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2 Review of Vector Analysis 

Electromagnetic field theory is the study of forces between 
charged particles resulting in energy conversion or signal transmis­
sion and reception. These forces vary in magnitude and direction 
with time and throughout space so that the theory is a heavy user 
of vector, differential, and integral calculus. This chapter presents 
a brief review that. highlights the essential mathematical tools 
needed throughout the text. We isolate the mathematical details 
here so that in later chapters most of our attention can be devoted 
to the applications of the mathematics rather than to its 
development. Additional mathematical material will be presented 
as needed throughout the text. 

1-1 COORDINATE SYSTEMS 

A coordinate system is a way of uniquely specifying the 
location of any position in space with respect to a reference 
origin. Any point is defined by the intersection of three 
mutually perpendicular surfaces. The coordinate axes are 
then defined by the normals to these surfaces at the point. Of 
course the solution to any Problem is always independent of 
the choice of coordinate system used, but by taking advantage 
of symmetry, computation can often be simplified by proper 
choice of coordinate description. In this text we only use the 
familiar rectangular (Cartesian), circular cylindrical, and 
spherical coordinate systems. 

1-1-1 Rectangular (Cartesian) Coordinates 

The most common and often preferred coordinate system 
is defined by the intersection of three mutually perpendicular 
planes as shown in Figure 1-la. Lines parallel to the lines of 
intersection between planes define the coordinate axes 
(x, y, z), where the x axis lies perpendicular to the plane of 
constant x, the y axis is perpendicular to the plane of constant 
y, and the z axis is perpendicular to the plane of constant z. 
Once an origin is selected with coordinate (0, 0, 0), any other 
point in the plane is found by specifying its x-directed, y-
directed, and z-directed distances from this origin as shown 
for the coordinate points located in Figure 1-lb. 
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Figure 1-1 Cartesian coordinate system. (a) Intersection of three mutually perpen­
dicular planes defines the Cartesian coordinates (x, y, z). (b) A point is located in space 
by specifying its x-, y- and z-directed distances from the origin. (c) Differential volume 
and surface area elements. 

By convention, a right-handed coordinate system is always 
used whereby one curls the fingers of his or her right hand in 
the direction from x to y so that the forefinger is in the x 
direction and the middle finger is in the y direction. The 
thumb then points in the z direction. This convention is 
necessary to remove directional ambiguities in theorems to be 
derived later. 

Coordinate directions are represented by unit vectors i., i, 
and i2, each of which has a unit length and points in the 
direction along one of the coordinate axes. Rectangular 
coordinates are often the simplest to use because the unit 
vectors always point in the same direction and do not change 
direction from point to point. 

A rectangular differential volume is formed when one 
moves from a point (x, y, z) by an incremental distance dx, dy, 
and dz in each of the three coordinate directions as shown in 
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Figure 1-Ic. To distinguish surface elements we subscript the 
area element of each face with the coordinate perpendicular 
to the surface. 

1-1-2 Circular Cylindrical Coordinates 

The cylindrical coordinate system is convenient to use 
when there is a line of symmetry that is defined as the z axis. 
As shown in Figure 1-2a, any point in space is defined by the 
intersection of the three perpendicular surfaces of a circular 
cylinder of radius r, a plane at constant z, and a plane at 
constant angle 4 from the x axis. 

The unit vectors ir, i, and i. are perpendicular to each of 
these surfaces. The direction of i, is independent of position, 
but unlike the rectangular unit vectors the direction of irand i, 
change with the angle 4 as illustrated in Figure 1-2b. For 
instance, when 4 = 0 then i, = i, and i+ = i,, while if =r/2, 
then ir = i, and i+ = -i.. 

By convention, the triplet (r, 4, z) must form a right-
handed coordinate system so that curling the fingers of the 
right hand from i, to i4 puts the thumb in the z direction. 

A section of differential size cylindrical volume, shown in 
Figure 1-2c, is formed when one moves from a point at 
coordinate (r, 4, z) by an incremental distance dr, r d4, and dz 
in each of the three coordinate directions. The differential 
volume and surface areas now depend on the coordinate r as 
summarized in Table 1-1. 

Table 1-1 Differential lengths, surface area, and volume elements for 
each geometry. The surface element is subscripted by the coordinate 
perpendicular to the surface 

CARTESIAN CYLINDRICAL SPHERICAL 

dl=dx i.+dy i,+dz i, dl=dri,+rd4 i+dz i. dl=dri,+rdOis 
+ r sin 0 d4 i#
 

dS.= dy dz dS= r d4 dz dS,= r2 sin 0 dO d46
 
dS,=dx dz dS#=drdz dS@ =r sin 0 dr d4
 
dS2 =dxdy dS.=rdrd4 dS#=rdrd
 
dV=dxdydz dV=rdrd44dz dV=r2 sin8drdOd4
 

1-1-3 Spherical Coordinates 

A spherical coordinate system is useful when there is a 
point of symmetry that. is taken as the origin. In Figure 1-3a 
we see that the spherical coordinate (r, 0, 4) is obtained by the 
intersection of a sphere with radius r, a plane at constant 
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Figure 1-2 Circular cylindrical coordinate system. (a) Intersection of planes of 
constant z and 4 with a cylinder of constant radius r defines the coordinates (r, 4, z). 
(b) The direction of the unit vectors i, and i, vary with the angle 4. (c) Differential 
volume and surface area elements. 

angle 4 from the x axis as defined for the cylindrical coor­
dinate system, and a cone at angle 0 from the z axis. The unit 
vectors i,, i, and i# are perpendicular to each of these sur­
faces and change direction from point to point. The triplet 
(r, 8, 4) must form a right-handed set of coordinates. 

The differential-size spherical volume element formed by 
considering incremental displacements dr, rdO, r sin 8 d4 
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Figure 1-3 Spherical coordinate system. (a) Intersection of plane of constant angle 0 
with cone of constant angle 9 and sphere of constant radius r defines the coordinates 
(r, 9, 4). (b) Differential volume and surface area elements. 
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Table 1-2 Geometric relations between coordinates and unit vectors for 
Cartesian, cylindrical, and spherical coordinate systems* 

CAR FESIAN CYLINDRICAL SPHERICAL
 
x = rcoso4 = r sin 0 cos4
 
y = rsino4 = r sin 6 sin4
 
z = z r cos 6
 
i. = coso i,-sin4i&= sin e cos 45i,+cos e cos Oio -sin 4qi, 
i, = sin 4 i,+cos 4 i, = sin 6 sin 4ki, +cos 6sin 46 io +cos 4 i 
i.1	 = cos Oi, -sin 6i, 

CYLINDRICAL CARTESIAN SPHERICAL 
r = xF+yl	 r sin 0 

= tan-'Z	 4 x 

z =- z = r cos 0 
cos 4i.+sin 0i, = sin i, +cos i, 

-sin i. +cos 0i, = i" 
11 = cos 0i, -sin ie 

SPHERICAL CARTESIAN CYLINDRICAL 
r = x +y 2 + z2 = Cro+z2 

Z0 = cos~1 	 = cos_ z 
/x+y 2 + 

4k cot-	 4 
y 

1~ sin 6 cos (Ai. +sin 6 sin 4ki, +cos 6Oi = sin i,+cos 6i, 
16 cos 6 cos 46i. +cos 8 sin 4$i, -sin 6i. = cos ir-sin 6i. 

-sin 4i.+cos Oi, =i' 

* 	Note that throughout this text a lower case roman r is used for the cylindrical radial coordinate 
while an italicized r is used for the spherical radial coordinate. 

from the coordinate (r, 0, 46) now depends on the angle G and 
the radial position r as shown in Figure 1-3b and summarized 
in Table 1-1. Table 1-2 summarizes the geometric relations 
between coordinates and unit vectors for the three coordinate 
systems considered. Using this table, it is possible to convert 
coordinate positions and unit vectors from one system to 
another. 

1-2 VECTOR ALGEBRA 

1-2-1 Scalars and Vectors 

A scalar quantity is a number completely determined by its 
magnitude, such as temperature, mass, and charge, the last 
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being especially important in our future study. Vectors, such 
as velocity and force, must-also have their direction specified 
and in this text are printed in boldface type. They are 
completely described by their components along three coor­
dinate directions as shown for rectangular coordinates in 
Figure 1-4. A vector is represented by a directed line segment 
in the direction of the vector with its length proportional to its 
magnitude. The vector 

A = A.i. +A~i,+Ai. (1) 

in Figure 1-4 has magnitude 

A =JAI =[A i+A' +A, ]"' (2) 

Note that each of the components in (1) (A., A,, and A.) are 
themselves scalars. The direction of each of the components 
is given by the unit vectors. We could describe a vector in any 
of the coordinate systems replacing the subscripts (x, y, z) by 
(r, 0, z) or (r, 0, 4); however, for conciseness we often use 
rectangular coordinates for general discussion. 

1-2-2 Multiplication of a Vector by a Scalar 

If a vector is multiplied by a positive scalar, its direction 
remains unchanged but its magnitude is multiplied by the 

Al 

A|t 

I 

I 

I 
I 
I 

A 

Figure 1-4 
directions. 

A = At i,+ Ayiy+ Ai, 

A I= A = {A2 + A 2 + A.2 

A vector is described by its components along the three coordinate 
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scalar. If the scalar is negative, the direction of the vector is 
reversed: 

aA = aA.i. +aA,i,+aAzi (3) 

1-2-3 Addition and Subtraction 

The sum of two vectors is obtained by adding their 
components while their difference is obtained by subtracting 
their components. If the vector B 

B = B.i. +B,i,+Bzi, (4) 

is added or subtracted to the vector A of (1), the result is a 
new vector C: 

C =A +-B= (A.*B.)i. +(A, B,)i, +(A, B.)i,, (5) 
Geometrically, the vector sum is obtained from the 

diagonal of the resulting parallelogram formed from A and B 
as shown in Figure 1-5a. The difference is found by first 

y 

A + By, --- - - - AB A +
A + 8, - - ------. , AI 

A, A 

By ­

A, B- A. +B 

y 

A 

-BBA + 
xo 

(b) 

Figure 1-5 The sum and difference of two vectors (a) by finding the diagonal of the 
parallelogram formed by the two vectors, and (b) by placing the tail of a vector at the 
head of the other. 
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drawing -B and then finding the diagonal of the paral­
lelogram formed from the sum of A and -B. The sum of the 
two vectors is equivalently found by placing the tail of a vector 
at the head of the other as -in Figure 1-5b. 

Subtraction is the same as addition of the negative of a 
vector. 

EXAMPLE 1-1 VECTOR ADDITION AND SUBTRACTION 

Given the vectors 

A=4i.+4i,, B=i.+8i, 

find the vectors B*A and their magnitudes. For the 
geometric solution, see Figure 1-6. 

y 

-S= A+ B12
 
/= 5i, + 2iy
 

/'I 
/ I
 

/ I
10
 

-

8
 

-- A I x
 
6
 

q/ / "X
 

4
 

2
 

X
-4 I - 2e 4 6
 

-2 I­

-A -4 

Figure 1-6 The sum and difference of vectors A and B given in Example 1-1. 
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SOLUTION 

Sum 

S= A + B = (4+1)i, +(4+8)i, = 5i, + 12i, 

S=[5 2+12]12= 13 
Difference 

D= B-A = (1 -4)i, +(8-4)i, = -3, +4i, 

D = [(-3) 2+42 ]1 = 5 

1-2-4 The Dot (Scalar) Product 

The dot product between two vectors results in a scalar and 
is defined as 

A - B=AB cos 0 (6) 

where 0 is the smaller angle between the two vectors. The 
term A cos 0 is the component of the vector A in the direction 
of B shown in Figure 1-7. One application of the dot product 
arises in computing the incremental work dW necessary to 
move an object a differential vector distance dl by a force F. 
Only the component of force in the direction of displacement 
contributes to the work 

dW=F-dl (7) 

The dot product has maximum value when the two vectors 
are colinear (0 =0) so that the dot product of a vector with 
itself is just the square of its magnitude. The dot product is 
zero if the vectors are perpendicular (0 = 7r/2). These prop­
erties mean that the dot product between different orthog­
onal unit vectors at the same point is zero, while the dot 

Y A 

B 

A B =AB cos 0
 
COsa
 

Figure 1-7 The dot product between two vectors. 
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product between a unit vector and itself is unity 

i. - i.= 1, i. - i,=0
 

i,-i,=1, i.-i2 =0 (8)
 

i. - i= 1, i, - i =0 

Then the dot product can also be written as 

A -B=(A.i.,+A,i,+Ai) -(B.i.+B,i,+Bai ). 

= A.B. + AB, + A1B. (9) 

From (6) and (9) we see that the dot product does not 
depend on the order of the vectors 

A-B=B-A (10) 

By equating (6) to (9) we can find the angle between vectors as 

Cs0=A B. + AB, + A.B,11cos= ABAB 

Similar relations to (8) also hold in cylindrical and spherical 
coordinates if we replace (x, y, z) by (r, 4, z) or (r, 0, 4). Then 
(9) to (11) are also true with these coordinate substitutions. 

EXAMPLE 1-2 DOT PRODUCT 

Find the angle between the vectors shown in Figure 1-8, 

A = 3 i.+i, B= 2i. 

,,A -,f3i. + i, 

S=30- B - 2i. 

___ ___ ___ ___ 2 X 

A - B = 2r3 

Figure 1-8 The angle between the two vectors A and B in Example 1-2 can be found 
using the dot product. 
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SOLUTION 

From (11) 

cos8= =­
A,+A'] B. 2 

0 = cos-I -= 30* 
2 

1-2-5 The Cross (Vector) Product 

The cross product between two vectors A x B is defined as a 
vector perpendicular to both A and B, which is in the direc­
tion of the thumb when using the right-hand rule of curling 
the fingers of the right hand from A to B as shown in Figure 
1-9. The magnitude of the cross product is 

JAXB =AB sin 6 (12) 

where 0 is the enclosed angle between A and B. Geometric­
ally, (12) gives the area of the parallelogram formed with A 
and B as adjacent sides. Interchanging the order of A and B 
reverses the sign of the cross product: 

AXB= -BXA (13) 

A x 8 

A 

AS 

A 

Positive
 
0 sense
 

from A to B
 

B x A = -A x B 

(a) (b) 

Figure 1-9 (a) The cross product between two vectors results in a vector perpendic­
ular to both vectors in the direction given by the right-hand rule. (b) Changing the 
order of vectors in the cross product reverses the direction of the resultant vector. 
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The cross product is zero for colinear vectors (0 =0) so that 
the cross product between a vector and itself is zero and is 
maximum for perpendicular vectors (0 = ir/2). For rectan­
gular unit vectors we have 

i. X i.= 0, i. X i, = i', i, Xi. = -i. 

i, xi, =0, i,X i=i", i, xi,= -i. (14) 

i, X i,= 0, i" X i.= i,, i, xi"= -i, 

These relations allow us to simply define a right-handed 
coordinate system as one where 

i.Xi,(15) 

Similarly, for cylindrical and spherical coordinates, right-
handed coordinate systems have 

irX i$ =ih, i,. x i = i, (16) 

The relations of (14) allow us to write the cross product 
between A and B as 

Ax B = (A.i. +A,i, +Ai) X (Bji1 +B,i, +B i) 

= i. (AB.-A.B,) +i,(A.B.-A.B ) +i.(A.B, - AB:). 

(17) 

which can be compactly expressed as the determinantal 
expansion 

Ix i, iz 

AXB=det A. A, A. 

B. B, B. 

=i,(AB. - AB,) +i,(AB. - A.B) +i(A.B,-AB.) 

(18) 

The cyclical and orderly permutation of (x, y, z) allows easy 
recall of (17) and (18). If we think of xyz as a three-day week 
where the last day z is followed by the first day x, the days 
progress as 

xyzxyzxyzxyz .-- (19) 

where the three possible positive permutations are under­
lined. Such permutations of xyz in the subscripts of (18) have 
positive coefficients while the odd permutations, where xyz do 
not follow sequentially 

xzy, yxz, zyx (20) 

have negative coefficients in the cross product. 
In (14)-(20) we used Cartesian coordinates, but the results 

remain unchanged if we sequentially replace (x, y, z) by the 
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cylindrical coordinates (r, 0, z) or the spherical coordinates 
(r, 0, 4). 

EXAMPLE 1-3 CROSS PRODUCT 

Find the unit vector i,, perpendicular in the right-hand 
sense to the vectors shown in Figure 1-10. 

A =-i.+i,+i., B=i. -i,+i 

What is the angle between A and B? 

SOLUTION 

The cross product A x B is perpendicular to both A and B 

i, i, i ( 
AXB=det -1 1 1 =2(i.+i,) 

-1 -1 1 

The unit vector i. is in this direction but it must have a 
magnitude of unity 

in=AxBA.= =-(i +i, 
|AXBJ '_ ' 

z 

A -- i + iV + i, 

12 
B~i2 -BxA--AxB-i,,+ 

B i , + ­

2-- ~-~-- ­ - ~A = 2 i + ) 
x - ­

x .1 0 v 

Figure .1-10 The cross product between the two vectors in Example 1-3. 

-2 
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The angle between A and B is found using (12) as 

2%/sin 0= =AXBI 
AB %/i%/ 

-2,r * =70.5* or 109.5* 

The ambiguity in solutions can be resolved by using the dot 
product of (11) 

AB ­

1-3 THE GRADIENT AND THE DEL OPERATOR 

1-3-1 The Gradient 

Often we are concerned with the properties of a scalar field 
f(x, y, z) around a particular point. The chain rule of differ­
entiation then gives us the incremental change df in f for a 
small change in position from (x, y, z) to (x + dx, y + dy, z + dz): 

Of Of Of
df=-dx+-dy+-dz (1)ax ay Oz 

If the general differential distance vector dl is defined as 

dl= dx i.+dy i,+dz ih (2) 

(1) can be written as the dot product: 

( Of Of Of 
df = - - i.+ f- i, +- - i) -dl 

ax ay az 

= grad f - dl (3) 

where the spatial derivative terms in brackets are defined as 
the gradient of f: 

grad f = Vf =-- i.+- i,+ f i. (4)
Ox ay az 

The symbol V with the gradient term is introduced as a 
general vector operator, termed the del operator: 

V=i a-+i,-a +i -a(5) 
ax ay az 

By itself the del operator is meaningless, but when it premul­
tiplies a scalar function, the gradient operation is defined. We 
will soon see that the dot and cross products between the del 
operator and a vector also define useful operations. 
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With these definitions, the change in f of (3) can be written 
as 

df = Vf - dl=IVfj dl cos 0 (6) 

where 6 is the angle between Vf and the position vector dl. 
The direction that maximizes the change in the function f is 
when dl is colinear with Vf(8 = 0). The gradient thus has the 
direction of maximum change in f. Motions in the direction 
along lines of constant f have 6 = ir/2 and thus by definition 
df=0. 

1-3-2 Curvilinear Coordinates 

(a) Cylindrical 

The gradient of a scalar function is defined for any coor­
dinate system as that vector function that when dotted with dl 
gives df. In cylindrical coordinates the differential change in 
f(r,o, z) is 

df dr+- do+ dz (7)ar do az 

The differential distance vector is 

dl= dri,+rdo i6 +dz i. (8) 

so that the gradient in cylindrical coordinates is 

Of l af Of
df = Vf - dl>Vf =+- i, + I i +- (9)Or r 4 az 

(b) Spherical 
Similarly in spherical coordinates the distance vector is 

dl=dri,+rdO i,+rsinOdd i (10) 

with the differential change of f(r, 8, 46) as 

df= dr+ d+ d4o=Vf-dl (11)
Or 0o d4 

Using (10) in (11) gives the gradient in spherical coordinates 
as 

Of. 101. 1 f.Vf = -- ,+IOf ,+ I O(12)Or r aO r sin 8o 
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EXAMPLE 1-4 GRADIENT 

Find the gradient of each of the following functions where 
a and b are constants: 

(a) f = ax2 y + by3z 

SOLUTION 

af. af. a . 

= 2axyi. + (ax2 + 3by 2z)i, + by~i2 

(b) f= ar2 sin4+brz cos 24, 

SOLUTION 

Vf=-a,+ I +-f. 
ar r 4, az 

=(2ar sin 4+ bz cos 24)% 

+(ar cos 4 -2bz sin 24)i, + br cos 24i. 

(c) f =a+brsin 0 cos 4 
r 

SOLUTION 

af lf. 1 f. 
ar r O rsin084 

=(-+b sin 0 cos 4)i,+bcos 0 cos 'e-b sini 

1-3-3 The Line Integral 

In Section 1-2-4 we motivated the use of the dot product 
through the definition of incremental work as depending 
only on the component pf force F in the direction of an 
object's differential displacement dl. If the object moves along 
a path, the total work is obtained by adding up the incremen­
tal works along each small displacement on the path as in 
Figure 1-11. If we break the path into N small displacements 
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F, 

= F7*dl,dW,di, 

dd6 F =F4-d1dW=3 
dW3 = F3 ' d 3 

FC dIF2 


dW2 = F2- d12
 

d F 

L di1CdF,I dW, = F, -di, 

N N 
w ~ dw, F - di,
 

,,=1 n = 1
 
urn

lim
 
dl, 0 W = F-dl
 

f~N 
L 

Figure 1-11 The total work in moving a body over a path is approximately equal to 
the sum of incremental works in moving the body each small incremental distance dl. 
As the differential distances approach zero length, the summation becomes a line 
integral and the result is exact. 

d1i, dA2 , . . . , dIN, the work performed is approximately 

W- F 1 -dl +F 2 - d12 +F 3 -dI3+ +FN * dIN 
N 

Y_ F - dl (13) 
n-1 

The result becomes exact in the limit as N becomes large with 
each displacement dl. becoming infinitesimally small: 

N 

W = Jim Y_ Fn - dl, F - dI (14)
N-c n=1 L 
dl,-+0 

In particular, let us integrate (3) over a path between the 
two points a and b in Figure 1-12a: 

(15)Vf - dlfab df=fi-flab 

Because df is an exact differential, its line integral depends 
only on the end points and not on the shape of the contour 
itself. Thus, all of the paths between a and b in Figure 1-12a 
have the same line integral of Vf, no matter what the function 
f may be. If the contour is a closed path so that a = b, as in 
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iV 

y
2 

b -b 

- = f(b)2j 431Vf- di -- )Ta) b 
LVf -di =0 332 

2~~~~-X Ix 31 f Xd ~)fa4 

a, b
 

2 2 

(a) (b) (c) 

Figure 1-12 The component of the gradient of a function integrated along a line 
contour depends only on the end points and not on the contour itself. (a) Each of the 
contours have the same starting and ending points at a and b so that they all have the 
same line integral of Vf. (b) When all the contours are closed with the same beginning 
and ending point at a, the line integral of Vf is zero. (c) The line integral of the 
gradient of the function in Example (1-5) from the origin to the point P is the same for 
all paths. 

EXAMPLE 

Figure 1-12b, then (15) is zero: 

vf - d1=fi.-fi.=0 (16) 

where we indicate that the path is closed by the small circle in 
the integral sign f. The line integral of the gradient of a 
function around a closed path is zero. 

1-5 LINE INTEGRAL 

2For f =x y, verify (15) for the paths shown in Figure 1-12c 
between the origin and the point P at (xo, yo). 

SOLUTION 

The total change in f between 0 and P is 

I df fA, -fi 0 = x2yo 

From the line integral along path I we find 

Vf - dl= X-o dy+ __dx =xoyo'
Y=702c 



Flux and Divergence 21 

Similarly, along path 2 we also obtain 

P' 0" af~ 73 af 2Vf-dI= - &x+ - -dy xoyo 

while along path 3 we must relate x and y along the straight 
line as 

y =- x z dy =L dx 
xo xo 

to yield 

PfPf 3oyox2 2 

Vf - dl= :-(-dx+--dy = f - dx=xOyo 

1-4 FLUX AND DIVERGENCE 

If we measure the total mass of fluid entering the volume in 
Figure 1-13 and find it to be less than the mass leaving, we 
know that there must be an additional source of fluid within 
the pipe. If the mass leaving is less than that entering, then 

Flux in Flux out 

Flux in < Flux out 

Source 

Flux in > Flux out 

Sink 

Figure 1-13 The net flux through a closed surface tells us whether there is a source or 
sink within an enclosed volume. 
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there is a sink (or drain) within the volume. In the absence of 
sources or sinks, the mass-of fluid leaving equals that entering 
so the flow lines are continuous. Flow lines originate at a 
source and terminate at a sink. 

1-4.1 Flux 

We are illustrating with a fluid analogy what is called the 
flux (D of a vector A through a closed surface: 

= fA - dS (1) 

The differential surface element dS is a vector that has 
magnitude equal to an incremental area on the surface but 
points in the direction of the outgoing unit normal n to the 
surface S, as in Figure 1-14. Only the component of A 
perpendicular to the surface contributes to the flux, as the 
tangential component only results in flow of the vector A 
along the surface and not through it. A positive contribution 
to the flux occurs if A has a component in the direction of dS 
out from the surface. If the normal component of A points 
into the volume, we have a negative contribution to the flux. 

If there is no source for A within the volume V enclosed by 
the surface S, all the flux entering the volume equals that 
leaving and the net flux is zero. A source of A within the 
volume generates more flux leaving than entering so that the 
flux is positive (4D>0) while a sink has more flux entering than 
leaving so that (D < 0. 

dS - n dS 

A 
A n 

sT j
 

- 4
 

Figure 1-14 The flux of a vector A through the closed surface S is given by the 
surface integral of the component of A perpendicular to the surface S. The differential 
vector surface area element dS is in the direction of the unit normal n. 
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Thus we see that the sign and magnitude of the net flux 
relates the quantity of a field through a surface to the sources 
or sinks of the vector field within the enclosed volume. 

1-4-2 Divergence 

We can be more explicit about the relationship between the 
rate of change of a vector field and its sources by applying (1) 
to a volume of differential size, which for simplicity we take to 
be rectangular in Figure 1-15. There are three pairs of plane 
parallel surfaces perpendicular to the coordinate axes so that 
(1) gives the flux as 

(1) = A. (x) dy dz - A. (x-Ax) dydz 

+ JA,(y + Ay) dx dz - A,(y) dx dz 

+ A,(z+Az)dxdy- A,(z)dxdy (2) 

where the primed surfaces are differential distances behind 
the corresponding unprimed surfaces. The minus signs arise 
because the outgoing normals on the primed surfaces point in 
the negative coordinate directions. 

Because the surfaces are of differential size, the 
components of A are approximately constant along each 
surface so that the surface integrals in (2) become pure 

dS, = Ax Ly 

dS -- y A 

3 

dS' -Ax A dS, =Ax Az 

dS' = -aA y 

Figure 1-15 Infinitesimal rectangular volume used to define the divergence of a 
vector. 
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multiplications of the component of A perpendicular to the 
surface and the surface area. The flux then reduces to the form 

+ [A,(y +Ay)-A,(y)]D(A.(x)-Ax(x-Ax)]
AX Ay 

+[A. (z + Az) -A. (z)]A yA 3+Ax Ay Az (3)
AZ 

We have written (3) in this form so that in the limit as the 
volume becomes infinitesimally small, each of the bracketed 
terms defines a partial derivative

(A, 3A, Az 
lim (D= + + V (4)

Ax-O ax ayaz 

where AV = Ax Ay Az is the volume enclosed by the surface S. 
The coefficient of AV in (4) is a scalar and is called the 

divergence of A. It can be recognized as the dot product 
between the vector del operator of Section 1-3-1 and the 
vector A: 

aAx 8,A, aA,
div A = V -A =--+ + (5) 

ax ay az 

1-4-3 Curvilinear Coordinates 

In cylindrical and spherical coordinates, the divergence 
operation is not simply the dot product between a vector and 
the del operator because the directions of the unit vectors are 
a function of the coordinates. Thus, derivatives of the unit 
vectors have nonzero contributions. It is easiest to use the 
generalized definition of the divergence independent of the 
coordinate system, obtained from (1)-(5) as 

V- A= lim J5A-dS (6)
AV-0o AV 

(a) Cylindrical Coordinates 
In cylindrical coordinates we use the small volume shown in 

Figure 1-16a to evaluate the net flux as 

= A - dS =f (r+Ar)A , dO dz - rArir d dz 

+ I A dr dz - f A dr dz 

J"" fj rA,,I+A, dr doS - rA,,,drdo (7) 
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S 

dS, = r dr do 

dS, = dr ds 
As 

dS, =V( + Ar) do As 

(a) 

dS = (r + Ar) 2 sin 0 dO do 

= r dr dO
) <dSd 

3 

o2 

7' = r sin(O + AO) dr do 

x/ 

(b) 
Figure 1-16 Infinitesimal volumes used to define the divergence of a vector in 
(a) cylindrical and (b) spherical geometries. \ r 7r 

Again, because the volume is small, we can treat it as approx­
imately rectangular with the components of A approximately 
constant along each face. Then factoring out the volume 
A V =rAr AO Az in (7), 

I [(r + Ar)A,,,-rA , 

[I A ] [A -A. rAr 4 Az (8)r AO Az 

M M 
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lets each of the bracketed terms become a partial derivative as 
the differential lengths approach zero and (8) becomes an 
exact relation. The divergence is then 

* sA-dS 1 8 1BA, 8A.
V -A= lim -= (rA,)+I +- (9)A,+o A V rOr r a4 8z 

(b) Spherical Coordinates 
Similar operations on the spherical volume element AV= 

r2 sin 0 Ar AO A4 in Figure 1-16b defines the net flux through 
the surfaces: 

4= A -dS 

[(r + &r)2Ar,+, - r2A,,] 
\ r2 Ar 

[AA,, sin (0 +A#)-Ae,, sin 8] 
r sin 8 AG 

+ [A... A1.r 2 sin OAr AOAO (10) 

The divergence in spherical coordinates is then 

5 A -dS
 

V- A= lim
 
Ar-.O AV 

=- - (r'A,) + .1 8-(Ae 1 BA, (1sin 0) + -- (11) 
r ar r sin 80 r sinG ao 

1-4-4 The Divergence Theorem 

If we now take many adjoining incremental volumes of any 
shape, we form a macroscopic volume V with enclosing sur­
face S as shown in Figure 1-17a. However, each interior 
common surface between incremental volumes has the flux 
leaving one volume (positive flux contribution) just entering 
the adjacent volume (negative flux contribution) as in Figure 
1-17b. The net contribution to the flux for the surface integral 
of (1) is zero for all interior surfaces. Nonzero contributions 
to the flux are obtained only for those surfaces which bound 
the outer surface S of V. Although the surface contributions 
to the flux using (1) cancel for all interior volumes, the flux 
obtained from (4) in terms of the divergence operation for 
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S
 

S, 
0 S2 

(a) 
152 

n, -- n2 

(b) 

Figure 1-17 Nonzero contributions to the flux of a vector are only obtained across 
those surfaces that bound the outside of a volume. (a) Within the volume the flux 
leaving one incremental volume just enters the adjacent volume where (b) the out­
going normals to the common surface separating the volumes are in opposite direc­
tions. 

each incremental volume add. By adding all contributions 
from each differential volume, we obtain the divergence 
theorem: 

cI=fA-dS= lim I (V-A)AV I=fV-AdV (12) 
A V.-_O 

where the volume V may be of macroscopic size and is 
enclosed by the outer surface S. This powerful theorem con­
verts a surface integral into an equivalent volume integral and 
will be used many times in our development of electromag­
netic field theory. 

EXAMPLE 1-6 THE DIVERGENCE THEOREM 

Verify the divergence theorem for the vector 

A=xi.+yi,+zi. =ri, 

by evaluating both sides of (12) for the rectangular volume 
shown in Figure 1-18. 

SOLUTION 

The volume integral is easier to evaluate as the divergence 
of A is a constant 

e3Ax 8A, 3A.
V - A = +---+--= 3 

ax ay az 
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z A =ri xix + YiY + Ai, 

ZA0 
v, 

/3/c S, 2 

I /J 

b 

Figure 1-18 The divergence theorem is verified in Example 1-6 for the radial vector 
through a rectangular volume. 

(In spherical coordinates V -A= (1/r2 )(/ar)(r3 ) = 3) so that 
the volume integral in (12) is 

-AAVdV=3abc 

The flux passes through the six plane surfaces shown: 

qD=fA-dS= jj(a dydz- AJO)dydz 
a 0 

+A, (b)dxdz- A,10 dx dz 

b 0 

+jA dxdy- A dxdy=3abc 

C )0 

which verifies the divergence theorem. 

1.5 THE CURL AND STOKES' THEOREM 

1-5-1 Curl 

We have used the example of work a few times previously 
to motivate particular vector and integral relations. Let us do 
so once again by considering the line integral of a vector 
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around a closed path called the circulation: 

C= A - dl (1) 

where if C is the work, A would be the force. We evaluate (1) 
for the infinitesimal rectangular contour in Figure 1-19a: 

C=f A.(y)dx+ A,(x+Ax)dy+ A.(y+Ay)dx 

I 3 

+ A,(x) dy (2) 

4 

The components of A are approximately constant over each 
differential sized contour leg so that (2) is approximated as 

C_ ([A.(y)-A.(y +Ay)] + [A,(x +Ax)-A,(x)])A (3)C==Y +AXy 3 

y 

(x. y) 

(a)
 

n
 

(b) 

Figure 1-19 (a) Infinitesimal rectangular contour used to define the circulation. 
(b) The right-hand rule determines the positive direction perpendicular to a contour. 
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where terms are factored so that in the limit as Ax and Ay 
become infinitesimally small, (3) becomes exact and the 
bracketed terms define partial derivatives: 

lim C= ( A A) AS. (4) 
Ax-O ax ay 

AS-AxAy 

The contour in Figure 1-19a could just have as easily been 
in the xz or yz planes where (4) would equivalently become 

C= --- 'AS. (yz plane) 
a 8a. 

C AS, (xz plane) (5)
az ax 

by simple positive permutations of x, y, and z. 
The partial derivatives in (4) and (5) are just components of 

the cross product between the vector del operator of Section 
1-3-1 and the vector A. This operation is called the curl of A 
and it is also a vector: 

i, i, 'z 

curlA=VXA=det a 
ax ay az 
A. A, A. 

=i. 7+i,ay az ) (az ax 
zAax+i.ax~ ay3 (6)+aA,8x ay 

The cyclical permutation of (x, y, z) allows easy recall of (6) as 
described in Section 1-2-5. 

In terms of the curl operation, the circulation for any 
differential sized contour can be compactly written as 

C=(Vx A) -dS (7) 

where dS = n dS is the area element in the direction of the 
normal vector n perpendicular to the plane of the contour in 
the sense given by the right-hand rule in traversing the 
contour, illustrated in Figure 1-19b. Curling the fingers on 
the right hand in the direction of traversal around the 
contour puts the thumb in the direction of the normal n. 

For a physical interpretation of the curl it is convenient to 
continue to use a fluid velocity field as a model although the 
general results and theorems are valid for any vector field. If 
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No circulation Nonzero circulation 

Figure 1-20 A fluid with a velocity field that has a curl tends to turn the paddle wheel. 
The curl component found is in the same direction as the thumb when the fingers of 
the right hand are curled in the direction of rotation. 

a small paddle wheel is imagined to be placed without dis­
turbance in a fluid flow, the velocity field is said to have 
circulation, that is, a nonzero curl, if the paddle wheel rotates 
as illustrated in Figure 1-20. The curl component found is in 
the direction of the axis of the paddle wheel. 

1-5-2 The Curl for Curvilinear Coordinates 

A coordinate independent definition of the curl is obtained 
using (7) in (1) as 

~A -dl 
(V x A),= lim (8)

dS.-+O dn 

where the subscript n indicates the component of the curl 
perpendicular to the contour. The derivation of the curl 
operation (8) in cylindrical and spherical. coordinates is 
straightforward but lengthy. 

(a) Cylindrical Coordinates 
To express each of the components of the curl in cylindrical 

coordinates, we use the three orthogonal contours in Figure 
1-21. We evaluate the line integral around contour a: 

fA - d= A() dz + A A.(z-- Az) r d4 

+ 1zA.(0+A) dz + A#(z) r d46 

([A.(O+A4)-A.(O)] [A#(z)-A#(z-Az)] rAOAz
rAO AZ 

(9) 

M M 
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(r - Ar, o + AO, ) 
- Ar) A$

((r 

C 

A 
(r ,r, ) 

x- r) A-**r, a#,s AAz(r, , 

) (r 0r,z, r AO 3 A ,z 

(V x A)x 

(r,,- I r, - ­
(rr + A, - Az 

(V x A), 

Figure 1-21 Incremental contours along cylindrical surface area elements used to 
calculate each component of the curl of a vector in cylindrical coordinates. 

to find the radial component of the curl as 

fA -dI 
(V x A)r = liM 1 aA= aA (10) 

_-o rOA4Az r a4 az 
Az-.O 

We evaluate the line integral around contour b: 
r Z-Az r-Ar 

A -dl Ar(z)drr)dz+ Ar(z-Az)dr 

+ A.(r -,Ar) dz 

([Ar(z)-Ar(Z -Az)] [A.(r)-A.(r- Ar)]) A Az 
AZ Ar(11) 
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to find the 4 component of the curl, 

A - dl OA aA 

(V x A), = ur z = (12)
A&r-0 Ar Az az ar/
Az -. 

The z component of the curl is found using contour c: 

r +A4 rr-1 dr 
A-dl= Arldr+ rA jd4+ A,,,, dr 

Sr-Ar r 

+ (r-Ar)A4,.,d 

S[rAp,-(r -Ar)A4,_-,] [Arl4..A.- A rl r &rA]
rAr rA4 

(13) 

to yield 

A - dl 
__ _1 / 8 t3Ar\

(V x A).= n =-- (rAO) -- (14)
Ar-O r 

C
Ar AO r Or 84 

A.0 -0 

The curl of a vector in cylindrical coordinates is thus 

(I MA, dA aA, aA 
_XA'r A)Vx A= )ir+(=- ,r a4 Oz az Or 

1 aA,
+-( (rA#) ;i, (15)

r ar 

(b) Spherical Coordinates 
Similar operations on the three incremental contours for 

the spherical element in Figure 1-22 give the curl in spherical 
coordinates. We use contour a for the radial component of 
the curl: 

+ &0 e-A e 
A - dl= , A4,r sin 0 dO + rA ,.. dO 

+ r sin (0 -A)A 4 .. d+ rA,. dO 
.+"4 -As 

[A,. sin - A4,.-,. sin (0 - AG)) 
r sin e AO 

[Ae,.. -A _+ r2 sin 0 AO A4 (16) 
r sin 0 AO 
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r sin (0- AO) A# 

'r, - A8, +AO)Ir, 0 - AO, #) 

a r AO 

(r, 0,#) 
rsin 0AO (r,0, + AO) 

raG ( V x A),
 
(r,-AO. (r,6,#)
 

-~ \~.rsin 6A#~
 
(r, 0,#0

C	 (r, 01,0 + AO) 

4r (Vx A),
 
(r-Ar,6-AO, r)
 

(r - Ar) AO / 

(V x A),
 (r - Ar) sin 0 AO 
(r-Ar, 0, )	 Y 

,' ---I 
X: 

Figure 1-22 Incremental contours along spherical surface area elements used to 
calculate each component of the curl of a vector in spherical coordinates. 

to obtain 

A - dl 
(V X A),= 	 lim = (A. sin 6)

A:-: r sin 0 AO AO r sin 0 1 O 

(17) 

The 0 component is found using contour b: 

A -dl= A, dr+ (r- Ar)A,,, sin e doJ 
+ A....dr+ rA, sin 6d4S 

sr sin Ar 46 
r Ar / 

(18) 

I 
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as 

fA - di , 
(V x A),= lim )(rAo)

Ar-o r sin Ar A4 r sin e a4 4rA4-0O 
(19) 

The 4 component of the curl is found using contour c: 

8 r--Ar 

A-dl= e-, rA1d+ A,[.dr 

9-A6 
+1 (r-Ar)A _ dG+ J A,,,_,,,dr 

([rA,, -(r-Ar)A 1 ,,] [Al, - ArI,,] r Ar AG 
\ rAr r AO 

(20) 
as 

I1 a A,
(V X.A),O = lim =- -(rA,) - (21)Ar-o r Ar AO r r 81 

The curl of a vector in spherical coordinates is thus given 
from (17), (19), and (21) as 

1 
(A. sin 6) 

aA 
i,VxA = I 

r sin 0 80 

+A 10 ' OrnGO4B,A (rA.4,))i.
r sin 0 a4 ar 

+- -(rAe)- a (22)r ar 

Theorem 

We now piece together many incremental line contours of 
the type used in Figures 1-19-1-21 to form a macroscopic 
surface S like those shown in Figure 1-23. Then each small 
contour generates a contribution to the circulation 

dC = (V x A) - dS (23) 

so that the total circulation is obtained by the sum of all the 
small surface elements 

C= f(V x A) - dS (24) 
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0( QdC Q 

n 

dc 

Figure 1-23 Many incremental line contours distributed over any surface, have 
nonzero contribution to the circulation only along those parts of the surface on the 
boundary contour L. 

Each of the terms of (23) are equivalent to the line integral 
around each small contour. However, all interior contours 
share common sides with adjacent contours but which are 
twice traversed in opposite directions yielding no net line 
integral contribution, as illustrated in Figure 1-23. Only those 
contours with a side on the open boundary L have a nonzero 
contribution. The total result of adding the contributions for 
all the contours is Stokes' theorem, which converts the line 
integral over the bounding contour L of the outer edge to a 
surface integral over any area S bounded by the contour 

A - dl= J(V x A) - dS (25) 

Note that there are an infinite number of surfaces that are 
bounded by the same contour L. Stokes' theorem of (25) is 
satisfied for all these surfaces. 

EXAMPLE 1-7 STOKES' THEOREM 

Verify Stokes' theorem of (25) for the circular bounding 
contour in the xy plane shown in Figure 1-24 with a vector 



L 

The Curl and Stokes' Theorem 37 

C-R 

A = -yi. + xi. - ziz = rio - zi,
 
a
 

Figure 1-24 Stokes' theorem for the vector given in Example 1-7 can be applied to 
any surface that is bounded by the same contour L. 

field 

A = -yi., +xi, -zi. = ri6 -zi, 

Check the result for the (a) flat circular surface in the xy 
plane, (b) for the hemispherical surface bounded by the 
contour, and (c) for the cylindrical surface bounded by the 
contour. 

SOLUTION 

For the contour shown 

dl = R dO i" 

so that 

A -di= R 2 d4 

where on L, r = R. Then the circulation is 

C= A-dl= R2do=27rR 2 

The z component of A had no contribution because dl was 
entirely in the xy plane. 

The curl of A is (8A, 8A1 
VxA=ix =2i, 

ax ay 
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(a) For the circular area in the plane of the contour, we 
have that 

f (Vx A) - dS = 2 dS. =2rR2 

which agrees with the line integral result. 
(b) For the hemispherical surface 

v/2 2. 

(V X A) - dS= = 0 2 - iR2 sin 0dOdO 

From Table 1-2 we use the dot product relation 

i - i,= cos e 
which again gives the circulation as 

w/2 2w 2/wco 
= o 0v2 21rR2 C=w22 R 2sin 20 dO d= -21rR 

= 11o 2 e-o 

(c) Similarly, for th-e cylindrical surface, we only obtain 
nonzero contributions to the surface integral at the upper 
circular area that is perpendicular to V X A. The integral is 
then the same as part (a) as V X A is independent of z. 

1-5-4 Some Useful Vector Identities 

The curl, divergence, and gradient operations have some 
simple but useful properties that are used throughout the 
text. 

(a) The Curl of the Gradient is Zero [V x (Vf)= 0] 
We integrate the normal component of the vector V X (Vf) 

over a surface and use Stokes' theorem 

JV x (Vf) - dS= Vf - dl= 0 (26) 

where the zero result is obtained from Section 1-3-3, that the 
line integral of the gradient of a function around a closed 
path is zero. Since the equality is true for any surface, the 
vector coefficient of dS in (26) must be zero 

V X(Vf)=0 

The identity is also easily proved by direct computation 
using the determinantal relation in Section 1-5-1 defining the 
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curl operation: 

i. i, i" 

a aVx(Vf)det 
a 

ax ay az 

af af af 
ax ay az 

ix2(L - .) +~, a~f ;a-f)I +i,(AY -~af).0.
ayaz azay azax axaz axay ayax 

(28) 

Each bracketed term in (28) is zero because the order of 
differentiation does not matter. 

(b) The Divergence of the Curl of a Vector is Zero 
[V -(Vx A)=0] 

One might be tempted to apply the divergence theorem to 
the surface integral in Stokes' theorem of (25). However, the 
divergence theorem requires a closed surface while Stokes' 
theorem is true in general for an open surface. Stokes' 
theorem for a closed surface requires the contour L to shrink 
to zero giving a zero result for the line integral. The diver­
gence theorem applied to the closed surface with vector V x A 
is then 

SV xA -dS =0=V-(VxA)dV=0>V-(VxA)=0 
s v (29) 

which proves the identity because the volume is arbitrary. 
More directly we can perform the required differentiations 

V- (VxA) 

a, aIA.2 aA, 
 a faA2 aA.\ a ,aA aA2\ax\ay az axa ay /ay\ az z\ax

(a2A. a2A a2A2 a2A 2A, a
 

x)+(!-x x - -)= 0 (30)axay ayx ayaz ay azax 0x(z 

where again the order of differentiation does not matter. 

PROBLEMS 

Section 1-1 
1. Find the area of a circle in the xy plane centered at the 
origin using: 

(a) rectangular coordinates x + y2 = a2 (Hint: 
2J - _2 dx = [x a ,x 2 + a2 sin~'(x/a)]) 
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(b) cylindrical coordinates r= a. 
Which coordinate system is easier to use? 

2. Find the volume of a sphere of radius R centered at the 
origin using: 

(a) 	rectangular coordinates x2+y+z2 = R (Hint: 

J 2 	 (xla)])1Ia -x dx =[xV/'-x +a'sin-

(b) cylindrical coordinates r2+Z2= R ; 
(c) spherical coordinates r = R. 

Which coordinate system is easiest? 

Section 1-2 
3. Given the three vectors 

A= 3i.+2i,-i. 

B= 3i. -4i, -5i, 

C= i. -i,+i,, 

find the following: 

(a) 	 A-EB,B C,A C 
(b) 	 A -B, B -C, A -C 
(c) 	 AXB,BXC,AXC 
(d) 	 (A x B) - C, A - (B x C) [Are they equal?] 
(e) 	 A x (B x C), B(A - C) - C(A - B) [Are they equal?] 
(f) 	 What is the angle between A and C and between B and 

A xC? 

4. Given the sum and difference between two vectors, 

A+B= -i.+5i, -4i 

A -	 B = 3i. -i, - 2i, 

find the individual vectors A and B. 
5. (a) Given two vectors A and B, show that the component 
of B parallel to A is 

B -A
B11 = A 

A -A 

(Hint: Bi = a A. What is a?) 
(b) 	 If the vectors are 

A = i. - 2i,+i" 

B = 3L + 5i, - 5i, 

what are the components of B parallel and perpendicular to 
A? 
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6. What are the angles between each of the following vectors: 

A = 4i. - 2i, + 2i. 

B = -6iL+ 3i,- 3i. 

C=i.+3iy,+1. 

7. Given the two vectors 

A=3i.+4i, and B=7i-24i, 

(a) What is their dot product? 
(b) What is their cross product? 
(c) What is the angle 0 between the two vectors? 

8. Given the vector 

A = Ai. +A,i, + Aji 

the directional cosines are defined as the cosines of the angles 
between A and each of the Cartesian coordinate axes. Find 
each of these directional cosines and show that 

2cos a +cos/3+cos 2 

A 

9. A triangle is formed by the three vectors A, B, and C 
B-A. 

A 66 C = B - A 

oc 6. 

B 

(a) Find the length of the vector C in terms of the lengths 
of A and B and the enclosed angle Oc. The result is known as 
the law of cosines. (Hint: C- C = (B - A) - (B - A).) 

(b) For the same triangle, prove the law of sines: 

sin 0. sin 66 sin 0, 

(Hint: BXA = (C+A)XA.) 

M M 
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10. (a) Prove that the dot and cross can be interchanged in 
the scalar triple product 

(AXB) -C=(BXC) - A= (CxA) - B 

(b) Show that this product gives the volume of a parallele­
piped whose base is defined by the vectors A and B and whose 
height is given by C. 

(c) If 

A=i.+2i,, B= -i.+2i,, C=i.+i, 

verify the identities of (a) and find the volume of the paral­
lelepiped formed by the vectors. 

(d) Prove the vector triple product identity 

A x (B x C)=B(A C)-C(A - B) 

z 

4 
SA x B 

3 ­

I(A x B) - Cl 
2 -IAx B 

A Volume 	= (A x B) C
 
= (B x C) -A
 
= (C x A) - B
 

11. (a) Write the vectors A and B using Cartesian coordinates 
in terms of their angles 0 and 4 from the x axis. 

(b) Using the results of (a) derive the trigonometric 
expansions 

sin(9+4) sin 0 cos 0 +sin 4 cos 0 

cos (0+4) cos 0 cos 4 -sin 6 sin 4 
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y 

A 

>x 

B 

Section 1-3 
12. Find the gradient of each of the following functions 
where a and b are constants: 

(a) f=axz+bx-y 
(b) f = (a/r) sin 4 + brz cos 34 
(c) f = ar cos 0 +(b/r 2) sin 0 

13. 	 Evaluate the line integral of the gradient of the function 

f=rsin 

over each of the contours 	shown. 
Y 

2 

2a 

a 

2 -3 

-a4 

Section 1-4 
14. Find the divergence 	of the following vectors: 

(a) A=xi.+ i,+zi. = ri, 
(b) A=(xy 2z")i.+i,+ij 
(c) A = r cos Oi,+[(z/r) sin 0)]i, 
(d) A= r 2 sin e cos 4 [i,+i.+i-] 

15. Using the divergence theorem prove the following 
integral identities: 

(a) JVfdV= fdS 

M 
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(Hint: Let A = if, where i is any constant unit vector.) 

(b) VxFdV=-fFxdS 

(Hint: Let A = iX F.) 

(c) 	 Using the results of (a) show that the normal vector 
integrated over a surface is zero: 

~dS=0 

(d) 	Verify (c) for the case of a sphere of radius R. 
(Hint: i, = sin 0 cos i, +sin 0 sin Oi, +cos 8i.. 

16. 	 Using the divergence theorem prove Green's theorem 

f[fVg -gVf] - dS= Jv[fv2g gV2f] dV 

(Hint: V . (fVg) = fV2 g + Vf Vg.) 

17. (a) Find the area element dS (magnitude and direction) 
on each of the four surfaces of the pyramidal figure shown. 

(b) 	 Find the flux of the vector 

A = ri,.=xi,+yi,+zi, 

through the surface of (a). 
(c) Verify the divergence theorem by also evaluating the 

flux as 

b= JV A dV 

. 3 

a 

Section 1-5 
18. 	 Find the curl of the following vectors: 

(a) 	A=x2 yi,+y 2zi,+xyi 
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A = r cos 0i.+z sin1(b) 
r 

cos sin4 
(c) A=r2 sin cos46i,+ 2 16 r 

19. Using Stokes' theorem prove that 

dl= Vf XdS 

(Hint: Let A = if, where i is any constant unit vector.) 

20. Verify Stokes' theorem for the rectangular bounding 
contour in the xy plane with a vector field 

A = (x+a)(y+b)(z +c)i. 

2 

!21 

x 
Y2Z 

L 

Check the result for (a) a flat rectangular surface in the xy 
plane, and (b) for the rectangular cylinder. 

21. Show that the order of differentiation for the mixed 
second derivative 

a (af\ a af\ 

does not matter for the function 

2 myx 

y 

22. Some of the unit vectors in cylindrical and spherical 
coordinates change direction in space and thus, unlike 
Cartesian unit vectors, are not constant vectors. This means 
that spatial derivatives of these unit vectors are generally 
nonzero. Find the divergence and curl of all the unit vectors. 

M 
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23. A general right-handed orthogonal curvilinear coordinate 
system is described by variables (u, v, w), where 

i. x i, = i. 

dSW = h h dudv 

3 

dV = huh hwdudvdw 

u vd2 SdS, =Ahj&dudw 
(u,V, W) hd 

dS, = hvhI dvdw 

Since the incremental coordinate quantities du, dv, and dw do 
not necessarily have units of length, the differential length 
elements must be multiplied by coefficients that generally are 
a function of u, v, and w: 

dL.=h.du, dL.=h.dv, dLw=h.dw 

(a) What are the h coefficients for the Cartesian, cylindri­
cal, and spherical coordinate systems? 

(b) What is the gradient of any function f(u, v, w)? 
(c) What is the area of each surface and the volume of a 

differential size volume element in the (u, v, w) space? 
(d) What are the curl and divergence of the vector 

A =Aui, + Ai,+ A.i.? 

(e) What is the scalar Laplacian V 2f = V (Vf)? 
(f) Check your results of (b)-(e) for the three basic coor­

dinate systems. 

24. Prove the following vector identities: 

(a) V(fg)=fVg+gVf 
(b) V(A-B)=(A-V)B+(B -V)A+Ax(VxB)+Bx(VxA) 
(c) V-(fA)=fV-A+(A-V)f 
(d) V-(AxB)=B-(VXA)-A-(VXB) 
(e) VX(AXB)=A(V -B)-B(V -A)+(B-V)A-(A V)B 

http:dLw=h.dw
http:dL.=h.dv
http:dL.=h.du
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(f) Vx(fA)=VfxA+fVxA 
(g) (VXA)XA=(A-V)A--AV(A-A) 
(h) Vx(VxA)=V(V-A)-V 2 A 

25. Two points have Cartesian coordinates (1, 2, -1) and (2, 
-3, 1). 

(a) What is the distance between these two points? 
(b) What is the unit vector along the line joining the two 

points? 
(c) Find a unit vector in the xy plane perpendicular to the 

unit vector found in (b). 

Miscellaneous 
26. A series RLC circuit offers a good review in solving linear, 
constant coefficient ordinary differential equations. A step 
voltage Vo is applied to the initially unexcited circuit at t =0. 

- R L 

t=0 

VO C 

(a) Write a single differential equation for the current. 
(b) Guess an exponential solution of the form 

i(t)= fe 

and find the natural frequencies of the circuit. 
(c) What are the initial conditions? What are the steady-

state voltages across each element? 
(d) Write and sketch the solution for i(t) when 

R)2 1 R 2 1 , R 2 1 

2LT LC' 2L) LC' 2L LC 

(e) What is the voltage across each element? 
(f) After the circuit has reached the steady state, the 

terminal voltage is instantly short circuited. What is the short 
circuit current? 

27. Many times in this text we consider systems composed of 
repetitive sequences of a basic building block. Such discrete 
element systems are described by difference equations. 
Consider a distributed series inductance-shunt capacitance 
system excited by a sinusoidal frequency w so that the voltage 
and current in the nth loop vary as 

i,=Re(I.e"); v.=Re(V.e") 
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__ T cT CT cT c ­
(a) By writing Kirchoff's voltage law for the nth loop, show 

that the current obeys the difference equation 

W2 

I.+I- 2 2 ).+I.-'=0
WO 

What is W2? 
(b) Just as exponential solutions satisfy linear constant 

coefficient differential equations, power-law solutions satisfy 
linear constant coefficient difference equations 

I= fAn 

What values of A satisfy (a)? 
(c) The general solution to (a) is a linear combination of all 

the possible solutions. The circuit ladder that has N nodes is 
excited in the zeroth loop by a current source 

io= Re (Io e ' t ) 

Find the general expression for current i, and voltage v. for 
any loop when the last loop N is either open (IN = 0) or short 
circuited (VN = 0). (Hint: a+4 - = 1/(a-Va-1) 

(d) What are the natural frequencies of the system when 
the last loop is either open or short circuited? 
(Hint: (1)1/( 2N)e j2r/2N, r = 1, 2, 3,... ,2N.) 
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