just pass through the contour once. If the normal
vector to the dipole loop (in the direction of m) makes an
angle @ with respect to the direction of the contour side at
position x, the net current linked along the line at x is

—INdS Ay cos 0] .= —M,(x) Ay (10)

The minus sign arises because the current within the contour
adjacent to the line at coordinate x flows in the —z direction.
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§
3
0
0
)

NN\
Y
%

N
=

ds

Figure 5-15 Many such magnetic dipoles within a material linking a closed contour
gives rise to an effective magnetization current that is also a source of the magnetic
field.

Similarly, near the edge at coordinate x + Ax, the net current
linked perpendicular to the contour is

IN dS Ay cos 8] ccax= My(x +Ax) Ay (1)
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Along the edges at y and y + Ay, the current contributions are
IN dS Ax cos 8| ,= M, (y) Ax
—IN dS Ax cos 6| ,+ay = —M,(y + Ay) Ax (12)

The total current in the z direction linked by this contour is
thus the sum of contributions in (10)-(12):

M,(x +Ax) - M,(x) M.(y+4y)- Mx(y))
Ax Ay

L = AxA(

(13)
If the magnetization is uniform, the net total current is zero
as the current passing through the loop at one side is canceled
by the current flowing in the opposite direction at the other
side. Only if the magnetization changes with position can
there be a net current through the loop’s surface. This can be
accomplished if either the current per dipole, area per dipole,
density of dipoles, or angle of orientation of the dipoles is a
function of position.
In the limit as Ax and Ay become small, terms on the
right-hand side in (13) define partial derivatives so that the
current per unit area in the z direction is

m J, = —(aM aM)- (VXM 14
Ax—»O _Ax Ay ox 9y ) (14)

Ay—-»0
which we recognize as the z component of the curl of the
magnetization. If we had orientated our loop in the xz or yz
planes, the current density components would similarly obey
the relations

= (Z5-22) - (vxm,
oM, oM, (1%)
1= (G 5) = O,
so that in general
J =V XM (16)

where we subscript the current density with an m to represent
the magnetization current density, often called the Amperian
current density.

These currents are also sources of the magnetic field and
can be used in Ampere’s law as

B
VX—=J,.+];=],+VXM (17)

Mo
where J; is the free current due to the motion of free charges

as contrasted to the magnetization current J,,, which is due to
the motion of bound charges in materials.
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As we can only impose free currents, it is convenient to
define the vector H as the magnetic field intensity to be
distinguished from B, which we will now call the magnetic
flux density:

H=—11—M=>B=MO(H+M) (18)
Ho

Then (17) can be recast as

vx(Z-M)=VxH=], (19)
Mo

The divergence and flux relations of Section 5-3-1 are
unchanged and are in terms of the magnetic flux density B.
In free space, where M = 0, the relation of (19) between B and
H reduces to

B= [LQH (20)

This is analogous to the development of the polarization
with the relationships of D, E, and P. Note that in (18), the
constant parameter uo multiplies both H and M, unlike the
permittivity €9 which only multiplies E.

Equation (19) can be put into an equivalent integral form
using Stokes’ theorem:

J‘S(VXH)-dS=£H'dl=L]f'dS 2n

The free current density J; is the source of the H field, the
magnetization current density J.,, is the source of the M field,
while the total current, J;+ Jn, is the source of the B field.

5-5-3 Magnetic Materials

There are direct analogies between the polarization pro-
cesses found in dielectrics and magnetic effects. The consti-
tutive law relating the magnetization M to an applied
magnetic field H is found by applying the Lorentz force to
our atomic models.

(a) Diamagnetism

The orbiting electrons as atomic current loops is analogous
to electronic polarization, with the current in the direction
opposite to their velocity. If the electron (¢ = 1.6 % 107'° coul)
rotates at angular speed @ at radius R, as in Figure 5-16, the
current and dipole moment are

__tw - 2 _ 6@ 52
1—2‘”, m = InR 5 R (22)
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} 2m
TL m, wR%, =— m

e

v—wR|¢

R | 1=

RZ
i m=—IR%i, =5 i,

Figure 5-16 The orbiting electron has its magnetic moment m in the direction
opposite to its angular momentum L because the current is opposite to the electron’s
velocity.

Note that the angular momentum L and magnetic moment m
are oppositely directed and are related as

L=m.Ri, xv=mwR%, = —2:"'m (23)

where m, =9.1 X 107%! kg is the electron mass.

Since quantum theory requires the angular momentum to
be quantlzed in units of h/2w, where Planck’s constant is
h=6.62%10">* joule-sec, the smallest unit of magnetic
moment, known as the Bohr magneton, is

~9.3%10"** amp-m? (24)

mp =
e

Within a homogeneous material these dipoles are
randomly distributed so that for every electron orbiting in
one direction, another electron nearby is orbiting in the
opposite direction so that in the absence of an applied
magnetic field there is no net magnetization.

The Coulombic attractive force on the orbiting electron
towards the nucleus with atomic number Z is balanced by the
centrifugal force:

Ze*

2 — —
e y—y (25)

Since the left-hand side is just proportional to the square of
the quantized angular momentum, the orbit radius R is also
quantized for which the smallest value is

4 h\2 5x107"
Teo (—) =220 (26)

T m.Ze Z
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with resulting angular speed

Ze'm. 1.3x10'°22 @7)
W=7 3=1.
(4meo) (h/2m)°
When a magnetic field Hoi, is applied, as in Figure 5-17,
electron loops with magnetic moment opposite to the field
feel an additional radial force inwards, while loops with
colinear moment and field feel a radial force outwards. Since
the orbital radius R cannot change because it is quantized,
this magnetic force results in a change of orbital speed Aw:

My(w +Aw;)’R = e( Ze +Aw1)Ry.oHo)
47eoR
m, (w + A(D2)2R = e( 3 (w + Awg)R[J.oHo) (28)
4meoR
where the first electron speeds up while the second one slows

down.
Because the change in speed Aw is much less than the
natural speed w, we solve (28) approximately as

ewuoHyo
Awl=2m,w epoH,
—epotlo
(29)
Awo— —ewuoHyo
2 2m,w+ey.oHo

where we neglect quantities of order (Aw)®. However, even
with very high magnetic field strengths of Ho = 10° amp/m we
see that usually

euoHo < 2muwo

30
(1.6x107"%)(4mx1077)10°« 2(9.1 x 1073")(1.8 x 10‘6)( )

Hyi, Hoi,

f !

& &

Figure 5-17 Diamagnetic effects, although usually small, arise in all materials because
dipoles with moments parallel to the magnetic field have an increase in the orbiting
electron speed while those dipoles with moments opposite to the field have a decrease
in speed. The loop radius remains constant because it is quantized.
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so that (29) further reduces to

eioH,

m,

Aw; = —Aws =~ ~1.1x10°H, (31)

The net magnetic moment for this pair of loops,

R2 i 2
m=e—(w2—w1)=—eR2Aw1=LoRHo 32)
2 2m,

is opposite in direction to the applied magnetic field.
If we have N such loop pairs per unit volume, the
magnetization field is

_ Ne®uoR*
2m,
which is also oppositely directed to the applied magnetic field.

Since the magnetization is linearly related to the field, we
define the magnetic susceptibility y.. as

_ Ne2[1,0R2
2m,

M=Nm= Hoi, (33)

M=x.H, Xm = (34)

where y.. is negative. The magnetic flux density is then
B =poH+M)= po(l+xm)H=pou-H=pH (35)

where u, = 1+ yn is called the relative permeability and u is
the permeability. In free space xm. =0 so that u,=1 and
& = wo. The last relation in (35) 1s usually convenient to use, as
all the results in free space are stll correct within linear
permeable material if we replace uo by u. In diamagnetic
materials, where the susceptibility is negative, we have that
1, <1, u <po. However, substituting in our typical values

_ NewoR® 4.4x107%°
Xm o2m . Ve

(36)

we see that even with N =10%° atoms/ms, Xm is much less than
unity so that diamagnetic effects are very small.

(b) Paramagnetism

As for orientation polarization, an applied magnetic field
exerts a torque on each dipole tending to align its moment
with the field, as illustrated for the rectangular magnetic
dipole with moment at an angle 8 to a uniform magnetic field
B in Figure 5-18a. The force on each leg is

df, = —dfy=1I Ax i, XB = I Ax[B,i, — B.i,]
dfs= —df,=1 Ay i, XB = I Ay(— B,i, + B.i,)

In a uniform magnetic field, the forces on opposite legs are
equal in magnitude but opposite in direction so that the net

(37
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dfy =—1li, xBAy=—1IAy(—B,i, +B,i,)

Figure 5-18 (a) A torque is exerted on a magnetic dipole with moment at an angle
to an applied magnetic field. (#) From Boltzmann statistics, thermal agitation opposes

the alignment of magnetic dipoles. All the dipoles at an angle 8, together have a net
magnetization in the direction of the applied field.

force on the loop is zero. However, there is a torque:

4
T= Y rxdf,

n=]

]

%(-—i,de,+i,xdf2)+%f(i,><df5—i,de4)

I Ax Ay(B,i,— B,i,)=mxB (38)

e
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The incremental amount of work necessary to turn the
dipole by a small angle d8 is

dW=Td60 =muoH,sin 0d6 39)

so that the total amount of work necessary to turn the dipole
from 6 =0 to any value of 6 is

a
W= L T d6 = —mpoH, cos 8] § = muoHo(1 —cos )
(40)

This work is stored as potential energy, for if the dipole is
released it will try to orient itself with its moment parallel to
the field. Thermal agitation opposes this alignment where
Boltzmann statistics describes the number density of dipoles
having energy W as

WkT —~muoH(l—cos )/kT __

- H o/kT
n=ne =n,e moHo cos 8/

No€
(41)

where we lump the constant energy contribution in (40)
within the amplitude no, which is found by specifying the
average number density of dipoles N within a sphere of
radius R:

1 L 2w R :
N=5_—3J’ J’ J’onoe°°°'°rzsin0drd0d¢

0=0 ‘=0
o v . acos @
=— J’ sinfe dé (42)
2 0=0
where we let
a= my.oHo/kT (43)
With the change of variable
u=acosé, du=—asin 0dé (44)
the integration in (42) becomes
=_—MI e"du=ﬂsinha 45)
2a J, a
so that (41) becomes
n= i ea cos @ (46)
sinha

From Figure 5-18b we see that all the dipoles in the shell
over the interval 8 to 6 +d@ contribute to a net magnetization.
which is in the direction of the applied magnetic field:

dM = 17 cos 6 * sin 0 dr d6 d (47)
51TR :
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so that the total magnetization due to all the dipoles within
the sphere is

__maN I sin @ cos 8¢ <*° d@ (48)
2sinha Jo—o
Again using the change of variable in (44), (48) integrates
to
—mN J’_a
= “d
2a sinh al, ue du
-mN _
—_— u . 1 aﬂ
2a sinh a e“(u-1)
-mN
= [e % (—a—1)—e*(a—1
2asinha[e (ma-Dh=ei(a—1)]
=—:.m—N[—a cosh a +sinh a]
a sinh a
=mN[coth a—1/a] (49)

which is known as the Langevin equation and is plotted as a
function of reciprocal temperature in Figure 5-19. At low
temperatures (high a) the magnetization saturates at M = mN
as all the dipoles have their moments aligned with the field.
At room temperature, a is typically very small. Using the
parameters in (26) and (27) in a strong magnetic field of
Hy=10° amps/m, a is much less than unity:

muoHy ew o uoHp —a
=— ——z 8 X
AT 5 R WT 8x10 (50)

M
b e
/
mNf———————————— ————
/ 1
/ M = mN (cotha——)
/ a
=/
] ] | .
5 10 15
_ mugHy
4= "%r

Figure 5-19 The Langevin equation describes the net magnetization. At low
temperatures (high a) all the dipoles align with the field causing saturation. At high
temperatures (a < 1) the magnetization increases linearly with field.

S
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In this limit, Langevin’s equation simplifies to

+42
IimM=m -———l a5/2—l]
a«xl a+a’/6 a

sz((1+a2/2)(1-—a5/6)_1]

a a

mNa y,om2N

=

3 3T

In this limit the magnetic susceptibility x,, is positive:

=z

H, (61)

_ ﬂ.omzN
kT

but even with N = 10°® atoms/m’, it is still very small:
Xm=T7%x107* (53)

M=xmH, Xm (52)

(c) Ferromagnetism

As for ferroelectrics (see Section 3-1-5), sufficiently high
coupling between adjacent magnetic dipoles in some iron
alloys causes them to spontaneously align even in the absence
of an applied magnetic field. Each of these microscopic
domains act like a permanent magnet, but they are randomly
distributed throughout the material so that the macroscopic
magnetization is zero. When a magnetic field is applied, the
dipoles tend to align with the field so that domains with a
magnetization along the field grow at the expense of non-
aligned domains.

The friction-like behavior of domain wall motion is a lossy
process so that the magnetization varies with the magnetic
field in a nonlinear way, as described by the hysteresis loop in
Figure 5-20. A strong field aligns all the domains to satura-
tion. Upon decreasing H, the magnetization lags behind so
that a remanent magnetization M, exists even with zero field.
In this condition we have a permanent magnet. To bring the
magnetization to zero requires a negative coercive field — H,.

Although nonlinear, the main engineering importance of
ferromagnetic materials is that the relative permeability u, is
often in the thousands:

M = ueo=B/H (54
This value is often so high that in engineering applications we
idealize it to be infinity. In this limit

lim B=pH>>H=0, B finite (55)

e d-

the H field becomes zero to keep the B field finite.
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Figure 5-20 Ferromagnetic materials exhibit hysteresis where the magnetization
saturates at high field strengths and retains a net remanent magnetization M, even
when H is zero. A coercive field —H, is required to bring the magnetization back to
zero.

EXAMPLE 5-1 INFINITE LINE CURRENT WITHIN A
MAGNETICALLY PERMEABLE CYLINDER

A line current I of infinite extent is within a cylinder of
radius a that has permeability u, as in Figure 5-21. The
cylinder is surrounded by free space. What are the B, H, and
M fields everywhere? What is the magnetization current?

By
Imz
7 A
w Line current
¢ _
Bo I Cog ~ WM
2ar
1 = > r
| a
1
H¢ =
2nr
Surface current

=t L
Kp, = (Mo ”21rn

Figure 5-21 A free line current of infinite extent placed within a permeable cylinder
gives rise to a line magnetization current along the axis and an oppositely directed
surface magnetization current on the cylinder surface.
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SOLUTION

Pick a circular contour of radius r around the current.
Using the integral form of Ampere’s law, (21), the H field is
of the same form whether inside or outside the cylinder:

I

§H 'dl=H4,27TI‘=I:>H4, =—
L 27r

The magnetic flux density differs in each region because the
permeability differs:

I
uH, -“—, 0<r<a

¢* " 9nr
B¢ = [
F’OH¢ = o s r>a
27r

The magnetization is obtained from the relation

B
M=—-H
Ho
as
- I
(ﬁ-—l)H4,=” o~ o0<r<a
My =9 \1o Ho 2mr
0, r>a

The volume magnetization current can be found using
(16):

aM,., 139 ]

]m=VXM=———£1,+——(rM¢)1,=O, 0<r<a

oz ror

There is no bulk magnetization current because there are no

bulk free currents. However, there is a line magnetization

current at r =0 and a surface magnetization current at r=a.

They are easily found using the integral form of (16) from

Stokes’ theorem:

IVXM-dS=£M-dl=L],.. -dS

S

Pick a cor.tour around the center of the cylinder with r<a:

— o

M¢27rr=(“’__“’_)1=1m

Mo
where I, is the magnetization line current. The result
remains unchanged for any radius r <a as no more current is
enclosed since J,.=0 for 0<r<a.» As soon as r>a, M,
becomes zero so that the total magnetization current becomes
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zero. Therefore, at r=a a surface magnetization current
must flow whose total current is equal in magnitude but
opposite in sign to the line magnetization current:

—Im (p—po)l

sz 4 —3
2ma po2ma

5-6 BOUNDARY CONDITIONS

At interfacial boundaries separating materials of differing
properties, the magnetic fields on either side of the boundary
must obey certain conditions. The procedure is to use the
integral form of the field laws for differential sized contours,
surfaces, and volumes in the same way as was performed for
electric fields in Section 3-3.

To summarize our. development thus far, the field laws
for magnetic fields in differential and integral form are

VxH=], §Lu-d1=LJ,-ds 1)
VXM=]., iM-dl=LJ.,.-dS @)
V-B=0, iB-dS=O 3)

5-6-1 Tangential Component of H

We apply Ampere’s circuital law of (1) to the contour of
differential size enclosing the interface, as shown in Figure
5-22a. Because the interface is assumed to be infinitely thin,
the short sides labelled ¢ and d are of zero length and so offer

B,

Free surface current K, n
H perpendicular to contour L
2
up out of the page.

Area dS

n-(By —B2)=0

(a) (b)

Figure 5-22 (a) The tangential component of H can be discontinuous in a free
surface current across a boundary. (») The normal component of B is always continu-
ous across an interface.
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no contribution to the line integral. The remaining two sides
yield

39 H-dl=(Hy — Hy) dl = Ky dl 4
L

where Kj, is the component of free surface current perpen-
dicular to the contour by the right-hand rule in this case up out

of the page. Thus, the tangential component of magnetic field
can be discontinuous by a free surface current,

(Hi —Ha) = Kp>nX(Hy—H,)) =K/ (5)

where the unit normal points from region 1 towards region 2.
If there is no surface current, the tangential component of H
is continuous.

5.6-2 Tangential Component of M

Equation (2) is of the same form as (6) so we may use the
results of (5) replacing H by M and K, by K,, the surface
magnetization current:

(M, — Mz)= K, nX(Mz~M,)=K, (6)

This boundary condition confirms the result for surface
magnetization current found in Example 5-1.

5-6-3 Normal Component of B

Figure 5-22b shows a small volume whose upper and lower
surfaces are parallel and are on either side of the interface.
The short cylindrical side, being of zero length, offers no
contribution to (3), which thus reduces to

§n «dS = (Ba, — B1.) dS=0 )
S

yielding the boundary condition that the component of B
normal to an interface of discontinuity is always continuous:

B1;n—B3,=0>n-(B;—By)=0 8
EXAMPLE 5-2 MAGNETIC SLAB WITHIN A UNIFORM MAGNETIC
FIELD

A slab of infinite extent in the x and y directions is placed
within a uniform magnetic field Hyi, as shown in Figure 5-23.
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®

THoiz T Hoiz

Tﬂoi, THoiz

(a) (b)

Figure 5-23 A (a) permanently magnetized or (b) linear magnetizable material is
placed within a uniform magnetic field.

Find the H field within the slab when it is
(a) permanently magnetized with magnetization Moi,,
(b) alinear permeable material with permeability u.

SOLUTION

For both cases, (8) requires that the B field across the
boundaries be continuous as it is normally incident.
(a) For the permanently magnetized slab, this requires that

roHo=po(H+Mo)=> H=Hy—M,
Note that when there is no externally applied field (H,=0),
the resulting field within the slab is oppositely directed to the

magnetization so that B= 0.
(b) For a linear permeable medium (8) requires

/J.OHO=/J.H$H=%HO

For u > uo the internal magnetic field is reduced. If Hy is set
to zero, the magnetic field within the slab is also zero.
5.7 MAGNETIC FIELD BOUNDARY VALUE PROBLEMS
5-7-1 The Method of Images
A line current I of infinite extent in the z direction is a

distance 4 above a plane that is either perfectly conducting or
infinitely permeable, as shown in Figure 5-24. For both cases
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o er !

Figure 5-24 (a) A line current above a perfect conductor induces an oppositely
directed surface current that is equivalent to a symmetrically located image line
current. (b) The field due to a line current above an infinitely permeable medium is the
same as if the medium were replaced by an image current now in the same direction as
the original line current.

the H field within the material must be zero but the boundary
conditions at the interface are different. In the perfect
conductor both B and H must be zero, so that at the interface
the normal component of B and thus H must be continuous
and thus zero. The tangential component of H is dis-
continuous in a surface current.

In the infinitely permeable material H is zero but B is finite.
No surface current can flow because the material is not a
conductor, so the tangential component of H is continuous
and thus zero. The B field must be normally incident.

Both sets of boundary conditions can be met by placing an
image current I at y = —d flowing in the opposite direction
for the conductor and in the same direction for the perme-
able material.
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Using the upper sign for the conductor and the lower sign
for the infinitely permeable material, the vector potential due
to both currents is found by superposing the vector potential
found in Section 5-4-3a, Eq. (18), for each infinitely long line
current:

A= _2‘::1{111 (2 +(y—d)? 1" FIn [x*+ (y + d)1]"?)
_‘“Ol{ln[ 2r(—d)FIn[x*+ (3 + D))} 1
= x“+(y—d)]FIn[x"+(y +d)°] (1)

with resultant magnetic field

H=iVxA=i(i,a—A‘—i,a—A—‘)
Ko Mo\ dy ox
=—I (y —d)i, —xi,_ (y+d)i, —xi,
2m [[x*+(y—d)"] [x*+(y+d)%]

2

The surface current distribution for the conducting case is
given by the discontinuity in tangential H,

Id

K.=—-H.(y=0)= Tl

3)

which has total current

+00 Id i+ dx
n-| ke--7| oim

=-1 @)

just equal to the image current.
The force per unit length on the current for each case is
just due to the magnetic field from its image:

£= iﬂ-012 .
47d 1

(5)

being repulsive for the conductor and attractive for the
permeable material.

The magnetic field lines plotted in Figure 5-24 are just lines
of constant A, as derived in Section 5-4-3b. Right next to the
line current the self-field term dominates and the field lines
are circles. The far field in Figure 5-24b, when the line and
image current are in the same direction, is the same as if we
had a single line current of 21.
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5-7-2 Sphere in a Uniform Magnetic Field

A sphere of radius R is placed within a uniform magnetic
field Hyi,. The sphere and surrounding medium may have
any of the following properties illustrated in Figure 5-25:

(i) Sphere has permeability us and surrounding medium
has permeability u,.
(ii) Perfectly conducting sphere in free space.
(i) Uniformly magnetized sphere M,i, in a uniformly
magnetized medium M,i,.

For each of these three cases, there are no free currents in
either region so that the governing equations in each region

are
V:-B=0
(5)
VxH=0
2z
>0
[§ +% (if)z]sinz(i = Const
R
u = e

(a) Hoi, = Hgli, cosd —igsind)

Figure 5-25 Magnetic field lines about an (a) infinitely permeable and (b) perfectly
conducting sphere in a uniform magnetic field.




Figure 5-25

Hoi. =Ho(i,C086 —i,sinO) \
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/r L (—R +(£1%) sin6 = Const

(b)

Because the curl of H is zero, we can define a scalar magnetic
potential

H=Vy (6)

where we avoid the use of a negative sign as is used with the
electric field since the potential y is only introduced as a
mathematical convenience and has no physical significance.
With B proportional to H or for uniform magnetization, the
divergence of H is also zero so that the scalar magnetic
potential obeys Laplace’s equation in each region:

Vi =0 ¥))

We can then use the same techniques developed for the
electric field in Section 4-4 by trying a scalar potential in each
region as

{Arcos 6, r<R

(Dr+C/r*)cos 6 r>R (8)
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The associated magnetic field is then

ax lax,+ 1 ox.

H=V =—"+—— I ———.
X é)rl rao"’ rsinoaqﬁl"
_{A(i,coso—i,sin0)=Aiz, r<R ©
(D—2C/r’) cos 0i,— (D + C/r’)sin 8i5 r>R

For the three cases, the magnetic field far from the sphere
must approach the uniform applied field:

H(r =00) = Hyi, = Ho(i, cos @ —iy sin8)> D=H, (10)

The other constants, A and C, are found from the boundary
conditions at r = R. The field within the sphere is uniform, in
the same direction as the applied field. The solution outside
the sphere is the imposed field plus a contribution as if there
were a magnetic dipole at the center of the sphere with
moment m, = 47wC.

(1) 1f the sphere has a different permeability from the sur-
rounding region, both the tangential components of H and
the normal components of B are continuous across the
spherical surface:

Ho(r=R,)=He(r=R-)>A=D+CIR® an

B, (r=R,)=B,(r=R_)>uH,(r=R,)=usH,(r=R_)
which yields solutions

= 3u1Ho _ 2T

, = R%H, 12
Met2u, Ho+2u, ° (12)

The magnetic field distribution is then

3 i,
—EL— (i, cos 8 —ig sin 8) = B“IHOI

——, r<R
m2t2u, po+2pu,

_ 2R [} .
H={ H, [1+ > (“2+2“l)] cos 6i, (13)

[1 “2 “1)] sin Oi,}, r>R
T ﬂ.2+2ﬂ1

The magnetic field lines are plotted in Figure 5-25a when
pa—>00, In this limit, H within the sphere is zero, so that the
field lines incident on the sphere are purely radial. The field
lines plotted are just lines of constant stream function X,
found in the same way as for the analogous electric field
problem in Section 4-4-3b.
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(ii) If the sphere is perfectly conducting, the internal
magnetic field is zero so that A =0. The normal component
of B right outside the sphere is then also zero:

H,(r=R,)=0>C=HyR%?2 (14)
yielding the solution
R? R®
H= Ho[(l ——3> cos 0i,—(1 +F> sin 0io], r>R
r r

(15)

The interfacial surface current at r = R is obtained from the
discontinuity in the tangential component of H:

Ky =Hs(r=R)= —3H,sin 8 (16)

The current flows in the negative ¢ direction around the
sphere. The right-hand rule, illustrated in Figure 5-258,
shows that the resulting field from the induced current acts in
the direction opposite to the imposed field. This opposition
results in the zero magnetic field inside the sphere.

The field lines plotted in Figure 5-25b are purely tangential
to the perfectly conducting sphere as required by (14).

(i11) If both regions are uniformly magnetized, the bound-
ary conditions are

Hy(r=R.,)=Hy(r=R)>A=D+CIR’
B,(r=R.)=B,(r=R_)>H,(r=R,)+ M cos §
=H, (r=R_)+Mscos 8 (17)
with solutions

A=Hy+3(M,—M
: 3( 1 2) (18)

R
Cc= 3 (M, —My)
so that the magnetic field is

1
[Ho+ 3 (M1~ Mg)][cos 6i, —sin fio]

1
=[H0+§(M1_M2)]i,_ 7‘<R

H =/ . (19)
2R ]
(Ho—?(Ml —Mg)) CcOs 01,

3

R
_(H0+3—§(M1—M2)) sin oig, r>R
r

Because the magnetization is uniform in each region, the
curl of M is zero everywhere but at the surface of the sphere,
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so that the volume magnetization current is zero with a sur-
face magnetization current at r = R given by

K,.=nX(M,—Mo,)
=i, X (M, — My)i,
=1, X(M;— M)(i, cos € —sin fig)
= —(M,— M) sin 0i, (20)

5.8 MAGNETIC FIELDS AND FORCES
5-8-1 Magnetizable Media

A magnetizable medium carrying a free current J; is placed
within a magnetic field B, which is a function of position. In
addition to the Lorentz force, the medium feels the forces on
all its magnetic dipoles. Focus attention on the rectangular
magnetic dipole shown in Figure 5-26. The force on each
current carrying leg is

f=1idlX(B,i.+ B,i,+ B.,i,)
>f(x) = —i Ay[— B,i, + B.i,]|
f(x +Ax) =i Ay[— Bi, + B,i)| vrax
f(y) =i Ax[B,i, — B.i,]|,
f(y + Ay) = —i Ax[B,i, — B.i,]| y+ay 0y
so that the total force on the dipole is
f=f(x)+£(x+Ax)+£(y) +£(y + Ay)

B.(x +Ax)—B.(x), B.(x+Ax)—B,(x),
Iy — | P
Ax Ax

=i Ax Ay[

+B:0+89)=B.0) . _ By(y+Ay)—B,(y) iz] ©

Ay N Ay

(x, y) N m =iA x Ayi,
<~ Ax—>

Figure 526 A magnetic dipole in a magnetic field B.
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In the limit of infinitesimal Ax and Ay the bracketed terms
define partial derivatives while the coefficient is just the
magnetic dipole moment m=1i Ax Ay i,:

3B, B, 9B B,
2:-—8 ax ax dy dy
,-D

Ampere’s and Gauss’s law for the magnetic field relate the
field components as

éB aB, 4B
V-B= L (_’+__’)
0=> dz ax dy )

3B, 4B,

3y —E‘—I»‘-o]'rx

B, 0B,

dz ox

VXB=puo(Jr+VXM)=po]r=>

= M'O.,Ty

———=poJr. (5)
y

which puts (3) in the form

aB., oB,, 0B,, . .
f= ml('('?;—l, +‘—'! 1y +a_l 1, — MO(JT;‘: —]Txly))
=(m:V)B+uomX]Jr (6)

where Jr is the sum of free and magnetization currents.
If there are N such dipoles per unit volume, the force
density on the dipoles and on the free current is

F=Nf=M-V)B+uMXxJr+J;xXB
= po(M + VY(H +M)+uM X (J;+ VX M)+ poJ; X (H+M)
= po(M - V)(H+M) + uoMX (VX M) + o], ¥ H (7

Using the vector identity
MXx(VXM)=— (M~ V)M+3V(M - M) (8)
(7) can be reduced to
F= po(M - V)H+ o, X H+V(% M- M) 9)

The total force on the body is just the volume integral of F:

f=LFdV (10)
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In particular, the last contribution in (9) can be converted
to a surface integral using the gradient theorem, a corollary
to the divergence theorem (see Problem 1-15a):

Booy. b2,
LV(2M M)dv £2M M dS a1

Since this surface S surrounds the magnetizable medium, it
is in a region where M =0 so that the integrals in (11) are
zero. For this reason the force density of (9) is written as

F=[L0(M'V)H+quIXH (12)

It is the first term on the right-hand side in (12) that accounts
for an iron object to be drawn towards a magnet. Magnetiz-
able materials are attracted towards regions of higher H,

5-8-2 Force on a Current Loop

(a) Lorentz Force Only

Two parallel wires are connected together by a wire that is
free to move, as shown in Figure 5-27a. A current I is
imposed and the whole loop is placed in a uniform magnetic
field Byi,. The Lorentz force on the moveable wire is

f,=1IBgl (18)

where we neglect the magnetic field generated by the current,
assuming it to be much smaller than the imposed field B,.

(b) Magnetization Force Only

The sliding wire is now surrounded by an infinitely
permeable hollow cylinder of inner radius @ and outer radius
b, both being small compared to the wire’s length [, as in
Figure 5-27b. For distances near the cylinder, the solution is
approximately the same as if the wire were infinitely long. For
r>0 there is no current, thus the magnetic field is curl and
divergence free within each medium so that the magnetic
scalar potential obeys Laplace’s equation as in Section 5-7-2.
In cylindrical geometry we use the results of Section 4-3 and
try a scalar potential of the form

x=(Ar+C) cos ¢ (14)

r
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—— f = IBoh,

(a)

Yo TN P

— f:IBoliy

<~

===

TBOiI

(c)
Figure 5-27 (a) The Lorentz-force on a current carrying wire in a magnetic field. (b)
If the current-carrying wire is surrounded by an infinitely permeable hollow cylinder,
there is no Lorentz force as the imposed magnetic field is zero where the current is.
However, the magnetization force on the cylinder is the same as in (a). (¢) The total
force on a current-carrying magnetically permeable wire is also unchanged.

in each region, where B=Vy because VXB=0. The
constants are evaluated by requiring that the magnetic field
approach the imposed field Byi, at r=0 and be normally
incident onto the infinitely permeable cylinder at r=a and
r=b. In addition, we must add the magnetic field generated
by the line current. The magnetic field in each region is then
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(see Problem 32a):
(ol ,

— g, 0<r<a
27rr
2B,b* a® ) a® . .1 ul,
bz_oaz[(l—?)cos¢1,—(l+;§)sm¢l¢]+2—;l¢,
B =<
a<r<b (15)
2 2
I
Bo[(l +b—,) cos ¢i,—(1 —b—z) sin ¢i¢] LI
r r 27r
\ r>b

Note the infinite flux density in the iron (u - ) due to the
line current that sets up the finite H field. However, we see
that none of the imposed magnetic field is incident upon the
current carrying wire because it is shielded by the infinitely
permeable cylindrical shell so that the Lorentz force contri-
bution on the wire is zero. There is, however, a magnetization
force on the cylindrical shell where the internal magnetic field
H is entirely due to the line current, Hy = I/27rr because with
p - 0, the contribution due to B, is negligibly small:

F=puoM-V)H
4 , . My o .
= o M. - (i) + =2 2 (Hoko) (16)
Within the infinitely permeable shell the magnetization and
H fields are
L
" omr
0 2 2
_ 7 2Bob a
oM, = Be— o= 23 (1-%) cos ¢ an
2Bob® (. a®\ . (m—wo)l
oMy =By —poHy = _(bz_oaz) (1 +?) sin @ + 21"_0
Although H, only depends on r, the unit vector iy, depends on
¢:
is = (—sin @i, +cos ¢i,) (18)

so that the force density of (16) becomes

B.l . (Bs—uoHy)I d

F=- 2mre * 2ar? do

(is)

21:r2 [— B.(—sin ¢i. +cos ¢i,)

+(Bgs —uoHy)(—cos @i, —sin ¢i,)]
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I | 2By’ a? o .
ot { T4t [(1 —r_ﬂ) cos ¢(—sin @i, +cos ¢i,)

2

(1 +:—2) sin  (cos i, +sin ¢i,)]

(0 —po)l . . .
+—-—2m_ (cos ¢i, +sin ¢1,)}
I [ 2Bgb? . . 2a®,
=m[—r°a.‘,(-—25m¢ cos ¢l,—?"l,)
(e~ o)l e L g
+—_21rr (cos i, +sin ¢1,)] (19)

The total force on the cylinder is obtained by integrating
(19) over r and ¢:

2w b
f=J J Flrdrd¢ (20)
$=0“r=a

All the trigonometric terms in (19) integrate to zero over ¢ so
that the total force is

_ 2Bob“’11J"’ e’
’_(b—2—-a“2.). r=..1‘3 r
_ Bob*ll a®

(b*-a®) r’l,

= IByl 21)

b

The force on the cylinder is the same as that of an unshield-
ed current-carrying wire given by (13). If the iron core has a
finite permeability, the total force on the wire (Lorentz force)
and on the cylinder (magnetization force) is again equal to
(13). This fact is used in rotating machinery where current-
carrying wires are placed in slots surrounded by highly
permeable iron material. Most of the force on the whole
assembly is on the iron and not on the wire so that very little
restraining force is necessary to hold the wire in place. The
force on a current-carrying wire surrounded by iron is often
calculated using only the Lorentz force, neglecting the
presence of the iron. The correct answer is obtained but for
the wrong reasons. Actually there is very little B field near the
wire as it is almost surrounded by the high permeability iron
so that the Lorentz force on the wire is very small. The force
is actually on the iron core.
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(c) Lorentz and Magnetization Forces

If the wire itself is highly permeable with a uniformly
distributed current, as in Figure 5-27¢, the magnetic field is
(see Problem 32a)

]
I
ﬂ-+ﬂ- (ircos p—iy smdt)+2 rb21¢
= 2B, L yi i <b
F-+”-O £ 21Tb2 y x xl,), r

H =9 2 (22)

Bo[(1+b F-“#-o) .

— — ——— ) cos @i,

Ko r ut+po

b2 H— o . . 1 N
\ —(1—? #+#0)sm¢1¢]+ﬂ;1¢, r>b

It is convenient to write the fields within the cylinder in
Cartesian coordinates using (18) as then the force density
given by (12) is

F= ﬂ.o(M : V)H+ﬂ.0]f xH

= (1 — po)(H - V)H+“—ZI i, xH

=(,L—m,)( -+ H, )(H i+ H, .,)+ of pi,— i)
(23)
Since within the cylinder (r <#) the partial derivatives of H
are
9H,_3H,_
ox dy
(24)
O0H, oH, I
ay dx 2mb®
(23) reduces to
_ OH, . 0H, \ pol .. . .
=(p “0)(”: ax ly+Hy 3y ls)"'m(Hsly H,l,)
I . .
=m§ (llv +F-0)(Hsly _Hylx)
I(p +uo)[ 2B, Iy ) Ix ]
= - - . 5
2arb* (y.+y.o omb® b 211'b2l (25)

Realizing from Table 1-2 that
yi, +xi, = r[sin @i, + cos ¢i,]=ri, (26)
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the force density can be written as

_IBo.  I*(ptpo)

F—-m i,— 2mb?)? r (sin ¢1i, +cos ¢i,) (27)

The total force on the permeable wire is
27 Wb
f=J’ J’ Flrdr d¢ (28)
b=0r=0

We see that the trigonometric terms in (27) integrate to zero
so that only the first term contributes:

IB l 29 b
f,=—% j j rdrdé
b $=0%r=0

=IBy! (29)

The total force on the wire is independent of its magnetic
permeability.

PROBLEMS

Section 5-1
1. A charge g of mass m moves through a uniform magnetic
field B,i,. At ¢t =0 its velocity and displacement are

v(t = 0) = v,olx + Uyol, + V,0l,
r(t = 0) = inx + y()iy + Z,()il

(a) What is the subsequent velocity and displacement?

(b) Show that its motion projected onto the xy plane is a
circle. What is the radius of this circle and where is its center?

(c) What is the time dependence of the kinetic energy of
the charge sm|v|??

2. A magnetron is essentially a parallel plate capacitor
stressed by constant voltage V,; where electrons of charge —e
are emitted at x =0, y =0 with zero initial velocity. A trans-
verse magnetic field Boi, is applied. Neglect the electric and
magnetic fields due to the electrons in comparison to the
applied field.

(a) What is the velocity and displacement of an electron,
injected with zero initial velocity at ¢t = 0?

(b) What value of magnetic field will just prevent the elec-
trons from reaching the other electrode? This is the cut-off
magnetic field.
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(a) (c)

(c) A magnetron is built with coaxial electrodes where
electrons are injected from r = a, ¢ =0 with zero initial veloc-
ity. Using the relations from Table 1-2,

i, = cos @i, +sin @i,
iy = —sin @i, +cos @i,

show that

What is the acceleration of a charge with velocity
V= 'U,-ir + U¢i¢?

(d) Find the velocity of the electrons as a function of radial
position.
Hint:

dv, dv.dr dv, d , o
=———=v——=——(2v;)
r dr

dvs_dvedr _  dvg

(e) What is the cutoff magnetic field? Check your answer
with (b) in the limit 4 =a +s where s < a.

3. A charge g of mass m within a gravity field —gi, has an
initial velocity voi,. A magnetic field Boi. is applied. What




Je— o8 —>«

—>

® Boi,
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value of B, will keep the particle moving at constant speed in
the x direction?

4. The charge to mass ratio of an electron e/m was first
measured by Sir J. J. Thomson in 1897 by the cathode-ray
tube device shown. Electrons emitted by the cathode pass
through a slit in the anode into a region with crossed electric
and magnetic fields, both being perpendicular to the elec-
trons velocity. The end of the tube is coated with a fluorescent
material that produces a bright spot where the electron beam
impacts.

Screen

(a) What is the velocity of the electrons when passing
through the slit if their initial cathode velocity is v¢?

(b) The electric field E and magnetic field B are adjusted so
that the vertical deflection of the beam is zero. What is the
initial electron velocity? (Neglect gravity.)

(c) The voltage V5 is now set to zero. What is the radius R
of the electrons motion about the magnetic field?

(d) What is ¢/m in terms of E, B, and R?

5. A charge q of mass m at t=0 crosses the origin with
velocity vo = v,oi. + vy0ly. For each of the following applied
magnetic fields, where and when does the charge again cross
the y =0 plane?

(a) B ='Boi;
(b) B = Boi,
(C) B= Boiz

vo =voli, cosd + i, sing)




378

The Magnetic Field

6. In 1896 Zeeman observed that an atom in a magnetic field
had a fine splitting of its spectral lines. A classical theory of
the Zeeman effect, developed by Lorentz, modeled the elec-
tron with mass m as being bound to the nucleus by a spring-
like force with spring constant & so that in the absence of a
magnetic field its natural frequency was w, = ~/I¢/_m

(2) A magnetic field Boi, is applied. Write Newton’s law for
the x, y, and z displacements of the electron including the
spring and Lorentz forces.

(b) Because these equations are linear, guess exponential
solutions of the form e”. What are the natural frequencies?

c) Because w, is typically in the optical range (w;=
10'® radian/sec), show that the frequency splitting is small
compared to w; even for a strong field of Bo=1 tesla. In this
limit, find approximate expressions for the natural frequen-
cies of (b).

7. A charge ¢ moves through a region where there is an
electric field E and magnetic field B. The medium is very
viscous so that inertial effects are negligible,

Bv=q(E+vXB)

where B is the viscous drag coefficient. What is the velocity of
the charge? (Hint: (vXB)XB=—v(B-B)+B(v'B) and
v-B=(¢/B)E-B.)

8. Charges of mass m, charge ¢, and number density » move
through a conducting material and collide with the host
medium with a collision frequency » in the presence of an
electric field E and magnetic field B.

(a) Write Newton’s first law for the charge carriers, along
the same lines as developed in Section 3-2-2, with the addition
of the Lorentz force.

(b) Neglecting particle inertia and diffusion, solve for the
particle velocity v.

(c) What is the constitutive law relating the current density
J=gqnv to E and B. This is the generalized Ohm’s law in the
presence of a magnetic field.

(d) What is the Ohmic conductivity o? A current i is passed
through this material in the presence of a perpendicular
magnetic field. A resistor R; is cohnected across the
terminals. What is the Hall voltage? (See top of page 379).

(e) What value of Ry, maximizes the power dissipated in the
load?
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s : —
|
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Uy L Vh
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i
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S
i -y
-
1Boiz
Section 5.2

9. A point charge ¢ is traveling within the magnetic field of
an infinitely long line current I. At r = ry its velocity is

V(t = O) - 'Ur()ir"" 'Ud,()id, + vz()iz

Its subsequent velocity is only a function of r.
(a) What is the velocity of the charge as a function of
position? Hint: See Problem 2¢ and 24,

1
J- nx dx =3(In x)?
x
(b) What is the kinetic energy of the charge?
(c) What is the closest distance that the charge can

approach the line current if vge=0?

10. Find the magnetic field at the point P shown for the
following line currents:

I I

P. regular
equilateral
T polygon

n-~sided
L

(a) (b) (c)
~*

e P —)

(d) (e) )

11. Two long parallel line currents of mass per unit length
m in a gravity field g each carry a current I in opposite
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directions. They are suspended by cords of length L. What is
the angle @ between the cords?

12. A constant current Koig flows on the surface of a sphere
of radius R.

(a) What is the magnetic field at the center of the sphere?
(HINT: i, Xi, =14 = cos 0 cos ¢i, +cos 8 sin ¢i,—sin 6i,.)
& y

(b) Use the results of (a) to find the magnetic field at the
center of a spherical shell of inner radius R, and outer radius
R; carrying a uniformly distributed volume current Jyi,.

13. Aline current I of length 2L flows along the z axis.

. 1 T T T Tx=xoi,

T~

puE———

(a) y ®)
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(a) What is the magnetic field everywhere in the z=0
plane?

(b) Use the results of (a) to find the magnetic field in the
z = 0 plane due to an infinitely long current sheet of height 2L
and uniform current density Kgi,. Hint: Let u=x?+ y2

I du —isin_l( bu+2a )
u(u2+bu—a)”2 Va uvbi+4a
14. Closely spaced wires are wound about an infinitely long

cylindrical core at pitch angle 6o. A current flowing in the
wires then approximates a surface current

K = Ko(i, sin 8p+1i4 cos o)

|
==
% K = Koli, sinfg + iy cosfo)
=

What is the magnetic field everywhere?

15. An infinite slab carries a uniform current Joi, except
within a cylindrical hole of radius a centered within the slab.

y

!

(a) (b)
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(a) Find the magnetic field everywhere? (Himt: Use
superposition replacing the hole by two oppositely directed
currents.)

(b) An infinitely long cylinder of radius a carrying a uni-
form current Joi, has an off-axis hole of radius & with center a
distance d from the center of the cylinder. What is the
magnetic field within the hole? (Hint: Convert to Cartesian
coordinates riy = xi,—yi..)

Section 5.3
16. Which of the following vectors can be a magnetic field B?
If so, what is the current density J?

(a) B=ari,

(b) B= a(xiy —yiy)

() B=a(xi, —yi,)

(d) B= arid,

17. Find the magnetic field everywhere for each of the
following current distributions:

(c)

_ ]oiz, —a<y<0
“)J‘{ﬁhg 0<y<a
(b) ]='£:—yi,, —a<y<a

_ {Joiz, 0<r<a
© ]_{—]oi,, a<r<b
Jor,
@J=4a = "=°
0, r>a
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Section 5.4

18. Two parallel semi-infinite current sheets a distance d
apart have their currents flowing in opposite directions and
extend over the interval —co <x <0.
. y
Kolz

OIOICI0I0I0IOI0I0I0I0I0I0I0I0IO0!]

X RYRXXRDRRDRDIDRIRDD

_Kﬂiz

(a) What is the vector potential? (Hint: Use superposition
of the results in Section 5-3-4b.)

(b) What is the magnetic field everywhere?

(¢) How much magnetic flux per unit length emanates
through the open face at x = 0? How much magnetic flux per
unit length passes through each current sheet?

(d) A magnetic field line emanates at the position yo(0 <

yo<d) in the x = 0 plane. At what value of y is this field line at
x = —00?

19. (a) Show that V- A # 0 for the finite length line current
in Section 5-4-3a. Why is this so?

-~

(b) Find the vector potential for a square loop.
(c) Whatis V- A now?

20. Find the magnetic vector potential and magnetic field for
the following current distributions: (Hint: VA =V(V-A)—
VX (VXA))

(1) Infinitely long cylinder of radius a carrying a
(a) surface current Koig
(b) surface current Kyi,
(c) volume current Jol,



384 The Magnetic Field

(a) (4

(ii) Infinitely long slab of thickness d carrying a
(d) volume current Joi,

(e) volume current lo-fi;

d

Section 5.5
21. A general definition for the magnetic dipole moment for
any shaped current loop is

m=%§rxldl

If the current is distributed over a surface or volume or is due
to a moving point charge we use

Idl>qv>KdS->JdV

What is the magnetic dipole moment for the following cur-
rent distributions:

(a) a point charge g rotated at constant angular speed o at
radius a;

(b) a circular current loop of radius a carrying a current I;

(c) adisk of radius a with surface current Kgis;

(d) a uniformly distributed sphere of surface or volume
charge with total charge Q and radius R rotating in the ¢
direction at constant angular speed w. (Hint: i, Xiy=—is=
—[cos @ cos ¢i, +cos 9 sin ¢i, —sin 8i,])

22. Two identical point magnetic dipoles m with magnetic
polarizability a(m=aH) are a distance a apart along the z
axis. A macroscopic field Hyi, is applied.
(a) What is the local magnetic field acting on each dipole?
(b) What is the force on each dipole?
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(c) Repeat (a) and (b) if we have an infinite array of such
dipoles. Hint:

© 1]
2_:_3

(d) If we assume that there is one such dipole within each
volume of a®, what is the permeability of the medium?

23. An orbiting electron with magnetic moment m.i, is in a
uniform magnetic field Byi, when at ¢ =0 it is slightly dis-
placed so that its angular momentum L= —(2m,/e)m now also
has x and y components.

(a) Show that the torque equation can be put in terms of
the magnetic moment

dm
—=—ymXB
a7
where v is called the gyromagnetic ratio. What is y?
(b) Write out the three components of (a) and solve for the
magnetic moment if at ¢t = 0 the moment is initially

m(t = 0) = meix + miny + sziz

(c) Show that the magnetic moment precesses about the
applied magnetic-field. What is the precessional frequency?

24. What are the B, H, and M fields and the resulting
magnetization currents for the following cases:

(a) A uniformly distributed volume current Joi, through a
cylinder of radius a and permeability p surrounded by
free space.

(b) A current sheet Kyi, centered within a permeable slab
of thickness d surrounded by free space.
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Joiz 3

Ho

e e — e ———

- —

(a) (b)

Section 5.6

25. A magpnetic field with magnitude H, is incident upon the
flat interface separating two different linearly permeable
materials at an angle 8, from the normal. There is no surface

current on the interface. What is the magnitude and angle of
the magnetic field in region 2?

26. A cylinder of radius a and length L is permanently
magnetized as Moi,.
(a) What are the B and H fields everywhere along its axis?
(b) What are the fields far from the magnet (r »a, r » L)?
(c) Use the results of (a) to find the B and H fields every-
where due to a permanently magnetized slab Mi, of infinite
xy extent and thickness L.
(d) Repeat (a) and (b) if the.cylinder has magnetization
My(1—r/a)i,. Hint:

J‘(L—ln (r+\/a§+r§)

a2+ r2)112




Moiz

e -~

Section 5.7
27. A z-directed line current I is a distance d above the
interface separating two different magnetic materials with
permeabilities u; and ws.

Problems

387

(a) Find the image currents I' at position x =—d and I" at
x =d that satisfy all the boundary conditions. The field in
region 1 is due to I and I' while the field in region 2 is due to
See the analogous dielectric problem in Section

I". (Hint:
3-3-3.)

{b) What is the force per unit length on the line current I?

28. An infinitely long line current I is parallel to and a
distance D from the axis of a perfectly conducting cylinder of
radius a carrying a total surface current Ip.

(a) Find suitable image currents and verify that the bound-
ary conditions are satisfied. (Hint:
sin @i, +cos Piy; x =rcos @.)

xi,—vyi.=riy;

1,=
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Iy
27a

[ ¥}

(a)

d)

(b) What is the surface current distribution on the cylin-
der? What total current flows on the cylinder? Hint:

dp 2 -1 ([a*=5%1'" tan (3¢)
Ia+bcos¢_[a*—b’]"2‘a“ ( (a+b) )

(c) What is the force per unit length on the cylinder?

(d) A perfectly conducting cylinder of radius a carrying a
total current I has its center a distance d above a perfectly
conducting plane. What image currents satisfy the boundary
conditions?

(e) What is the force per unit length on the cylinder?

29. A current sheet K, cos ayi, is placed at x=0. Because
there are no volume currents for x#0, a scalar magnetic
potential can be defined H=Vy.




Ko cosayi,
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(a) What is the general form of solution for x? (Hint: See
Section 4-2-3.)

(b) What boundary conditions must be satisfied?

(¢) What is the magnetic field and vector potential every-
where?

(d) What is the equation of the magnetic field lines?

30. A slab of thickness d carries a volume current distribution
Josin axi, and is placed upon a perfectly conducting ground
plane.

(a) Find a particular solution for the vector potential. Are
all the boundary conditions satisfied?

(b) Show that additional solutions to Laplace’s equations
can be added to the vector potential to satisfy the boundary
conditions. What is the magnetic field everywhere?

(¢) What is the surface current distribution on the ground
plane?

(d) What is the force per unit length on a section of ground
plane of width 2#/a? What is the body force per unit length
on a section of the current carrying slab of width 2#/a?

(e) What is the magnetic field if the slab carries no current

but is permanently magnetized as M, sin axi, Repeat (c) and
(d).

31. A line current of length L stands perpendicularly upon a
perfectly conducting ground plane.
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(a) Find a suitable image current that is equivalent to the
induced current on the z =0 plane. Does the direction of the
image current surprise you?

(b) What is the magnetic field everywhere? (Hint: See
Section 5-4-3a.)

(c) What is the surface current distribution on the
conducting plane?

32. A cylinder of radius a is placed within a uniform
magnetic field Hoi,. Find the magnetic field for each of the
following cases:

[

(a) Cylinder has permeability us and surrounding medium
has permeability u;.

(b) Perfectly conducting cylinder in free space.

(c) Uniformly magnetized cylinder Msi, in a uniformly
magnetized medium M,i,.

33. A current sheet Kyi, is placed along the y axis. at x=0
between two parallel perfectly conducting planes a distance d
apart.

(a) Write the constant current at x =0 as an infinite Fourier
series of fundamental period 2d. (Hint: See Section 4-2-5.)

(b) What general form of a scalar potential y, where H=
Vx, will satisfy the boundary conditions?

(c) What is the magnetic field everywhere?
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(d) What is the surface current distribution and the total
current on the conducting planes? Hint:

2

©* 1 =

—5=—
n=1 1 8
(n odd)

Section 5.8
34. Aninfinitely long cylinder of radius a is permanently mag-
netized as M,i,.

[ ¥

~

b
14

(a) Find the magnetic field everywhere.

(b) An infinitely long line current I is placed either at
y=-—b or at x=b (b>a). For each of these cases, what is
the force per unit length on the line current? (Hint: See
problem 32c.)

35. Parallel plate electrodes are separated by a rectangular
conduciing slab that has a permeability u. The system is
driven by a dc current source.

Depth D
B !
IT Ho H
L l
0 4 x
y

(a) Neglecting fringing field effects assume the magnetic
field is H,(x)i,. If the current is uniformly distributed
throughout the slab, find the magnetic field everywhere.

(b) What is the total force on the slab? Does the force
change with different slab permeability? Why not?
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36. A permeable slab is partially inserted into the air gap
of a magnetic circuit with uniform field Hy. There is a
nonuniform fringing field right outside the magnetic circuit
near the edges.

H{x »—o) =0

(a) What is the total force on the slab in the x direction?
(b) Repeat (a) if the slab is permanently magnetized M =
Moi,. (Hint: What is H,(x = —00)? See Example 5-2a.)
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