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The ancient Greeks observed that when the fossil resin 
amber was rubbed, small light-weight objects were attracted. 
Yet, upon contact with the amber, they were then repelled. 
No further significant advances in the understanding of this 
mysterious phenomenon were made until the eighteenth 
century when more quantitative electrification experiments 
showed that these effects were due to electric charges, the 
source of all effects we will study in this text. 

2·1 ELECTRIC CHARGE 

2·1·1 Charginl by Contact 

We now know that all matter is held together by the aurae· 
tive force between equal numbers of negatively charged elec· 
trons and positively charged protons. The early researchers 
in the 1700s discovered the existence of these two species of 
charges by performing experiments like those in Figures 2·1 
to 2·4. When a glass rod is rubbed by a dry doth, as in Figure 
2-1, some of the electrons in the glass are rubbed off onto the 
doth. The doth then becomes negatively charged because it 
now has more electrons than protons. The glass rod becomes 
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Figure 2·1 A glass rod rubbed with a dry doth loses some of iu electrons to the doth. 
The glau rod then has a net positive charge while the doth has acquired an equal 
amount of negative charge. The total charge in the system remains zero. 
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positively charged as it has lost electrons leaving behind a 
surplus number of protons. If the positively charged glass rod 
is brought near a metal ball that is free to move as in Figure 
2-2a, the electrons in the ball nt~ar the rod are attracted to the 
surface leaving uncovered positive charge on the other side of 
the ball. This is called electrostatic induction. There is then an 
attractive force o£ the ball to the rod . Upon contact with the 
rod.. the negative charges are neutralized by some of the 
positive charges on the rod., the whole combination still 
retaining a net positive charge as in Figure 2-2b. This transfer 
of charge is called conduction. It is then found that the now 
positively charged ball is repelled from the similarly charged 
rod.. The metal ball is said to be conducting as charges are 
easily induced and conducted . It is important that the 
supporting string not be conducting, that is, insulating, 
otherwise charge would aiM> distribute itself over the whole 
structure and not just on the ball . 

If two such positively charged balls are brought near each 
other, they will also repel as in Figure 2-3a. Similarly, these 
balls could be negatively charged if brought into contact with 
the negatively charged cloth. Then it is aiM> found that two 
negatively charged balls repel each other. On the other hand, 
if one ball is charged positively while the other is charged 
negatively, they will attract. These circumstances are sum­
marized by the simple rules : 

Opposite Charges Attract. Like Charges Repel. 
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Figure 2-2 (Q\ A charged rod ncar a neutral ball will induce an opposite charge on 
the ncar surface. Since the ball is initially neutral, an equal amount of positive charge 
remains on the far surface. Because the negative charge is closer to the rod, it feels a 
stronger attractive force than the repelling force due to the like charges. (b) Upon 
contact with the rod the negative charge is neutralized lea"ing the ball positively 
charged. (c) The like charges then repel causing the ball to deftect away. 
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Figure 2-3 (a) Like charged bodies repel while (b ) oppositely charged bodies auract. 

In Figure 2-2a, the positively charged rod attracts the 
negative induced charge but repels the uncovered positive 
charge on the far end of the ball. The net force is attractive 
because the positive charge on the ball is farther away from 
the glass rod so that the repulsive force is less than the 
attractive force. 

We often experience nuisance frictional electrification 
when we walk across a carpet or pull clothes out of a dryer. 
When we comb our hair with a plastic comb, our hair often 
becomes charged. When the comb is removed our hair still 
stands up, as like charged hairs repel one another. Often 
these effects result in sparks because the presence of large 
amounts of charge actually pulls electrons from air molecules. 

2-1-2 Electrostatic Induction 

Even witham direct contact net charge can also be placed 
on a body by electrostatic induction. In Figure 2-4a we see 
two initially neutral suspended balls in contact acquiring 
opposite charges on each end because of the presence of a 
charged rod . If the balls are now separated, each half retains 
its net charge even if the inducing rod is removed. The net 
charge on the two balls is zero, but we have been able to 
isolate net positive and negative charges on each ball. 
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Figure 2-4 A net charge can be placed on a body withom contact by electrostatic 
induction . (a) When a charged body is brought near a neutral body. the ncar side 
acquires the opposite charge. Being neutral. the far side takes on an equal but opposite 
charge. (6) If the initially neutral bod)' is separated , each half retains its charge. 

2-1-3 Faraday's "Ice-Pail" Ex.periment 

These experiments showed that when a charged conductor 
contacted another conductor , whether charged or not. the 
total charge on both bodies was shared. The presence of 
charge was first qualitatively measured by an electroscope 
that consisted of twO attached metal foil leaves. When 
charged. the mutual repulsion caused the leaves to diverge. 

In 1843 Michael faraday used an electroscope to perform 
the simple but illuminating "ice-pail" experiment illustrated 
in figure 2-5. When a charged body is inside a dosed isolated 
conductor. an equal amount of charge appears on the outside 
of the conductor as evidenced by the divergence of the elec· 
troscope leaves. This is true whether or not the charged body 
has contacted the inside walls of the surrounding conductor. 
If it has not, opposite charges are induced on the inside wall 
leaving unbalanced charge on the outside. I f the charged 
body is removed, the charge on the inside and outside of the 
conductor drops to zero. However , if the charged body does 
contact an inside wall, as in Figure 2-5c, all the charge .on the 
inside wall and ball is neutralized leaving the outside charged. 
Removing the initially charged body as in Figure 2-5d will 
ftnd it uncharged. while the ice-pail now holds the original 
charge. 

H the process shown in Figure 2·5 is repeated, the charge 
on the pail can be built up indefinitely. This is the principle of 
electrostatic generators where large amounts of charge are 
stored by cominuous deposition of small amounts of charge. 

http:charge.on
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Figure 2-5 Faraday first demonstrated the principles of charge conservation by 
attaching an electroscope to an initially uncharged metal ice pail. (a) When all charges 
are far away from the pail, there is no charge on the pail nor on the Hexible gold leaves 
of the electroscope attached to the outside of the can, which thus hang limply. (h) As a 
charged ball comes within the pail. opposite charges are induced on the inner surface. 
Since the pail and electroscope were originally neutral. unbalanced charge appears on 
the outside of which some is on the electroscope leaves. The leaves being like charged 
repel each other and thus diverge. (c) Once the charged ball is within a dosed 
conducting body. the charge on the outside of the pail is independent of the position 
of the charged ball. If the charged ball contacts the inner surface of the pail. the inner 
charges neutralize each other. The outside charges remain unchanged. (d) As the now 
uncharged ball leaves the pail. the distributed charge on the outside of the pail and 
electroscope remains unchanged. 

This large accumulation of charge gives rise to a large force 
on any other nearby charge. which is why electrostatic 
generators have been used to accelerate charged particles to 
very high speeds in atomic studies. 

2-2 THE COUWMB FORCE LAW BETWEEN STATIONARY 
CHARGES 

2-2-1 Coulomb's Law 

It remained for Charles Coulomb in 1785 to express these 
experimental observations in a quantitative form. He used a 
very sensitive torsional balance to measure the force between 
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two stationary charged balls as a function of their distance 
apart. He discovered that the force between two small charges 
41 and 4f (idealized as point charges of "Zero size) is pro­
portional to their magnitudes and inversely proportional to 
the square of the distance rl2 between them, as illustrated in 
Figure 2-6. The force acts along the line joining the charges 
in the same or opposite direction of the unit vector i 12 and is 
attractive if the.charges are of opposite sign and repulsive if 
like charged. The force F2 on charge q2 due to charge ql is 
equal in magnitude but opposite in direction to the force F 1 

on ql. the net force on the pair of charges being 'lero. 

2-2-2 Units 

The value of the proportionality constant 1/41r£G depends 
on the system of units used. Throughout this book we use SI 
units (Systeme International d'Unites) for which the base 
units are taken from the rationalized MKSA system of units 
where distances are measured in meters (m), mass in kilo­
grams (kg), time in seconds (s), and electric current in 
amperes (A). The unit of charge is a coulomb where I 
coulomb = 1 ampere-second. The adjective "rationalized" is 
used because the factor of 41r is arbitrarily introduced into 
the proportionality factor in Coulomb's law of (1). It is done 
this way so as to cancel a 41r that will arise from other more 
often used laws we will introduce shortly. Other derived units 
are formed by combining base units. 

F, -~ i" 
4nor" 

Figure 2-6 The Coulomb force between two point charges is proportional to the 
magnitude of the charges and inversely proportional 10 the square of the distance 
between them. The force on each charge is equal in magnitude but opposite in 
direction. The force veLlors are d.-awn as if q, and qr are of the same sign so that the 
charges repel. If q, and qr are of opposite sign. both force vectors would point in the 
opposite directions, as opposite charges attract. 
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The parameter EO is called the permittivity of free space 
and has a value 

Eo=(41TX 1O-'e2fl 
9 

10- 88 2 0- 12 f d 2 4 - I - , 2"" 361T "" . 54 x 1 ara 1m [A - s - kg - m -J () 

where c is the speed of light in vacuum (e "" 3 x 108 m /sec) . 
This relationship between the speed of light and a physical 

constant was an important result of the early electromagnetic 
theory in the la te nine tee nth century, and showed that light is 
an electromagnetic wave; see the discussion in Chapte r 7. 

To obtain a feel o f how large the force in (I ) is, we compare 
it with the gravitational force that is also an inverse square law 
with distance. The sma llest unit of charge known is tha t of an 
electro n with charge t and mass m. 

10- 3 1 kge"" 1.60x 10- 19 Coul. m, =9. 11 X 

Then, the ratio of electric to gravitational force magnitudes 
for two electrons is independent of their separation : 

2 2 2 
F. = t 1(4~£o; ) __~__' _=-4. 16X 1042 (3)
F, Gm. /r m, 41T£oG 

where G=6.67x IO- tl[mll.s- 2_kg- IJ is the gravitational 
conStant. This ratio is so huge that it exemplifies why e lec­
trical forces ofte n dominate physical phenomena. The minus 
sign is used in (3) because the gravitational force between twO 
masses is always a ttractive while for two like charges the 
electrical fo rce is repulsive . 

2-2-3 The Electric Field 

If the charge ql exists a lone. it feels no force. If we now 
bring charge q2 within the vicinity of qt, then q2 feels a force 
that varies in magnitude and direction as it is moved about in 
space and is thus a way of mapping out the vector force field 
due to ql . A charge other than q2 would feel a different force 
from q2 proportional to its own magnitude and sign. It 
becomes co nve nie nt to work with the quantity of force per 
unit charge tha t is called the electric field, because this quan­
tity is indepe ndent of the particular value of charge used in 
mapping the force field . Considering q2 as the test charge, the 
electric field due to ql at the position of q2 is defined as 

(4) 
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In the definition of (4) the charge ql must remain stationary. 
This requires that the test charge q2 be negligibly small so that 
its force on ql does not cause ql to move. In the presence of 
nearby materials, the test charge q2 could also induce or cause 
redistribution of the charges in the material. To avoid these 
effects in our definition of the electric field, we make the test 
charge infinitely small so its effects on nearby materials and 
charges are also negligibly small. Then (4) will also be a valid 
definition of the electric field when we consider the effects of 
materials. To correctly map the electric field, the test charge 
must not alter the charge distribution from what it is in the 
absence of the test charge. 

2-2-4 Superposition 

If our system only consists of two charges, Coulomb's law 
(I) completely describes their interaction and the definition of 
an electric field is unnecessary. The electric field concept is 
only useful when there are large numbers of charge present 
as each charge exerts a force on 'all the others. Since the forces 
on a particular charge are linear, we can use superposition, 
whereby if a charge ql alone sets up an electric field E 1, and 
another charge q2 alone gives rise to an electric field E2 • then 
the resultant electric field with bOlh charges present is the 
vector sum EI + E2. This means that if a test charge q~ is 
placed at point P in Figure 2-7. in the vicinity of N charges it 
will feel a force 

F~ = q~Ep (5) 

e, 

... ................... . 


Figure 2·7 The dectric field due to a collection of point charge5 is equal to the vector 
sum of electric fields from each charge alone. 



58 1M E",,", Fw/d 

where E,. is the vector sum of the electric fields due to all the 
N -point charges, 

} 	 (q, . + q,. + qs. qN . )Ep~-- --y-IIP -rIllE' --r-tsp+' " +--y-1NP 
4,"Bo riP Ttl' TSp T N I' 

1 	 ~ q•• 
~-- ~ T""1"p 	 (6) 

417'Eo .. _ 1 T"" 

Note that Ep has no contribution due to qjJ since a charge 
cannot exert a force upon itself. 

EXAMPLE 2·} TWO-POINT CHARGES 

Two-point charges are a distance a apart along the % axis as 
shown in Figure 2-8. Find the electric field at any point in the 
% = 0 plane when the charges are: 

(a) 	both equal to q 
(b) 	of opposite polarity but equal magnitude ±q. This 

configuration is called an electric dipole. 

SOLUTION 

(a) In the % = 0 plane. each point charge alone gives rise to 
field components in the ir and i. directions. When bOth 
charges are equal, the superposition of field components due 
to both charges cancel in the z direction but add radially: 

q 2, 
Er(t = 0) = 411'E o[r2+ (a/2)2]!12 

As a check, note that far away from the point charges (r»a) 
the field approaches that of a point charge of value 2q: 

lim Er(t = 0) = ~42qr_. 'TrEoT 

(b) When the charges have opposite polarity, the total 
electric field due to both charges now cancel in the radial 
direction but add in the z direction : 

-q a 
4'Tr60 [r'l +(a/ 2}2]SJi 

Far away from the point charges the electric field dies off as 
the inverse cube of distance : 

-qa
lim E. (z = 0) =-;-------]4
r" " 'TrEor 
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Figure 2-8 Two t:qual magnitude point charges are a distanct: II apart along the t 

axis. (a) Wht:n the charg« art: of Ihe samt: polarilY, tht: d«tric fidd dut: to t:ach is 
radially dir«l~ away. In tht: t '"' 0 symmetry plant:. Iht: nt:1 fidd compont:nl is radial. 
(b) When tht: charges are of oppositt: polarity, the dt:ctrk fit:ld dut: 10 tht: nt:gativt: 
charge is dirt:cted radially inwards. In the z '"" 0 symmetry plane. Ihe nt:t fidd is now -z 
directt:d. 

The faster rate of de<:ay of a dipole field is be<:ause the net 
c harge is zerO SO that the fields dut: to each charge tend to 
cancel each other out. 

2-3 CHARGE DISTRIBUTIONS 

The method of superposition used in Section 2.2.4 will be 
used throughout the text in rt:lating fields to their SOurCt:s. 
We first find the field due to a single-point source. Because 
the field equations are linear. the net fie ld due to many point 
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sources is just the superposition of the fields from each source 
alone. Thus, knowing the electric field for a single-point 
charge-at an arbitrary position immediately gives us the total 
field for any distribution of point charges. 

In typical situations. one coulomb of total charge may be 
present requiring 6.25 x 1018 elementary charges (e" I.60x 
10- 19 coul) . When dealing with such a large number of par­
ticles. the discrete nature of the charges is often not 
important and we can consider them as a continuum. We can 
then describe the charge distribution by its density. The same 
model is used in the classical treatment of matter. When we 
talk about mass we do not go to the molecular scale and count 
the number of molecules. but describe the material by its mass 
density that is the product of the local average number of 
mole<:ules in a unit volume and the mass per molecule. 

2.'.1 Liae. Surface. and Volume Charge DiatributioDs 

We similarly speak of charge densities. Charges can dis­
tribute themselves on a line with line charge density 
A (coul/mt. on a surface with surface charge density 
u (coul/m ) or throughout a volume with volume charge 
density P (coul/m~. 

Consider a distribution of free charge dq of differential size 
within a macroscopic distribution of line. surface. or volume 
charge as shown in Figure 2-9. Then. the total charge q within 
each distribution is obtained by summing up all the differen­
tial elements. This requires an integration over the line, sur­
face. or volume occupied by the charge. 

L (line charge)Adl Adl 

LudS (surface charge) (I)
d<t~ 
 CTdS=!;1q = 


LPdV (volume charge)pdV 

EXAMPLE 2-2 CHARGE DISTRIBUTIONS 

Find the total charge within each of the following dis­
t~ibutions iIlulSlnlted in Figul·e 2-10. 

(a) Line charge Ao uniformly distributed in a circular hoop 
of radius o. 
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Figure 2-9 Charge distributions. (a) Point charge; (b) Line charge; (e) Surface 
charge; (d) Volume charge. 

SOLUTION 

q= tAdl= ("" Aoatb/J=2'1J'aA o 

(b) Surface charge 0"0 uniformly distributed on a circular 
disk of radius a. 

SOLUTION 

(c) Volume charge Po uniformly distributed throughout a 
sphere of radius R. 
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Figure 2-10 Charge distributions of Example 2-2. (a) Uniformly distributed line 
charge on a circu lar hoop. (b) Uniforml~· distributed surface charge on a circu lar disk . 
(e) Uniformly distributed volume charge throughout a sphere. (d) Nonuniform line 
charge distribution. (t) Smooth radially dependent volu me charge distribution 
throughout all space, as a simple model of the electron cloud around the positively 
charged nucleus of the hydrogen alOm. 

SOLUTION 

q ~ J PdV=J' I" J211" por2 sin8drd8dq,=hrR' po 
v ._0 ' _0 ~ o_

(d) A line charge of infinite extent in the :< direction with 
charge density distribution 

A 

SOLUTION 

.~ d

f I f A" , 
q= I. Ad = _<» [i+(z/a)2] 
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(e) The el«tron cloud around the positively charged 
nucleus Q in the hydrogen atom is simply modeled as the 
spherically symmetric distribution 

Q -" ," P( ) Y - ----:""Jt". 

where a is called the Bohr radius. 

SOLUTION 

The total charge in the cloud is 

q = LPdV 
--1~ 1" [i" ~t-if1.ytsin(JdYd(Jdt/J

_ 0 ' _ 0 _0 11"4 

2·5·2 The Electric Field Due to a Charge Di.tribution 

Each differential charge element cUt as a source at point Q 
contributes to the electric field aLa point P as 

dq •
dE , IQp (2)

41r'BoYop 

where YOI' is the distance between Q and P with iol" the unit 
vector directed from Q to P. To find the total electric field. it 
is necessary to sum up the contributions from each charge 
element. This is equivalent to integrating (2) over the entire 
charge distribution. remembering that both the distance YOI' 

and direction iop vary for each differential element 
throughout the distribution 

(3) 

where (3) is a line integral for line charges (dq =.l dl), a 
surrace integral for surface charges (dq = udS), a volume 
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integral for a volume charge distribution (dq = p dV). or in 
general, a combination of aU three. 

If the total charge distribution is known, the electric field is 
obtained by performing the integration of (3). Some general 
rules and hints in using (3) are: 

l. 	 It is necessary to distinguish between the coordinates of 
the field points and the charge source points. Always 
integrate over the coordinates of the charges. 

2. 	 Equation (3) is a vector equation and so generally has 
three components requiring three integrations. Sym­
metry arguments can often be used to show that partic­
ular field components are zero. 

3. 	 The distance roP is always positive. In taking square 
roots, always make sure that the positive square root is 
taken. 

4. 	 The solution to a particular problem can often be 
obtained by integrating the contributions from simpler 
differential size structures. 

2-'·' Field Due to an InfiDitely Long LiDe Charge 

An infinitely long uniformly distributed line charge Ao 
along the % axis is shown in Figure 2-1 I. Consider the two 
symmetrically located charge elements dql and dq2 a distance % 

above and below the point P, a radial distance r away. Each 
charge element alone contributes radial and % components to 
the electric field. However, just as we found in Example 2-1a, 
the two charge elements together cause equal magnitude but 
oppositely directed % field components that thus cancelleav· 
ing only additive radial components: 

Aordz.
dE, 2 2) cos 8 (4)

4 	 ( +r.".80:r. 

To find the total electric field we integrate over the length 
of the line charge: 

),or z I­
t f 2 Iii' 

4.".80 r (z +r) ,_-co 

A. 
~--- (5) 
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Figure 2-11 An infinitely long uniform distribution of line charge only has a radially 
directed ele<tric field becau!e the t components of the electric field are canceled out by 
symmetrically located incremental charge elements as also shown in Figure 2-8a. 

%-3....f Field Due to lOMite Sheets of Surface Charge 

(a) SiDIJe Sheet 
A surface charge sheet of infinite extent in the '1 = 0 plane 

has a uniform surface charge density (To as in Figure 2-12a. 
We break the sheet into many incrementa1 line charges of 
thickness dx with dA = (To th. We could equivalently break the 
surface into incremental horizontal line charges of thickness 
dz. Each incremental line charge alone has a radial field 
component as given by (5) that in Cartesian coordinates 
results in " and J components. Consider the line charge dA I, a 
distance" to the left of P, and the symmetrically placed line 
charge dA 2 the same distance" to the right of P. The" 
componenu of the resultant fields cancel while the J 



66 7"1u Eletlrit Filld 

00 
r-

I 

\ 
\ 
\ 
I 

~r\ 
o, I 

-' I 

" .' 
;'1 

2 fO Y~ I 
\ 00
I ~-2~.. 
\ r­
~ 

(01 

00 ,...­
2<0 " 

• • 
~~ 

UOffO 

2'0 ---:~.c---+---~.~;. 1 

2" '" 
(bi 

Figure 2-12 (a) The electric field from a uniformly surface charged sheet of infinite 
extent is found by summing the contributions from each incremental line charge 
element. Symmetrically placed line charge elements have K field components that 
cancel. but, field components that add. (b) Two parallel but oppositely charged sheets 
of surface charge have fields that add in the region between the sheets but cancel 
outside. (t) The electric field from a volume charge distribution i, obtained by sum­
ming the contributions from each incremental surface charge element. 
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components add : 

uodx Uo'1dxdE, (6)2'ITEO(X lE + .,')il2 cas IJ = 21T£0(,,2 +-l) 
The total field is then obtained by integration over all line 
charge elements: 

E, = (ToY I+r.> -/;, 
211'"60 -<II> " +'1 

(To,l _'''1­----tan ­
2'"£0'1 '1 .--01:1 

-1 u0l2£0. (7)
-uoJ2~o, 

where we realized that the inverse tangent term takes the sign 
of the ratio X' '1 so that the field reverses direction on each side 
of the sheet. The field strength does not decrease with dis­
tance from the infinite sheet. 

(b) Parallel Sheeb of Opposite Sip 
A capacitor is formed by two oppositely charged sheeLS of 

surface charge a distance 20 apart as shown in Figun~ 2-12b. 
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The fields due to each charged sheet alone are obta in ed from 
(7) as 

0-0 
i ,> 2" " 

-a 

£1 = £.1 "" 

0-0 .--2 ,,. )' <-a
' 0 

0-0 . 
,>a-2 1

" " 
(8) 

0-0 . ,<a2'0 
1

" 

Thus, outside the sheets in regions I and I II the fields ca ncel 
while they add in the enclosed regio n II. The nonzero field is 
confined to the region between the charged sheets and is 
independent of the spacing: 

- E E _ {(O'of£o)i" 1,1 < a 
E - 1+ :;0- (9)o 1,1 >a 

(c:) Uniformly Charged Volume 
A un iformly charged volume with charge d ensity Po of 

in finite extent in the JC and z directions and o f width 2a is 
centered about the, axis, as shown in Figure 2-12" We break 
the volume distribution into incremental sheets o f surface 
charge of width d,' with differential surface charge density 
du = Po d,' . It is necessary to distinguish the position y' o f the 
differential sheet of surface charge from the field point y, The 
tolal electric field is the sum of all the fields due to each 
differentially charged sheet. The problem breaks up into 
three regio ns. In region I , where), S -a, each surface charge 
element causes a field in the negative y direction : 

E,"" I" _..!!.!!.... dy '= _ PofJ, ,S - a (10) 
- .. 2£0 EO 

Simi larly, in region Ill , whe re y 2!: a, each charged sheet gives 
r ise to a field in the positive, direction : 

= po d, ' = poa I" E, ,2!:a ( II ) 
- . 2Eo EO' 

For any position 'J in region II . where -4 s, S a, the charge 
to the r ight of y gives rise to a negatively d irected fie ld while 
the charge to the left o f , causes a positively di rected fi eld: 

£,=1' podi+ l · (_)~dy'= poy, - as,Sa ( 12) 
-a 2Eo , 2£0 to 

The fie ld is thus constant outside o f the volume of charge and 
in opposite directions o n either side being the sa me as for a 



surface charged sheet with the same total charge per unit 
area, 0"0 = p02a. At the boundaries ,= ±a, the field is 
continuous. changing linearly with position between the 
boundaries: 

poa. 'S -a 
Eo 

po'J
E,~ -a !5. 'Jsa (13) 

Eo 

poa. ,,,,. 
EO 

2·5·5 Superposition of Hoopa of Line Charle 

(a) Sinlle Hoop 
Using superposition. we can similarly build up solutions 

starting from a circular hoop of radius a with uniform line 
charge density Ao centered about the origin in the % =>< 0 plane 
as shown in Figure 2· 130. Along the: axis. the distance to the 
hoop perimeter (a 2 +: 2 

)11t is the same for all incremental 
point charge elements dq = Aoa dtP. Each charge element 
alone contributes z· and 'T-directed electric field components. 
However, along the z axis symmetrically placed elements 1800 

apart have z components that add but radial components that 
cancel. The z-directed electric field along the z axis is then 

E _ i2w Aoa dtfJ cos 8 Aoaz 
• - 411&0(1'+a2) 2s {a'l+%'l)!if (14)o

The electric field is in the -z direction along the % axis below the 
hoop. 

The total charge on the hoop is q = 2raXo so that (14) can 
also be written as 

E. (15) 

When we get far away from the hoop (Ill »a), the field 
approaches that of a point charge: 

(16) 

(b) Di.k of Surface Charge 
The solution for a circular disk of uniformly distributed 

surface charge 0"0 is obtained by breaking the disk into 
incremental hoops of radius r with line charge dA = 0"0 dr as in 
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Figure 2- 1~ (a) The electric field along the symmetry t axis of a uniformly dis­
tributed hoop of line charge is 1 directed. (b) The axial field from a circular disk of 
surface: charge is obtained by radiaJly summing the contributions of incremental hoops 
of line charge. (t) The ax.ial field from a hollow cylinder of surface: charge is obtained 
by axially summing the contributions of incremental hoops of line charge. (d) The axial 
field from a cylinder of volume: charge is found by summing the contributions of axial 
incremental disks or of radial hollow cylinders of surface charge:. 

Figure 2-1~b. Then the incrememal z..directed electric field 
along the % axis due to a hoop of radius T is found from (14) as 

O'OTZ dr 
(17)dE, 
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where we replace a with r, the radius of the incremental 
hoop, The total electric field is then 

U", LA r dr 
E'=2&0 (r2+z2)5J2 

U", I" 
2&0(r2+z2)1I! 0 

(18) 

where care was taken at the lower limit (r = 0). as the magni­
tude of the square root must always be used, 

As the radius of the disk gets very large, this result 
approaches that of the uniform field due to an infinite sheet 
of surface charge: 

I · E u, \,>01m =±- (19) 
...."'" 2&0 z<O 

(c) Hollow Cylin~r of Surface Charge 
A hollow cylinder of length 2L and radius a has its axis 

along the z direction and is centered about the z = 0 plane as 
in Figure 2-13c, Its outer surface at r=a has a uniform 
distribution of surface charge uo, It is necessary to distinguish 
between the coordinate of the field point z and the source 
point at z'(- L:5z':5L), The hollow cylinder is broken up 
into incremental hoops of line charge dA =uodz', Then. the 
axial distance from the field point at z to any incremental 
hoop of line charge is (z - z'), The contribution to the axial 
electric field at z due to the incremental hoop at z' is found 
from (14) as 

uoa(z - z') dz' 
dE, (20)

2&0[a 2+(z Z')2J'" 

which when integrated over the length of the cylinder yields 

E _uoaI+L 
(z-z')dz' 

'-2&0 - L [a 2+(z_z')t)!1t 

I+L 
u,a I 

2 ,!l l/I2 60 [a +(z -%) ] ,'__ L 

(21) 
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(d) Cylinder of Volume Charce 
If this same cylinder is uniformly charged throughout the 

volume with charge density Po. we break the volume into 
differential-size hollow cylinders of thickness dr with incre­
mental surface charge du = Po dr as in Figure 2-13d. Then. the 
z-directed electric field along the % axis is obtained by imegra­
tion of (21) replacing a by r : 

P'LO( I I)
E'=2£o r [r'+(% L)!i)i fi -(r'.i +(z+L)']ilf dr 

= ..!!!!....{[r2 +(z _ L)' ]I I2 _ [r'+ (z +L)')IJ1l!}I" 
2£0 0 

= P.o {[a t +{z _ L)' ] 1ft _I: _Ll _(a'+(% +L)' ]lflI 
2£, 

+ 1'+L Il (22) 

where at the lower r :::: 0 limit we always take the positive 
squa re root 

This problem could have equally well been solved by 
breaking the volume charge distribution into many differen~ 
rial-sized surface charged disks at position z' (- L:S; z':s L), 
thickness dz' , and effective surface charge density du = Po dz. '. 
The field is then obtained by integrating (18). 

Z-4 GAUSS'S LAW 

We could continue to build up solutions for given charge 
distributions using the coulomb su~rposition integral of 
Section 2.3.2. However, for geometries with spatial sym­
metry, there is often a simpler way using some vector prop­
erties of the inverse square law dependence of the electric 
field. 

2 ..... 1 Properties of the Vector Di.tance Between Two Points, rQl" 

Ca) rQl" 
In Cartesian coordinates the vector distance rQP between a 

source point at Q and a field point at P directed from Q to P 
35 illustrated in Figure 2·14 is 

rQP = (x -xa)i.. + £1 - 'ali) +(1 -lQ)i. (1) 

with magnitude 

Tar = [(x -xa)'+£1 _'0)1+(z _ 10)1]111 (2) 

Thc unit vectOI" in thc dil"cction of cal' i, 

(3) 
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The vector distance ro!' between two points Q and P. 

(b) 	Gradient of the Reciprocal Distance, Vel/Tar) 

Taking the gradient of the r«iprocal of (2) yields 


( I) .a(l) .a(l) .a(l) V - =1- - +. - - +. - ­
rQP "ax rQP , a, rQP • az rQP 

~ --,-I «x - xQ)i. +(, -'Q)i, + (z -zQ)i.] 
rap 

= -iQ,./r~ 	 (4) 

which is the negative of the spatially dependent term that we 
integrate to find the electric field in Section 2.3.2. 

(c) Laplacian of the Reciprocal DistaDce 
Another useful identity is obtained by taking the diver­

gence of the gradient of the reciprocal distance. This opera­
tion is called the Laplacian of the reciprocal distance. Taking 
the divergence of (4) yields 

vt~J ~V· [v(.~Jl 

~v.(~)
rQP 

= _~ (.:t -;XQ) _!.. (' -;'Q) _!.. (Z -;ZQ)
ar rQP iJ, rQP iJ! rQP 

3 3 2 2 2 
= -,---+.,-[(x-xQ) +('-'Q) +(z-zQ)} (5) 

rar rQP 



Using (2) we see that (5) reduces to 

V'( 1)_1 0. 
 (6)
rQP 1undefined 

Thus, the Laplacian of the inverse distance is zero for all 
nonzero distances but is undefined when the field point is 
coincident with the source point. 

2-4-2 Gau..'. Law In Integral Form 

(a) Point Charp In.ide or Oullide a Closed. Volume 
Now consider the two cases illustrated in Figure 2·15 where 

an arbitrarily shaped c10S;ed volu,me V either surrounds a 
point charge q or is near a point charge q outside the surface 
S. For either case the electric field emanates radially from the 
point charge with the spatial inverse square law. We wish to 
calculate the flux of electric field through the surface S sur· 
roundin& the volume V: 

~""£E'dS 

=1. q,iQP'dS%41r£orQP 

f. -q ( I )~ --V- ·dS (7) 
s4.".£0 rQP 

<IS 

FIliI( 0 E I.ving::--",,::"-:7 

w"'~ 

14) (it) 

Figure 2·15 (0) The net Hux of electric field through a closed surface S due to an 
outside point charge is zero because as much Rux enters the near side of the surface as 
leaves on the far side. (b) All the Huxof electric field emanating from an enclosed point 
charge paases through the surface. 
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where we used (4). We can now use the divergence theorem 
to convert the surface integral to a volume integral: 

I 	EodS--='L1 vo[V(_1)]dV (8)'fs 41TI!"O v rQl' 

When the point charge q is outside the surface every point in 
the volume has a nonzero value of rap. Then, using (6) with 
rol' 'F- 0, we see that the net flux of E through the surface is 
zero. 

This result can be understood. by examining Figure 2-15a. 
The electric field emanating from q on that part of the sur­
face S nearest q has its normal component oppositely directed 
to dS giving a negative contribution to the flux. However, on 
the opposite side of 5 the electric field exits with its normal 
component in the same direction as cIS giving a positive 
contribution to the flux. We have shown that these flux 
contributions ate equal in magnitude but opposite in sign 50 
that the net flux is zero. 

As :.uustrated in Figure 2-15b. assuming q to be positive. we 
sec that when 5 surrounds the charge the electric field points 
outwards with normal component in the direction of cIS 
everywhere on 5 50 that the fl.·it" must be positive. If q were 
negative, E and dS would be oppositely directed everywhere 
50 that the flux is also negative. For either polarity with 
nonzero q, the flux cannot be zero. To evaluate the value of 
this flux we realize that (8) is zero everywhere except where 
1'01' = 0 so that the surface S in (8) can be shrunk down to a 
small spherical surface 5' of infinitesimal radius .6.1' sur­
rounding the point charge; the rest of the volume has rQI' 'F- 0 
50 that V ·V(1/rQP)=O. On this incremental surface we know 
the electric field is purely radial in the same direction as d5' 
with the field due to a point charge: 

1. E'dS=! E ·dS'- q i41T(.c1r)t=..! (9)1s X· 411"1!"0(.c1r) EO 

I f we had many point charges within the surface 5, each 
charge q; gives rise to a flux qJ~o 50 that Gauss's law states that 
the net ftux of ~OE through a closed surface is equal 10 the net 
charge enclosed. by the surface: 

1 • .,EodS= ~ q, o (10)'fs all .. 
InaickS 

Any charge! outside 5 do not contribute to th~ flux. 

(b) 	Charae Distribution. 
For continuous charge distributions, the right-hand side of 

(10) includes the sum of all enclosed incremental charge 
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~lements so that th~ total charge enclos~d may be a line, 
surface, and/or volume integral in addition to the sum of 
point charges: 

i£oE.dS== L qi+I dqis all., "Uq 
in.ide 5 i .... ide 5 

Charg~s outside the volume give no con tribution to the total 
Hux through the enclosing surfac~. 

Gauss's law of (11) can be used to great advantag~ in 
simplifying computations for those charges distribut~d with 
spatial symmetry. The trick is to find a surface S that has 
sections tangent to the electric field so that the dot product is 
zero, or has surfaces perpendicular to th~ electric field and 
upon which the field is constant so that the dot product and 
integration become pure multiplications. If the appropriate 
surface is found. the surface integral becom~s very sim ple to 
evaluate. 

Coulomb's superposition integral derived in Section 2.3.2 is 
often used with symmetric charge distributions to d~termine 
if any fie ld components are zero. Knowing the direction of 
th~ ~lectric field often suggests the appropriate Gaussian sur­
face upon which to integrate ( 11 ). This integration is usually 
much simpler than using Cou lomb's law for each charge 
element. 

2·4·' Sph~rical Symmetry 

(a) Surface Cbarge 
A sphere of radius R has a uniform distribution of surface 

charge Uo as in Figure 2-J6a. Measure the angle 8 from the 
line joining any point P at radial distance r to the sphere 
cent~r . Then, the distanc~ from P to any surface charge 
element on the sphere is independent of the angle ~. Each 
differential surface charge element at angle 8 contributes 
fi~ld components in the radial and 8 directions, but sym­
metrically located charge elements at -</1 have equal field 
magnitude components that add radially but cancel in the () 
direction. 

Realizing from the symmetry that the electric field is purely 
radial and only depends on r and not on 8 or .p, we draw 
Gaussian spheres of radius r as in Figur~ 2·16b both inside 
(r < R) and outside (r > R) the charged sphere. The Gaussian 
sphere inside encloses no charge while the outside sphere 
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Figure 2-16 A sphere of radius R with u niformly distributed surface charge {70' (a) 
Symmetrically located charge elements show that the electric field is purely radial. (b) 
Gauss's law, applied to concen tric spherical surfaces inside (f < R ) and outside ( f > R ) 
the charged sphere, easily shows that the elcctric field within the sphere is lero and 
outside is the same as if all the charge Q = 4 TrR'luo were conce ntrated as a point charge 
at the origin. 

encloses all the charge Q = O'o47rR 2: 

( 12) 

,<R 

so that the e lectric field is 

u.R' Q
-,-"":---!, r > R 

E. "" Eor 47rEor ( 13) { 
0, r< R 

The integration in (12) a moun ts to JUSt a multiplication of 
EoE. and the surface area of the Gaussian sphe re because o n 
the sphere the electric field is constalll and in the same di rec­
tio n as the normal i p The electric field outside the sphere is 
the same as if a ll the surface charge were concentrated as a 
point charge at the origin. 

The zero fi eld solution for r < R is what really proved 
Coulomb's law. After all, Cou lomb's small spheres were not 
really point cha rges and his measu rements did have small 
sources of errors. Perhaps the dectric force only va ried 
inversely with distance by some powe r close to twO, r - 2

+.5 , 

where 6 is very small. However, only the inverse square law 
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gives a zero electric field within a uniformly sudace charged 
sphere. This zero field tesukis true for any dosed conducting 
body of .arbitrary shape charged on its surface with no 
enclosed. charge. Extremely precise measurements were made 
inside such conducting surface charged bodies and the 
electric field was always found to be zero. Such a closed. 
conducting body is used for shielding so [hat a zero field 
environment can be isolated and is often called a Faraday 
cage. after Faraday's measurements of actua1ly climbing into 
a dosed hollow conducting body charged on its surface to 
verify the zero field results. 

To appreciate the ease of solution using Gauss's law, let us 
redo the problem using the superposition integral of Section 
2.3.2. From Figure 2-16a the incremental radial component 
of ~I~ctric fi~ld du~ to a diff~rentia1 charg~ ~I~m~nt is 

U'oR'l sin 8d8d4J 
dE. 4 2 cos a (14)

'1I'EorQP 

From th~ law of cosin~s the angles and distances ar~ related as 

r~p= r'l+R'l-21'R cos (J 

(15)
R'l =1'2+1'~-2rrQP cos a 

so that a is related to 9 as 

1'-Rcos8 
(16)cosa - [1"+R' 2rRcos8]iH 

Th~n the superposition integral of Section 2.3.2 requires us 
to integrat~ (14) as 

" 12.. U'oR'lsin8(r-Rcos8)d8d4J 
(17)E. = 2 R' 2 R '"I# - 0 . _ 0 4'11'Eo[1' + - r cos 9] 

After performing the ~asy integration over 4> that yi~lds the 
factor of 2'11'. w~ introduce the change of variable: 

u=r2+R2-2rRcos8 
(18)

du =2rR sin 8dD 

which allows us to r~write th~ electric field integral as_i(·...Rl. U'oR[u +r2_R2] du 
E.- 8 'sl' 

_ (r_ R). Eor u 

_ <ToR ( 1/2 (r 2
_ R 'l») 1(·...Rl. 

- -;------I U iii
4EoT u (.-R)· 

<ToR [ ,,(I I)]-.,-,---, (r+R)-lr-RI-(r -R ) ----­
4EoT r+R 11'-RI 

(19) 
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where we must be very careful to take the positive square root 
in evaluating the lower limit of the integral for r < R. Evalu­
ating (19) for,. greater and less than R gives us (13), but with 
a lot more effort. 

(b) Volume Cbarce DiatribubOD 
If the sphere is uniformly charged throughout with density 

Po, then the Gaussian surface in Fi~re 2-174 for r>R still 
encloses the total charge Q = t7rR Po. However, now [he 
smaller Gaussian surface with r < R encloses a fraction of the 
total charge: 

p4m'!=Q(rIRf', r <R 

L eoE •dS = eoE.47rr2 = (20):r, { ,
Pot1rR =Q, r>R 

E, .~ t~>R) 
"no,2 

Toal 
volume 
clMrge /' 
0/ Enclo.dI R'\ "" 0 

E, 

I \ 
I ""foR1 

O - po(t)IIR l
/ 

Enclosed \ I\ 
\ , I 

/ 

/"- Ro·E, .. --l (, < R) 
4"fOR 

,.J 

R 
do "' pod,' 

( 
"",'

dl': a ~ ,>~., ..,, 
o , < ,. 

'b( 

Figure 2-17 (a) Gaussian spheres for a uniformly charged sphere show that the 
d«tric field outside the sphere is again the same as if all the charge Q = hTK~po were 
concentrated as a point charge at r - 0. (6) The solution is also obtained by summing 
the contributions from incremenlal spherical shells of surface charge. 
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so that the electric field is 

(21) 

This result could also have been obtained using the: resulu 
of (13) by breaking the spherical volume into incremental 
shells of radius r', thickness dr', carrying differential surface 
charge du = Po dr' as in Figure 2-176. Then the contribution to 
the field is zero inside each shell but nonzero ouuide: 

O. r <r' 
(22)

dE. = por'" dr' 
{ r>r' 

eo, 

The total field outside the sphere is due to all the differential 
shells. while the field inside is due only to the enclosed shells: 

(23) 

which agrees with (21). 

2-4-4 Cylindrical Symmetry 

(a) Hollow Cytinder of Surface Charge 
An infinitely long cylinder of radius /J has a uniform dis­

tribution of surface charge Uo. as shown in Figure 2-180. The 
angle t$ is measured from the line joining the field point P to 
the center of the cylinder. Each incremental line charge ele­
ment dA = 0"04 d4J contributes to the electric field at P a!r. given 
by the wlution for an infinitely long line charge in Section 
2.3.3. However. the symmetrically located element at -4> 
gives rise to equal magnitude field components that add 
radially as measured from the cylinder center but cancel in 
the f/J direction. 

Because of the symmetry. the electric field is purely radial 
w that we use Gauss's law with a concentric cylinder of radius 
r and height L. as in Figure 2-1811 where L is arbitrary. There 
is no contribution to Gauss's law from the upper and lower 
surfaces because the electric field is purely tangential. Along 
the cylindrical wall at radius r, the electric field is constant and 
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Figure 2-18 (a) SymmetricaJly located line charge elements on a cylinder with uni­
formly distributed surface charge show that the electric field is purely radial. (6) 
Gauu's law applied to concentric cylindrical "1ur(aces shows that the field inside the 
surface charged cylinder is zero while oUl5ide it is the same as if all the charge per unit 
length 0"0 2."a were concentrated at the o rigin as a line charge. (e) In addition to using 
the surfaces of (6 ) with Gauss's law for a cylinder of yolume charge, we can aJso sum 
the contributions from incremental hollow cylinders of surface charge. 

purely normal 50 that Gauss's law simply yields 

, > a 
(24) 

, < a 

where for r<a no charge is endosed, while for r > a all the 
charge within a height L is endosed. The electric field outside 
the cylinder is then the same as if all the charge per unit 
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length A = uo21Ta were concentrated along the axis o f the 
cylinder : 

u ,a A 
-=-- , >a 

E, = Eor 21TEor (25){ 
0, r <a 

Note in (24) that the arbitrary height L canceled out. 

(b) Cylinder of Volume Charge 
If the cylinder is uniforml y charged with density Po, bOlh 

Gaussian surfaces in Figure 2-18h enclose charge 

IPo1fQ' L , 
EoE· dS =EoE,'21TrL = :2 (26)1.s po'1Tr L. 

so that the electric field is 

(27) 

where A = P07ra' is the total charge per unit length on the 
cylinder. 

Of course, this result cou ld also have been obtained by 
integrating (25) for all differential cylind rical shells of radius 
r' with thickness dr' carrying incremental surface charge du = 
podr'. as in Figure 2- 18c. 

G por' , poa' A 

{L
- dr =--=-- ,>a 

E. = r E o~ 2Eor 21TE or' (28) 
r por dr,= por =~ r<a
.b Eor 2Eo 21fEoa' 

2-4-5 Gauss's Law and the Divergence Theorem 

If a volume distribution of charge p is com pletely su r­
rounded by a closed Gaussian surface S, Gauss's law of ( II ) is 

iEOE .dS = IpdV (29) 

The left-hand side of (29) can be changed to a volume 
integral using the d ive rgence theorem: 

tEOE.dS = 1V '(EoE)dV"" lpdV (30) 
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Since (30) must hold for any volume, the volume integrands 
in (30) must be equal, yielding the point form of Gauss's law: 

V· (eoE) =p (31 ) 

Since the permittivity of free space £ 0 is a constant, it can 
freely move outside the divergence operatOr. 

2·4·6 Electric Field Discontinuity Across a Sheet of Surface Charge 

In Section 2.3.4a we found that the electric field changes 
direction discontinuously on either side of a straight sheet of 
surface charge. We can be more general by applying the 
surface integral form of Gauss's law in (30) to the differe ntial­
sized pill-box su rface shown in Figu re 2-19 surrounding a 
small area dS o f surface charge: 

i£oE'dS= Is ud5:::;>Eo(E2n - E 1n )dS""udS (32) 

where £2n and £1" are the perpendicular compone nts of 
electric field on each side of the interface. Only the upper and 
lower surfaces of the pill-box contribute in (32) because the 
surface charge is assumed to have zero thickness so that the 
short cylindrical surface has zero area. We thus see that the 
surface charge density is proportional to the discontinuity in 
the normal component of electric field across the sheet: 

where n is perpendicular to the interface directed from 
region I to region 2. 

/"
dS " n dS 

2 

n ' €o IE, - E,l '" o 
E, 

dS · - naS 
Figure 2- 19 Gauss's law applied to a differe rll ial sized pill-box su rface enclosing some 
surface charge shows that the normal component of £0£ is discontinuou s in the surface 
charge density. 
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%·5 THE ELECTRIC POTENTIAL 

If we have two charges of opposite sign, work must be done 
to separate them in opposition to the attractive coulomb 
force. This work can be regained if the charges are allowed to 
come together. Similarly, if the charges have the same sign, 
work must be done to push them together; this work can be 
regained if the charges are allowed to separate. A charge 
gains energy when moved in a direction opposite to a force. 
This is called potential energy because the amount of energy 
depends on the position of the charge in a force field. 

%·Sol Work Required. to Move. Point Cbar,e 

The work W required to move a test charge q, along any 
path from the radial distance r. to the distance r. with a force 
that just overcomes the coulombic force from a point charge 
q, as shown in Figure 2·20, is 

w--l>·dJ 
qq. f.·.i.. dl---- -.- (I)

4""&0.. r 

No work 10 move 

'. 
, 

ch¥ge .Iong sphetic.11 
Piths beause F . II ,. 0 

Figure 2-20 It tak6 no work to move a telt charge q, alon, the Ipherical surfatts 
perpendicular to the electric field due to a point charge q. Such surfaces are called 
equipotential surfaces. 



The Eleclric Poltnlial 85 

Th~ minus sign in front of the integral is necessary because 
th~ quantity W represents the work we must exert on the test 
charge in opposition to th~ coulombic force between charges. 
The dot product in (I) tells us that it tak~s no work to move 
the test charge perpendicular to the electric field, which in 
this case is along sph~res of constant radius. Such surfaces are 
called equipotential surfaces. Nonzero work is necessary to 
move q to a different radius for which dI = d1' i,. Then, the 
work of (I) depends only on the starting and ending positions 
(1'. and 1',) of the path and not on the shape of the path itself: 

(2) 

We can convince ourselves that the sign is correct by examin­
ing the case when r. is bigger than r. and the charges q and q, 
are of opposite sign and so attract each other. To separate the 
charges further requires us to do work on q, so that W is 
positive in (2). If q and q, are the same sign, the repulsive 
coulomb force would tend to separate the charges further 
and perform work on qt. For force equilibrium, we would 
have to exert a force opposite to the direction of motion so 
that W is negative. 

If the p,ath is dosed so that we begin and end at th~ same 
point with r. = 1'" the n~t work required for the motion is 
zero. I f the charges are of the opposite sign, it r~quires 
positive work to separate them. but on the return. equal but 
opposite work is performed on us as the charges attract each 
other. 

If there was a distribution of charges with net field E, the 
work in moving the test charge against the total field E is just 
the sum of the works necessary to move the test charge 
against the field from each charge alone. Over a dosed path 
this work remains zero: 

W=f- q,E . dl = 09fL E·dl = O (3) 

which r~quires that the line integral of th~ electric field 
around the dosed path also be zero. 

2-5-2 The Electric: Field and Stokes' Theorem 

Using Stokes' theorem of Section 1.5.3. we can convert the 
line integral of the electric field to a surface integral of the 
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curl of the electric field: 

(4) 

From Section 1.3.3, we remember that the gradient o f a scalar 
function also has the property that its line integral around a 
closed path is zero. This means that the electric field can be 
de termined from the gradient of a scalar function V called 
the potential having units of volts [kg_m2-s-'.A-1J; 

E =-VV (5) 

The minus sign is introduced by convention so that the elec­
tric fie ld points in the d irection of decreasing potential. From 
the properties of the gradient discussed in Section 1.3.1 we 
see that the electric field is always perpendicular to surfaces o f 
conStant potential. 

By applying the right.hand side of (4) to an area of 
differe ntial size or by simply taking the cu rl of (5) and using 
the vector identity of Section 1.5.4a thal the cu rl of the 
gradient is zero, we reach the conclusion that the electric fie ld 
has zero curl : 

Vx E =O (6) 

2·5·' The Potential and the Electric Field 

The potential difference betwee n the two points at rG and rb 
is the work per unit charge necessary to move fro m TG to rb : 

', J.'=- E'dl =+ E·dl (7)I'a t. 
Note that (3), (6), and (7) are the fields version o f Kirchoff's 

circuit voltage law that the algebraic su m of voltage drops 
around a closed loop is zero. 

The advantage to introducing the pote ntial is that it is a 
scalar from which the electric field can be easil y calculated. 
The electric field must be specified by its three components, 
while if the single potential function V is known, taking its 
negative gradient immed iately yields the three field 
components. This is often a simpler task than solvi ng for each 
field component separately. Note in (5) that adding a conStant 
to the potential does not change the electric field , ~o the 
potential is only uniquely defined to within a constant. It is 
necessary to specify a reference zero potential that is o ften 



taken at infinity. In actual practice zero potential is often 
assigned to the earth's surface SO that common usage calls the 
reference point "ground," 

The potential due to a single point charge q is 

(8) 

If we pick our rderence zero potential at T. =00, V (T.) == 0 so 
that T" = T is jun the radial distance from the point charge. 
The scalar potential V is then interpreted as the work per 
unit charge necessary to bring a charge from infinity to some 
distance r from the point charge q: 

V(T) = -q- (9) 
41T&OT 

The net potential from many point charges is obtained by 
the sum of the potentials from each charge alone. If there is a 
continuous distribution of charge, the summation becomes an 
integration over all the differential charge elements tiq: 

(10) 

where the integration is a line integral for line charges, a 
surface integral for surface charges, and a volume integral 
for volume charges. 

The electric field formula of Section 2.3.2 obtained by 
superposition of coulomb's law is easily re-obtained by taking 
the negative gradient of (10), recognizing that derivatives are 
to be taken with respect to field positions (x", z) while the 
integration is over source positions (xa, 'a. %0)' The del 
operator can thus be brought inside the integral and operates 
only on the quantity Tal' : 

-I dq .- ~ 101' (II)
all,41T£oTQP 

where we use the results of Section 2 .4. 1b for the gradient of 
the reciprocal distance. 
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To demonstrate the usefulncu of the potential function, 
consider the uniform distribution of line charge Ao of finite 
length 2L centered on the 1 axis in Figure 2·21 . Distinguish­
ing between the position of the charge element dq "" Ao dt ' at 
z' and the field point at coordinate 1, the distance between 
SOUTce and fidd point is 

(12) 

Substituting into (10) yields 

II. Ao dz ' 
v= _L41rEo[r2+(t -z,)21 ,fi 

_~ In (% -L +(r'+(z -L)')"\ 
- 4'ITEo z+L+[r' +{z+L)']iiij 

A'(" h-,z-L ' h- 11 +L)~-- "n ---Sin -­
41'1'"£0 T T 

( 13) 

L 

.' dq " ~rh' 

/' ----:::0'1 
...// r\ /// t d" 10.0111' 

f!::---- \ /' I -4uO [,2 +!. ' _ I,'J I12 
I 1Plr, •. -, I 
I 
I 
I 

• 

-L 

Figure 2-21 The potential from a finite length of line charge is obtaine'd by adding 
the polcmiais due to each incremental line charge element. 



The field components are obtained from (15) by taking the 
negative gradient of the potential : 

E __.v_~( 1 1) 
.- az -417'Eo [r'+(z_L)']iif [r'+(z+L)']ili 

av Aor ( 1 
Er=-a;= 417'£0 [r2+(z L)2]IIf[z L+[r2+(z L)2]112] 

[r2 + (z +L)iJm[z +~ + [r2 +(z +L )'J ilt]) 

A, (Z-L Z+L) 
= - 41rEor [r'+(z_L)'}iil! [r'+(z+L)']ili (14) 

As L becomes large. the field and potential approaches that 
of an infinitely long line charge: 

E.= O 

E=~ (15)
• 21rEor 

A,
V---(lnr-ln2L)

21rEo 

The potential has a constant term that becomes infinite 
when L is infinite. This is because the zero potential reference 
of (10) is at infinity, but when the line charge is infinitely long 
the charge at infinity is nonzero. However, this infinite 
constant is of no concern because it offers no contribution to 
the electric field . 

Far from the line charge the potential of (13) approaches 
that of a point charge 2,,\01.: 

lim V = Ao(2L) (16)
.~_r'+.'.L· 41rE OT 

Other interesting limits of (14) are 

E. -0 
lim.-, AoL{ E, =2-,,-e-,'-(~";:+::""L~',")",iIi 

-L s% sL 

±AoL z>L 
217'E o(%' -L')' z <-L 

(17) 
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2-5-5 CIuoro<d Sph.... 

<a) Surface Charp 
A sphe.re of radius R supporu a uniform distribution of 

surface charge eTo with total charge Q = O"o41rR2, as shown in 
Figure 2-22Q, Each incremental surface charge element 
contributes to the potential as 

(18) 

where from the law of cosines 

r~= R2+r!-2rR cos (J (19) 

so that the differential change in rQP about the sphere is 

(20) 

r> r'IM'<0'
dV ­

do,' 
r <: r' 

<0 

• 
• 

• 

do .. Po dr' 

• 
• 

,.J '" 
Figure 2-22 (a) A sphere of radius R supports a uniform distribution of surface 
charge 0"0. (b) The potentiaJ due to a uniformly volume charged sphere i.s found by 
summing the potentiaJs due to differentiaJ sized shells. 
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Therefore, the total potential due to the whole charged 
sphere is 

V- ['" 1" <ToR--drQptUp 
gp_lr_JtI _-041TEOr 

<ToR I,+R
---'up

2Eor Ir-Jtl 

-
<ToR' Q 

{ 
:o~_-4;0' (21) 

Eo 41TEoR' 

Then, as found in Section 2.4.3a the electric field is 

<ToR' Qa v ------y- = -;-----,., T > R
Er = --= Eor 41TEoT (22)a, { 

o T<R 

Outside the sphere, the potential of (21) is the same as if all 
the charge Q were concentrated at the origin as a point 
charge. while inside the sphere the potential is constant and 
equa] to the surface potential. 

(b) Volume Charge 
If the sphere is uniformly charged with density Po and total 

charge Q=t1TR 5po. the potential can be found by breaking 
the sphere into differentia] size shells of thickness dT' and 
incremental surface charge du = Po dr'. Then, integrating (21) 
yields 

R " R' Q 
por dr·=~=---. r>R 

EOT 3Eor 411Eor 


V- ,,' R, 

(23)1i(' por dr' +1por dr' =!!.!.. (R2 _r\

Jo EOT r EO 2Eo 3-) 

3Q (R' '\ 
81TEoR3 -3) 

where we realized from (21) that for r<R the interior shells 
have a different potential contribution than exterior shells. 

Then, the electric field again agrees with Section 2.4.3b: 

(24) 
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(c:) Two Spheres 
Two conducting spheres with respective radii R t and R2 

have their centers a long distance D apart as shown in Figure 
2-23. DiH"ereol charges QI and Qt are put on each sphere. 
Because D » R I + R2 • each sphere can be treated as isolated. 
The potential on each sphere is then 

v, v, (25)
41feoR. ' 

If a wire is connected between the spheres, they are forced 
to be at the same potential: 

q, q, 
(26)v. 

causing a rediSlribution of charge. Since the total charge in 
the system must be conserved. 

Q]+Q,=Q.+Q2 (27) 

Eq. (26) requires that the charges on each sphere be 

R.(Q.+Q'l} R 2(Qt+Q'l) 
q, q, (28)

R)+R, 

so that the system potential is 

(29)
41l"£o(R I +Rt ) 

v. 

Even though the smaller sphere carries less total charge, from 
(22) at r = R, where E.(R) = ao/eo. we see that the surface 
electric field is stronger as the surface charge density is larger: 

q, QI+Q2 V.
E.(r=R , ) 

41TEoR~ 41TEOR.(R. + R2) R, 
(gO)

q, Q.+Q2 V.
E2(r = R 2) 

47rEoR~ 41T8oR 2(R.+R2) R, 
For this reason, the electric field is always largest near 

corners and edges of equipotential surfaces, which is why 

~, D__________ 

Figure 2-23 The charges on two spheres a long distance apart (D» R. +R1 ) must 
redistribute themselves when connected by a wire KI that each sphere is at the same 
potential. The surface electric field is then larger at the smaller sphere. 
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sharp points must be avoided in high-voltage equipment. 
When the electric field exceeds a critical amount E.. called the 
breakdown strength. spark discharges occur as electrons are 
pulled out of the surrounding medium. Air has a breakdown 
strength of E.=3x 106 volts/m. If the two spheres had the 
same radius of I em (10- 2 m), the breakdown strength is 
reached when Vo= 30.000 volts. This corresponds to a total 
system charge of QI + Q\!=6.7x 10- 11 coul. 

2-5-6 Poissoo'. and Laplace's Equation. 

The general governing equations for the free space electric 
field in integral and differential form are thus summarized as 

ieoEodS = IpdV~VoE=Pleo (31) 

{Eodl=O~VXE = O~E= - VV (32) 

The imegral laws are particularly useful for geometries 
with great symmetry and with one-dimensional fields where 
the charge distribution is known. Often, the electrical pmen­
tial of conducting surfaces are constrained by external 
sources so that the surface charge distributions, themselves 
sources of electric field are not directly k.nown and are in part 
due to other charges by induction and conduction. Because of 
the coulombic force between charges. the charge distribution 
throughout space itself depends on the electric field and it is 
necessary to self-consistently solve for the equilibrium 
between the electric field and the charge distribution . These 
complications often make the integral laws difficult to use. 
and it becomes easier to use the differential form of the field 
equations. Using the last relation of (32) in Gauss's law of (31) 
yields a single equation relating the Laplacian of the potential 
to the charge density: 

(33) 

which is called Poisson 's equation. In regions of zero charge 
(p :=0) this equation reduces to Laplace's equation. V2 V=0. 

2-6 	 THE METHOD OF IMAGES WITH LINE CHARGES AND 
CYLINDERS 

2-6-1 Two Parallel Line Charges 

The potential of an infinitely long line charge A is given in 
Section 2.5.4 when the length of the line L is made very large. 
More directly. k.nowing the electric field of an infinitely long 

http:Q\!=6.7x
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line charge from Section 2.3.3 allows us to obta in the poten· 
tial by d irect integration: 

av A A r 
Er'=--'=--~ V = --in - (I) 

ar 2 'lTEor 2 '7TEo ro 

where ro is the arbitrary reference position of le ro potential. 
If we have two line charges of opposite polarity ± A a 

distance 2a apart, we choose our o rigin halfwa y between. as 
in Figure 2·24a, so that the potential due to both charges is 
juSt the superposition of potentials of ( I ): 

V = __A_in (y~ +(x+a):)" ':l (2)
21fEo y~ +(x ar 

where the reference potential point TO ca ncels ou t and we use 
Cartesian coordinates. Equipotential li nes are then 

(3) 

where K , is a constant on an equipotential line. This relation is 
rewritten by completing the squares as 

(4) 

which we recognile as ci rcles o f radius r = 2aJK;~ 1- xI I 
with ce nters at y=O,x=a(I+K ,)/(K, - I ), as drawn by 
dashed lines in Figure 2·24b. The value o f K, "" I is a circle of 
infinite radius with ce nter at x;;; ±<Xl and thus represe nts the 
x = 0 plane. For values o f K J in the interval 0:5 K, :5 I the 
equipOlential circles are in the left half·plane, while for l :so 
K 1:500 the circles a re in the right half-plane . 

T he electric field is found from (2) as 

(5) 

One way to plOl the e lectric fie ld distribution graphically is 
by d rawing lines that are eve rywhere ta ngent to the electric 
field, called field lines or lines of force . These lines are 
everywhere perpendicular to the equipote ntial surfaces and 
teU us the direction of the electric fie ld . The magnitude is 
proportional to the density o f lines. For a sin gle line cha rge . 
the field lines emanate radially. The situalion is more compli­
ca ted for the I WO line cha rges of op posite polarity in Figure 
2-24 with the field lines always sta rling o n the positive charge 
and te rminating on the negative charge. 
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y 

----~-r--~----. -A . -A 

(.) 

Field lines ___ 
EQuiOOltf'llill linn , 

.11 +K,j ..'K.1 + 1y-.C01K,j2 .. ~ J'+~'. __'_ ~ 
SIn K, K, I I1 - K')' 

/ ----­ ---.J, '-,/
/

/ - " I ''-, \I , , \I , \ \I , \, \ II 

II 
I 

I I •I\ 
/ 

I I I\ 
/ I\, 

/ 
/ /, / /, /

/ 

'­ / 
-// " ---­

00( K, 0( 1 I O( K, 0(_ 

Figure 2-24 (4) Two paralielline charges of opposite polarity a distance 24 apart. (b) 
The equipotential (dashed) and field (solid) lines form a set o( orthogonal circles. 
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For the field given by (5), the equation for the lines tangent 
to the electric field is 

d, E, 2%, d(x 2 +,') 

dx = E. = ,f+af_%!i~a'-(x'+,'}+ d(ln,)=O (6) 


where the last equality is written this way so the expression 
can be directly integTated to . ,.• 

x +(J-acotK t ) =~ (7)
Sin K2 

where KI is a constant determined by specifying a single 
coordinate (,1'0. '0) along the field line of interest. The fidd 
lines are also circles of radius a/sin K" with centers at x = 
0., = a cot K! as drawn by the solid lines in Figure 2·24b. 

2-6-2 The Method of Images 

(a) General properties 
When a conductor is in the vlcanlty of some charge, a 

surface charge distribution is induced on the conductor in 
order to terminate the electric field. as the field within the 
equipotential surface is zero. This induced charge dis­
tribution itself then contributes to the external electric field 
subject to the boundary condition that the conductor is an 
equipotential surface so that the electric field terminates 
perpendicularly to the surface . In general, the solution is 
difficult to obtain because the surface charge distribution· 
cannot be known until the field is known so that we can use 
the boundary condition of Section 2.4.6. However. the field 
solution cannot be found until the surface charge distribution 
is known. 

However. for a few simple geometries. the field solution 
can be found by replacing the conducting surface by 
equivalent charges within the conducting body. called images, 
that guarantee that all boundary conditions are satisfied. 
Once the image charges are known, the problem is solved as if 
the conductor were not prescnt but with a charge distribution 
composed of the original charges plus the image charges. 

(b) Line Charp Near • ConducUn, Plane 
The method of imag~ can adapt a known solution to a new 

problem by replacing conducting bodies with an equivalent 
charge. For instance. we see in Figure 2·246 that the field 
lines are all perpendicular to the x ,. 0 plane. Ir a conductor 
were placed along the x = 0 plane with a single line charge A 
at x = -a. the potential and electric field for x < 0 is the same 
as given by (2) and (5). 
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A surface charge distributi9n is induced on the conducting 
plane in order to terminate the incident electric field as the 
field must be zero inside the conductor. This induced surface 
charge distribution itself then contributes to the external 
electric field for x <: °in exactly the same way as for a single 
image line charge -A at x = +a. 

The force per unit length on the line charge A is due only to 
the field from the image charge ~ A ; 

A 2 A2 

f=AE(-a,O) (8)~2-"~',-;(2"".-:) i~ = -4,,-,-..- i. 

From Seclion 2.4.6 we know that the surface charge dis­
tribution on the plane is given by the discontinuity in normal 
component of electric field: 

-A. 
a(x = 0) = -eoE~(x = 0) (9)

1T(/+a2) 

where we recognize that the field within the conductor is zero. 
The total charge per unit length on the plane is obtained by 
imegrating (9) over the whole plane: 

AT= t:"" a(x = 0) dy 

A.I+OO 

d, 
=~ _00 y2+a2 

Aal=---tan_.'1·­-
1Ta a _00 

~-A (10) 

and just equals the image charge. 

%-&.5 Line Charge and Cylinder 

Because the equipotemial surfaces of (4) are cylinders, the 
method of images also works with a line charge A a distance D 
from the center of a conducting cylinder of radius R as in 
Figure 2-25. Then the radius R and distance a must fit (4) as 

2aJK; a(l +K.)
R ±a+ D (II)II KII' KI - i 

where the upper. positive sign is used when the line charge is 
outside the cylinder. as in Figure 2-250. while the lower 
negative sign is used when the line charge is within the cylin­
der. as in Figure 2-25b. Because the cylinder is chosen to be in 
the right half-plane. I:s K I:S co. the unknown parameters K I 
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,., '" 
Figure 2-25 The electric 6e1d surrounding a line charge A. a distance D from the 
center of a conducting cylinder of radius R is the same as if the cylinder were replaced 
by an image charge -A., a distance b '= R'IID from the center. (4) Line charge outside 
cylinder. (6) Line charge inside cylinder. 

and a are expressed in terms of the given values Rand D 
from (11) as 

(D')" 
 (12)K 1 = Jif ' 

For either case, the image line charge then lies a distance II 
from the center of the cylinder: 

(13) 

being inside the cylinder when the inducing charge is outside 
(R < D), and vice versa, being outside the cylinder when the 
inducing charge is inside (R > D). 
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The force per unit length on the cylinder is then just due to 
the force on the image charge: 

A' 
(14)f. 21feo(D b) 

2.6-4 Two Wire Line 

(a) Image Charle. 
We can continue to use the method of images for the case 

of two parallel equipotential cylinders of differing radii R. 
and R2 having their centers a distance D apart as in Figure 
2-26. We place a line charge A a distance 6. from the center of 
cylinder 1 and a line charge -A a distance b2 from the center 
of cylinder 2. both line charges along the line joining the 
centers of the cylinders. We simultaneously treat the cases 
where the cylinders are adjacent, as in Figure 2-260, or where 
the smaller cylinder is inside the larger one, as in Figure 
2-261>. 

The position of the image charges can be found using (13) 
realizing that the distance from each image charge to the 
center of the opposite cylinder is D - b so that 

(15) 

where the upper signs are used when the cylinders are 
adjacent and lower signs are used when the smaller cylinder is 
inside the larger one. We separate the twO coupled equations 
in (15) into two quadratic equations in 6. and b2 : 

2 R2 R2
b~ [D - 2+ db.+R~ = 0 

D , , . (16) 
b:.[D -R. +R2 ]b +R: =0 

D 
2 

(17) 

We were careful to pick the roots that lay ouuide the region 
between cylinders. If the equal magnitude but opposite 
polarity image line charges are located at these positions, the 
cylindrical surfaces are at a constant potential. 
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v ---',:'-.;....\ 

Figure 2-26 The solution for the electric field between twO parallel conductmg 
cylinders is found by replacing the cylinders by their image charges. The surface 
charge density is largest where the cylinder su rfaces are closest IOgether. This is called 
the proximity effect. (a) Adjace nt cylinders. (b) Smaller cylinder inside the larger one. 

(b) Force of Attraction 
The attractive force per unit length on cylinder I is the 

force on the image charge A due lO the fi eld from the 
opposite image charge - A: 

A' 
f. 

A' 

D' - Rl + Rl)' 'J i" 
4116U[ ( 2 D - R 2 

A' 
( i 8) 
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R,' 
- 6 _ D 

j 

R,' 
- D + . 1 

Fig. 2-26(6) 

I 
I 
I 
J 

6, 

61 

,/ 

(c) Capacitance Per Unit Lengtb 
The potential of (2) in the region between the two cylinders 

depends on the distances from any point to the line charges: 

A s,
V=--- In - ( 19) 

2'1'1'"eo s, 

To find the voltage difference between the cylinders we pick 
the most convenient points labeled A and B in Figure 2-26: 

A B 

II = ±(Rt-b l ) s,=±(D-b,?R,) (20) 

l, = ±(D:fb2 -R I ) S2= R,-b, 

although any two points on the surfaces could have been 
used. The voltage difference is then 

Av,- v2 .. ___ ln(* (RI- bl ) (R 2 -b2) ) (21) 
2'1'1'"1:0 (D?b,-Rj}(D-bt=FR!) 
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This ~xpTession can be greatly reduced using the relations 

R~ R~ 
DTb2 = - D-b. = ±- (22)

hi' b'2 

to 

The potential difference V,- Vi is linearly related to the 
line charge · A through a factor that only depends on the 
geome try of the conductors. This factor is defined as the 
capacitance per unit length and is the ratio of charge per unit 
length to potential difference: 

where we use the identity-

lIn l1+(,2_1)II2J=cosh- , (25) 

We can examine this result in various simple limits. 
Consider first the case for adjacent cylinders (D > R. +Ri ) . 

1. 	 If the distance D is much larger than the radii, 

I· C 217"Eo 21tEo 
1m '"" 2 1 2 (26)

D"(R:,+R~) In [D I(R1R'l» cosh- [D 1(2R1R'l») 

2. 	 The capacitance between a cylinder and an infinite plane 
can be obtained by letting one cylinder have infinite 
radius but keeping finite the closest distance .J = 

,"+,~"
·,=coshx -=- ­

2 


(,_)1- 2,," +1_ 0 


,- -	 ,±(yl-I)III 

x =oosh- I, - In [,%(,1_ 1)111] 

c v, 

- h­ ' (±nil R¥ R:) 
cos 2RIR'l 
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D-R, - between cylinde rs. If we let R, become
R 2 

infinite . the capacitance becomes 

lim 
R,..."'" 

n-R , - R ~_ . (lin;l~) 

211"£0 

-,(J+R';l)<osh - -	

(2 7) 

R, 

3. 	 If the cylinders are identical so that R l = R';l iii R. the 
capacitance per unit length red uces to 

[(D)' ]''') h- ' D 
(28) 

In I2RD + 2R -\ cos 2R 

4 . 	 When the cylinders are concen tric so that D = 0, the 
capacitance per unit length is 

'211£1/ 211£u
lim e 	 (29)
0-" In (R ,/R:l) - cosh - I I<R ~ + R~)/(2 R1R:,o) ! 

2·7 THE METHOD OF IMAGES WITH POINT CHARGES AND 
SPHERES 

2·7-1 Poi.nl Charge and a Grounded Sphere 

A point charge q is a distance D from the center of the 
conduct in g sphere of radius R at zero potenlial as shown in 
Figure 2-27a. We try to use the me thod of images by placing a 
single image charge q' a d istance b from the sphere center 
along the line joining the center to the poi nt charge q. 

We need to find values of q' an d b that satisfy the zero 
potential boundary condition at r"" R. The pote ntial at any 
point P outside the sphere is 

v = - '- (~+'!,'\ 	 (I )
411£0 J / ) 

where the distance from P to the point t;harges are obtained 
from the law of cosines : 

J = [r2 + D 2 - 2rD cos 8 ]112 
(2) 

$ ' = [b 2 + r2 - 2rb cos 81 1/11 



R 

o r-~\ 

104 11u El«tric FuM 

q' • _ fR , 
Inducing chatvt 
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D---\----... 

,., 

• 

q' .. -­
• "0 

,., 
------. - ---~----->­D 

(b' 

Figure 2-27 (a) The field due to a point chargc q, a distance D outside a conducting 
sphere of radius R, can be found by placing a single image charge -qRID at a distance 
11 - R'/D from the ccntcr of the sphere. (b) The same relations hold (rue if the charge 
q is inside the sphere but now the image charge is outside the sphere. since D < R. 

At ,. = R. the potential in (I) must be zero so that q and q' 
must be of opposite polarity : 

(3) 


where we square the equaJities in (3) to remove the square 
roots when substituting (2), 
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Siner (4) must be tme for all values of 8, we obtain the 
following two equalitirs: 

qt(b'+ Rt) ... q,t(R'+ D') 
(5)

q'b _ q,2D 

Eliminating q and q' yirlds a quadratic rquation in b: 

(6) 


with solution 

b~~ [I +(~)'J ±Jm I+(~)'Jr -R' 

~nl+(~)'J± Jm l-(~)'Jr 


~~\[ 1+(~)'J+-(~)'Jl (7) 

We take the lower negative root SO that the image charge is 
inside the sphrre with value obtained from using (7) in (5) : 

R' , Rb-­ q = -q­ (8)D' D 

remrmbering from (3) that q and q' have opposite sign. We 
ignore the b = D solution with q' = -q since the image charge 
must always be outside the region of interest. If we allowed 
this solution, the net charge at the position of the inducing 
charge is zero, contrary to our statement that the net char~ 
is q. 

The image charge distance b obeys a similar relation as was 
found for line charges and cylinders in Section 2.6.3. Now, 
however, the image charge magnitude does not equal the 
magnitude of the inducing charge because not all the lines of 
force terminate on the sphere. Some of the field Iinrs 
emanating from q go around the sphere and terminate at 
infinity. 

The force on the grounded sphere is then just the force on 
the image charge -q' due to the field from q: 

q'R q'RDf, - qq' (9) 
.. 41TBo(D b)' 74".-.-"D-!-:'(D;....--:b"')' - 41TBO(D' - R')' 
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The electric field outside the sphere is found from (I) using 
(2) as 

E= _VV=_I- (~[(r-D C05 8)i.+D sin Si.]
411'6 0 ~ 

Is~~[(r-bcOS8)i.+bSin8i.)) (10) 

On the sphere where s' = (RID)s. the surface charge dis· 
tribution is found from the discontinuity in normal electric 
field as givcu in Section 2.4.6: 

q(D!-Rt) 
a(r = R) = BoEr(r = R) = - 41rR[R!if+ D'-2RD C05 8JiIi 

(II) 

The total charge on the sphere 

qT= r' u(r=R)21rR'sinSdS 

q • • sinSd8i· (12)=-2"R(D -R) (R'+n*-2RDcos8)"i 

can be evaluated by introdudng the changr of variable 

u =R'+Dt.-2RD cos 8, du .. 2RD sin (JdB (13) 

$0 tbat (12) integrates to 

q(D2 - R') 1(D+.)' ~ 
qT= _."/1'4D D - R}' U 

q(D'-R') (_~) Ico+Jt)' _ _ qR 

4D u (0- .)' D (14) 

which just equals the image charge q'. 
If the point charge q is inside the grounded sphere, the 

image charge and its position are still given by (8), as illus­
trated in Figure 2-276. Since D < R, the image charge is now 
ouuide the sphere. 

2.7-2 Point Cbarp: Near. GrouDded. Plane 

If the point charge is a distance a fTOm a grounded plane, 
a5 in Figure 2-2&. we consider the plane to be a sphere of 
infinite radius R 50 that D ,. R +a. In the limit a5 R becomes 
infinite, (8) becomes 

.. 
 (15)
lim q'= -q, 

~ 

D-R+. 
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Figure 2-28 (a) A point charge q near a conducting plane has its image charge -q 
symmetrically located behind the plane. (b) An applied uniform electric field causes a 
uniform surface charge distribution on the conducting plane. Any injected charge 
must overcome the restoring force due to its image in order to leave the electrode. 

50 that the image charge is of equal magnitude but opposite 
polarity and symmetrically located on the opposite side of the 
plane. 

The potential at any point (x. y.,t) outside the conductor is 
given in Cartesian coordinates as 

v--q-( I (16)~ 411'80 [(x+a)!i!+yf+z!i!]iii [{x 

with associated electric field 

E--VV---q-( (x+a)i.. +yi7+zi. 
- ~ 411'80 [(x+a}!i!+yl!+z!i!t1t 

Note that as required the field is purely normal to the 
grounded plane 

(18)E,(x =0)=0. 

The surface charge density on the conductor is given by the 
discontinuity of normal E: 

u(x = 0) = ~ 80E~{x = 0) 

q 2. 
417 [y2+zll+allf"l1 

qa _ 11_ II II 

217(rll +al!f"l!' r ~y +,t (19) 

where the minus sign arises because the surface normal 
points in the negative x direction. 



The total charge on the conducting surface is obtained by 
integrating (19) over the whole surface: 

qT ... l.... u(x - O)2'ft"rdr 

L
~ rdr 

=-qa (ri+a')iJi 

qa I~ (20)"" (r'+a')ili 0 " -q 

As is always the case, the total charge on a conducting surface 
must equal the image charge. 

The force on the conductor is then due only to the field 
from the image charge: 

q' .
f= Ii. (21)

167TBoD 

This attractive force prevents charges from escaping from 
an electrode surface when an electric field is applied. Assume 
that an electric field - Eoi. is applied perpendicular to the 
electrode shown in Figure (2·286). A uniform negative sur· 
face charge distribution q = -eoEo as given in (2.4.6) arises to 
terminate the electric field as there is no electric field within 
the conductor. There is then an upwards Coulombic force on 
the surface charge, 50 why arcn't the electrons pulled out of 
the electrode? Imagine an ejected charge -q a distance x 
from the conductor. From (15) we know that an image charge 
+q then appears at -x which tends to pull the charge -q back 
to the electrode with a force given by (21) with G = x in 
opposition to the imposed field that tends to pull the charge 
away from the electrode. The total force on the charge -q is 
then 

f. =qEo (22)
41rso(2x)' 

The force is zero at position x~ 

(23) 

For an electron (q = 1.6 X 10- 111 coulombs) in a field of Eo = 
106 vIm. x. - 1.9 x 10-1 m. For smaller values of x the net 
force is neptive tending to pull the charge back to the elec­
trode. If the charge can be propelled past x. by external 
forces. the imposed field will then carry the charge away from 
the electrode. If this external force is due to heating of the 
electrode. the proccu is called thermionic emission. High 
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field emission even with a cold electrode occurs when the 
electric field Eo becolJ!;es sufficiently large (on the order of 
lOlOv/m) that the coulombic force overcomes the quantum 
mechanica1 binding forces holding the electrons within the 
electrode. 

2-7-5 Sphere With Constant Charge 

If the point charge q is outside a conducting sphere (D > R) 
that now carries a constant total charge Qo, the induced 
charge is still q' = -qR/D. Since the total charge on the sphere 
is Qo. we must find another image charge that keeps the 
sphere an equipotential surface and has value Qo+qR/D. 
This other image charge must be placed at the center of the 
sphere. as in Figure 2-29a. The original charge q plus the 
image charge q'= - qR/D puts the sphere at zero potential. 
The additional image charge at the center of the sphere raises 
the potential of the sphere to 

Qo+qR/D v (24)
41TEoR 

The force on the sphere is now due to the field from the point 
charge q acting on the two image charges : 

qR (Q,+qR fD») 
D(D - b)§.+ Df 

(25) 

v - Vg 

,
• 
_-D--\;;;;;;;:;" 

Sphere M c:ontUnl 
YOltigt Vo 

'" 
Figure 2·29 (8) If a conducting sphere carries a constant charge Qo or (b) is at a 
co nstant voltage Vo, an additional image charge is needed at the sphere center when a 
charge q is nearby . 

SphIIlI wilh corlltlnt 
dI...~ Qo 

r., 



If the sphere is kept at constant voltage Vo. the image 
charge q' = -qR/D at distance b = Rt/D from the sphere 
center still ketps the sphere at zero potential. To raise the 
potential of the sphere to Vo, another image charge, 

Qo=411'eoRVo 	 (26) 

must be placed at the sphere center, as in Figure 2-29b. The 
force on the sphere is then 

(27) 

PROBLEMS 

S«tion 2.1 
1. Faraday's "ice-pail" experiment IS repeated with the 
following sequence of steps: 

(i) 	A ball with total charge Q is brought inside an 
insulated metal ice-pail without touching. 

(ii) 	The outside of the pail is momentarily connected to 
the ground and then disconnected so that once again 
the pail is insulated. 

(iii) 	Without touching the pail, the charged ball is removed. 

(a) Sketch the charge distribution on the inside and outside 
of the pail during each step. 

(b) What is the net charge on the pail after the chargro ball 
is removed? 

2. A sphere initially carrying a total charge Q is brought into 
momentary contact with an uncharged idenLical sphere. 

(a) 	 How much charge is on each sphere? 
(b) This process is repeated for N idenLical iniLially 

uncharged spheres. How much charge js on each of the 
spheres including the original charged sphere? 

(c) What is the total charge in the system after the N 
contacts? 

Section 2.2 
3. The charge of an electron was first measured by Robert A. 
Millikan in 1909 by measuring the electric field necessary to 
levitate a small charged oil drop against its weight. The oil 
droplets were sprayed and became charged by frictional 
electrification. 
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• 
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• 

g 

A spherical droplet of rad ius R and effective mass density 
pm carries a total charge q in a g ravi ty field g. What electric 
field Eoi, will suspend the charged droplet? Millikan found by 
this method that all droplets carried in teger multiples of 
negative cha rge e = - 1.6 x 10- 19 coul. 

4. Two small co nducting balls, each of mass m, are atlhe end 
o f in sulating strings of length I joined at a point. Cha rges are 

A: 
/; i 

I 

Q~, ""- -1--';".'Q, 

g 

placed on the balls so that they are a distance d apa rt. A 
charge QL is placed on ball I . What is the charge Q2 o n ball2? 

5. A poim charge -QL of mass' m travels in a circu la r orbit of 
radius R about a charge of opposite sign Q 2. 

(a) What is the equilibrium angular speed of the charge 
-QL? 

(b) T hi s problem d escribes Boh r's o ne electron model of 
the atom if the cha rge - QL is that of an electron a nd Q2 = Zt 
is the nuclear charge, where Z is the num ber o f protons. 
Accordin g to the poslUlates of quamum mechanics the 
angular mom entum L of the electron must be qu antized, 

L = mvR :: 7!h/21T, n = 1,2,3,'" 

where h = 6.63 X 10- 34 joule-sec is Planck's constant. What arc 
the a llowed values of R ? 
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(c) For the hydrogen atom (Z"" I ) what is the rad ius of the 
smallest allowed orbit and what is the electron's orbital veloc­
ity? 

6. An electroscope measures charge by the a ngular deflection 
of two identica l conducting balls suspended by an essentially 
weightless insulating string o f length t. Each ba ll has mass M 
in the gravity field g and when charged ca n be conside red a 
point charge. 

on on 

t, 
A tOtal charge Q is deposited on the twO balls of the elec­

troscope. The angle (J from the normal obeys a relation of the 
form 

lan 8 sin11 (} :: const 

What is the constant? 

7. Two point charges q. and q2 in vacuum with respective 
masses ml and m2 attract (or repel) each othe r via the 
coulomb force. 

"', . 'I, "'2. '11 

§j-----;~.t- r---+ 

Iit-- ----+ " 

, 
(a) Write a single differential equation fo r the d istance 

between the charges T = T\!- r l. What is the effective mass of 
the charges? (Hint: Write New ton's law for each charge and 
take a mass-weighted difference.) 

(b) If the two charges are released from rest a t I = 0 when a 
distance TO from one another , what is their rela tive velocity 
v = drldt as a function of r ? Hint: 

dv = dvdr = v dv =~(..!.v '2) 
dt drdl dT dr 2 
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(c) What is their position as a function of time? Separately 
consider the cases when the charges have the same or 
opposite polarity. Hint: 

Let u =.J; , 
u~ a . _IU--Ia- - u-+-sm ­
2 2 a 

J u 'd ' u -~u2_a2+~ln(u+~)
.J;.'C;.' 2 2 

(d) If the charges are of opposite polarity, at what time will 
they collide? (Hint: If you get a negative value of time, 
check your signs of square roots in (b).) 

(e) If the charges are taken out of the vacuum and placed 
in a viscous medium, the velocity rather than the acceleration 
is proportional [0 the force 

where PI and P'l are the friction coefficients for each charge. 
Reprat parts (aHd) for this viscous dominated motion. 

8. A charge q of mass m with initiaJ velocity v= vois is 
injected at " = 0 into a region of uniform electric field E = 
Eoi•. A screen is placed at the position" = L. At what height h 
does the charge hit the screen? Neglect gravity . 

•

Lx 

9. A pendulum with a weightless string of length I has on its 
end a small sphere with charge q and mass m. A distance D 

16 \ 

Q i \ Qo • 0 

t, 
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away on either side of the pendulum mass are two fixed 
spheres each carrying a charge Q. The three spheres are of 
sufficiently small size that they can be considered as point 
charges and masses. 

(a) Assuming the pendulum displacement t to ~ small 
U« D). show that Newton's law can be approximately written 
as 

What is 6.1~? Hint: 

. 8 fsin -­I' 

(b) At t = 0 the pendulum is released from rest with t = fo. 
What is the subsequem pendulum motion? 

(e) For what values of qQ is the motion unbounded with 
time? 

y 10. Charges Qt Q. and q lie on the corners of an equilateralt triangle with sides of length B. 

(a) What is the force on the charge q? 

8 
(b) What must q be for E to be zero half-way up the ahiwde 

/1 ~ at P? 

;; .p,~ 

•--'-• 
II. Find the electric field along the z axis due to four equal 
magnitude point charges q placed on the vertices of a square 
with sides of length a in tlTe '" plane centered at the origin 

• 


q:;2;..-t-_~.,q3 

r-F---y 

x 
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when: 

(a) the charges have the same polarity, ql "" q'1 = q, = q4 e q; 
(b) the charges alternate in polarity, ql = QJ- q,Q'}: = q4 e 

-q; 
(el the charges are ql = Q'1- q, q,:::z q4 - -q. 

Section 2.3 
12. Find the total charge in each of the following dis­
tributions where a is a constant parameter; 

(a) An infinitely long line charge with densit y 

A(t) = Aot-I •II• 

(b) A spherically symmetric volume charge distributed 
over all space 

P. 
p(r)-[ I + rla}4 

(Htnt: Let II = 1+ r/o..) 
(e) An infinite sheet of surface charge with density 

13. A point charge q with mass M in a gravity field g is 
released from rest a distance Xu above a sheet of surface 
charge with uniform density 0'0 . 

•• ++++++.+ .. , ... "0 

(a) What is the position of the charge as a function of time? 
(b) For what value of Uo will the charge remain stationary? 
(c) If Uo is less than the value of (b), at what time and with 

, what velocity will the charge reach the sheet? 

t.. 14. A point charge q at z::: 0 is a distance D away from an 
infinitely long line charge with uniform density Ao . 

(a) What is the force on the point charge q? 
(b) What is the force on the line charge? 
(c) Repeat (a) and (b) if the line charge h as a distribution 

.' 
A(Z) ::: Aolz l 

a 

• 

• 
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15. A small sphere of mass M in a gravity field g carrying a" 
charge Q is connected by a massless string to a sheet of 
surface charge of the same polarity with de nsity !To_ What is 
the angle (J between the sheet and charge? 

16. A line charge A alo ng the I axis extends over the inte rval 
- L s.ts L. 

A-------~y 

-, 
,.) 


-, 

' b) 

(a) Find the electric field in the z Sf 0 plane. 
(b) Using the resu lts of (a) find the electric field in the 1 - 0 

p lane due 10 an infinite st rip (-OOS y :5(0) o f heigh t 2L with 
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surface charge density 0'0 . Check your results with the text for 
L-+oo. Hint: Let u =%2+,2 

du 1 . - I (L , -x ')U - 2L"% ) 
- Sin 2 1!JuJu-xZ.JL'+u Lx u(L +x} 

17. An infinitely long hollow semi<ylinder of radius R car· 
ries a uniform surface charge distribution 0'0_ 

(a) What is the electric field along the axis of the cylinder? 
(b) Use the results of (a) to find the electric field along the 

axis due to a semi<ylinder of volume charge Po­
(e) Repeat (a) and (b) to find the electric field at the cenler 

of a uniformly surface or volume charged hemisphere. ...... . . 
• R •·•rli'\. '• 

18. (a) Find the electric field along the.t axis of a circular loop 
centered in the xy plane of radius a carrying a uniform line charge 
Xo for y > oand -Xo for y < O. 

y 

• •• 

• 

(b) Use the results of (a) to find the electric field along the :. 
axis of a circular disk of radius a carrying a uniform surface charge 
0'0 for y > 0 and -0'0 for y < O. 

19. (a) Find the electric field along the z axis due to a square 
loop with sides of length a centered about the z axis in the "" 
plane carrying a uniform line charge A. What should your 
re~mlt approach for t: » a ? 

(b) Use the results of (a) to find the e lectric field along the z 
axis due to a square of uniform surface charge eTo. What 
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.. . . 
, y 

shou ld your result ap proach as II -lOoo? Hinl: Let 

, x' f du 2 - ~ 
U = l +l' 1I.J2u"='? - IzI Ian 

I V---;:;-~,-,-

20 . A circular loop of radius a in the xy plane has a uniform 
line charge distribu tion Ao fo r y > 0 and - Ao fo r y < O. 

P 

\ 
\ 
\. ~Q I' R - .jc:oslti. + sin.i ~ I'" I i , 

-_r-
\/

- AoCO"'/~/ ,;<\~ 

/'=--r.---->- y 

.. • ~ + 4 cool/m 

• 
(a) What is the elect ric field along the I axis? 
(b) Use the results of (a) to find the electric field along the z 

• 	 axis due to a surface charged d isk, whose de nsity is (Tu for y > 0 
and - Uo for 'j < O. Hinc: 

f r2dr r ~ 
2 2:l12= - ~+In(r +"' r-+z-)

(r+z.) r +z 

(e) Repeat (a) if the line charge has distribution A= Ao sin~. 
(d) Repeat (b) if the su r face cha rge has d istributio n u :::: 

(To si n t/J. 

2 1. An infinitely long line charge with density Ao is folded in 
half with bOlh ha lves joined by a half-circle of rad ius a. What 
is the electric fi e ld a long t he % axis passing th rough the center 
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.. • .. -+ .. .. -+ -+ .. .. .. " 


+++++++ ........... + 


• 
of the circle. Hint: 

d. xJ[X.!+ll i]5ft- ai[x!i+a' }i ii 

i. = cos </J i" +sin f/J i, 
Section 2.4 
22. Find the total charge end~d within each of the follow· 
ing volumes (or the given electric fields: 

(a) E = Ar! j. for a sphere of radius R: 
2

(b) E "" A r i r for a cylinder of radius a and length L ; 
(e) E = A(xi.. +,i,) for a cube with sides of length a having 

a corner at the origin. 

2'. Find the electric field everywhere fOT the following 
planar volume charge distributions : 

I I/(a) p(x)=poe- - ., -oosJC~OO 

-bsxS-a(b) p(x) = {-po.
•• Po. asx s b 


,~) 

--T-:>I"=---~-~· (e) p(X)=pr;. -dsxsd 



120 	 T1w Ek<,"<FWd 

, . (d) p(x) ~ jP,(I +xld), 
Po(l-xld), 

24. Find the electric field everywhere for the following 
spherically symmetric volume charge distributions: 

(a) p(,.)=p~-rl., OSrS<X) 

(Hint: Jr!e -"·dr=-ae- rl-(r t +2a2(rla+I)].) 

(b) 	p(r)""'j PI, O:sr<R1 

P,. RI<r < R:r 

(e) p(r)=por/R. O<r<R 

25. Find the electric field everywhere for the following 
cylindrically symmetric volume charge distributions: 

(b) 	p(r)=jPIo 0<r<4 

Pt. a<r<h 


(e) p(r)z:por/a, O<r < o 

ri, -.i. +yt,. 
r'1. .- Clr ­

26. An infinitely long cylinder of radius R with uniform 
volume charge density Po has an off-axis hole of radius b with 
center a distance d away from ~he center of the cylinder. 
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What is the electric fidd within the hole? (Hint: Replace the 
hole by the superposition of volume charge distributions of 
density Po and -Po and use the results of (27). Convert the 
cylindrical coordinates to Cartesian coordinates for ease .of 
vector addition.) 

Section 2.5 
27. A line charge A of length llies parallel to an infinite sheet 
of surface charge uo. How much work is required to rotate 
the line charge so that it is vertical? 

28. A point charge q of mass m is injected at infinity with" 
initial velocity voi. towards the center of a uniformly charged 
sphere of radius R. The total charge on the sphere Q is the 
same sign as q. 

• 
~'--~.::' Q 

R ,• 

• 
(a) What is the minimum initia1 velocity necessary for the 

point charge to collide with the sphere? 
(b) If the initial velocity is half of the result in (a), how close 

does the charge get to the sphere? 

29. Find the electric field and volume charge distributions 
for the following potential distributions: 

(a) V=Axt 

(b) V=Axy% 

(c) V=Ar2 sint/>+Bn 

(d) VI: Art sin 8 cos t/> 
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30. Which of the following vectors can ~ an electric field? If 
so, what is the volume charge density? 

(a) E = a,x2,2i • 

(b) E=a(i,. cos 8-i. sin 8) 

(e) E=a(yi.-xi,) 

(d) E = (a/l"2)[ir( I +cos 41) +i. sin t/I] 

31. Find the potential difference V between the following 
sul"face charge distributions: 

-., - -,. 
, R, ,, • •••

• • R, •
• •

•• • • 

(.J (b, (cJ 

(a) Two parallel sheets of surface charge of opposite 
polarity ±uo and spacing 4. 

(b) Two coaxial cylinders of surface charge having infinite 
length and respective radii a and b. The total charge per unit 
length on the inner cylinder is Ao while on the outer cylinder 
is -Ao_ 

(e) Two concentric spheres of surface charge with respec­
tive radii RI and RI _The inner sphere carries a uniformly 
distributed surface charge with total charge qo- The outer 
sphere has total charg~ -qo. 

32. A hemisphere of radius R has a uniformly distributed 
surface charge with total charge Q. 

(a) Break the spherical surface into hoops of line charg~ of 
thick.ness R dB. What is the radius of the hoop, its height z', 
and its total incremental charge dq? 
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(b) What is the potential along the z axis due to this incre­
mental chargrd. hoop? Eliminate the dependence on 8 and 
express all variables in terms of z', the height of the differen­
tial hoop of line charge. 

(c) What is the potential at any position along the % axis 
due to the entire hemisphere of surface charge? Hint: 

dr.' 2.;;;+ii;!J[0 + In'J llt b 

(d) What is the electric field along the % axis? 
(e) If the hemisphere is uniformly charged throughout its 

volume with total charge Q, find the potential a~ctric 
field at aU points along the % axis. (HiDt: Jr.JzY +r2 dr= 
l(Z2+ r 2)312.) 

33. Two point charges ql and q'l. lie along the % axis a distance 
a apart. 

• 

" 
q, 

t 
' 
• /''----T'--------~y 

(a) Find the potential at the coordinate (r, 8. 41). 
(Hiat: r~ = r2+(aJ2)2-4r cos 8.) 

(b) What is the electric field? 
(e) An electric dipole is formed if q2 = -q l . Find an 

approximate expression for the potential and electric field for 
points far from the dipole, r »a. 

(d) What is the equation of the. field lines in this far field 
limit that is everywhere tangent to the electric field 

dr Ey 
--~-

rd8 E, 

Find the equation of the field line that passes through the 
point (r = ro. 8 = 7(/2). (Hint: I cot 8d8 = In sin 8.) 

34. (a) Find the potentials V .. V2 • and Vs at the location of 
each of the three-point charges shown. 
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(b) Now consider another set of point charges q:. 42. and q; 
at the same positions and calculate the potentials VI. V!. and 
V;. Verify by direct substitution that 

ql VI +q!V!+q, Vs - ql V: +q,:Vi +q, V; 

The gener-aliz~ result for any num~r of charges is called 
Green's reciprocity theorem. 

N 

r (q;Vi-qiV;)=O 
; .. 1 

(e) Show that Green's reciprocity theorem remains 
unchanged for ~rfect conductors as the potential on the 
conductor is constant. The q; is then the total charge on the 
conductor. 

(d) A charge q at the poim P is in the vicinity of a zero 
potential conductor. It is known that if the conductor is 
charged to a voltage V., the potential at the point P in the 
absence of the point charge is V,. Find the total charge q< 
induced on the grounded conductor. (HiDt: Let q. = q. 4,::: 
q... V2 =0,qi =0, V; = V~ Vi == V•. ) 

(e) If the conductor is a sphere of radius R and the point P 
is a distance D from the center of the sphere, what is q<? Is 
this result related to the method. of images? 

(0 A line charge A is a distance D from the center of a 
grounded cylinder of radius 4 . What is the total charge per 
unit length induced on the cylinder? . 

(g) A point charge q is between two zero potential perfect 
conductors. What is the total charge induced on each 
conducting surface? (Hiat: Try ql - q, q2·... q(, = 0), q, z< 

q(y=d), V2 =0, VS""O,q'l = 0, V; = Vo, V; =0.) 
(h) A point charge q travels at constant velocity Vo between 

shorted parallel plate electrodes of spacing d. What is the 
short circuit current a5 a function of time? 

++++ 
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Section 2.6 
35. An infinitely long line charge ,.\ is a distance D (rom the 
center of a conducting cylinder of radius R that carries a total 
charge per unit length A•. What is the force per unit length on 

the cylinder? (Hint: Where can another image charge ~ 
placed with the cylinder remaining an equipotential surface?) 

36. An infinitely long ~hcct of surface charge of width d and 
uniform charge density Uo is pl"ced in the 'JZ plane. 

d 

0 

,., 

" 
+ aody'd 
I x 

• 


,h) 



• • • 

(a) Find the electric field everywhere in the 1Z plane. 
(HiDt: Break the sheet into differential line charge elements 
dA ""uod,'.) 

(b) An infinitely long conducting cylinder of radius a sur· 
rounds the charged sheet that has onc side along the axis of 
the cylinder. Find the image charge and its location due to an 
incremental line charge element lTo dy' at distance ,'. 

(e) What is the force per unit length on the cylinder? 
Hint: 

JIn (l-c,') d,' = -( 
1~"~ [In (I -,,')- 11 

~7. A line charge A is located at coordinate (a, b) near a 
right-angled conducting corner. 

y 

, -, ,-, 
- ,-, ", • 

y 

.1-.110'• i• 
, -, , 

(.J (i) 

(a) Verify that the U~ of the three image line charges 
shown satisfy all boundary conditions. 

(b) What is the force per unit le ngth on A? 
(e) What charge per unit length is induced on the surfaces 

x=Oand,=O? 
(d) Now consider the inverse case when three line charges 

of alternating polarity ±A are ouuide a conducting corner. 
What is the force on the conductor? 

(e) Repeat (aHd) with point charges. 

Section 2.7 
38. A positive point charge q within a uniform electric field 
Eoi.. is a distance" from a grounded conducting plane. 

(a) At what value of x is the force on the charge equal to 
zero? 

(b) If the charge is initially at a position equal to half the 
value found in (a), what minimum initial vdocity is necessary 
for the charge to continue on to ,,;;a +oo? (Hint: E. = 
- dV/dx.) 
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(e) If Eo=O, how much work is necessary to move the 

point charge from x = d to x '" +co? 

39. A sphere of radius R2 having a uniformly distributed 
surface charge Q surrounds a grounded sphere of radius R I • 

• 

• ;.-----. • 

(a) What is the total charge induced on the grounded 
sphere? (Hint: Consider the image charge due to an 
incrementat charge dq = (Q/4Tr) sin (Jd8dtP at r= R2.) 

(b) What are the potential and electric field distributions 
everywhere? 

40. A point charge II locau~d a distance D (D < R) from the 
cc=nter is within a conducting sphere of radius R that is at 
constant potential Vo_What is the force on q? 

v - Yo 

R 

41. A line charge of length L with uniform density Ao is 
orientated the twO ways shown with respe"ct to a grounded 
sphere of radius R. For both cases: 



• 
t 

'. 

"do' 

L .. 

(a) Consider the incrementa.! charge element ..\0 dz ' a dis­
tance ra,. (rom the sphere center. What is its image charge 
and where is it located? 

J 
(b) What is the total charge induced on the sphere? Hint: 

<1<'..J"'iif+?= In (z' +JR'+z")
R +.t' 

42. A conducting hemispherical projection of radius R is 
placed upon a ground plane of infinite extent, A point 
charge q is placed a distance d (d> R) above the center of the 
hemisphere. 

t 
'f 

(a) What is the force on q? (HiDt: Try placing thrte 
image charges along the % axis to make the plane and hemi­
sphere have zero potential.) 

(b) What is the total chargc induced on the hemisphere at 
p a R and on the ground plane 1,1 > R? Hint: 

J rdr -1 
[r2 + d2)SI!-~ 
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43. A point charge q is placed between two parallel grounded 
conducting planes a distance d apart. 

t •i 

t====='='~·'=L-J 

(.J 

R, 

" , 

«J 

(a) The point charge q a distance /I above the lower plane 
and a distance b below the up~r conductor has symmetric­
ally located image charges. However, each image charge itself 
has an image in the opposite conductor. Show that an infinite 
number of image chargcl are nrcessary. What are the loca­
tions of these image charges? 

(b) Show that the total charge on each conductor cannot be 
found by this method as the resulting series is divergent. 

(c) Now consider a point charge q, a radial distance Ro 
from the center of two concentric grounded conducting 
spheres of radii R. and R t • Show that an infinite number of 
image charges in each sphere arc necessary where, if we 
denote the 11 th image charge in the smaJler sphere as q.. a 
distance b. from the center and the nth image charge in the 
outer sphere as q~ a distance b ~ from the center, then 

R, • 
q.+1 =-;;;q., 

" 
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(d) Show that the equations in (e) can be simplified to 

q..+I-q.._ 1 (:~)=o 

(R,)'b.+1 -b.. _1 Ra =0 

(e) Try power-law solutions 

q.. = A"", b.. =Ba" 

and find the characteristic values of A and a that satisfy the 
equations in (d). 

(f) Taking a linear combination of the solutions in (e), 
evaluate the unknown amplitude coefficients by substituting 
in values fOT 11 = 1 and n = 2. What are all the q.. and b.. ? 

(g) What is the total charge induced on the inner sphere? 
~ 

(Hint: L an=a/(l-a)fora<l)--, 
(h) Using the solutions of (f) with the difference relations of 

(e), find q~ and b~. 

(i) Show that L q~ is not a convergent series so that the _. , 
total charge on the outer sphere cannot be found by this 
method. 

G) Why must the total induced charge on both spheres be 
-q? What then is the total induced charge on the outer 
sphere? 

(k) ,Returning to our original problem in (a) and (b) of a 
point charge between parallel planes, let the radii of the 
sptJeres approach infinity such that the distances 

remains finite. What is the total charge induced on each plane 
conductor? 

44. A point charge Q is a distance D above a ground plane. 
Directly below is the center of a small conducting sphere of 
radius R that rests on the plane. 

(a) Find the fint image charges and their positions in the 
sphere and in the plane. 

(b) Now find the next image of each induced in the other. 
Show that two sets of image charges are induced on the 
sphere where each obey the difference equations 

R'.OR 
2R-",.' 2R b. 
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(e) Eliminating the b... show that the governing difference 
equation is 

I 2 I 
----+--~O 
q,,+) q.. q..-I 

Guess solutions of the form 

P.. =I/q,,=AA" 

and find the allowed values of A that satisfy the difference 
equation. (Hint: For double roots of A the total solution is of 
the form P" =(A 1 +A2 n)A n.) 

(d) Find all the image charges and their positions in the 
sphere and in the plane. 

(e). Write the total charge induced on the sphere in the 
form 

What are A and a? 
(f) We wish to generalize this problem to that of a sphere 

resting on the ground plane with an applied field E = - Eoi. at 
infinity. What must the ratio QID2 ~, such that as Q and D 
become infinite the field far from the sphere in the 8 = rr/2 
plane is - Eoi.? 

(g) In this limit what is the total charge induced on the 
~ I 

sphere? (Hint: L,= .".2/6.) 
.. _In 

45. A conducting sphere of radius R at potential Vo has its 
center a distance D from an infinite grounded plane. 
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l!J2 The Elutric Field 

v .. v~ _---_ 
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q, ;. ;;. 
 ~ rr r 

• Q 
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,.. 

v - Vo " 

. : , b~ ,~ • It,. " 
• • 

...b~... •....:. -=-vo 
~-

~ 

• D 

'" 
(a) Show that an infinite number of image charges in the 

plane and in the sphere are n~essary to salsify the boundary 
conditions 

q.._IR R' 
q·=2D 6.. _

1
' 2D-b.._ 1 

What are ql and q2? 
(b) Show that the governing difference equation is 

1 , 1 
----+-- - 0 
q..- l q.. q .. -+-I 

What is c? 
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R, 

q~ . b~ 

~... 

rn 
(c) Solve the difference equation in (b) assuming solutions 

of the form 

P.. ,", l lq,. = AA" 

What values of A satisfy (b)? Hint: 

</2 -,j«/2)' - I 

(d) What is the position of each image charge? What is the 
limiting position of the image charges as 11; ~OCI? 

(e) Show that the capacitance (the ratio of the toW charge 
on the sphere to the voltage Vol can be written as an infinite 
series 

What are Co and .l? 
(f) Show that the image charges and their positions for two 

sphere5 o~y the difference equations 

• R2Il.. 
q .. =­D~b.. ' 

where we use the upper signs for adjacent spheres and the 
lower signs when the smaller sphere of radius R I is inside the 
larger one. 



(g) Show that the governing difference equation is of the 
form 

p ..+1 ~CP.. +P.._ I =0 

What are P.. and c? 
(h) Solve (g) assuming solutions of the form 

P,,=AA" 

(i) Show that the capacitance is of the form 

I • .' )C=Co(l-e2
) ( J_{I+J_t'A 2 +1_e4A,4+··· 

What are Co. e. and A? 
(j) What is the capacitance when the twO spheres are 

concentricsothatD=O.(Hint: L a" = I!(I - a)fora < I.) 
.. _ 0 
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