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The ancient Greeks observed that when the fossil resin
amber was rubbed, small light-weight objects were attracted.
Yet, upon contact with the amber, they were then repelled.
No further significant advances in the understanding of this
mysterious phenomenon were made until the eighteenth
century when more quantitative electrification experiments
showed that these effects were due to electric charges, the
source of all effects we will study in this text.

2.1 ELECTRIC CHARGE
2.1-1 Charging by Contact

We now know that all matter is held together by the attrac-
tive force between equal numbers of negatively charged elec-
trons and positively charged protons. The early researchers
in the 1700s discovered the existence of these two species of
charges by performing experiments like those in Figures 2-1
to 2-4. When a glass rod is rubbed by a dry cloth, as in Figure
2-1, some of the electrons in the glass are rubbed off onto the
cloth. The cloth then becomes negatively charged because it
now has more electrons than protons. The glass rod becomes

(a) (&)

Figure 2-1 A glass rod rubbed with a dry cloth loses some of its electrons to the cloth.
The glass rod then has a net positive charge while the cloth has acquired an equal
amount of negative charge. The total charge in the system remains zero.
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2-2-2 Units
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two stationary charged balls as a function of their distance
apart. He discovered that the force between two small charges
q: and g (idealized as point charges of zero size) is pro-
portional to their magnitudes and inversely proportional to
the square of the distance r;s between them, as illustrated in
Figure 2-6. The force acts along the line joining the charges
in the same or opposite direction of the unit vector i,s and is
attractive if the charges are of opposite sign and repulsive if
like charged. The force Fy; on charge q» due to charge ¢, is
equal in magnitude but opposite in direction to the force F,
on g,, the net force on the pair of charges being zero.

Fo=-F,= %‘Eim"t[kg_m_s_el 1
12

The value of the proportionality constant 1/4me, depends
on the system of units used. Throughout this book we use SI
units (Systéme International d'Unités) for which the base
units are taken from the rationalized MKSA system of units
where distances are measured in meters (m), mass in kilo-
grams (kg), time in seconds (s), and electric current in
amperes (A). The unit of charge is a coulomb where 1
coulomb=1 ampere-second. The adjective “rationalized” is
used because the factor of 4 is arbitrarily introduced into
the proportionality factor in Coulomb’s law of (1). It is done
this way so as to cancel a 47 that will arise from other more
often used laws we will introduce shortly. Other derived units
are formed by combining base units.
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Figure 2-6 The Coulomb force between two point charges is proportional to the
magnitude of the charges and inversely proportional to the square of the distance
between them. The force on each charge is equal in magnitude but opposite in
direction. The force vectors are drawn as if ¢, and g; are of the same sign so that the
charges repel. If ¢, and g, are of opposite sign, both force vectors would point in the
opposite directions, as opposite charges attract.
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The parameter g, is called the permittivity of free space
and has a value

co=4mx1077cH™!

—9

~8.8542x 107" farad/m [A*—s'~kg ' ~m "] (2)
w

=

where ¢ is the speed of light in vacuum (¢ =3 x 10°® m/sec).

This relationship between the speed of light and a physical
constant was an important result of the early electromagnetic
theory in the late nineteenth century, and showed that light is
an electromagnetic wave; see the discussion in Chapter 7.

To obtain a feel of how large the force in (1) is, we compare
it with the gravitational force that is also an inverse square law
with distance. The smallest unit of charge known is that of an
electron with charge ¢ and mass m,

e=1.60%10""" Coul, m,=9.11x 10" kg

Then, the ratio of electric to gravitational force magnitudes
for two electrons is independent of their separation:

2 2
Fo_ e f(‘hg&m; }=_¢_2;ﬁ__4_16x1042 3)
F, Gm;/[r m. 4meoG
where G=6.67x10"" [ms-s_a-kg_'] is the gravitational
constant. This ratio is so huge that it exemplifies why elec-
trical forces often dominate physical phenomena. The minus
sign is used in (3) because the gravitational force between two
masses is always attractive while for two like charges the
electrical force is repulsive.

2-2-3 The Electric Field

If the charge q, exists alone, it feels no force. If we now
bring charge g within the vicinity of ¢, then g» feels a force
that varies in magnitude and direction as it is moved about in
space and is thus a way of mapping out the vector force field
due to q,. A charge other than g would feel a different force
from g9 proportional to its own magnitude and sign. It
becomes convenient to work with the quantity of force per
unit charge that is called the electric field, because this quan-
tity is independent of the particular value of charge used in
mapping the force field. Considering gy as the test charge, the
electric field due to ¢, at the position of go is defined as

.. K - E =
Eo= lim —2=L2 i1e volts/m [kg-m-s "—A~"'
a2=0q2  4meEoriz

I @
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In the definition of (4) the charge ¢, must remain stationary.
This requires that the test charge gs be negligibly small so that
its force on ¢, does not cause ¢, to move. In the presence of
nearby materials, the test charge ¢» could also induce or cause
redistribution of the charges in the material. To avoid these
effects in our definition of the electric field, we make the test
charge infinitely small so its effects on nearby materials and
charges are also negligibly small. Then (4) will also be a valid
definition of the electric field when we consider the effects of
materials. To correctly map the electric field, the test charge
must not alter the charge distribution from what it is in the
absence of the test charge.

2-2-4 Superposition

If our system only consists of two charges, Coulomb’s law
(1) completely describes their interaction and the definition of
an electric field is unnecessary. The electric field concept is
only useful when there are large numbers of charge present
as each charge exerts a force on-all the others. Since the forces
on a particular charge are linear, we can use superposition,
whereby if a charge ¢, alone sets up an electric field E;, and
another charge gs alone gives rise to an electric field Es, then
the resultant electric field with both charges present is the
vector sum E,+E,. This means that if a test charge g, is
placed at point P in Figure 2-7, in the vicinity of N charges it
will feel a force

F,=¢Ep (5)

Figure 2-7 The electric field due to a collection of point charges is equal to the vector
sum of electric helds from each charge alone.
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where Ep is the vector sum of the electric fields due to all the
N-point charges,

1 . -
Ep= (ﬁlll’ + _q;_lﬂl’ + “?r'lsp s —q;ilnp)
4meo \T1p Tep rnp
1 &
= L —gine (6)

4MEq n=1 Tup

Note that Ep has no contribution due to g, since a charge
cannot exert a force upon itself.

EXAMPLE 2-1 TWO-POINT CHARGES

Two-point charges are a distance a apart along the z axis as
shown in Figure 2-8. Find the electric field at any point in the
z =0 plane when the charges are:

(a) both equal to q
(b) of opposite polarity but equal magnitude +4. This
configuration is called an electric dipole.

SOLUTION

(a) In the z =0 plane, each point charge alone gives rise to
field components in the i, and i, directions. When both
charges are equal, the superposition of field components due
to both charges cancel in the z direction but add radially:

2r
4“0 [r*+ (a/2)51

As a check, note that far away from the point charges (r»a)
the field approaches that of a point charge of value 2q:

lim E.(z=0)= iﬁ

r®a

E(z=0)=

(b) When the charges have opposite polarity, the total
electric field due to both charges now cancel in the radial
direction but add in the z direction:

5 =
dareq [I2+(a/2)TT2

Far away from the point charges the electric field dies off as
the inverse cube of distance:

E,(z=0)=

lim E,(z =0)= %5
r»a ':r
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Figure 2.8 Two equal magnitude point charges are a distance a apart along the z
axis. (a) When the charges are of the same polarity, the electric field due to each is
radially directed away. In the z =0 symmetry plane, the net field component is radial.
(b) When the charges are of opposite polarity, the electric field due to the negative
charge is directed radially inwards. In the z = 0 symmerry plane, the net field is now —z
directed.

The faster rate of decay of a dipole field is because the net
charge is zero so that the fields due to each charge tend to
cancel each other out.

2-3 CHARGE DISTRIBUTIONS

The method of superposition used in Section 2.2.4 will be
used throughout the text in relating fields to their sources.
We first find the field due to a single-point source. Because
the feld equations are linear, the net field due to many point
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sources is just the superposition of the fields from each source
alone. Thus, knowing the electric field for a single-point
charge at an arbitrary position immediately gives us the total
field for any distribution of point charges,

In typical situations, one coulomb of total charge may be
present requiring 6.25 % 10'® elementary charges (¢ =~ 1.60 X
107" coul). When dealing with such a large number of par-
ticles, the discrete nature of the charges is often not
important and we can consider them as a continuum. We can
then describe the charge distribution by its density. The same
model is used in the classical treatment of matter. When we
talk about mass we do not go to the molecular scale and count
the number of molecules, but describe the material by its mass
density that is the product of the local average number of
molecules in a unit volume and the mass per molecule.

2-3-1 Line, Surface, and Volume Charge Distributions

We similarly speak of charge densities. Charges can dis-
tribute themselves on a line with line charge density
A (coul/m), on a surface with surface charge density
o (coul/m®) or throughout a volume with volume charge
density p (coul;‘m"’).

Consider a distribution of free charge dq of differential size
within a macroscopic distribution of line, surface, or volume
charge as shown in Figure 2-9. Then, the total charge ¢ within
each distribution is obtained by summing up all the differen-
tial elements. This requires an integration over the line, sur-
face, or volume occupied by the charge.

Adl I Adl (line charge)
L
dg =4 ocdS=>q = I odS (surface charge) (1
5
pdV I pdV (volume charge)
. " V

EXAMPLE 2-2 CHARGE DISTRIBUTIONS

Find the total charge within each of the following dis-
tributions illustrated in Figure 2-10.

(a) Line charge Ao uniformly distributed in a circular hoop
of radius a.
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Figure 2-9 Charge distributions. (a) Point charge; (#) Line charge; (¢) Surface

charge; (d) Volume charge.

SOLUTION

D
q=J‘ AdI=L Apadd =2mal,
L
(b) Surface charge oo uniformly distributed on a circular

disk of radius a.

SOLUTION

a 2w
q=JcrdS=J. J oor dr dé = ma’ay
S r=0 J$=0
(c) Volume charge po uniformly distributed throughout a

sphere of radius R.
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Figure 2-10 Charge distributions of Example 2-2. (a) Uniformly distributed line
charge on a circular hoop. (§) Uniformly distributed surface charge on a circular disk.
(¢) Uniformly distributed volume charge throughout a sphere. (d) Nonuniform line
charge distribution. (¢) Smooth radially dependent volume charge distribution
throughout all space, as a simple model of the electron cloud around the positively
charged nucleus of the hydrogen atom.

SOLUTION

R ™ 27

q=j pdV=j J j' por” sin 0 dr d@de¢ =3imR po
v r=0 =0 Y=0

(d) A line charge of infinite extent in the z direction with
charge density distribution
A
A :—“2
[1+(@z/a)]

SOLUTION

J Adl rm Wil et VB
= = ————=Aga tan — =
e o [T+ G/ 7
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integral for a volume charge distribution (dg =p dV), or in
general, a combination of all three.

If the total charge distribution is known, the electric field is
obtained by performing the integration of (3). Some general
rules and hints in using (3) are:

1. It is necessary to distinguish between the coordinates of
the field points and the charge source points. Always
integrate over the coordinates of the charges.

2. Equation (3) is a vector equation and so generally has
three components requiring three integrations. Sym-
metry arguments can often be used to show that partic-
ular field components are zero.

8. The distance rgp is always positive. In taking square
roots, always make sure that the positive square root is
taken.

4. The solution to a particular problem can often be
obtained by integrating the contributions from simpler
differential size structures.

2-3-3 Field Due to an Infinitely Long Line Charge

An infinitely long uniformly distributed line charge Ao
along the z axis is shown in Figure 2-11. Consider the two
symmetrically located charge elements dq, and dgs a distance z
above and below the point P, a radial distance r away. Each
charge element alone contributes radial and z components to
the electric field. However, just as we found in Example 2-1a,
the two charge elements together cause equal magnitude but
oppositely directed z field components that thus cancel leav-
ing only additive radial components:

Ao dz Aor dz
dE.=———5———F-cos0=————=3p 4
4meo(z"+r )cos 4meg(z+1°) “
To find the total electric field we integrate over the length
of the line charge:
_ Aor I“" dz
4meg ) (z!+r§)!;!
_ Aor z I*""
4meq r!(z +r) |

— Aﬂ
27reor

(5)
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Figure 2-12 (a) The electric field from a uniformly surface charged sheet of infinite
extent is found by summing the contributions from each incremental line charge
element. Symmetrically placed line charge elements have x field components that
cancel, but y field components that add. () Two parallel but oppositely charged sheets
of surface charge have fields that add in the region between the sheets but cancel
outside. (¢) The electric field from a volume charge distribution is obtained by sum-
ming the contributions from each incremental surface charge element.
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The fields due to each charged sheet alone are obtained from
(7) as

70 4 > —g I ¥>a
ey 2 ey 7 ¥
E,= Eq= (8)
o, o
__o'ian y<-a “'q'ir- y<a

2¢ey 2¢e0

Thus, outside the sheets in regions I and I1I the fields cancel
while they add in the enclosed region I1. The nonzero field is
confined to the region between the charged sheets and is
independent of the spacing:

E=E,+E;=

{(Uoffo)im Iyl <a (9)

[y >a

(c) Uniformly Charged Volume

A uniformly charged volume with charge density py of
infinite extent in the x and z directions and of width 2a is
centered about the y axis, as shown in Figure 2-12¢. We break
the volume distribution into incremental sheets of surface
charge of width dy’ with differential surface charge density
do =pgdy'. It is necessary to distinguish the position y' of the
differential sheet of surface charge from the field point y. The
total electric field is the sum of all the fields due to each
differentially charged sheet. The problem breaks up into
three regions. In region I, where y = —a, each surface charge
element causes a field in the negative y direction:

y' = Poa
E,= J —-—— §y=- 10
LAy ke (10)

Similarly, in region 111, where y = a, each charged sheet gives
rise to a field in the positive y direction:

* po dy’ a

E'=I M=£9_‘ y=a (11)
- 2£n Eq

For any position y in region 11, where —a =y =a, the charge

to the right of y gives rise to a negatively directed field while
the charge to the left of y causes a positively directed field:

pﬂdy I .r po’ -
E,= -L: %0 (}2 e asy=a (12)

The field is thus constant outside of the volume of charge and
in opposite directions on either side being the same as for a
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Hollow cylinder of
surface charge

(c} (d)

Figure 2-13 (a) The elecric field along the symmetry z axis of a uniformly dis-
tributed hoop of line charge is z directed. (6) The axial field from a circular disk of
surface charge is obtained by radially summing the contributions of incremental hoops
of line charge. (¢) The axial field from a hollow cylinder of surface charge is obtained
by axially summing the contributions of incremental hoops of line charge. (d) The axial
field from a cylinder of volume charge is found by summing the contributions of axial
incremental disks or of radial hollow cylinders of surface charge.

Cylinder of
volume charge

Figure 2-13b. Then the incremental z-directed electric field
along the z axis due to a hoop of radius r is found from (14) as

oorz dr

dE==W§ (17
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where we replace a with r, the radius of the incremental
hoop. The total electric field is then

_0Ooz *  rdr
E:_230J; (r*+2%)*

3
ooz i
=
250(r§ +25)"

0

= _ﬂ(_. B S~ _-z_)

260 \(a*+29)'"* |z

o ooz {z >0
= e 18

260 2e0(a”+29)"* l2<0 (18}
where care was taken at the lower limit (r=0), as the magni-
tude of the square root must always be used.

As the radius of the disk gets very large, this result

approaches that of the uniform field due to an infinite sheet
of surface charge:

limE, =+
a-+00 250

ﬂ{z>0 (19)

z2<0

(c) Hollow Cylinder of Surface Charge

A hollow cylinder of length 2L and radius e has its axis
along the z direction and is centered about the z =0 plane as
in Figure 2-13¢. Its outer surface at r=a has a uniform
distribution of surface charge o. It is necessary to distinguish
between the coordinate of the field point z and the source
point at 2z’ (—L=<z'<L). The hollow cylinder is broken up
into incremental hoops of line charge dA =0 dz'. Then, the
axial distance from the field point at z to any incremental
hoop of line charge is (z —z'). The contribution to the axial
electric field at z due to the incremental hoop at z’ is found
from (14) as

__ Toa(2 —z")dz’
Peola”+ (z— 2')* 7"

z

(20)

which when integrated over the length of the cylinder yields

=%I“ (2 =2") dz*
* 280 Lo [a2+(z ‘—Z'I)Q]lf

_ 08 1
2¢0 [a°+(z—2') el 1T

+L

=0k 1 3 1
" 2g ([aﬂ+(z —L)" [a2+(z+L)*]”2) (21)



72  The Electric Field

(d) Cylinder of Volume Charge

If this same cylinder is uniformly charged throughout the
volume with charge density p;, we break the volume into
differential-size hollow cylinders of thickness dr with incre-
mental surface charge do = po dr as in Figure 2-13d. Then, the
z-directed electric field along the z axis is obtained by integra-
tion of (21) replacing a by r:

~Po 1 1
E‘_SI:[,[, r([r9+(z —L)‘]”—’ [r2+(z +L)2]1;9) dr

= ([P +a =L~ [+ @+ 1))
0 0

=20 1o = L) |z~ L| —[a®+ (2 + L)""
280

+|z+L|} (22)

where at the lower r=0 limit we always take the positive
square root.

This problem could have equally well been solved by
breaking the volume charge distribution into many differen-
tial-sized surface charged disks at position z’' (—L <z'<L),
thickness dz’, and effective surface charge density do = po dz’.
The field is then obtained by integrating (18).

2-4 GAUSS’S LAW

We could continue to build up solutions for given charge
distributions using the coulomb superposition integral of
Section 2.3.2. However, for geometries with spatial sym-
metry, there is often a simpler way using some vector prop-
erties of the inverse square law dependence of the electric
field.

2-4-1 Properties of the Vector Distance Between Two Points, rgp

(a) ror

In Cartesian coordinates the vector distance rgp between a
source point at Q and a field point at P directed from Q to P
as illustrated in Figure 2-14 is

rop = (x —xQ)ix + (¥ — yo)i, +(z — zg)i. (¢))
with magnitude
rop=[(x~x0)*+ (1 —y0)* +(z ~20)"1"* (2

The unit vector in the direction of rgp is

igr= Tor &)
Taor
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Using (2) we see that (5) reduces to

2 L) iz 0, Tor #0
v (rQP {undeﬁned rop=0 ©

Thus, the Laplacian of the inverse distance is zero for all
nonzero distances but is undefined when the field point is
coincident with the source point.

2-4-.2 Gauss’s Law In Integral Form

(a) Point Charge Inside or Outside a Closed Volume

Now consider the two cases illustrated in Figure 2-15 where
an arbitrarily shaped closed volume V either surrounds a
point charge g or is near a point charge ¢ outside the surface
S. For either case the electric field emanates radially from the
point charge with the spatial inverse square law. We wish to
calculate the flux of electric field through the surface § sur-
rounding the volume V:

0=§E-d§
s

q o
£4ﬂ'£o‘rqp! g

=§s 1 V(L) .dS 10

411'50 Tor

fa) (&}
Figure 2-15 (a) The net flux of electric field through a closed surface § due to an
outside point charge is zero because as much fAux enters the near side of the surface as
leaves on the far side. (b) All the flux of electric field emanating from an enclosed point
charge passes through the surface.
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elements so that the total charge enclosed may be a line,
surface, and/or volume integral in addition to the sum of
point charges:

§ egE-dS= Y q+| dq
5 all g; lq
inside § inside §

(Zq,-+LAd!+LadS+LpdV) AL

all charge
inside §

Charges outside the volume give no contribution to the total
flux through the enclosing surface.

Gauss's law of (11) can be used to great advantage in
simplifying computations for those charges distributed with
spatial symmetry. The trick is to find a surface § that has
sections tangent to the electric field so that the dot product is
zero, or has surfaces perpendicular to the electric field and
upon which the field is constant so that the dot product and
integration become pure multiplications. If the appropriate
surface is found, the surface integral becomes very simple to
evaluate.

Coulomb’s superposition integral derived in Section 2.3.2 is
often used with symmetric charge distributions to determine
if any field components are zero. Knowing the direction of
the electric field often suggests the appropriate Gaussian sur-
face upon which to integrate (11). This integration is usually
much simpler than using Coulomb's law for each charge
element.

2-4-3 Spherical Symmetry

(a) Surface Charge

A sphere of radius R has a uniform distribution of surface
charge oy as in Figure 2-16a. Measure the angle 8 from the
line joining any point P at radial distance r to the sphere
center. Then, the distance from P to any surface charge
element on the sphere is independent of the angle ¢. Each
differenual surface charge element at angle 6 contributes
field components in the radial and 8 directions, but sym-
metrically located charge elements at —¢ have equal field
magnitude components that add radially but cancel in the @
direction.

Realizing from the symmetry that the electric field is purely
radial and only depends on r and not on # or ¢, we draw
Gaussian spheres of radius r as in Figure 2-164 both inside
(r <R) and outside (r > R) the charged sphere. The Gaussian
sphere inside encloses no charge while the outside sphere
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gives a zero electric field within a uniformly surface charged
sphere. This zero field result'is true for any closed conducting
body of arbitrary shape charged on its surface with no
enclosed charge. Extremely precise measurements were made
inside such conducting surface charged bodies and the
electric field was always found to be zero. Such a closed
conducting body is used for shielding so that a zero field
environment can be isolated and is often called a Faraday
cage, after Faraday’s measurements of actually climbing into
a closed hollow conducting body charged on its surface to
verify the zero field results.

To appreciate the ease of solution using Gauss’s law, let us
redo the problem using the superposition integral of Section
2.3.2. From Figure 2-16a the incremental radial component
of electric field due to a differential charge element is

ooR? sin 8 d0 do
co

dE, =
4meorgp

S a (14)

From the law of cosines the angles and distances are related as

rop=r"+R%—2rR cos 8

1
Ri*=r*+rgp—2rrop cos a (13)
so that « is related to @ as
—_—— r—Rcos @ (16)

T [ +R*—2rR cos 6]

Then the superposition integral of Section 2.3.2 requires us
to integrate (14) as

™ (*" ooR*sin 8(r— R cos 8) db d
E, = J. 3 z 372
=0 Jp =0 47eg[r*+R*—2rR cos 8]

After performing the easy integration over ¢ that yields the
factor of 21, we introduce the change of variable:

u=7r2+R*—2rR cos #
du =2rR sin 6 d6
which allows us to rewrite the electric field integral as

+R®  goR[u+7r"— R du
7,37

(17)

(18)

E =

=(r—R)? 880?’
__OoR (u e _ (e*= Rs))
480T§ U I

=ﬁ§[(r+R1—|r—Rl —(r*=R%) (ﬁ—ﬁ) (],9)

(r+R)2

(r—-R)®
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so that the electric field is

por_  Qr
oo Bni > TR

E = R Q (21)
BoX = SR

3 EQT 47e or

This result could also have been obtained using the results
of (13) by breaking the spherical volume into incremental
shells of radius r', thickness dr', carrying differential surface
charge do = p, dr' as in Figure 2-17b. Then the contribution to
the field is zero inside each shell but nonzero outside:

0, r<r'
dE,- = por.r! dr'

’

(22)
r>r'
Eor

The total field outside the sphere is due to all the differential
shells, while the field inside is due only to the enclosed shells:

r_2 "
Lf Pn:f _Por _ O . <R
Eqr 36‘0 41“!’80R
E.=19 & _n ' s (23)
(Lot ot 0, .,
eor.  Beor. dmeer

which agrees with (21).

2-4-4 Cylindrical Symmetry

(a) Hollow Cylinder of Surface Charge

An infinitely long cylinder of radius @ has a uniform dis-
tribution of surface charge o, as shown in Figure 2-18a. The
angle ¢ is measured from the line joining the field point P to
the center of the cylinder. Each incremental line charge ele-
ment dA = goa dd contributes to the electric field at P as given
by the solution for an infinitely long line charge in Section
2.3.3. However, the symmetrically located element at —¢
gives rise to equal magnitude field components that add
radially as measured from the cylinder center but cancel in
the ¢ direction.

Because of the symmetry, the electric field is purely radial
so that we use Gauss's law with a concentric cylinder of radius
r and height L, as in Figure 2-186 where L is arbitrary. There
is no contribution to Gauss’s law from the upper and lower
surfaces because the electric field is purely tangential. Along
the cylindrical wall at radius r, the electric field is constant and
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dEy = dE, + dE;

E, =0 (r<a)

g

+

rd

i

-

..
LY
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(c)

Figure 2-18 (a) Symmetrically located line charge elements on a cylinder with uni-
formly distributed surface charge show that the electric field is purely radial. (b)
Gauss's law applied to concentric cylindrical surfaces shows that the field inside the
surface charged cylinder is zero while outside it is the same as if all the charge per unit
length oo 27ma were concentrated at the origin as a line charge. (¢) In addition to using
the surfaces of (b) with Gauss’s law for a cylinder of volume charge, we can also sum
the contributions from incremental hollow cylinders of surface charge.

purely normal so that Gauss's law simply yields

oo2mal, r>a
§ eoE - dS=eol 27T = (24)
s

0 r<a

where for r<a no charge is enclosed, while for r>a all the
charge within a height L is enclosed. The electric field outside
the cylinder is then the same as if all the charge per unit
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length A =0¢2ma were concentrated along the axis of the
cylinder:

ooa A

E, = :=21rer rory

ol L 0 (25)
0, r<a

Note in (24) that the arbitrary height L canceled out.

(b) Cylinder of Volume Charge
If the cylinder is uniformly charged with density po, both
Gaussian surfaces in Figure 2-186 enclose charge

2
5
fF o E-dS=gE2urL ={P™ L T8 o4
s porr L, r<a
so that the electric field is
P a’ A
o  r>a
2e0r 2mepr
Ei= (27)
2ot —g‘l z r<a
260 2mega

where A =poma’ is the total charge per unit length on the
cylinder.

Of course, this result could also have been obtained by
integrating (25) for all differential cylindrical shells of radius
r’ with thickness dr' carrying incremental surface charge do =

podr', as in Figure 2-18¢.

L por' , , _poa’ A
—dr'=——= , r>a
EpT 2eor 2megr
E=y . (28)
Lpor ,_Por _ Ar s
Eof 2e0 2meca’’

Law and the Divergence Theorem

If a volume distribution of charge p is completely sur-
rounded by a closed Gaussian surface S, Gauss's law of (11) is

§eon-ds=Lpdv (29)
S

The left-hand side of (29) can be changed to a volume
integral using the divergence theorem:

§50E-dS=LV°(£oE)dV=LpdV (30)
s
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Since (30) must hold for any volume, the volume integrands
in (30) must be equal, yielding the point form of Gauss's law:

V- (ecE)=p (31)

Since the permittivity of free space £, I1s a constant, it can
freely move outside the divergence operator.

2-4-6 Electric Field Discontinuity Across a Sheet of Surface Charge

In Section 2.3.4a we found that the electric field changes
direction discontinuously on either side of a straight sheet of
surface charge. We can be more general by applying the
surface integral form of Gauss’s law in (30) to the differential-
sized pill-box surface shown in Figure 2-19 surrounding a
small area dS of surface charge:

§EQE'dS=J gdS = e9(Eg, —Ej)dS=codS (32)
's s

where Ey, and E,, are the perpendicular components of
electric field on each side of the interface. Only the upper and
lower surfaces of the pill-box contribute in (32) because the
surface charge is assumed to have zero thickness so that the
short cylindrical surface has zero area. We thus see that the
surface charge density is proportional to the discontinuity in
the normal component of electric field across the sheet:

eo(Espn—Ejn)=0=2>n-g(Es—E|)=c (33)

where n is perpendicular to the interface directed from
region 1 to region 2,

n-elE; —Ey)=a

dS = —ndS§

Figure 2-19 Gauss's law applied to a differential sized pill-box surface enclosing some
surface charge shows that the normal component of g,E is discontinuous in the surface

charge density.
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2.5 THE ELECTRIC POTENTIAL

If we have two charges of opposite sign, work must be done
to separate them in opposition to the attractive coulomb
force. This work can be regained if the charges are allowed to
come together. Similarly, if the charges have the same sign,
work must be done to push them together; this work can be
regained if the charges are allowed to separate. A charge
gains energy when moved in a direction opposite to a force.
This is called potential energy because the amount of energy
depends on the position of the charge in a force field.

2.5-1 Work Required to Move a Point Charge

The work W required to move a test charge g, along any
path from the radial distance r, to the distance r; with a force
that just overcomes the coulombic force from a point charge
g, as shown in Figure 2-20, is

s
w=—| F-dl

q4: " i, -dl

“imih 2

No work to move
charge along spherical
paths because F - dl =0

“s\ v

)

equipotential
surfaces

Figure 2-20 It takes no work to move a test charge ¢, along the spherical surfaces
perpendicular to the electric field due to a point charge ¢. Such surfaces are called
equipotential surfaces.
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The minus sign in front of the integral is necessary because
the quantity W represents the work we must exert on the test
charge in opposition to the coulombic force between charges.
The dot product in (1) tells us that it takes no work to move
the test charge perpendicular to the electric field, which in
this case is along spheres of constant radius. Such surfaces are
called equipotential surfaces. Nonzero work is necessary to
move ¢ to a different radius for which dl=dri,. Then, the
work of (1) depends only on the starting and ending positions
(ro and r;) of the path and not on the shape of the path itself:

_ __ 44 J.rbd_"_'
4meg )y, re

=£(1_L) 2)

dmeg \ry T

We can convince ourselves that the sign is correct by examin-
ing the case when r; is bigger than r, and the charges q and g,
are of opposite sign and so attract each other. To separate the
charges further requires us to do work on g so that W is
positive in (2). If ¢ and g, are the same sign, the repulsive
coulomb force would tend to separate the charges further
and perform work on ¢, For force equilibrium, we would
have to exert a force opposite to the direction of motion so
that W is negative.

If the path is closed so that we begin and end at the same
point with r, =1, the net work required for the motion is
zero. If the charges are of the opposite sign, it requires
positive work to separate them, but on the return, equal but
opposite work is performed on us as the charges attract each
other.

If there was a distribution of charges with net field E, the
work in moving the test charge against the total field E is just
the sum of the works necessary to move the test charge
against the field from each charge alone. Over a closed path
this work remains zero:

W=£—q,£-dl=(}:>£l§-dl=0 (3)

which requires that the line integral of the electric field
around the closed path also be zero.

2.5-2 The Electric Field and Stokes’ Theorem

Using Stokes' theorem of Section 1.5.3, we can convert the
line integral of the electric field to a surface integral of the
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curl of the electric field:

fE‘E'd!=L(VXE)°dS (4)

From Section 1.3.3, we remember that the gradient of a scalar
function also has the property that its line integral around a
closed path is zero. This means that the electric held can be
determined from the gradient of a scalar function V called
the potential having units of volts [kg-m”-s >-A™"]:

=-VV (5)

The minus sign is introduced by convention so that the elec-
tric field points in the direction of decreasing potential. From
the properties of the gradient discussed in Section 1.3.1 we
see that the electric field is always perpendicular to surfaces of
constant potential.

By applying the right-hand side of (4) to an area of
differential size or by simply taking the curl of (5) and using
the vector identity of Section 1.5.4a that the curl of the
gradient is zero, we reach the conclusion that the electric field
has zero curl:

VXE=0 (6)

2-5-3 The Potential and the Electric Field

The potential difference between the two points at r, and r,
is the work per unit charge necessary to move from r, to r:

74
Vin)—Vir)=—

qs

=—1'E-dl=+J-E-dl (7)

a L

Note that (3), (6), and (7) are the felds version of Kirchoff’s
circuit voltage law that the algebraic sum of voltage drops
around a closed loop is zero.

The advantage to introducing the potential is that it is a
scalar from which the electric field can be easily calculated.
The electric field must be specified by its three components,
while if the single potential function V is known, taking its
negative gradient immediately yields the three field
components. This is often a simpler task than solving for each
field component separately. Note in (5) that adding a constant
to the potential does not change the electric field, so the
potential is only uniquely defined to within a constant. It is
necessary to specify a reference zero potential that is often
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2-5-4 Finite Length Line Charge

To demonstrate the usefulness of the potential function,
consider the uniform distribution of line charge Aq of finite
length 2L centered on the z axis in Figure 2-21. Distinguish-
ing between the position of the charge element dg = A, dz' at
z' and the field point at coordinate z, the distance between
source and field point is

rep=[r"+(z—2)"1"* (12)

Substituting into (10) yields

¥ JL A(! dz’
C L dmed[ v+ (-2

Ao (z—L+[r’+(z—L)’]'

47eq z+L+[r2+(z -l-L,)’]”.5
— 4‘0 . -12""L_ . -l Z+L
e (s:nh = sinh — ) (18)

L
dg = Nods’

I + &' —2)*)""2

....__._;7;
- hd‘i
-~ d =
b = Wp dweg [ + (5 — 23]
Pir, ¢, 3) l
— >y
,/
A

Figure 2-21 The potential from a finite length of line charge is obtained by adding
the potentials due to each incremental line charge element.
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2.5-5 Charged Spheres

(a) Surface Charge

A sphere of radius R supports a uniform distribution of
surface charge o, with total charge Q = p47R?, as shown in
Figure 2-22a. Each incremental surface charge element
contributes to the potential as

2 .
dv=M (18)
4ﬂonp
where from the law of cosines
rop=R2+1*—2rR cos @ (19)

so that the differential change in rgp about the sphere is

2rgpdrop=27R sin 6 d@ (20)

€gr

dor'
€0

r<r

(a) (b)

Figure 2-22 (a) A sphere of radius R supports a uniform distribution of surface
charge oo, (b) The potential due to a uniformly volume charged sphere is found by
summing the potentials due to differential sized shells.
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(c) Two Spheres

Two conducting spheres with respective radii R, and R,
have their centers a long distance D apart as shown in Figure
2-23. Different charges Q, and Q, are put on each sphere.
Because D » R, + R3, each sphere can be treated as isolated.
The potential on each sphere is then

@, &
47eoRy’ = 4qeoRs

If a wire is connected between the spheres, they are forced
to be at the same potential:

(25)

Vi

aze BB =4S
V°_41;r£oR, 4meoR s 29

causing a redistribution of charge. Since the total charge in
the system must be conserved,

q1+qe=Q1+Q (27)
Eq. (26) requires that the charges on each sphere be
y _Ri(Q1+Q0) =R2(Q1+Q2) 28)

Bitls ° ¥ RitRs
so that the system potential is
Qi+ Qs
= — 29
Ve 47eo(R)+ Ra) $=9)

Even though the smaller sphere carries less total charge, from
(22) at r=R, where E,(R)=ao/eo, we see that the surface
electric field is stronger as the surface charge density is larger:

e Q1+ Qs Yo
El(r—R|)—4ﬂ_€0Rf _41730R|(R|+R2) R, (30)
Ealr =R =g = Ot 20

4?’80R; > 4#30R2(R| +R2} 4 Rz
For this reason, the electric field is always largest near
corners and edges of equipotential surfaces, which is why

q1 O (L
Vi 4megRy

92
\ Vo 42
4‘: @ 2 4'[50.82
- Ilf"'|8'|
Eybrt=—7%— £ty = 1282

2

-~ D >

Figure 2-23 The charges on two spheres a long distance apart (D » R, + R.) must
redistribute themselves when connected by a wire so that each sphere is at the same
potential. The surface electric field is then larger at the smaller sphere.
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line charge from Section 2.3.3 allows us to obtain the poten-
tial by direct integration:

L LY )

j I
ar  2mEeer Qmes  To

where ry is the arbitrary reference position of zero potential.

If we have two line charges of opposite polarity £A a
distance 2a apart, we choose our origin halfway between, as
in Figure 2-24a, so that the potential due to both charges is
just the superposition of potentials of (1):

2, 1712

A (y2+(x+a)

i y”+(x—a}”)

(2)

Qmey

where the reference potential point rq cancels out and we use
Cartesian coordinates. Equipotential lines are then

2 2
Yy H(x+a) _gmeqvin _
y +(x—a)’ ‘ o @)

where K, is a constant on an equipotential line. This relation is
rewritten by completing the squares as

2 2
(x_a(l+K.)) Lo 4Kia i

Re=1 Y=k

which we recognize as circles of radius r=2avVK,/|1-K,|
with centers at y=0,x=a(l1+K,)/(K,—1), as drawn by
dashed lines in Figure 2-246. The value of K, =1 is a circle of
infinite radius with center at x = £ and thus represents the
x =0 plane. For values of K, in the interval 0=K, =<1 the
equipotential circles are in the left half-plane, while for 1=
K| =00 the circles are in the right half-plane.
The electric field is found from (2) as

E=-VV

A (—4axyi,+24(y2+ae—x?)i,‘) )

T 2men \ [y + (x+a) )y +(x—a)’]

One way to plot the electric field distribution graphically is
by drawing lines that are everywhere tangent to the electric
field, called field lines or lines of force. These lines are
everywhere perpendicular to the equipotential surfaces and
tell us the direction of the electric field. The magnitude is
proportional to the density of lines. For a single line charge,
the field lines emanate radially. The situation is more compli-
cated for the two line charges of opposite polarity in Figure
2-24 with the field lines always starting on the positive charge
and terminating on the negative charge.
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For the field given by (5), the equation for the lines tangent
to the electric field is
dy E, 2xy d(x*+y%)
==y DS ——a -+ d(Iny)= 6
d« E. y+a -x=>a —(x"+y") (ny)=0 (6)
where the last equality is written this way so the expression
can be directly integrated to
2
2 - z__9
x“+(y—a cot Ky) m (7)

where K5 is a constant determined by specifying a single
coordinate (xo, yo) along the field line of interest. The field
lines are also circles of radius a/sin Ky with centers at x=
0,y =a cot K3 as drawn by the solid lines in Figure 2-24b.

2.6-2 The Method of Images
(a) General properties

When a conductor is in the vicinity of some charge, a
surface charge distribution is induced on the conductor in
order to terminate the electric field, as the field within the
equipotential surface is zero. This induced charge dis-
tribution itself then contributes to the external electric field
subject to the boundary condition that the conductor is an
equipotential surface so that the electric field terminates
perpendicularly to the surface. In general, the solution is
difficult to obtain because the surface charge distribution
cannot be known until the field is known so that we can use
the boundary condition of Section 2.4.6. However, the field
solution cannot be found until the surface charge distribution
is known.

However, for a few simple geometries, the field solution
can be found by replacing the conducting surface by
equivalent charges within the conducting body, called images,
that guarantee that all boundary conditions are satisfied.
Once the image charges are known, the problem is solved as if
the conductor were not present but with a charge distribution
composed of the original charges plus the image charges.

(b) Line Charge Near a Conducting Plane

The method of images can adapt a known solution to a new
problem by replacing conducting bodies with an equivalent
charge. For instance, we see in Figure 2-24b that the field
lines are all perpendicular to the x =0 plane. If a conductor
were placed along the x =0 plane with a single line charge A
at x =—a, the potential and electric field for x <0 is the same
as given by (2) and (5).
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This expression can be greatly reduced using the relations

R? 2
D¢52=b—l', D—b.=¢‘:—: (22)
to

A i byba

21780 Rle

. { i[D’—J‘e? -RY)
21780 2R|R2

PR T e

The potential difference V;~— V; is linearly related to the
line charge A through a factor that only depends on the
geometry of the conductors. This factor is defined as the
capacitance per unit length and is the ratio of charge per unit
length to potential difference:

Vl—Vg=—

o A _ 2me,y
Vi—-Ve [D*—R1—-R3] D*—Ri—-Ra* 1
ln{:t e ( )—l] }
2R1R2 2R]R2
27eq
= 24
et (4 2B “
2R:Rs

where we use the identity*
In[y+(*-1)"]=cosh™'y (25)

We can examine this result in various simple limits.
Consider first the case for adjacent cylinders (D > R, + Rs).

1. If the distance D is much larger than the radii,

ey e 2meg = 2meq
D»(Ri+R2)  In[D*/(R,Ry)] cosh™' [D*/(2R,Rs)]
2. The capacitance between a cylinder and an infinite plane

can be obtained by letting one cylinder have infinite
radius but keeping finite the closest distance s=

(26)

e te ™

*y=coshx=
(e")—2ye* +1=0
e: =yi(,!_ l)lﬂ
x=cosh”'y=In[y=(y"—1)""
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D—-R,—R, between cylinders. If we let R, become
infinite, the capacitance becomes

. x 2men
gffl, s s+ R s+ Ra\” LT
D-R,=Rg=s (hnitc) ll'l{ Ry +[( Rs ) _]] }
- 21’!’80 (27)
cosh™ (i&)
Ry

3. If the cylinders are identical so that R,=R,=R, the
capacitance per unit length reduces to

lim C= oL ] Vi = (28)
it In £+[(£) - l] } cosh-'2
2R 2R 2R

4. When the cylinders are concentric so that D=0, the
capacitance per unit length is

[y ] 2
- < TTEy) TED
lim C =

= = . : 29
D=0 In (R,/Rs) cosh ' [(R} +R3)/(2R,Ry)) (29)

2.7 THE METHOD OF IMAGES WITH POINT CHARGES AND
SPHERES

2-7-1 Point Charge and a Grounded Sphere

A point charge ¢ is a distance D from the center of the
conducting sphere of radius R at zero potential as shown in
Figure 2-27a. We try to use the method of images by placing a
single image charge ¢' a distance b from the sphere center
along the line joining the center to the point charge q.

We need to find values of ¢' and & that satisfy the zero
potential boundary condition at r = R. The potential at any
point P outside the sphere is

v=;(s+3,’) )

4eq \s 5

where the distance from P to the point charges are obtained
from the law of cosines:

s=[r*+D*—2rD cos 0]'* @
s'=[b+r"—2rb cos 61"
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Conducting sphere
/ at zero potential

q

Inducing charge
outside sphere
< D

(a)

Inducing charge
inside sphere

[ -1

I

I
clR

(b)

Figure 2-27 (a) The field due to a point charge g, a distance D outside a conducting
sphere of radius R, can be found by placing a single image charge —qR/D at a distance
b = R/ D from the center of the sphere. (6) The same relations hold true if the charge
¢ is inside the sphere but now the image charge is outside the sphere, since D <R,

At r=R, the potential in (1) must be zero so that ¢ and ¢’
must be of opposite polarity:

(+9)ze>(@) =), ..

where we square the equalities in (3) to remove the square
roots when substituting (2),

q°[b®+R*—2Rb cos 0]1=q*[R*+D*~2RD cos 8]  (4)
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The electric field outside the sphere is found from (1) using
(2) as

1
E=-VV=—o % [(r—D cos )i, + D sin 6i,]
47eg

+;",, [(r—b cos 8)i,+b sin ai.l) (10)

On the sphere where s'=(R/D)s, the surface charge dis-
tribution is found from the discontinuity in normal electric
field as given in Section 2.4.6:

q(D*~R*)
47wR[R*+D*—2RD cos 81*"
(11)

o(r=R)=gE(r=R)=—

The total charge on the sphere
q;—=L o(r=R)27R” sin 6d6
e sin 8 d@
gt B )[, [R*+D*—2RD cos 0] L
can be evaluated by introducing the change of variable
u=R*+D?*-2RDcos®, du=2RDsin8d0 (13)

so that (12) integrates to
_aD*-RY J’l“’*‘"‘ du

TT74D Jpear u
Y (-u ) ;n—m": D (14)

which just equals the image charge q'.

If the point charge q is inside the grounded sphere, the
image charge and its position are still given by (8), as illus-
trated in Figure 2-27b. Since D <R, the image charge is now
outside the sphere.

2.7-2 Point Charge Near a Grounded Plane

If the point charge is a distance a from a grounded plane,
as in Figure 2-28a, we consider the plane to be a sphere of
infinite radius R so that D = R +a. In the limit as R becomes
infinite, (8) becomes

S0 AR SR

D=R+a

R-a (15)
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The total charge on the conducting surface is obtained by
integrating (19) over the whole surface:

qr= L o(x=0)2wrdr

_ L" rdr
me (r!+a!)m

i (20)

]

= . 40
T C+a)®

As is always the case, the total charge on a conducting surface
must equal the image charge.
The force on the conductor is then due only to the field
from the image charge:
2

q

f —ail ry—— (21)
This attractive force prevents charges from escaping from
an electrode surface when an electric field is applied. Assume
that an electric field —Ei. is applied perpendicular to the
electrode shown in Figure (2-286). A uniform negative sur-
face charge distribution o=—¢goE, as given in (2.4.6) arises to
terminate the electric field as there is no electric field within
the conductor. There is then an upwards Coulombic force on
the surface charge, so why aren't the electrons pulled out of
the electrode? Imagine an ejected charge —g a distance x
from the conductor. From (15) we know that an image charge
+4 then appears at —x which tends to pull the charge —q back
to the electrode with a force given by (21) with a=x in
opposition to the imposed field that tends to pull the charge
away from the electrode. The total force on the charge —¢ is

then

q
4meg(2x) @

fe=qEo—

The force is zero at position x,

=0z = [ﬁj;]m (23)

For an electron (g=1.6X 107'° coulombs) in a field of Eq=
10°v/m, x.=~1.9%x10"® m. For smaller values of x the net
force is negative tending to pull the charge back to the elec-
trode. If the charge can be propelled past x. by external
forces, the imposed field will then carry the charge away from
the electrode. If this external force is due to heating of the
electrode, the process is called thermionic emission. High
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2-7-4 Constant Voltage Sphere

If the sphere is kept at constant voltage V), the image
charge ¢'=—qR/D at distance b=R?*D from the sphere
center still keeps the sphere at zero potential. To raise the
potential of the sphere to V,, another image charge,

Qo=4meoRVy (26)
must be placed at the sphere center, as in Figure 2-29. The
force on the sphere is then

__49 (__ 4R Qo
= mea\ D(D-b)’+5’)

(27)

PROBLEMS

Section 2.1
1. Faraday's “ice-pail” experiment is repeated with the
following sequence of steps:

(i) A ball with total charge Q is brought inside an
insulated metal ice-pail without touching.

(i) The outside of the pail is momentarily connected to
the ground and then disconnected so that once again
the pail is insulated.

(iii) Without touching the pail, the charged ball is removed.

(a) Sketch the charge distribution on the inside and outside
of the pail during each step.

(b) What is the net charge on the pail after the charged ball
is removed?

2. A sphere initially carrying a total charge Q is brought into
momentary contact with an uncharged identical sphere.

(a) How much charge is on each sphere?

(b) This process is repeated for N identical initally
uncharged spheres. How much charge js on each of the
spheres including the original charged sphere?

(c) What is the total charge in the system after the N
contacts?

Section 2.2

3. The charge of an electron was first measured by Robert A.
Millikan in 1909 by measuring the electric field necessary to
levitate a small charged oil drop against its weight. The oil
droplets were sprayed and became charged by frictional
electrification.
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A spherical droplet of radius R and effective mass density
pm carries a total charge g in a gravity field g. What electric
field Eoi, will suspend the charged droplet? Millikan found by
this method that all droplets carried integer multiples of
negative charge e = —1.6X 10" ' coul.

4. Two small conducting balls, each of mass m, are at the end
of insulating strings of length [ joined at a point. Charges are

placed on the balls so that they are a distance d apart. A
charge Q, is placed on ball 1, What is the charge Qs on ball 2?

5. A point charge —Q; of mass m travels in a circular orbit of
radius R about a charge of opposite sign Q..

/N \‘\\ -
f 0 |

\ /
N

i
S -

(a) What is the equilibrium angular speed of the charge
-Q?

(b) This problem describes Bohr's one electron model of
the atom if the charge —Q, is that of an electron and Q, = Ze
is the nuclear charge, where Z is the number of protons.
According to the postulates of quantum mechanics the
angular momentum L of the electron must be quantized,

L =muR = nh{2m, n=1,2,8, "

where h =6.63 < 107* joule-sec is Planck’s constant. What are
the allowed values of R?
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(c) For the hydrogen atom (Z = 1) what is the radius of the
smallest allowed orbit and what is the electron's orbital veloc-
ity?

6. An electroscope measures charge by the angular deflection
of two identical conducting balls suspended by an essentially
weightless insulating string of length [ Each ball has mass M
in the gravity field g and when charged can be considered a
point charge.

Q2 Q/2

;

A total charge Q is deposited on the two balls of the elec-
troscope. The angle # from the normal obeys a relation of the
form

tan @ sin® 8 = const
What is the constant?

7. Two point charges g, and gy in vacuum with respective
masses m; and mg attract (or repel) each other via the
coulomb force.

"y, g ma gz
a .
- r—=

r

12

Y

(a) Write a single differential equation for the distance
between the charges r = ro—r,. What is the effective mass of
the charges? (Hint: Write Newton’s law for each charge and
take a mass-weighted difference.)

(b) If the two charges are released from rest at t = 0 when a
distance 7, from one another, what is their relative velocity
v =dr/dt as a function of r? Hint:

dv_dvdr  dv d(l 2)

dt drat dr dr\2'
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(c) What is their position as a function of time? Separately
consider the cases when the charges have the same or
opposite polarity. Hint:

Let u=vr
ugdu t_lJ—!—g ag . =1 U
—_— gyt —sin —
Vai-u? 2 2 a
u“du —'J_!_! ( )
u" —a +—ln u+v'u!-a
jv‘u!—a! 2

(d) If the charges are of opposite polarity, at what time will
they collide? (Hint: If you get a negative value of time,
check your signs of square roots in (b).)

(e) If the charges are taken out of the vacuum and placed
in a viscous medium, the velocity rather than the acceleration
is proportional to the force

Bivi=fy, Bave=1fy
where B, and B; are the friction coefficients for each charge.
Repeat parts (a)-(d) for this viscous dominated motion.

8. A charge ¢ of mass m with initial velocity v=vei, is
injected at x =0 into a region of uniform electric field E=
Eoi.. A screen is placed at the position x = L. At what height k
does the charge hit the screen? Neglect gravity.

h

—
Yix __—— l
L)x N e

-< L >

1
: 4
T'Eﬂlz //,
,/

9. A pendulum with a weightless string of length [ has on its
end a small sphere with charge ¢ and mass m. A distance D
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away on either side of the pendulum mass are two fixed
spheres each carrying a charge Q. The three spheres are of
sufficiently small size that they can be considered as point
charges and masses.

(a) Assuming the pendulum displacement ¢ to be small
(¢ « D), show that Newton’s law can be approximately written
as

d’¢
I{*‘ﬂ)of 0

What is 3? Hint:
. 1 1 _2¢
== —== F—
Snl=% pigf D D°

(b) Att=0 the pendulum is released from rest with £ = &.
What is the subsequent pendulum motion?

(c) For what values of qQ is the motion unbounded with
time?

y 10. Charges Q, Q, and q lie on the corners of an equilateral
triangle with sides of length a.

T (a) What is the force on the charge ¢?
(b) What must ¢ be for E to be zero half-way up the altitude
at P?

¥ £y

11. Find the electric field along the z axis due to four equal
magnitude point charges g placed on the vertices of a square
with sides of length a in the xy plane centered at the origin

4
A

q2 q3

CAl g4
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when:

(a) the charges have the same polarity, ¢, = q:= q3=qs=q;
(b) the charges alternate in polarity, q;=qs=g, g2 =qs=
—-q;
(c) the charges are ¢, =q2=4¢, 3= q4=—q.
Section 2.3
12, Find the total charge in each of the following dis-
tributions where a is a constant parameter:

(a) An infinitely long line charge with density
A(z) =gtV

(b) A spherically symmetric volume charge distributed
over all space

Po

P(?‘)"—m

(Hint: Letu=1+r/a)
(c) An infinite sheet of surface charge with density
a_oe‘—-:lm
o) =
[1+(5/6)")
13. A point charge ¢ with mass M in a gravity field g is
released from rest a distance x, above a sheet of surface
charge with uniform density oy.

L)
¢Mg

T F F + + + FTF FFFFTFF 0

SRR O

o9 —_y

fe——D—>

(a) What is the position of the charge as a function of time?

(b) For what value of o will the charge remain stationary?

(c) If oy is less than the value of (b), at what time and with
what velocity will the charge reach the sheet?

14. A point charge ¢ at z =0 is a distance D away from an
infinitely long line charge with uniform density A,.

(a) What is the force on the point charge ¢?

(b) What is the force on the line charge?

(c) Repeat (a) and (b) if the line charge has a distribution

Mz)=lnl’-|
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surface charge density 0. Check your results with the text for
L->. Hint: Let u=x"+y°

j du =Lsin_' ((Lz—xg)u—Qszﬂ)
uu—xVLT+u Lx w(L?+x%)

17. An infinitely long hollow semi-cylinder of radius R car-
ries a uniform surface charge distribution o.

(a) What is the electric field along the axis of the cylinder?

(b) Use the results of (a) to find the electric field along the
axis due to a semi-cylinder of volume charge p,,.

(c) Repeat (a) and (b) to find the electric field at the center
of a uniformly surface or volume charged hemisphere.

18. (a) Find the electric field along the z axis of a circular loop
centered in the xy plane of radius a carrying a uniform line charge
N fory > 0and — )\ for y < 0.

y
A
+| +
+ -
+ Mo
+
+
a
+
+ > x
| |
\ !
N s
e o _kﬂ

(b) Use the results of (a) to find the electric field along the z
axis of a circular disk of radius a carrying a uniform surface charge
oo fory > 0 and —ao for y < 0.

19. (a) Find the electric field along the z axis due to a square
loop with sides of length a centered about the z axis in the xy
plane carrying a uniform line charge A. What should your
result approach for z» a?

(b) Use the results of (a) to find the electric field along the z
axis due to a square of uniform surface charge o,. What
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should your result approach as @ »0? Hint: Let
x . J’ du 2 L f?u—z!
u=z"+—, | ————==-—1tan —
4 ) uvou-z* |z z

20. A circular loop of radius a in the xy plane has a uniform
line charge distribution A, for y >0 and —A, for y <0,

\ /
\
“Agcoulim _ - b
<

7 ¥ 4+ &g coul/m

(a) What is the electric field along the z axis?
(b) Use the results of (a) to find the electric field along the z

& axis due to a surface charged disk, whose density is o for y >0
and —oy for y<0. Hint:
2
rdr r
=- +In (r+Vr + 29
J. (r+2%** i+ 22

(c) Repeat (a) if the line charge has distribution A = A sin ¢.
(d) Repeat (b) if the surface charge has distribution o=
@y sin ¢.

21. An infinitely long line charge with density A, is folded in
half with both halves joined by a half-circle of radius a. What
is the electric field along the z axis passing through the center
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The Electric Field

30. Which of the following vectors can be an electric field? If
so, what is the volume charge density?

(a) E=ax’y’%,
(b) E=af(i, cos 8 —ig sin )

() E=a(yi,—xi,)
(d) E=(a/r)[i(1+cos ¢)+i4 sin ¢]

31. Find the potential difference V between the following
surface charge distributions:

(b) (c)

(a) Two parallel sheets of surface charge of opposite
polarity o and spacing a.

(b) Two coaxial cylinders of surface charge having infinite
length and respective radii a and b. The total charge per unit
length on the inner cylinder is Ao while on the outer cylinder
is _Au.

(c) Two concentric spheres of surface charge with respec-
tive radii R; and Ry. The inner sphere carries a uniformly
distributed surface charge with total charge g,. The outer
sphere has total charge —qo.

32. A hemisphere of radius R has a uniformly distributed
surface charge with total charge Q.

Rsing do
Rd6

(a) Break the spherical surface into hoops of line charge of
thickness R df. What is the radius of the hoop, its height z',
and its total incremental charge dq?
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r2
q2

ra P 9e

ra

(a)

(d)

@

(b) Now consider another set of point charges g1, g3, and qs
at the same positions and calculate the potentials Vi, V3, and
V3. Verify by direct substitution that

qiVi+qaVetqaVs=q V1 +q2 Vi +qs Vs

The generalized result for any number of charges is called
Green’s reciprocity theorem,

N
.z--l (@:Vi-qiV)=0

(c) Show that Green's reciprocity theorem remains
unchanged for perfect conductors as the potentidl on the
conductor is constant, The ¢; is then the total charge on the
conductor.

(d) A charge g at the point P is in the vicinity of a zero
potential conductor. It is known that if the conductor is
charged to a voltage V,, the potential at the point P in the
absence of the point charge is V. Find the total charge ¢,
induced on the grounded conductor. (Hint: Let q1=g¢,q2=
4e V2=0-q’1 =0, Vi Sl Vp- V;. = V:)

(e) If the conductor is a sphere of radius R and the point P
is a distance D from the center of the sphere, what is ¢q.? Is
this result related to the method of images?

() A line charge A is a distance D from the center of a
grounded cylinder of radius a. What is the total charge per
unit length induced on the cylinder? '

(g) A point charge g is between two zero potential perfect
conductors. What is the total charge induced on each
conducting surface? (Hint: Try ¢:=¢,¢:=q(y=0),¢s=
q(’=d)s VE=03 V3=0’ qi =0n V; 2 VOl V; =0-]

(h) A point charge q travels at constant velocity vy between
shorted parallel plate electrodes of spacing d. What is the
short circuit current as a function of time?
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Section 2.6

35. An infinitely long line charge A is a distance D from the
center of a conducting cylinder of radius R that carries a total
charge per unit length A.. What is the force per unit length on

kc
R
A
L]
< D- 3
the cylinder? (Hint: Where can another image charge be
placed with the cylinder remaining an equipotential surface?)
36. An infinitely long sheet of surface charge of width d and
uniform charge density oy is placed in the yz plane.
y
A
d
o
L S T T T s i 2 15 I S S i s
R R T S T i S S R E R E R I e
S T T T i 4 [ Sl I S S S S S S S S S S G SRS
0 e
(a)
¥
A

(&)
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(a) Find the electric field everywhere in the yz plane.
(Hint: Break the sheet into differential line charge elements
dA =0y dy'.)

(b) An infinitely long conducting cylinder of radius a sur-
rounds the charged sheet that has one side along the axis of
the cylinder. Find the image charge and its location due to an
incremental line charge element o, dy' at distance y'.

(c) What is the force per unit length on the cylinder?
Hint:

Iln(l—-cy'}d '-—--(1:") (I (1-gy)—1]

37. A line charge A is located at coordinate (@, b) near a
right-angled conducting corner.

A
® (a, b)

.
— e

(a) (d)

(a) Verify that the use of the three image line charges
shown satisfy all boundary conditions.

(b) What is the force per unit length on A?

(c) What charge per unit length is induced on the surfaces
x=0and y=0?

(d) Now consider the inverse case when three line charges
of alternating polarity £A are outside a conducting corner.
What is the force on the conductor?

(e) Repeat (a)-(d) with point charges.

Section 2.7
38. A positive point charge g within a uniform electric field
Ejyi, is a distance x from a grounded conducting plane.

(a) At what value of x is the force on the charge equal to
zero?

(b) If the charge is initially at a position equal to half the
value found in (a), what minimum initial velocity is necessary
for the charge to continue on to x=+c0? (Hint: E,=
—dV]/dx.)
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—_— .

Ao ds’

-

(a) Consider the incremental charge element Ao dz” a dis-
tance rgp from the sphere center. What is its image charge
and where is it located?

(b) What is the total charge induced on the sphere? Hint:

é' r r
IW=In(z +VRY 42 )

42. A conducting hemispherical projection of radius R is
placed upon a ground plane of infinite extent. A point
charge q is placed a distance d (d > R) above the center of the
hemisphere.

i

q

m
—_—y

(a) What is the force on ¢? (Hint: Try placing three
image charges along the z axis to make the plane and hemi-
sphere have zero potential.)

(b) What is the total charge induced on the hemisphere at
7 =R and on the ground plane |y| > R? Hint:

j’ rdr _ -1
2+d*® Vi +d®

«————— a8 ———>
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(d) Show that the equations in (c) can be simplified to

Rl)_
QH+I qn—-l. (R2 _0

_ &)’_
b“-l-l bn—l (Rg =0

(e) Try power-law solutions
g =AA", b, = Ba"

and find the characteristic values of A and a that satisfy the
equations in (d).

(f) Taking a linear combination of the solutions in (e),
evaluate the unknown amplitude coefficients by substituting
in values for n =1 and n =2. What are all the g, and b,?

(g) What is the total charge induced on the inner sphere?

(Hint: § a"=al(l—a)fora<])

(h) Using the solutions of (f) with the difference relations of
(c), find g, and b’

(i) Show that ¥ gy is not a convergent series so that the

n=]|
total charge on the outer sphere cannot be found by this
method.

(j) Why must the total induced charge on both spheres be
—q? What then is the total induced charge on the outer
sphere?

(k) Returning to our original problem in (a) and (b) of a
point charge between parallel planes, let the radii of the
spheres approach infinity such that the distances

d=Rs—R,, a=Ry;—R,, b=Ro—R,

remains finite. What is the total charge induced on each plane
conductor?

44. A point charge Q is a distance D above a ground plane,
Directly below is the center of a small conducting sphere of
radius R that rests on the plane.

(a) Find the first image charges and their positions in the
sphere and in the plane.

(b) Now find the next image of each induced in the other.
Show that two sets of image charges are induced on the
sphere where each obey the difference equations

@R, R
qn+l‘_2R_b“| n+l 2R_b.|
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S & &
[ | i
sesve o o

N

(a) Show that an infinite number of image charges in the
plane and in the sphere are necessary to satsify the boundary
conditions

2
= _.qilﬂ_' b= R—
2D —bny 2D—bp
What are ¢q; and gz?
(b) Show that the governing difference equation is
1 ¢ 1
St
q-—l QN dn+1

=0

What is ¢?







134 The Electric Field

(g) Show that the governing difference equation is of the
form

Pn+l:FCPn+Pn—l =0

What are P, and ¢?
(h) Solve (g) assuming solutions of the form

P,=AA"
(i) Show that the capacitance is of the form
A A2
£2+ 1 _£2A2+I_E1A4+' ! )

1

. _p2
Cc=Call -8 (1=
What are Cy, £, and A?

(j) What is the capacitance when the two spheres are

concentric so that D=0. (Hint: ¥ a"=1/(1—a)fora<l.)

n=(}
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