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The electromagnetic field laws, derived thus far from the 
empirically determined Coulomb-Lorentz forces, are correct 
on the time scales of our own physical experiences. However, 
just as Newton's force law must be corrected for material 
speeds approaching that of light, the field laws must be cor­
rected when fast time variations are on the order of the time it 
takes light to travel over the length of a system. Unlike the 
abstractness of relativistic mechanics, the complete elec­
trodynamic equations describe a familiar phenomenon-
propagation of electromagnetic waves. Throughout the rest 
of this text, we will examine when appropriate the low-
frequency limits to justify the past quasi-static assumptions. 

7-1 MAXWELL'S EQUATIONS 

7-1-1 Displacement Current Correction to Ampere's Law 

In the historical development of electromagnetic field 
theory through the nineteenth century, charge and its electric 
field were studied separately from currents and their 
magnetic fields. Until Faraday showed that a time varying 
magnetic field generates an electric field, it was thought that 
the electric and magnetic fields were distinct and uncoupled. 
Faraday believed in the duality that a time varying electric 
field should also generate a magnetic field, but he was not 
able to prove this supposition. 

It remained for James Clerk Maxwell to show that Fara­
day's hypothesis was correct and that without this correction 
Ampere's law and conservation of charge were inconsistent: 

VxH=Jf->V - J=0 (1) 

V Jf+=Pf=0 (2)at 

for if we take the divergence of Ampere's law in (1), the 
current density must have zero divergence because the 
divergence of the curl of a vector is always zero. This result 
contradicts (2) if a time varying charge is present. Maxwell 
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realized that adding the displacement current on the right-
hand side of Ampere's law would satisfy charge conservation, 
because of Gauss's law relating D to pf (V - D= pf). 

This simple correction has far-reaching consequences, 
because we will be able to show the existence of electro­
magnetic waves that travel at the speed of light c, thus proving 
that light is an electromagnetic wave. Because of the 
significance of Maxwell's correction, the complete set of 
coupled electromagnetic field laws are called Maxwell's 
equations: 

Faraday's Law 

8BC d 
VxE= > E - dl= -- B - dS (3)

at fL dsis 

Ampere's law with Maxwell's displacement current correction 

VxH=Jf+ D-:> H-dl= fJf-dS+-d D-dS (4)
at fLdt f 

Gauss's laws 

V- D=pf > D.dS= LpfdV (5) 

V- B=0 B -dS =0 (6) 

Conservation of charge 

V- J+Lf=O Jr -dS+ d pfdV=0 (7) 

As we have justified, (7) is derived from the divergence of (4) 
using (5). 

Note that (6) is not independent of (3) for if we take the 
divergence of Faraday's law, V - B could at most be a time-
independent function. Since we assume that at some point in 
time B= 0, this function must be zero. 

The symmetry in Maxwell's equations would be complete if 
a magnetic charge density appeared on the right-hand side of 
Gauss's law in (6) with an associated magnetic current due to 
the flow of magnetic charge appearing on the right-hand side 
of (3). Thus far, no one has found a magnetic charge or 
current, although many people are actively looking. 
Throughout this text we accept (3)-(7) keeping in mind that if 
magnetic charge is discovered, we must modify (3) and (6) 
and add an equation like (7) for conservation of magnetic 
charge. 

M = 
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7-1-2 Circuit Theory as a Quasi-static Approximation 

Circuit theory assumes that the electric and magnetic fields 
are highly localized within the circuit elements. Although the 
displacement current is dominant within a capacitor, it is 
negligible outside so that Ampere's law can neglect time vari­
ations of D making the current divergence-free. Then we 
obtain Kirchoff's current law that the algebraic sum of all 
currents flowing into (or out of) a node is zero: 

V-J=0 fJ.dS=0*IiA=0 (8) 

Similarly, time varying magnetic flux that is dominant 
within inductors and transformers is assumed negligible 
outside so that the electric field is curl free. We then have 
Kirchoff's voltage law that the algebraic sum of voltage drops 
(or rises) around any closed loop in a circuit is zero: 

VxE=0*E=-VV* E-dl=0Iv=0 (9) 

7-2 CONSERVATION OF ENERGY 

7-2-1 Poynting's Theorem 

We expand the vector quantity 

V -(Ex H)=H -(VxE)-E - (Vx H) 

---- -E -j-H . E - (1)at at 

where we change the curl terms using Faraday's and 
Ampere's laws. 

For linear homogeneous media, including free space, the 
constitutive laws are 

D=eE, B=IH (2) 

so that (1) can be rewritten as 

a8 2+1 2
V - (ExH)+a(2eE +2H)-E -Jf (3)at 

which is known as Poynting's theorem. We integrate (3) over a 
closed volume, using the divergence theorem to convert the 
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first term to a surface integral: 

(ExH)- dS+ f ( ,E 2 + LH ) dV vE -JdV (4) 

V (ExH)dV 
V 

We recognize the time derivative in (4) as operating on the 
electric and magnetic energy densities, which suggests the 
interpretation of (4) as 

dW 
P..,+-= --Pd (5)

dt 

where P, is the total electromagnetic power flowing out of 
the volume with density 

S = E X H watts/M2 [kg-s~ 3 ] (6) 

where S is called the Poynting vector, W is the electromag­
netic stored energy, and Pd is the power dissipated or 
generated: 

P0 m= (EXH)-dS= S-dS 

W= [eE2+tIH 2 ] dV (7) 

Pd = E-J dV 

If E and J are in the same direction as in an Ohmic conduc­
tor (E - Jf = oE 2), then Pd is positive, representing power dis­
sipation since the right-hand side of (5) is negative. A source 
that supplies power to the volume has E and Jf in opposite 
directions so that Pd is negative. 

7-2-2 A Lossy Capacitor 

Poynting's theorem offers a different and to some a 
paradoxical explanation of power flow to circuit elements. 
Consider the cylindrical lossy capacitor excited by a time 
varying voltage source in Figure 7-1. The terminal current 
has both Ohmic and displacement current contributions: 

. eA dv Av dv v eA
d=---+--=C-+ C=-- R=- (8) 

-

From a circuit theory point of view we would say that the 
power flows from the terminal wires, being dissipated in the 

M 

I 
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= C ,+ 

Area A = ira2 

a 

H 0 I 

Figure 7-1 The power delivered to a lossy cylindrical capacitor vi is partly dissipated by 
the Ohmic conduction and partly stored in the electric field. This power can also be 
thought to flow-in radially from the surrounding electric and magnetic fields via the 
Poynting vector S = E x H. 

resistance and stored as electrical energy in the capacitor: 

vR dt 

We obtain the same results from a field's viewpoint using 
Poynting's theorem. Neglecting fringing, the electric field is 
simply 

E,= v/l (10) 

while the magnetic field at the outside surface of the resistor 

is generated by the conduction and displacement currents: 

r r ( 8E, orAv a dv 
f-dl= f J .E- dS >Ho 21ra =---v+-eA-v= i (11)

at I dt 

where we recognize the right-hand side as the terminal cur­
rent in (8), 

H, = i/(2ra) (12) 

The power flow through the surface at r = a surrounding the 
resistor is then radially inward, 

(E x H) -dS= - v i ado dz = -vi (13)
is 2ira 

and equals the familiar circuit power formula. The minus 
sign arises because the left-hand side of (13) is the power out 
of the volume as the surface area element dS points radially 
outwards. From the field point of view, power flows into the 
lossy capacitor from the electric and magnetic fields outside 
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the resistor via the Poynting vector. Whether the power is 
thought to flow along the terminal wires or from the sur­
rounding fields is a matter of convenience as the results are 
identical. The presence of the electric and magnetic fields are 
directly due to the voltage and current. It is impossible to have 
the fields without the related circuit variables. 

7-2-3 Power in Electric Circuits 

We saw in (13) that the flux of S entering the surface 
surrounding a circuit element just equals vi. We can show this 
for the general network with N terminals in Figure 7-2 using 
the quasi-static field laws that describe networks outside the 
circuit elements: 

VxE= >E=-VV 

V XH =Jf V -J= (14) 

We then can rewrite the electromagnetic power into a surface 
as 

Pin=- EXH -dS 
s 

=- V-(ExH)dV 

= V-(VVXH)dV (15) 

V3
 
V2
 

VN --
12 V2IN-1 

1 

VN N VH= E x H I 

Figure 7-2 The circuit power into an N terminal network E.. I V,, equals the 
electromagnetic power flow into the surface surrounding the network, -fs E x H - dS. 
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where the minus is introduced because we want the power in 
and we use the divergence theorem to convert the surface 
integral to a volume integral. We expand the divergence term 
as 

0 

V - (V V x H)= H - (V x V V)-V V - (V x H) 

-Jf - VV = -V - (JV) (16) 

where we use (14). 
Substituting (16) into (15) yields 

Pin=- V -(JfV)dV 

=-JfV-dS (17) 

where we again use the divergence theorem. On the surface 
S, the potential just equals the voltages on each terminal wire 
allowing V to be brought outside the surface integral: 

N 

Pin= I -V, Jf - dS 
k=I s 

N 

= Y VAIh (18)
k=I 

where we recognize the remaining surface integral as just 
being the negative (remember dS points outward) of each 
terminal current flowing into the volume. This formula is 
usually given as a postulate along with Kirchoff's laws in most 
circuit theory courses. Their correctness follows from the 
quasi-static field laws that are only an approximation to more 
general phenomena which we continue to explore. 

7-2-4 The Complex Poynting's Theorem 

For many situations the electric and magnetic fields vary 
sinusoidally with time: 

E(r, t) = Re [E(r) e"'] 
jWI (19)

H(r, t) = Re [H(r) e"''] 

where the caret is used to indicate a complex amplitude that 
can vary with position r. The instantaneous power density is 
obtained by taking the cross product of E and H. However, it 
is often useful to calculate the time-average power density 
<S>, where we can avoid the lengthy algebraic and trig­
onometric manipulations in expanding the real parts in (19). 
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A simple rule for the time average of products is obtained by 
realizing that the real part of a complex number is equal to 
one half the sum of the complex number and its conjugate 
(denoted by a superscript asterisk). The power density is then 

S(r, t) = jE(r, t) X H(r, t) 

= [E(r) e""t + E*(r) e-""]x [11(r) e'' + H*(r) e "'I 

= a[E(r) X H(r) e2' + E*(r) X H(r) + E(r) XN*(r) 
+E*(r) X N*(r) e -2l"] (20) 

The time average of (20) is then 

<5> = i[i*(r) X 11(r) + E(r) X H*(r)] 

= b Re [E(r) X H*(r)] 

iRe [i*(r)XH(r)] (21) 

as the complex exponential terms ei*"2" average to zero over a 
period T = 2ir/w and we again realized that the first bracketed 
term on the right-hand side of (21) was the sum of a complex 
function and its conjugate. 

Motivated by (21) we define the complex Poynting vector as 

$ = E(r) X H*(r) (22) 

whose real part is just the time-average power density. 
We can now derive a complex form of Poynting's theorem 

by rewriting Maxwell's equations for sinusoidal time varia­
tions as 

VX E(r) = -japH(r) 

V X 1(r) = J1 (r) +jwe (r) (23) 
V 9(r)= f(r)Ie 

V BE(r)= 0 

and expanding the product 

VS$= V - [E(r) x A*(r)] = -[H*(r) - V x E(r) - E(r) Vx H*(r)] 

=f[-jaiwt IH(r) 2+jwe I (r)l 2] -E(r) -Jf(r) (24) 

which can be rewritten as 

V -$+2jw[<w.>-<w,>]= -Pd (25) 

where 

<Wn> =4LIH(r)l 2 

<w,>=46E(r)2 (26) 

Pd = lt(t) - j*(r) 
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We note that <w,,> and <w,> are the time-average magnetic 
and electric energy densities and that the complex Poynting's 
theorem depends on their difference rather than their sum. 

7-3 TRANSVERSE ELECTROMAGNETIC WAVES 

7-3-1 Plane Waves 

Let us try to find solutions to Maxwell's equations that only 
depend on the z coordinate and time in linear media with 
permittivity e and permeability M. In regions where there are 
no sources so that pf= 0, J1 =0, Maxwell's equations then 
reduce to 

aE, aE.. aH 
_iX+-, = -A-- (1)az az at 

8H, 3H. 8E
'i+ -- i,= 6-- (2)

az az 8t 

aE. 
- = (3) 

aH 
- - = (4)
Oz 

These relations tell us that at best E, and H, are constant in 
time and space. Because they are uncoupled, in the absence 
of sources we take them to be zero. By separating vector 
components in (1) and (2) we see that E is coupled to H, and 
E, is coupled to H: 

aE aH, aE, aH. 
az 

. 

at Oz at 

aH, aE. 8H. aE, (5) 
=-e-, -- =ez at az at 

forming two sets of independent equations. Each solution has 
perpendicular electric and magnetic fields. The power flow 
S= E X H for each solution is z directed also being perpendic­
ular to E and H. Since the fields and power flow are mutually 
perpendicular, such solutions are called transverse elec­
tromagnetic waves (TEM). They are waves because if we take 
8/az of the upper equations and a/at of the lower equations 
and solve for the electric fields, we obtain one-dimensional 
wave equations: 

82E. 1 a2E. a2E, 1 a2E,
 
aZ2 C2 ' C2 at2 (6)
at2 z 
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where c is the speed of the wave, 

1 1 3x108 

c =-- m/sec (7) 

In free space, where e, = 1 and A, = 1, this quantity equals the 
speed of light in vacuum which demonstrated that light is a 
transverse electromagnetic wave. If we similarly take alt of 
the upper and a/Oz of the lower equations in (5), we obtain 
wave equations in the magnetic fields: 

a2 H, 1 a2H, a2HX 1 a2H. 
2 2at (8)

az 2 C2 2' 

7-3-2 The Wave Equation 

(a) Solutions 
These equations arise in many physical systems, so their 

solutions are well known. Working with the E and H, equa­
tions, the solutions are 

E.(z, t)=E,(t- z/c)+E_(t +z/c)(9 
H,(z, t) = H+(t- z/c) + H-(t + z/c) 

where the functions E+, E_, H+, and H_ depend on initial 
conditions in time and boundary conditions in space. These 
solutions can be easily verified by defining the arguments a 
and P with their resulting partial derivatives as 

Z aa a 
c at az c 

(10) 

P=t+-Z=>a=1, -=-I 
c at az C 

and realizing that the first partial derivatives of E.(z, t) are 

aE. dE+ aa dE. ap 
at da at dp at 

dE+ dE­
det dO 

aE_ dE+aa dE-a(p 
az da az d1 az 

1_ dE+ dE 
c da dp 
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The second derivatives are then 

a2E. d2E, 8a d2 E- ap 
at2 at 

d2E d'E­

I 2E. 1 d2E+Oa d2E-.2 (12)aE7z dg9Ez
da2 aZ +- L 

1(d2E+ d2 E.. 1 a2E. 
\7 dp -C2 at2 

which satisfie's the wave equation of (6). Similar operations 
apply for H,, E,, and H.. 

In (9), the pair H+ and E+ as well as the pair H- and E- are 
not independent, as can be seen by substituting the solutions 
of (9) back into (5) and using (11): 

8E= H= I dE+dE) dH dH (13) 
az at C da \dad 

The functions of a and P must separately be equal, 

d-(E -scH+)=0, -(E-+pcH-)=0 (14)
da dp 

which requires that 

E+=ipcH+=jEH+, E- =-scH-=- H- (15) 

where we use (7). Since / has units of Ohms, this quantity 
is known as the wave impedance ?1, 

n = j 120rjF (16) 

and has value 120ir 377 ohm in free space (I,= 1, E,= 1). 
The power flux density in TEM waves is 

S=ExH = E+(t-z/c)+E-(t+z/c)]!ix 

X [H+(t- z/c) + H-(t + z/c)]i, 

=(E+H+ + E-H- + E-H+ + E+H-)i (17) 

Using (15) and (16) this result can be written as 

1 2)
S.= (2+-E-(18)

n1 
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where the last two cross terms in (17) cancel because of the 
minus sign relating E_ to H_ in (15). For TEM waves the total 
power flux density is due to the difference in power densities 
between the squares of the positively z-directed and nega­
tively z-directed waves. 

(b) 	 Properties 
The solutions of (9) are propagating waves at speed c. To 

see this, let us examine E+(t - z/c) and consider the case where 
at z = 0, E+(t) is the staircase pulse shown in Figure 7-3a. In 
Figure 7-3b we replace the argument t by t -z/c. As long as 
the function E. is plotted versus its argument, no matter what 
its argument is, the plot remains unchanged. However, in 
Figure 7-3c the function E+(t -z/c) is plotted versus t result­
ing in the pulse being translated in time by an amount z/c. To 
help in plotting this translated function, we use the following 
logic: 

(i) 	 The pulse jumps to amplitude Eo when the argument is 
zero. When the argument is t - z/c, this occurs for t = z/c. 

(ii) 	 The pulse jumps to amplitude 2Eo when the argument 
is T. When the argument is t - z/c, this occurs for t= 
T +z/c. 

(iii) 	 The pulse returns to zero when the argument is 2 T. For 
the argument t -z/c, we have t =2 T+z/c. 

E, (t), Z=0 	 E (Q-
C 

) 

2E,2E0 

T 	 2T T 2T ­
C 

(a) 	 (b) 

E, (t-- ) 	 E,(t-2) 
C 	 C 

2EO 	 2EO ­

- '-+T '-+2T ' c(t-2T)ct-T) ct Z 
C 	 C C 

(c) 	 (d) 

Figure 7-3 (a) E+(t) at z =0 is a staircase pulse. (b) E,(O) always has the same shape as 
(a) when plotte-I versus 0, no matter what 0 is. Here 46 = t - z/c. (c) When plotted versus 
t, the pulse is translated in time where z must be positive to keep t positive. (d) When 
plotted versus z, it is translated and inverted. The pulse propagates at speed c in the 
positive z direction. 



500 Electrodynamics-Fieldsand Waves 

Note that z can only be positive as causality imposes the 
condition that time can only be increasing. The response at 
any positive position z to an initial E, pulse imposed at z = 0 
has the same shape in time but occurs at a time z/c later. The 
pulse travels the distance z at the speed c. This is why the 
function E,(t - z/c) is called a positively traveling wave. 

In Figure 7-3d we plot the same function versus z. Its 
appearance is inverted as that part of the pulse generated first 
(step of amplitude EO) will reach any positive position z first. 
The second step of amplitude 2EO has not traveled as far 
since it was generated a time T later. To help in plotting, we 
use the same criterion on the argument as used in the plot 
versus time, only we solve for z. The important rule we use is 
that as long as the argument of a function remains constant, 
the value of the function is unchanged, no matter how the 
individual terms in the argument change. 

Thus, as long as 

t-z/c = const (19) 

E+(t - z/c) is unchanged. As time increases, so must z to satisfy 
(19) at the rate 

z dz 
t--= const>-= c (20) 

c dt 

to keep the E, function constant. 
For similar reasons E_(t +z/c) represents a traveling wave at 

the speed c in the negative z direction as an observer must 
move to keep the argument t +z/c constant at speed: 

z dz 
t +-= const>-= -c (21) 

c dt 

as demonstrated for the same staircase pulse in Figure 7-4. 
Note in Figure 7-4d that the pulse is not inverted when 
plotted versus z as it was for the positively traveling wave, 
because that part of the pulse generated first (step of ampli­
tude EO) reaches the maximum distance but in the negative z 
direction. These differences between the positively and nega­
tively traveling waves are functionally due to the difference in 
signs in the arguments (t -z/c) and (t +z/c). 

7-3-3 Sources of Plane Waves 

These solutions are called plane waves because at any 
constant z plane the fields are constant and do not vary with 
the x and y coordinates. 

The idealized source of a plane wave is a time varying 
current sheet of infinite extent that we take to be x directed, 
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E_.(t),z= 0 E (t+ ) 

2ED2E0 

EO Eo 

T 2T t T 2T 
C 

(a) (b) 

E (tC+ 

2EO 2EO 

-- +T - -+2T t -Ct -c(t-T) -c(t-2T z 

(C) (d) 

Figure 7-4 (a) E_(t) at z =0 is a staircase pulse. (b) E-(4) always has the same form of 
(a) when plotted versus 4. Here 46 = t + z/c. (c) When plotted versus t, the pulse is 
translated in time where z must be negative to keep t positive. (d) When plotted versus z, 
it is translated but not inverted. 

as shown in Figure 7-5. From the boundary condition on the 
discontinuity of tangential H, we find that the x-directed 
current sheet gives rise to a y-directed magnetic field: 

H,(z =0+) - H,(z = 0)= -K.(t) (22) 

In general, a uniform current sheet gives rise to a magnetic 
field perpendicular to the direction of current flow but in the 
plane of the sheet. Thus to generate an x-directed magnetic 
field, a y-directed surface current is required. 

Since there are no other sources, the waves must travel 
away from the sheet so that the solutions on each side of the 
sheet are of the form 

H t H.(t -z/c) E t H+(t -zc), z>0 

H-(t+zc) -qH-(t+z/c), z <0 
(23) 

For z >0, the waves propagate only in the positive z direction. 
In the absence of any other sources or boundaries, there can 
be no negatively traveling waves in this region. Similarly for 
z <0, we only have waves propagating in the -z direction. In 
addition to the boundary condition of (22), the tangential 
component of E must be continuous across the sheet at z =0 

H+(t) - H() = -K() H.(t)=-H-(t)= (24)
71[H+(t)+H-(t)]=0 } 2 
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x 

Z 

K,,(t) 

H H, 

E (z,t)= K, (t + 1)
E (, 2 

EK(z ) -~-S=_ (t - tS *­ K,(t+ )
C

Hy (z,t) Hy (z, t) _ ­2 

K, (t) 
(a) 

2K 

Ko 

t E,,(z, t) 
T 2T 

-Ct Ct 

,Hy (z, t) 

-Ko 

-Ct 

-- K0 

SS2 (z, t) = ExHy 

_7K02 

-Ct -4 po 
Ct 

L 
-- K2 

(b) 

Figure 7-5 (a) A linearly polarized plane wave is generated by an infinite current sheet. 
The electric field is in the direction opposite to the current on either side of the sheet. 
The magnetic field is perpendicular to the current but in the plane of the current sheet 
and in opposite directions as given by the right-hand rule on either side of the sheet. The 
power flowS is thus perpendicular to the current and to the sheet. (b) The field solutions 
for t >2 T if the current source is a staircase pulse in time. 
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so that the electric and magnetic fields have the same shape as 
the current. Because the time and space shape of the fields 
remains unchanged as the waves propagate, linear dielectric 
media are said to be nondispersive. 

Note that the electric field at z =0 is in the opposite direc­
tion as the current, so the power per unit area delivered by 
the current sheet, 

-E(z = 0, t) - K.(t) = 7jK2(t) (25)
2 

is equally carried away by the Poynting vector on each side of 
the sheet: 

., z>0 
4 

S(z=0)=EXH = (26) 

7-3-4 A Brief Introduction to the Theory of Relativity 

Maxwell's equations show that electromagnetic waves 
propagate at the speed co= 1/,eoo in vacuum. Our 
natural intuition would tell us that if we moved at a speed v we 
would measure a wave speed of co - v when moving in the same 
direction as the wave, and a speed co + v when moving in the 
opposite direction. However, our intuition would be wrong, 
for nowhere in the free space, source-free Maxwell's equa­
tions does the speed of the observer appear. Maxwell's equa­
tions predict that the speed of electromagnetic waves is co for 
all observers no matter their relative velocity. This assump­
tion is a fundamental postulate of the theory of relativity and 
has been verified by all experiments. The most notable 
experiment was performed by A. A. Michelson and E. W. 
Morley in the late nineteenth century, where they showed 
that the speed of light reflected between mirrors is the same 
whether it propagated in the direction parallel or perpendic­
ular to the velocity of the earth. This postulate required a 
revision of the usual notions of time and distance. 

If the surface current sheet of Section 7-3-3 is first turned 
on at t = 0, the position of the wave front on either side of the 
sheet at time t later obeys the equality 

z -c0t 2 =0 (27) 

Similarly, an observer in a coordinate system moving with 
constant velocity ui, which is aligned with the current sheet at 
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t =0 finds the wavefront position to obey the equality 

z'-ct' =0 (28) 

The two coordinate systems must be related by a linear 
transformation of the form 

z =a1z+a2 t, t' = b1z +b2t (29) 

The position of the origin of the moving frame (z'=0) as 
measured in the stationary frame is z = vt, as shown in Figure 
7-6, so that a, and a2 are related as 

0= aivt + a2t=|>ajv+a2 =0 (30) 

We can also equate the two equalities of (27) and (28), 
2 _ 2 2 = p2 _ 2tF2 =. 2_C 

z -cot z'-cot (aIz +a t) -c(b 1 z +b 2t)2 (31) 

so that combining terms yields 

2l 2+2 2) 22( 2 L2 C2 
z \(-aicobi)-ci 1+- U2)-2(aia 2- bib2)zt=0 

co 
(32) 

Since (32) must be true for all z and t, each of the coefficients 
must be zero, which with (30) gives solutions 

1 -v/c2 
a,= -(-

l= -(v/co) 2 

-.11- (vico)2 

(33)-v 
a2 -(v/cO) b2 = 

1, -(v/co)y 

x 
e 

-...------. ~- II 

Figure 7-6 The primed coordinate system moves at constant velocity vi, with respect 
to a stationary coordinate system. The free space speed of an electromagnetic wave is co 
as measured by observers in either coordinate system no matter the velocity v. 
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The transformations of (29) are then 

Z -vt 1 0-vz/c
Z'= _ t'= (34) 

1 -(v/cO)T I1 -(v/cO) 

and are known as the Lorentz transformations. Measured 
lengths and time intervals are different for observers moving 
at different speeds. If the velocity v is much less than the 
speed of light, (34) reduces to the Galilean transformations, 

lim Z' - -vt, t' -t (35)
v/c< 1 

which describe our usual experiences at nonrelativistic 
speeds. 

The coordinates perpendicular to the motion are 
unaffected by the relative velocity between reference frames 

x'= x, y'= y (36) 

Continued development of the theory of relativity is be­
yond the scope of this text and is worth a course unto itself. 
Applying the Lorentz transformation to Newton's law and 
Maxwell's equations yield new results that at first appearance 
seem contrary to our experiences because we live in a world 
where most material velocities are much less than co. 
However, continued experiments on such disparate time and 
space scales as between atomic physics and astronomics verify 
the predictions of relativity theory, in part spawned by Max­
well's equations. 

7-4 SINUSOIDAL TIME VARIATIONS 

7-4-1 Frequency and Wavenumber 

If the current sheet of Section 7-3-3 varies sinusoidally with 
time as Re (Ko e"c'), the wave solutions require the fields to 
vary as elW" "'1 and e :(t+zlc). 

R _e( e""'), z >0 

H,(z, t) = 

Re( + e- ' ze 0 

Re(_!K ejWt~Z1' ,Z > 0 
E. (z, t)2 

[Re(- !- e c))*', z -<0 
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At a fixed time the fields then also vary sinusoidally with 
position so that it is convenient to define the wavenumber as 

k = = ~W%IIL(2)
A c 

where A is the fundamental spatial period of the wave. At a 
fixed position the waveform is also periodic in time with 
period T: 

1 2fr 
T=-=-- (3)

f W 

where f is the frequency of the source. Using (3) with (2) gives 
us the familiar frequency-wavelength formula: 

w = kc *fA = c (4) 

Throughout the electromagnetic spectrum, summarized in 
Figure 7-7, time varying phenomena differ only in the scaling 
of time and size. No matter the frequency or wavelength, 
although easily encompassing 20 orders of magnitude, elec­
tromagnetic phenomena are all described by Maxwell's equa­
tions. Note that visible light only takes up a tiny fraction of the 
spectrum. 

4 2 2 
Xmeters 3x10f 3x10 3x10 3 3 x 10- 2 3 x 10-4 3 x 10- 6 3 x 10- 3 x 10'" 3 x 10^ 

f (Hz) 
0 102 104 106 10 1010 1012 1014 1016 018 1020 

SI I I I I I I 
Power Radio and television Infrared Visible Ultraviolet X-rays Gamma 

AM FM (heat) light Red (700nm) rays 
Orange (650nm) 
Yellow (600nm) 
Green (550nm)

Circuit theory Microwaves Blue (450nm) 
Violet (400nm) 

N 21r/k 

-1 ­
sin w.t m T =21 

2w 

--1­

Figure 7-7 Time varying electromagnetic phenomena differ only in the scaling of time 
(frequency) and size (wavelength). In linear dielectrir media the frequency and 
wavelength are related as fA = c (w = Ac), where c = 1/ls is the speed of light in the 
medium. 
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For a single sinusoidally varying plane wave, the time-
average electric and magnetic energy densities are equal 
because the electric and magnetic field amplitudes are related 
through the wave impedance 7: 

<w,.> <w,> pli=;j_-Ejj=ILKo (5) 

From the complex Poynting theorem derived in Section 
7-2-4, we then see that in a lossless region with no sources for 

z |>0 that Pd =0 so that the complex Poynting vector has 
zero divergence. With only one-dimensional variations with z, 
this requires the time-average power density to be a constant 
throughout space on each side of the current sheet: 

<S>= - Re [E(r) X H*(r)] 

Kiz, z>0 
= 2 (6) 

The discontinuity in <S> at z = 0 is due to the power output of 
the source. 

7-4-2 Doppler Frequency Shifts 

If the sinusoidally varying current sheet Re (Ko ew'l) moves 
with constant velocity vi,, as in Figure 7-8, the boundary 
conditions are no longer at z =0 but at z = vt. The general 
form of field solutions are then: 

Re (11 ew)+(~zc)), z > vt 
H,(zt) Re (Ae i-(z')) z<vt 

A t-x0)' (7) 
_ 0Re (nH+e ), z > vt 

E,(z, ) = Re (-71II- ei"-i(tc), Z < Vt 

where the frequencies of the fields w, and w- on each side of 
the sheet will be different from each other as well as differing 
from the frequency of the current source w. We assume 
v/c < I so that we can neglect relativistic effects discussed in 
Section 7-3-4. The boundary conditions 

E..(z = vt) = E,-(z = vt) > A+ eI I''(lvc) = ---.- ew-'(" 

H,.(z = vt) - H,-(z = vt) = -&K (8) 

=>,g e"+'"-''' - f_ Hw-'(''I = -Ko e"' 

must be satisfied for all values of t so that the exponential time 
factors in (8) must all be equal, which gives the shifted 
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x 

Re(Koe iwt) 

E= Re [ ?K e 

Ko i. (t-L)
H, =Re[--Te + C
 

H=Re K0,io .- (t+ 1)
 

WO+V 
C 

C 

1=1 

Figure 7-8 When a source of electromagnetic waves moves towards an observer, the 
frequency is raised while it is lowered when it moves away from an observer. 

frequencies on each side of the sheet as 

w= ~w 1+-I,
1-v/c c 

= d~ => = -F-Ko 
(9) 

1-
1+v/c C 2 

where v/c < 1. When the source is moving towards an obser­
ver, the frequency is raised while it is lowered when it moves 
away. Such frequency changes due to the motion of a source 
or observer are called Doppler shifts and are used to measure 
the velocities of moving bodies in radar systems. For v/c < 1, 
the frequency shifts are a small percentage of the driving 
frequency, but in absolute terms can be large enough to be 
easily measured. At a velocity v = 300 rxi/sec with a driving 
frequency of f= 1010 Hz, the frequency is raised and lowered 
on each side of the sheet by Af= f(v/c)= 104 Hz. 

7-4-3 Ohmic Losses 

Thus far we have only considered lossless materials. If the 
medium also has an Ohmic conductivity a-, the electric field 
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will cause a current flow that must be included in Ampere's 
law: 

aE. OH, 
az at 

OH, - E. E. (10)
-=-J- e = -a-E -s­az at at 

where for conciseness we only consider the x-directed electric 
field solution as the same results hold for the E,, H. solution. 
Our wave solutions of Section 7-3-2 no longer hold with this 
additional term, but because Maxwell's equations are linear 
with constant coefficients, for sinusoidal time variations the 
solutions in space must also be exponential functions, which 
we write as 

Ex(z, t)= Re (Zo eJ'(ctk)) 

H,(z, t) = Re (Ho ei(,I'-h)) 

where to and Ho are complex amplitudes and the wavenum­
ber k is no longer simply related to w as in (4) but is found by 
substituting (11) back into (10): 

-jkEo = -jwp.Ho 

-jko= -jae (1 +o-/j )Z (12) 

This last relation was written in a way that shows that the 
conductivity enters in the same way as the permittivity so that 
we can define a complex permittivity / as 

i =e (1+/jwE) (13) 

Then the solutions to (12) are 

= =WO/A =k2 20,,2Ms(1+-r-0 (14) 
Ho k we \jws / 

which is similar in form to (2) with a complex permittivity. 
There are two interesting limits of (14): 

(a) Low Loss Limit 
If the conductivity is small so that aWe < 1, then the solution 

of (14) reduces to 

= (15) lim k=* 11 1+F ( 
01/W1Ije \C c 2 E)/ 

where c is the speed of the light in the medium if there were 
no losses, c = 1/.. Because of the spatial exponential 
dependence in (11), the real part of k is the same as for the 
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lossless case and represents the sinusoidal spatial distribution 
of the fields. The imaginary part of k represents the 
exponential decay of the fields due to the Ohmic losses with 
exponential decay length 1rq, where 7 = -4i7e is the wave 
impedance. Note that for waves traveling in the positive z 
direction we take the upper positive sign in (15) using the 
lower negative sign for negatively traveling waves so that the 
solutions all decay and do not grow for distances far from the 
source. This solution is only valid for small o- so that the wave is 
only slightly damped as it propagates, as illustrated in Figure 
7-9a. 

-Ikilz
 

z7' - ON. 

Low loss limit 

(a) 

eP/e2/ eP' 6 e:' 

g. z 

Large lass limit 

(b) 
Figure 7-9 (a) In a slightly lossy dielectric, the fields decay away from a source at a slow 
rate while the wavelength is essentially unchanged. (b) In the large loss limit the spatial 
decay rate is equal to the skin depth. The wavelength also equals the skin depth. 
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(b) Large Loss Limit 
In the other extreme of a highly conducting material so 

that q-/we > 1, (14) reduces to 

(1 -i) 2lim k2 ~-jtoy- k =( , 8 - (16)
&/we 1 1 4ao­

where 8 is just the skin depth found in Section 6-4-3 for 
magneto-quasi-static fields within a conductor. The skin-
depth term also arises for electrodynamic fields because the 
large loss limit has negligible displacement current compared 
to the conduction currents. 

Because the real and imaginary part of k have equal 
magnitudes, the spatial decay rate is large so that within a few 
oscillation intervals the fields are negligibly small, as illus­
trated in Figure 7-9b. For a metal like copper with 1A =O = 

41r x 10-7 henry/m and o -6 x 107 siemens/m at a frequency 
of 1 MHz, the skin depth is 8 -6.5 x 105 m. 

7-4-4 High-Frequency Wave Propagation in Media 

Ohm's law is only valid for frequencies much below the 
collision frequencies of the charge carriers, which is typically 
on the order of 1013 Hz. In this low-frequency regime the 
inertia of the particles is negligible. For frequencies much 
higher than the collision frequency the inertia dominates and 
the current constitutive law for a single species of charge 
carrier q with mass m and number density n is as found in 
Section 3-2-2d: 

aJ/at =oE E (17) 

where w, = Vqden/me is the plasma frequency. This constitutive 
law is accurate for radio waves propagating in the ionosphere, 
for light waves propagating in many dielectrics, and is also 
valid for superconductors where the collision frequency is 
zero. 

Using (17) rather than Ohm's law in (10) for sinusoidal time 
and space variations as given in (11), Maxwell's equations are 

aE. aHA 
-=_J -p-> -jk~o =-jw1Aoaz 8t 

2(18)H, aE. Wo Paz =-. ---- jko=-jwe 1--- E
Oz 8 -tj 

The effective permittivity is now frequency dependent: 

A=6(1-w2/(02) (19) 
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The solutions to (18) are 
2_ 2to (OL 2 .. CO W 

= (AE= 2 (20)
Ho k we C 

For w > w,, k is real and we have pure propagation where the 
wavenumber depends on the frequency. For w <w,, k is 
imaginary representing pure exponential decay. 

Poynting's theorem for this medium is 

at woe at01 1 Orf 

1 
at W2E 2 

Because this system is lossless, the right-hand side of (21) 
can be brought to the left-hand side and lumped with the 
energy densities: 

V - S+ E[IE|2+I |H2+1 1 1Jf12 = (22)
at 2 woe 

This new energy term just represents the kinetic energy 
density of the charge carriers since their velocity is related to 
the current density as 

1 1
Jf=qnv=>2- J2=mnnvI (23)

2 

7-4-5 Dispersive Media 

When the wavenumber is not proportional to the 
frequency of the wave, the medium is said to be dispersive. A 
nonsinusoidal time signal (such as a square wave) will change 
shape and become distorted as the wave propagates because 
each Fourier component of the signal travels at a different 
speed. 

To be specific, consider A stationary current sheet source at 
z =0 composed of two signals with slightly different frequen­
cies: 

K(t) = Kolcos (wo+ Aw)t +cos (wo - Aw)t] 

= 2Ko cos Awt cos wot (24) 

With Aw < w the fast oscillations at frequency wo are modu­
lated by the slow envelope function at frequency Aw. In a 
linear dielectric medium this wave packet would propagate 
away from the current sheet at the speed of light, c = l/v y). 
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If the medium is dispersive. w'th the wavenumber k(w) being 
a function of w, each frequency component in (24) travels at a 
slightly different speed. Since each frequency is very close to 
wo we expand k(w) as 

dk 
k(wo+Aw)=k(wo)+- AW

dw o 
(25) 

k(jo--Aw)~k(wo)- '&W 
dwo 

where for propagation k(wo) must be real. 
The fields for waves propagating in the +z direction are 

then of the following form: 

E.(z, t) =Re Eo(exp { (wo+Aow)t - (k(wo)+ AWz 

+exp j[ (w-Aw)t k(wo) A z] 

ddk 

= Re (Io exp {j[wot -- k (wo)z } exp j AW t- A zj]
dw . 

+exp -j A t z 

=2Eo cos (wot - k(wo)z) cos Aw t A.z) (26) 

where without loss of generality we assume in the last relation 
that Eo= Eo is real. This result is plotted in Figure 7-10 as a 
function of z for fixed time. The fast waves with argument 
0ot -k((oo)z travel at the phase speed v, = wo/k(wo) through 
the modulating envelope with argument Aw(t-dk/dwae0 z). 
This envelope itself travels at the slow speed 

dk dz d__(27
t- A z=const=>'= V d(27) 

known as the group velocity, for it is the velocity at which a 
packet of waves within a narrow frequency band around wo 
will travel. 

For linear media the group and phase velocities are equal: 

w = kc > V,= = C 

(28 )
V g 

V, == =C 



514 Electrodynamics-Fieldsand Waves 

E. (s, t = 0) E'cos[w(t -A)]cos[Aw(t- S)
VP VE 

Pk(wo) / 

\ /1 \ /
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Figure 7-10 In a dispersive medium the shape of the waves becomes distorted so the 
velocity of a wave is not uniquely defined. For a group of signals within a narrow 
frequency band the modulating envelope travels at the group velocity v,. The signal 
within the envelope propagates through at the phase velocity v,. 

while from Section 7-4-4 in the high-frequency limit for 
conductors, we see that 

S2=k2C2+W2 =>V,= 
k 

dw k 2 (29)
V =-=-C 

Ak w 

where the velocities only make sense when k is real so that 
w >w,. Note that in this limit 

2VgV , = (30) 

Group velocity only has meaning in a dispersive medium 
when the signals of interest are clustered over a narrow 
frequency range so that the slope defined by (27), is approxi­
mately constant and real. 

7-4-6 Polarization 

The two independent sets of solutions of Section 7-3-1 both 
have their power flow S = E x H in the z direction. One solu­
tion is said to have its electric field polarized in the x direction 
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while the second has its electric field polarized in the y direc­
tion. Each solution alone is said to be linearly polarized 
because the electric field always points in the same direction 
for all time. If both field solutions are present, the direction 
of net electric field varies with time. In particular, let us say 
that the x and y components of electric field at any value of z 
differ in phase by angle 4: 

E = Re [Ei.+ E, e'i,] e" = E, cos wti., + E, cos (wt + 4)i, 
(31) 

We can eliminate time as a parameter, realizing from (31) that 

cos wt= E2IEO 
(32) 

sin w = cos wt cos 4 - E,/E, = (E./E,) cos 4) -EE, 
sin 4 sin 4 

and using the identity that 

sin2 wt +cos 2 (jt 

21 	( 2 (EJE )2 cos 4 + (E,/E) 2 - (2E.E,/EE,) cos 4 
E 	 sin2 4 

(33) 

to give us the equation of an ellipse relating E. to E,: 
2(E 2(E 2E.E, 2 

- -cos4=sin 4 (34)
(E, ,) E.E, 

as plotted in Figure 7-1 a. As time increases the electric field 
vector traces out an ellipse each period so this general case of 
the superposition of two linear polarizations with arbitrary 
phase 4 is known as elliptical polarization. There are two 
important special cases: 

(a) 	Linear Polarization 
If E. and E, are in phase so that 4 =0, (34) reduces to 

E, E(E E, 0=>tan =-= = (35) E. E(3 

The electric field at all times is at a constant angle 6 to the x 
axis. The electric field amplitude oscillates with time along 
this line, as in Figure 7-11 b. Because its direction is always 
along the same line, the electric field is linearly polarized. 

(b) Circular Polarization 
If both components have equal amplitudes but are 90 out 

of phase, 

E,= E, = E0 , 4 = ir/2 (36) 
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E=EOi0 +E ,e i'iy 

os= i 1,0<0< E 

-E t = , 140 

0 E+ E- E o # = n E.Elliptical polarization 

Figure 7-11 (a) Two perpendicular field components with phase difference 4 have the 
tip of the net electric field vector tracing out an ellipse each period. (b) If both field 
components are in phase, the ellipse reduces to a straight line. (c) If the field 
components have the same magnitude but are 900 out of phase, the ellipse becomes a 
circle. The polarization is left circularly polarized to z-directed power flow ifthe electric 
field rotates clockwise and is (d) right circularly polarized if it rotates counterclockwise. 

(34). reduces to the equation of a circle: 

Ei+Ei=EE(37) 

The tip of the electric field vector traces out a circle as time 
evolves over a period, as in Figure 7-11c. For the upper (+) 
sign for 4 in (36), the electric field rotates clockwise while the 
negative sign has the electric field rotating counterclockwise. 
These cases are, respectively, called left and right circular 
polarization for waves propagating in the +z direction as 
found by placing the thumb of either hand in the direction of 
power flow. The fingers on the left hand curl in the direction 
of the rotating field for left circular polarization, while the 
fingers of the right hand curl in the direction of the rotating 
field for right circular polarization. Left and right circular 
polarizations reverse for waves traveling in the -z direction. 

7-4-7 Wave Propagation in Anisotropiz Media 

Many properties of plane waves have particular appli­
cations to optics. Because visible light has a wavelength on the 
order of 500 nm, even a pencil beam of light 1 mm wide is 
2000 wavelengths wide and thus approximates a plane wave. 
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Figure 7-11 

(a) Polarizers 
Light is produced by oscillating molecules whether in a 

light bulb or by the sun. This natural light is usually 
unpolarized as each molecule oscillates in time and direction 
independent of its neighbors so that even though the power 
flow may be in a single direction the electric field phase 
changes randomly with time and the source is said to be 
incoherent. Lasers, an acronym for "light amplification by 
stimulated emission of radiation," emits coherent light by 
having all the oscillating molecules emit in time phase. 

A polarizer will only pass those electric field components 
aligned with the polarizer's transmission axis so that the 
transmitted light is linearly polarized. Polarizers are made of 
such crystals as tourmaline, which exhibit dichroism-the 
selective absorption of the polarization along a crystal axis. 
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The polarization perpendicular to this axis is transmitted. 
Because tourmaline polarizers are expensive, fragile, and 

of small size, improved low cost and sturdy sheet polarizers 
were developed by embedding long needlelike crystals or 
chainlike molecules in a plastic sheet. The electric field 
component in the long direction of the molecules or crystals is 
strongly absorbed while the perpendicular component of the 
electric field is passed. 

For an electric field of magnitude Eo at angle 4 to the 
transmission axis of a polarizer, the magnitude of the trans­
mitted field is 

E, = Eo cos 4 (38) 

so that the time-average power flux density is 

<S > = 1I4Re [E(r)x A*(r)]1 
l 2 

=2 -- 4cos (39) 

which is known as the law of Malus. 

(b) Double Refraction (Birefringence) 
If a second polarizer, now called the analyzer, is placed 

parallel to the first but with its transmission axis at right 
angles, as in Figure 7-12, no light is transmitted. The 
combination is called a polariscope. However, if an anisotro­
pic crystal is inserted between the polarizer and analyzer, 
light is transmitted through the analyzer. In these doubly 
refracting crystals, light polarized along the optic axis travels 
at speed cl while light polarized perpendicular to the axis 
travels at a slightly different speed c,. The crystal is said to be 
birefringent. If linearly polarized light is incident at 450 to the 
axis, 

E(z = 0, t) = Eo(i. + i,) Re (es") (40) 

the components of electric field along and perpendicular to 
the axis travel at different speeds: 

E.(z, t) = Eo Re (e3(Wt-,,I)), kt=1w/c 
E,(z, t) = Eo Re (e'~*), A = w/c, (41) 

After exiting the crystal at z = 1, the total electric field is 

E(z = 1, t) = Eo Re [e-(e~-h'i,,+e­

= Eo Re [e(w" %1)(i. + ei( h~ i,)] (42)(42) 
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Figure 7-12 When a linearly polarized wave passes through a doubly refracting 
(birefringent) medium at an angle to the crystal axes, the transmitted light is elliptically 
polarized. 

which is of the form of (31) for an elliptically polarized wave 
where the phase difference is 

4 = (kjj-kJl= wl (43)
Cli c-

When 4 is an integer multiple of 27r, the light exiting the 
crystal is the same as if the crystal were not there so that it is 
not transmitted through the analyzer. If 4 is an odd integer 
multiple of 7r, the exiting light is also linearly polarized but 
perpendicularly to the incident light so that it is polarized in 
the same direction as the transmission axis of the analyzer, 
and thus is transmitted. Such elements are called half-wave 
plates at the frequency of operation. When 4 is an odd 
integer multiple of r/2, the exiting light is circularly 
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polarized and the crystal serves as a quarter-wave plate. 
However, only that polarization of light along the trans­
mission axis of the analyzer is transmitted. 

Double refraction occurs naturally in many crystals due to 
their anisotropic molecular structure. Many plastics and 
glasses that are generally isotropic have induced birefrin­
gence when mechanically stressed. When placed within a 
polariscope the photoelastic stress patterns can be seen. Some 
liquids, notably nitrobenzene, also become birefringent when 
stressed by large electric fields. This phenomena is called the 
Kerr effect. Electro-optical measurements allow electric field 
mapping in the dielectric between high voltage stressed elec­
trodes, useful in the study of high voltage conduction and 
breakdown phenomena. The Kerr effect is also used as a light 
switch in high-speed shutters. A parallel plate capacitor is 
placed within a polariscope so that in the absence of voltage 
no light is transmitted. When the voltage is increased the light 
is transmitted, being a maximum when 4= r. (See problem 
17.) 

7-5 NORMAL INCIDENCE ONTO A PERFECT CONDUCTOR 

A uniform plane wave with x-directed electric field is 
normally incident upon a perfectly conducting plane at z =0, 
as shown in Figure 7-13. The presence of the boundary gives 
rise to a reflected wave that propagates in the -z direction. 
There are no fields within the perfect conductor. The known 
incident fields traveling in the +z direction can be written as 

E:(z, t) = Re (Zi e '1ik ) 

Hi(z, t) = Re (E'~ Itk2) 

while the reflected fields propagating in the -z direction are 
similarly 

E,(z, t) = Re (P,e("'+Ali.) 

H,(z, t)= Re ( e e""''M'i, (2) 

where in the lossless free space 

71 = oleo, k=ae'ogo (3) 

Note the minus sign difference in the spatial exponential 
phase factors of (1) and (2) as the waves are traveling in 
opposite directions. The amplitude of incident and reflected 
magnetic fields are given by the ratio of electric field ampli­
tude to the wave impedance, as derived in Eq. (15) of Section 
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Figure 7-13 A uniform plane wave normally incident upon a perfect conductor has 
zero electric field at the conducting surface thus requiring a reflected wave. The source 
of this reflected wave is the surface current at z 0, which equals the magnetic field 
there. The total electric and magnetic fields are 90* out of phase in time and space. 

7-3-2. The negative sign in front of the reflected magnetic 
field for the wave in the -z direction arises because the power 
flow S, = E, x H, in the reflected wave must also be in the -z 
direction. 

The total electric and magnetic fields are just the sum of 
the incident and reflected fields. The only unknown 
parameter E, can be evaluated from the boundary condition 
at z =0 where the tangential component of E must be 
continuous and thus zero along the perfect conductor: 

Zi+Z,=0->Z,=-Z9i (4) 
The total fields are then the sum of the incident and reflected 
fields 

E.(z, t) = Ei (z, t) +E,(z, t) 
= Re [Ei(e* -e*k) ei ] 

= 2Ei sin kz sin wt 

H,(z, t) = Hi(z, t) +H,(z, t) 
(5)

=Re (e -jz+ e+') el"710 

2 E
 
= -- cos kz cos wt 

710 
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where we take EA = Ei to be real. The electric and magnetic 
fields are 90* out of phase with each other both in time and 
space. We note that the two oppositely traveling wave solu­
tions combined for a standing wave solution. The total solu­
tion does not propagate but is a standing sinusoidal solution 
in space whose amplitude varies sinusoidally in time. 

A surface current flows on the perfect conductor at z =0 
due to the discontinuity in tangential component of H, 

2E,
K.= H,(z =0)=- cos wt (6)

11o 

giving rise to a force per unit area on the conductor, 

F=2K x poH = 4p1oH2 (z = 0)i, =2eoE? cos 2 Wti (7) 

known as the radiation pressure. The factor of 2 arises in (7) 
because the force on a surface current is proportional to the 
average value of magnetic field on each side of the interface, 
here being zero for z = 0. 

7-6 NORMAL INCIDENCE ONTO A DIELECTRIC 

7-6-1 Lossless Dielectric 

We replace the perfect conductor with a lossless dielectric 
of permittivity 62 and permeability s, as in Figure 7-14, with 
a uniform plane wave normally incident from a medium with 
permittivity Ei and permeability jp. In addition to the 
incident and reflected fields for z <0, there are transmitted 
fields which propagate in the +z direction within the medium 
for z >0: 

E(z, t) = Re [4 ei-1)], ki= W e A, 

H(z, t)=Re[Er e(ukI,,)i Al= 
711~ 6 <0 

E,(z, t) = Re [, e(+z)(i.] 

H,.(z, t)= Re [P e "i, = 0)] (2 

E, (z, t) =Re [E, ej("2'i.]' k2 = &)_e82A2 

H,(z, t) = Re [Eu"~ :,], 12=e 7 

It is necessary in (1) to use the appropriate wavenumber 
and impedance within each region. There is no wave travel­
ing in the -z direction in the second region as we assume no 
boundaries or sources for z >0. 



Normal Incidence onto a Dielectric 523 

E , JI (I1 c1 E2 ,P2 (72 C2 

A j(-.t-k1 IZ)
E= Re(Er e is) 

ki = ki 

E= Re(E e i8 k2s) i) 

??AHi Re(E e A--ixi ) y 

k, =k2i = is 

E, =Re(E, e ji-I+kI ) 
H, = Re(Et eI(-th2zl 

H,= Re(- e' 
kr.=,-ks,=~ is 

Figure 7-14 A uniform plane wave normally incident upon a dielectric interface 
separating two different materials has part of its power reflected and part transmitted. 

The unknown quantities ^, and E, can be found from the 
boundary conditions of continuity of tangential E and H at 
z = 0, 

E +Z,= 

Zi Z, A (2) 

from which we find the reflection R and transmission T field 
coefficients as 

E 712-11R = = + 
Ei 12+711 

(3)
E, 212 

Ei 712+111 

where from (2) 

1+R=T (4) 

If both mediums have the same wave impedance, II= 2, 
there is no reflected wave. 
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7-6-2 Time-Average Power Flow 

The time-average power flow in the region z <0 is 

<S&>= - Re [E.(z)HI,*(z)] 

= Re [Z ,e-'+Z,e + +][Zie+ikI -Z,* e~h,*I 

+ _LRe [PZZ' e+2 
fz - P*Z e-201z271 a(5) 

The last term on the right-hand side of (5) is zero as it is the 
difference between a number and its complex conjugate, 
which is pure imaginary and equals 2j times its imaginary 
part. Being pure imaginary, its real part is zero. Thus the 
time-average power flow just equals the difference in the 
power flows in the incident and reflected waves as found 
more generally in Section 7-3-2. The coupling terms between 
oppositely traveling waves have no time-average yielding the 
simple superposition of time-average powers: 

<S~s > =jL[|Z;I-|Z,|2]> 2n,11 ­IEI1 2,i 2 

= [1-R ) (6)
2n, 

This net time-average power flows into the dielectric 
medium, as it also equals the transmitted power; 

=I1 Z1 2T* 1| 2 
<S,>=-|Z,|22 

. [I-R 7 
2712 2n2 271 

7-6-3 Lossy Dielectric 

If medium 2 is lossy with Ohmic conductivity a-, the solu­
tions of (3) are still correct if we replace the permittivity 62 by 
the complex permittivity i2, 

2=92 1+( 

so that the wave impedance in region 2 is complex: 

'12 = (9)(/92)
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We can easily explore the effect of losses in the low and large 
loss limits. 

(a) Low Losses 
If the Ohmic conductivity is small, we can neglect it in all 

terms except in the wavenumber k 2: 

lim k2-)(02_2ff (10) 
/W624C1 2 62 

The imaginary part of k 2 gives rise to a small rate of 
exponential decay in medium 2 as the wave propagates away 
from the z =0 boundary. 

(b) Large Losses 
For large conductivities so that the displacement current is 

negligible in medium 2, the wavenumber and impedance in 
region 2 are complex: 

k 1-j 2 

lim (11) 
/jCML2 1+1 

?12 -' -V 

The fields decay within a characteristic distance equal to the 
skin depth 8. This is why communications to submerged 
submarines are difficult. For seawater, 2 = A= 
41r X 10-7 henry/m and o- 4 siemens/m so that for 1 MHz 
signals, 8~0.25 m. However, at 100 Hz the skin depth 
increases to 25 meters. If a submarine is within this distance 
from the surface, it can receive the signals. However, it is 
difficult to transmit these low frequencies because of the large 
free space wavelength, A 3 X 106 m. Note that as the 
conductivity approaches infinity, 

lim 2 > I(12)
a-(1 12 = 0 T=( 

so that the field solution approaches that of normal incidence 
upon a perfect conductor found in Section 7-5. 

EXAMPLE 7-1 DIELECTRIC COATING 

A thin lossless dielectric with permittivity e and permeabil­
ity M is coated onto the interface between two infinite half-
spaces of lossless media with respective properties (E1, pt1) and 
(62, p2), as shown in Figure 7-15. What coating parameters e 
and M and thickness d will allow all the time-average power 
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- xe 

E2 

d K k 

H1 H2 

Region 1 Region 2 

No reflections 

if d - .L, n - 1, 3,5...
4 

and =7 V 1-72 , whereX = 2r i 

measured within the coating 

Figure 7-15 A suitable dielectric coating applied on the interface of discontinuity 
between differing media can eliminate reflections at a given frequency. 

from region 1 to be transmitted through the coating to region 
2? Such coatings are applied to optical components such as 
lenses to minimize unwanted reflections and to maximize the 
transmitted light intensity. 

SOLUTION 

For all the incident power to be transmitted into region 2, 
there can be no reflected field in region 1, although we do 
have oppositely traveling waves in the coating due to the 
reflection at the second interface. Region 2 only has positively 
z-directed power flow. The fields in each region are thus of 
the following form: 

Region 1 

E,= Re [E1 ei(i&-I)ia], ki =wm/c1= md6 I 

HI=Re Ee j(" , ~ Si=171 1 
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Coating 

E= Re [Z+ , k = wc =w 

H,=Re [,e ~'i,], 77= ­

E_= Re [Z e'('")i. 

H-=Re [ _ei(wt+k)i 

Region 2 

E2= Re [P 2 ek x], k2 =C2=(6 

H 2 =Re [E ei( ij, =
 
712 62
 

Continuity of tangential E and H at z =0 and z d requires 

1t=Z+Z+L P, E+-E_ 
711 71 

P, e'h +Z- e+'"= Z2 e-id 

Z+e-+ " -Z e _I2 e~kg 

71 712 

Each of these amplitudes in terms of Z, is then 

2\ g 

Z.=eZ(1+-Z 

Z 4 - +-.e(+ =0"de-12d t 

Writing Z. and Z_ in terms of Z1 yields 

(i+IL( ..- ~+esiki1 +) (1--..) =0 

Since this relation is complex, the real and imaginary parts 
must separately be satisfied. For the imaginary part to be zero 
requires that the coating thickness d be an integral number of 
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quarter wavelengths as measured within the coating, 

2kd=nar >d=nA/4, n=1,2,3,... 

The real part then requires 

2 71 1 1=0 n even 
\71/\( /\ n odd 

For the upper sign where d is a multiple of half-wavelengths 
the only solution is 

2=1 (d=nA/4, n=2,4,6,...) 

which requires that media 1 and 2 be the same so that the 
coating serves no purpose. If regions 1 and 2 have differing 
wave impedances, we must use the lower sign where d is an 
odd integer number of quarter wavelengths so that 

71 =1172 '71= %liq2 (d =nA/4, n =1, 3,5,,... 

Thus, if the coating is a quarter wavelength thick as measured 
within the coating, or any odd integer multiple of this thick­
ness with its wave impedance equal to the geometrical average 
of the impedances in each adjacent region, all the time-
average power flow in region 1 passes through the coating 
into region 2: 

=-1|il1|Z2 |<S,>= IE
22 71, 712 

(E+ e+3hz -Pe -k 

1~71 

271 

Note that for a given coating thickness d, there is no reflection 
only at select frequencies corresponding to wavelengths d= 
nA/4, n = 1, 3, 5 ..... For a narrow band of wavelengths 
about these select wavelengths, reflections are small. The 
magnetic permeability of coatings and of the glass used in 
optical components are usually that of free space while the 
permittivities differ. The permittivity of the coating e is then 
picked so that 

and with a thickness corresponding to the central range of the 
wavelengths of interest (often in the visible). 
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7-7 UNIFORM AND NONUNIFORM PLANE WAVES 

Our analysis thus far has been limited to waves propagating 
in the z direction normally incident upon plane interfaces. 
Although our examples had the electric field polarized in the 
x direction., the solution procedure is the same for the y-
directed electric field polarization as both polarizations are 
parallel to the interfaces of discontinuity. 

7-7-1 Propagation at an Arbitrary Angle 

We now consider a uniform plane wave with power flow at 
an angle 0 to the z axis, as shown in Figure 7-16. The electric 
field is assumed to be y directed, but the magnetic field that is 
perpendicular to both E and S now has components in the x 
and z directions. 

The direction of the power flow, which we can call z', is 
related to the Cartesian coordinates as 

z'=x sin8+z cos 0 (1) 

so that the phase factor kz' can be written as 

kz'= k,x +kz, k.= k sin 0 
k~kcos8(2)k" = k Cos 0 

where the wavenumber magnitude is 

k =(>/6 (3) 

x 

2' = x sinO + cos6 

S =iE 2k ; k =! cos 0 i,+ sin 0 i, I 
6C 

E Re(Ee i 

H = Re(! [-cosoi, + sinig, le 

Figure 7-16 The spatial dependence of a uniforrN plane wave at an arbitrary angle 8 
can be expressed in terms of a vector wavenumber k as e- , where k is in the direction 
of power flow and has magnitude o>/c. 
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This allows us to write the fields as 

E= Re [Ee1"'-xh-z=i,]
[ ](4) 

H=Re [ (-cos Oi. + sin Oei1) th.-hZ 

We note that the spatial dependence of the fields can be 
written as e- k, where the wavenumber is treated as a vector: 

k = k.i +ki,+ ki (5) 
with 

r= xi,+yi,+zi, (6) 
so that 

k - r = ,x +y +kz (7) 

The magnitude of k is as given in (3) and its direction is the 
same as the power flowS: 

AI2 
S=ExH= -(cos Gi. +sin 01.,) cos2 (ot -k -r) 

fZI2k 2 
= cos (wt-k -r) (8) 

where without loss of generality we picked the phase of Z to 
be zero so that it is real. 

7-7-2 The Complex Propagation Constant 

Let us generalize further by considering fields of the form 

E = Re [ el " e~] = Re [E ej(-1'~~r' e- ] 

H = Re [H e'" e - = Re [H ei(e-a-> . (9) 

where y is the complex propagation vector and r is the posi­
tion vector of (6): 

y=a+jk= yji.+y+,yi,+y(i1 

y - r=yx +yy + yz 

We have previously considered uniform plane waves in 
lossless media where the wavenumber k is pure real and z 
directed with a =0 so that y is pure imaginary. The 
parameter a represents the decay rate of the fields even 
though the medium is lossless. If a is nonzero, the solutions 
are called nonuniform plane waves. We saw this decay in our 
quasi-static solutions of Laplace's equation where solutions 
had oscillations in one direction but decay in the perpendic­
ular direction. We would expect this evanescence to remain at 
low frequencies. 
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The value of the assumed form of solutions in (9) is that the 
del (V) operator in Maxwell's equations can be replaced by the 
vector operator -- : 

V=--i+-i,+-i.ax ay az 

-Y(11) 

This is true because any spatial derivatives only operate on 
the exponential term in (9). Then the source free Maxwell's 
equations can be written in terms of the complex amplitudes 
as 

E-jWynA -Yx = 

-Y A E(12) 

-Y -=E0 

The last two relations tell us that y is perpendicular to both 
E and H. If we take -y x the top equation and use the second 
equation, we have 

-IX(y X i) =-joLt(y X H) = -jaj(-jwe E) 

=- ~ei (13) 

The double cross product can be expanded as 

-y X(y X f)= -y(y . I)+(y -y)i 

= -(14) 

The y - i term is zero from the third relation in (12). The 
dispersion relation is then 

-- y=(a-k2 +2jc.k)=-W ye (15) 

For solution, the real and imaginary parts of (15) must be 
separately equal: 

(16) 

a -k=O 

When a=0, (16) reduces to the familiar frequency­
wavenumber relation of Section 7-3-4. 

The last relation now tells us that evanescence (decay) in 
space as represented by a is allowed by Maxwell's equations, 
but must be perpendicular to propagation represented by k. 
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We can compute the time-average power flow for fields of 
the form of (9) using (12) in terms of either E or H as follows: 

<S>= - Re (EX ), 

,=-Re Ex .-

-'Re .E, 

- k -s i**-)I 
=- -- |L + -2 Re., 

<S>= Re (E X (7*)uatii(!*!.I-iE*(2 - E) 

\e jWE/ 

=e 9 

I k jt2_ i Re y - ft*)defnedin10 and (1),te do prdc N* s eo Sc 
2 wE ( 1-w 

Although both final expressions in (17) are equivalent, it is 
convenient to write the power flow in terms of either E or H. 
When E is perpendicular to both the real vectors eL and 0, 
defined in (10) and (16), the dot product y* - E is zero. Such a 
mode is called transverse electric (TE), and we see in (17) that 
the time-average power flow is still in the direction of the 
wavenumber k. Similarly, when H is perpendicular to a and 
13, the dot product -y - H* is zero and we have a transverse 
magnetic (TM) mode. Again, the time-average power flow in 
(17) is in the direction of k. The magnitude of k is related to w 
in (16). 

Note that our discussion has been limited to lossless 
systems. We can include Ohmic losses if we replace E by the 
complex permittivity 6 of Section 7-4-3 in (15) and (17). 
Then, there is always decay (a #0) because of Ohmic dis­
sipation (see Problem 22). 

Nonuniform Plane Waves 

We can examine nonuniform plane wave solutions with 
nonzero a by considering a current sheet in the z =0 plane, 
which is a traveling wave in the x direction: 

K.(z = 0) = Ko cos (wt - kx) = Re (Ko e" j( k~x)) (18) 
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The x-directed surface current gives rise to a y-directed 
magnetic field. Because the system does not depend on the y 
coordinate, solutions are thus of the following form:

{ Re(Hji elo'e*I), z>O 

Re(H 2eJ 'e~), z<0 
A. (19) 

Re - 1xH i, e 'J, z>0 

E=jw 

Re [-7'2 e,-W.2.e2r], z<0 

where 'y and Y2 are the complex propagation vectors on each 
side of the current sheet: 

Y.=ylxl (20) 

72 = Y2xix + Y2ziz( 

The boundary condition of the discontinuity of tangential H 
at z =0 equaling the surface current yields 

-A, e~,' + A2 e-^2-' = Ko e-i"- (21) 

which tells us that the x components of the complex prop­
agation vectors equal the trigonometric spatial dependence of 
the surface current: 

Yi. = Y2. =jk. (22) 

The z components of'yi and Y2 are then determined from (15) 
as 

. 2 2 W6 >Y 2 (k 2IA11
Vx + Vz = -W~p -i *'(kY (23) 

If k2< W26/i, y, is pure imaginary representing propagation 
and we have uniform plane waves. If k2 >w2es, then y, is 
pure real representing evanescence in the z direction so that 
we generate nonuniform plane waves. When w =0, (23) cor­
responds to Laplacian solutions that oscillate in the x direc­
tion but decay in the z direction. 

The z component of y is of opposite sign in each region, 

Y1.= -Y2.=+(k2 -2614)1/2 (24) 

as the waves propagate or decay away from the sheet. 
Continuity of the tangential component of E requires 

l.H= 2.H2=' H2 = -H, = Ko/2 (25) 

If k.=0, we re-obtain the solution of Section 7-4-1. 
Increasing k. generates propagating waves with power flow in 
the kji. A kai. directions. At ki = w 2e, k = 0 so that the power 
flow is purely x directed with no spatial dependence on z. 
Further increasing k. converts k. to a,, as y. becomes real and 
the fields decay with z. 
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7-8 OBLIQUE INCIDENCE ONTO A PERFECT CONDUCTOR 

7-8-1 E Field Parallel to the Interface 

In Figure 7-17a we show a uniform plane wave incident 
upon a perfect conductor with power flow at an angle 9, to 
the normal. The electric field is parallel to the surface with 
the magnetic field having both x and z components: 

Ei = Re [Z, e""~*j(1-ixki,]i' 
(1) 

Hi = Re [-L(-cos 9ai. +sin i ) e"~ 

where 

k 2=k sin O k (2) 
k2i=k cos 6 

x 

H, 

Ek, 

0= 1 

- Z 

Oi 

0, 0,
E. kr C'U 

Hi (aa) 

Hr 

. H, 

k, 

E, 

k,
 
. 0, =Or
 

Hj
 

(b) 

Figure 7-17 A uniform plane wave obliquely incident upon a perfect conductor has its 
angle of incidence equal to the angle of reflection. (a) Electric field polarized parallel to 
the interface. (b) Magnetic field parallel to the interface. 
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There are no transmitted fields within the perfect conductor, 
but there is a reflected field with power flow at angle ,. from 
the interface normal. The reflected electric field is also in the 
y direction so the magnetic field, which must be perpendic­
ular to both E and S = E x H, is in the direction shown in 
Figure 7-17a: 

E, = Re [E, e"~*k-x"+-'Zi,I ( 

H, = Re [r(cos ,.i. +sin 6,i,) 

where the reflected wavenumbers are 

kx,= k sin 0, 

k,,=k cos 0, (4) 

At this point we do not know the angle of reflection 0, or 
the reflected amplitude E,. They will be determined from the 
boundary conditions at z =0 of continuity of tangential E and 
normal B. Because there are no fields within the perfect 
conductor these boundary conditions at z =0 are 

Z e A' +Z4er-C =0 
(5) 

-(Z. sin Oie A-j'+Z4 sin 0, e'"')=0 

These conditions must be true for every value of x along z = 0 
so that the phase factors given in (2) and (4) must be equal, 

k. = k.>9,> =60,= (6) 

giving the well-known rule that the angle of incidenceequals the 
angle of reflection. The reflected field amplitude is then 

Z,= Ei (7) 

with the boundary conditions in (5) being redundant as they 
both yield (7). The total fields are then: 

E, = Re [Z (eikA - e+k-) e1(G~k-z)] 

= 2Ej sin kz sin (w --kx) 

H=Re [f![cos 6(-e Ajk -e +k-)i,+sin G(e '' 

(8)-e +k. )i1j e (t-k.-

2E,
=-[-cos 0cos k~z cos (t - kx)ix

77 

+sin 0 sin kz sin (wt -kx)i. 

where without loss of generality we take e to be real. 
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We drop the i and r subscripts on the wavenumbers and 
angles because they are equal. The fields travel in the x 
direction parallel to the interface, but are stationary in the z 
direction. Note that another perfectly conducting plane can 
be placed at distances d to the left of the interface at 

kd= nir (9) 
where the electric field is already zero without disturbing the 
solutions of (8). The boundary conditions at the second 
conductor are automatically satisfied. Such a structure is called 
a waveguide and is discussed in Section 8-6. 

Because the tangential component of H is discontinuous at 
z =0, a traveling wave surface current flows along the inter­
face, 

14=-H2E, 
K, =H(z = 0)=- cosO cos (wt- kx) (10)

1 

From (8) we compute the time-average power flow as 

<S > = 1 Re [E(x, z) x H*(x, z)] 

2EE 
= 2 sin 0 sin 2 kzi, 11 

1 

We see that the only nonzero power flow is in the direction 
parallel to the interfacial boundary and it varies as a function 
of z. 

7-8-2 H Field Parallel to the Interface 

If the H field is parallel to the conducting boundary, as in 
Figure 7-17b, the incident and reflected fields are as follows: 

Ei = Re [Ei (cos 6ii. -sin e i.) e - k4] 

Hi = Re e""'~*** **zi 

E, = Re [E, (-cos Ori, -sin 9, i) et x-k'z)] (12) 

H, = Re e 

The tangential component of E is continuous and thus zero 
at z = 0: 

E cos Oi e-s*k -Z cos , e =0 (13) 

There is no normal component of B. This boundary condi­
tion must be satisfied for all values of x so again the angle of 
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incidence must equal the angle of reflection (0, = 6,) so that 

Z4 =Z, (14) 

The total E and H fields can be obtained from (12) by adding 
the incident and reflected fields and taking the real part; 

E = Re {Zi [cos 0(e -'' - e+j-)i. 

-sin 6(eik.Z +e+jkj)i,] e(W~-ikX } 

= 2E{cos 0 sin kzz sin (wt - kx)i. 

- sin 0 cos k.z cos (wt - kx)i} ( 

H = Re (ei'. +e +Ik)ei(t -k.X)i] 

2E, 
=- - cos kaz cos (wt - kxx)i, 

The surface current on the conducting surface at z =0 is 
given by the tangential component of H 

2E,
K.(z = 0)= H,(z = 0)= --- cos (wt - kx) (16)

1 

while the surface charge at z = 0 is proportional to the normal 
component of electric field, 

o-f(z = 0) = -eEz(z = 0) = 2eE, sin 0 cos (wt - k.x) (17) 

Note that (16) and (17) satisfy conservation of current on the 
conducting surface, 

V.- K + =0 -+- 0 (18)
at ax at 

where 

VY=-ix +-iY 
ax ay 

is the surface divergence operator. The time-average power 
flow for this polarization is also x directed: 

<S>= 2- Re (i x AI*) 
2E2=2 sin 0 COS2 kjzi, (19) 
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7-9 OBLIQUE INCIDENCE ONTO A DIELECTRIC 

7-9-1 E Parallel to the Interface 

A plane wave incident upon a dielectric interface, as in 
Figure 7-18a, now has transmitted fields as well as reflected 
fields. For the electric field polarized parallel to the interface, 
the fields in each region can be expressed as 

E = Re [EZ ei(--kzzi, 

H; = Re (-cos 0i. +sin 0ai.) 

E, = Re [, e'( k-x+k-) i,( 

H, = Re [,-(cos ,i. +sin Oi.) e 
Nli 

E, = Re [E, e ~k",X,, 

H,= Re [.L(-cos 6,i +sin ji2 ) 
L12 

where 8i, 8,, and 6, are the angles from the normal of the 
incident, reflected, and transmitted power flows. The 
wavenumbers in each region are 

k Ai=k k, =k1 k=k2 sin, (2)sin 0, sin 6,, 

ki =kIcos , =k Icos 0,, k,= k2 cos , 

where the wavenumber magnitudes, wave speeds, and wave 
impedances are 

ki , 2 , CI= 

77-= 772 C2
61 E2 1/E2A2 

The unknown angles and amplitudes in (1) are found from 
the boundary conditions of continuity of tangential E and H 
at the z =0 interface. 

Zi e -'k-i- +t -s- =4$ e-s 

- Z. cos , e -'kx + ,.cos 0,-e Z, cos 0, e -kx( 

These boundary conditions must be satisfied point by point 
for all x. This requires that the exponential factors also be 
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1, p1 2 2 

c,= 1 x 2 

kt 
H, Et 

E. k, H 

E, e
0 0, 

C2 =,/El JAI 

HH, H1 . 

Hi 

sin0, =f sin Of
C1 

Figure 7-18 A uniform plane wave obliquely incident upon a dielectric interface also 
has its angle of incidence equal to the angle of reflection while the transmitted angle is 
given by Snell's law. (a) Electric field polarized parallel to the interface. (b) Magnetic 
field parallel to the interface. 

equal so that the x components of all wavenumbers must be 
equal, 

,= k, = k.1 k1 sin O= k1 sin 0, = k 2 sin 0, (5) 

which relates the angles as 

E, =, (6) 

sin 6, = (c 2/c ) sin 6 (7) 7
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As before, the angle of incidence equals the angle of 
reflection. The transmission angle obeys a more complicated 
relation called Snell's law relating the sines of the angles. The 
angle from the normal is largest in that region which has the 
faster speed of electromagnetic waves. 

In optics, the ratio of the speed of light in vacuum, co= 
11/le-A, to the speed of light in the medium is defined as the 
index of refraction, 

ni=co/ci, n2 =co/c 2 (8) 

which is never less than unity. Then Snell's law is written as 

sin 0, = (n1 /n 2) sin 0, (9) 

With the angles related as in (6), the reflected and transmitted 
field amplitudes can be expressed in the same way as for 
normal incidence (see Section 7-6-1) if we replace the wave 
impedances by 71 ->71/cos 0 to yield 

'12 711 

E, cos 0, cos 0,
R = 2, 

Ei 712 71i 
cos 6, cos 0, 

2C O2
Z, 2712 

+71cos 0 E c + 7CO(128 
(COs 0, +O i 

712 cos 0 - 711 cos 0S 

12 cos ,+71 cos O, 

2 2 COSs 8i (1 0 )
2712 COS Oi 

712 cos i 

In (4) we did not consider the boundary condition of 
continuity of normal B at z =0. This boundary condition is 
redundant as it is the same condition as the upper equation in 
(4): 

M-(Zi+,) s sin 0, >(1i+Z4) =4Z (11)
771 712 

where we use the relation between angles in (6). Since 

A161si , 
711 C1 

the trigonometric terms in (11) 
There is no normal component 
continuous across the interface. 

7-9-2 Brewster's Angle of No Reflection 

$=L262 = (12) 
712 C2 

cancel due to Snell's law. 
of D so it is automatically 

We see from (10) that at a certain angle of incidence, there 
is no reflected field as R =0. This angle is called Brewster's 
angle: 

R = 0 >12 cos 0, = 1i cos O, (13) 



Oblique Incidence onto a Dielectric 541 

By squaring (13), replacing the cosine terms with sine terms 
(cos 2 = 1 -sin 2), and using Snell's law of (6), the Brewster 
angle OB is found as 

s2n2 1-291/(EII2) (14) )1 -(OAI/Is 2 

There is not always a real solution to (14) as it depends on the 
material constants. The common dielectric case, where 1L, = 

A2 sj but ei E2, does not have a solution as the right-hand 
side of (14) becomes infinite. Real solutions to (14) require the 
right-hand side to be between zero and one. A Brewster's 
angle does exist for the uncommon situation where E1 = E2 
and P # 2: 

sin2 OB 1 =tan 8=JB (15)
I+PI/P2 Al 

At this Brewster's angle, the reflected and transmitted power 
flows are at right angles (OB + 0, = ir/2) as can be seen by using 
(6), (13), and (14): 

cos (OB + 01) = cos OB cos 0, - sin OB sin 0, 

2 e sin2 A 

Ar A2 
= cos 

-sin2 + =0) (16)
Ai A2 A I 

7-9-3 Critical Angle of Transmission 

Snell's law in (6) shows us that if c2 >cI, large angles of 
incident angle B, could result in sin 0, being greater than 
unity. There is no real angle 0, that satisfies this condition. 
The critical incident angle 0, is defined as that value of Oi that 
makes 0, = ir/2, 

sin6, =c1Ic 2 (17) 

which has a real solution only if c I<c 2. At the critical angle, 
the wavenumber k., is zero. Lesser incident angles have real 
values of k.. For larger incident angles there is no real angle 0, 
that satisfies (6). Snell's law must always be obeyed in order to 
satisfy the boundary conditions at z =0 for all x. What 
happens is that 0, becomes a complex number that satisfies 
(6). Although sin 0, is still real, cos 0, is imaginary when sin 0, 
exceeds unity: 

cos 0, = (18)(18) 
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This then makes k,, imaginary, which we can write as 

ka = k2 cos0,= -ja (19) 

The negative sign of the square root is taken so that waves 
now decay with z: 

E, = Re [A ei'*ie-"i,] 
A (20) 

H, = Re [:(-cos Oi. +sin 0,i.) e'(*Iklx) e z 

The solutions are now nonuniform plane waves, as discussed 
in Section 7-7. 

Complex angles of transmission are a valid mathematical 
concept. What has happened is that in (1) we wrote our 
assumed solutions for the transmitted fields in terms of pure 
propagating waves. Maxwell's equations for an incident angle 
greater than the critical angle require spatially decaying 
waves with z in region 2 so that the mathematics forced k. to 
be imaginary. 

There is no power dissipation since the z-directed time-
average power flow is zero, 

<S,>= - Re [EH*] 

- Re ,)* e~ ](-COS (21) 

because cos 0, is pure imaginary so that the bracketed term in 
(21) is pure imaginary. The incident z-directed time-average 
power is totally reflected. Even though the time-averaged 
z-directed transmitted power is zero, there are nonzero but 
exponentially decaying fields in region 2. 

7-9-4 H Field Parallel to the Boundary 

For this polarization, illustrated in Figure 7-18b, the fields 
are 

Ej = Re [.Zi (cos 8gi. -sin ,i.) e3"'~k*i~k**)] 

Hi = Re [:L e(w-k.j--z)i
711 

E, = Re [#, (-cos Oi. -sin 0,i,) eu' k'""kz] 
(22)A 

H, = Re [L e"'(8-k-" i, 

E, = Re [Z, (cos Gi. -sin 0J,.) e'(~'"~xk-")] 

H, = Re [LeiC'~*t"-u)i
712 
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where the wavenumbers and impedances are the same as in 
(2) 	and (3). 

Continuity of tangential E and H at z =0 requires 

Ei COS O: e-"-x - Z, COS 0, e -"= COS 0, e­

Z4 e -A*- +4 e -'k- 4 e ik-x (23) 

771 112 

Again the phase factors must be equal so that (5) and (6) are 
again true. Snell's law and the angle of incidence equalling 
the angle of reflection are independent of polarization. 

We solve (23) for the field reflection and transmission 
coefficients as 

Z, 711 COS Oi - 712 COS 01
R 	=,c (24)

E 12 cos 0+l IcosG1 

E, 212 cosG
T = G c 	 (25)

Ej 'q2 COS O CO O6+Q Io 

Now we note that the boundary condition of continuity of 
normal D at z =0 is redundant to the lower relation in (23), 

eIE1 sin 9, + 1ZE, sin ,.= E2 E, sin G, (26) 

using Snell's law to relate the angles. 
For this polarization the condition for no reflected waves is 

R = 0 >q2cos 0, =q Icos Oi (27) 

which from Snell's law gives the Brewster angle: 

2 1- 6 1 2/(E21L1) (28) 
1- (e 1/2) 

There is now a solution for the usual case where /A I= p2 but 
El 0 E2: 

sin2 OB =>tan OB = - (29)
1+61/62e 

At this Brewster's angle the reflected and transmitted power 
flows are at right angles (GB + 0,) = r/2 as can be seen by using 
(6), (27), and (29) 

cos (GB + 0,) = cos OB cos , -sin GB sin 0, 

2=cos GB -sl2B 
E 62 

= 	jL - sin2 9(VfTI , )E o (30) 
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Because Snell's law is independent of polarization, the 
critical angle of (17) is the same for both polarizations. Note 
that the Brewster's angle for either polarization, if it exists, is 
always less than the critical angle of (17), as can be particularly 
seen when p I= 142 for the magnetic field polarized parallel to 
the interface or when 1 = E2 for the electric field polarized 
parallel to the interface, as then 

1 	 1 
2 +1 (31)

sin eB 	 sin2, 

7-10 APPLICATIONS TO OPTICS 

Reflection and refraction of electromagnetic waves 
obliquely incident upon the interface between dissimilar 
linear lossless media are governed by the two rules illustrated 
in Figure 7-19: 

(i) The angle of incidence equals the angle of reflection. 
(ii) 	 Waves incident from a medium of high light velocity 

(low index of refraction) to one of low velocity (high 
index of refraction) are bent towards the normal. If the 
wave is incident from a low velocity (high index) to high 
velocity (low index) medium, the light is bent away from 
the normal. The incident and refracted angles are 
related by Snell's law. 

S, H, 

e2, IA2 

eopo 
el.* U E 

95 	 sinO, =!I i~ 

(Snell's law) 

Si 

Ej 

HI 

Figure 7-19 A summary of reflection and refraction phenomena across the interface 
separating two linear media. When 0j = OB (Brewster's angle), there is no reflected ray. 
When 0, >9, (critical angle), the transmitted fields decay with z. 
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Most optical materials, like glass, have a permeability of 
friee space s~o. Therefore, a Brewster's angle of no reflection 
only exists if the H field is parallel to the boundary. 

At the critical angle, which can only exist if light travels 
from a high index of refraction material (low light velocity) to 
one of low index (high light velocity), there is a transmitted 
field that decays with distance as a nonuniform plane wave. 
However, there is no time-average power carried by this 
evanescent wave so that all the time-average power is 
reflected. This section briefly describes various applications of 
these special angles and the rules governing reflection and 
refraction. 

7-10-1 Reflections from a Mirror 

A person has their eyes at height h above their feet and a 
height Ah below the top of their head, as in Figure 7-20. A 
mirror in front extends a distance Ay above the eyes and a 
distance y below. How large must y and Ay be so that the 
person sees their entire image? The light reflected off the 
person into the mirror must be reflected again into the 
person's eyes. Since the angle of incidence equals the angle of 
reflection, Figure 7-20 shows that Ay = Ah/2 and y =h/2. 

7-10-2 Lateral Displacement of a Light Ray 

A light ray is incident from free space upon a transparent 
medium with index of refraction n at angle 0,, as shown in 
Figure 7-21. The angle of the transmitted light is given by 
Snell's law: 

sin 0, =(1/n) sin Oi (1) 

A h AY =_A~y2 

hT 

Mirror 

Figure 7-20 Because the angle of incidence equals the angle of reflection, a person can 
see their entire image if the mirror extends half the distance of extent above and below 
the eyes. 
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S=dsin(O;-0t)

Cos s=
 

-d-

Figure 7-21 A light ray incident upon a glass plate exits the plate into the original 
medium parallel to its original trajectory but laterally displaced. 

When this light hits the second interface, the angle 0, is now 
the incident angle so that the transmitted angle 02 is again 
given by Snell's law: 

sin 02 =n sin 0, = sin Oi (2) 

so that the light exits at the original incident angle 8,. 
However, it is now shifted by the amount: 

d sin (G,-0) (3) 
cos 8, 

If the plate is glass with refractive index n = 1.5 and thickness 
d = 1 mm with incident angle 8, = 30*, the angle 0, in the glass 
is 

sin 0, = 0.33> , = 19.5* (4) 

so that the lateral displacement is s = 0.19 mm. 

7-10-3 Polirization By Reflection 

Unpolarized light is incident upon the piece of glass in 
Section 7-10-2 with index of refraction n = 1.5. Unpolarized 
light has both E and H parallel to the interface. We assume 
that the permeability of the glass equals that of free space and 
that the light is incident at the Brewster's angle OB for light 
polarized with H parallel to the interface. The incident and 
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transmitted angles are then 

tanOB= IE=fnl>0= 56. 3 

(5)
tan 6, = Vo/E = 1I/n 0, = 33.7' 

The Brewster's angle is also called the polarizing angle 
because it can be used to separate the two orthogonal 
polarizations. The polarization, whose H field is parallel to 
the interface, is entirely transmitted at the first interface with 
no reflection. The other polarization with electric field 
parallel to the interface is partially transmitted and reflected. 
At the second (glass-free space) interface the light is incident 
at angle 0,. From (5) we see that this angle is the Brewster's 
angle with H parallel to the interface for light incident from 
the glass side onto the glass-free space interface. Then again, 
the H parallel to the interface polarization is entirely trans­
mitted while the E parallel to the interface polarization is 
partially reflected and partially transmitted. Thus, the 
reflected wave is entirely polarized with electric field parallel 
to the interface. The transmitted waves, although composed 
of both polarizations, have the larger amplitude with H 

E 

S H 
H 

0) E 

Polarized light Partially polarized
(E parallel to interface)l\ (mostly H parallel 

to the interface) 

/ 
.. ft 

Unpolarized 
light 

(E and H parallel 
to interface) 

Figure 7-22 Unpolarized light incident upon glass with A =yAO can be polarized by 
reflection if it is incident at the Brewster's angle for the polarization with H parallel to 
the interface. The transmitted light becomes more polarized with H parallel to the 
interface by adding more parallel glass plates. 
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parallel to the interface because it was entirely transmitted 
with no reflection at both interfaces. 

By passing the transmitted light through another parallel 
piece of glass, the polarization with electric field parallel to 
the interface becomes further diminished because it is par­
tially reflected, while the other polarization is completely 
transmitted. With more glass elements, as in Figure 7-22, the 
transmitted light can be made essentially completely 
polarized with H field parallel to the interface. 

7-10-4 Light Propagation In Water 

(a) Submerged Source 
A light source is a distance d below the surface of water 

with refractive index n = 1.33, as in Figure 7-23. The rays 
emanate from the source as a cone. Those rays at an angle 
from the normal greater than the critical angle, 

sin 6, = 1/n >0, = 48.80 (6) 

are not transmitted into the air but undergo total internal 
reflection. A circle of light with diameter 

D = 2d tan6O - 2.28d (7) 

then forms on the water's surface due to the exiting light. 

(b) Fish Below a Boat 
A fish swims below a circular boat of diameter D, as in 

Figure 7-24. As we try to view the fish from the air above, the 
incident light ray is bent towards the normal. The region 
below the boat that we view from above is demarcated by the 
light rays at grazing incidence to the surface (, = r/2) just 
entering the water (n = 1.33) at the sides of the boat. The 
transmitted angle of these light rays is given from Snell's law 
as 

sinG1 1 
sin 6,= s =-6, = 48.8* (8) 

n n 

D = 2dtanOc. 

sin c 

Figure 7-23 Light rays emanating from a source within a high index of refraction 
medium are totally internally reflected from the surface for angles greater than the 
critical angle. Lesser angles of incidence are transmitted. 
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nt8 
D 

Y 2tanO 

Figure 7-24 A fish cannot be seen from above if it swims below a circular boat within 
the cone bounded by light rays at grazing incidence entering the water at the side of the 
boat. 

These rays from all sides of the boat intersect at the point a 
distance y below the boat, where 

D D 
tan O, =->y = - -0.44D (9)

2y 2 tan 0, 

If the fish swims within the cone, with vertex at the point y 
below the boat, it cannot be viewed from above. 

7-10-5 Totally Reflecting Prisms 

The glass isoceles right triangle in Figure 7-25 has an index 
of refraction of n = 1.5 so that the critical angle for total 

45 

no=1 

<st> 2 Y 
<-s -> n+ I 

Figure 7-25 A totally reflecting prism. The index of refraction n must exceed v 2 so 
that the light incident on the hypotenuse at 450 exceeds the critical angle. 
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internal reflection is 

1 1 
sin =-=-=>6, = 41.80 (10)

n 1.5 

The light is normally incident on the vertical face of the 
prism. The transmission coefficient is then given in Section 
7-6-1 as 

E, 2n 2/n 2T,=,= -= = =0.8 (11)
E i7+tjo 1+1/n n+1 

where because the permeability of the prism equals that of 
free space n = v jE while 1/1o = Veo/e 1= /n. The transmitted 
light is then incident upon the hypotenuse of the prism at an 
angle of 45*, which exceeds the critical angle so that no power 
is transmitted and the light is totally reflected being turned 
through a right angle. The light is then normally incident 
upon the horizontal face with transmission coefficient: 

E2 2no 2 2n 
T2= -- =-=-= = 1.2 (12)

0.8Ej 71+,o I/n+I n+I 

The resulting electric field amplitude is then 

Z2 = T, T2E, = 0.961i (13) 

The ratio of transmitted to incident power density is 

<S> |2|1t21/170 |Z2|2 2 
ZS2iE2= 12/ 10 = 24 ~ 0.92 (14) 

This ratio can be increased to unity by applying a quarter­
wavelength-thick dielectric coating with index of refraction 
ncoating= .hn, as developed in Example 7-1. This is not usually 
done because the ratio in (14) is already large without the 
expense of a coating. 

7-10-6 Fiber Optics 

(a) Straight Light Pipe 
Long hin fibers of transparent material can guide light 

along a straight path if the light within the pipe is incident 
upon the wall at an angle greater than the critical angle 
(sin 0, = 1/n): 

sin 62 =cos 0,a sin 0, (15) 

The light rays are then totally internally reflected being 
confined to the pipe until they exit, as in Figure 7-26. The 
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no = 1 

Figure 7-26 The index of refraction of a straight light pipe must be greater than N2 for 
total internal reflections of incident light at any angle. 

incident angle is related to the transmitted angle from Snell's 
law, 

sin 0, =(1/n) sin Oi (16) 

so that (15) becomes 

cos 0, = %/- =(I /n2) sing uj 1/n (17) 

which when solved for n yields 

n 2 -1+sin 20 (18) 

If this condition is met for grazing incidence (, = r/2), all 
incident light will be passed by the pipe, which requires that 

n2 22=n 2- (19) 

Most types of glass have n - 1.5 so that this condition is easily 
met. 

(b) Bent Fibers 
Light can also be guided along a tortuous path if the fiber is 

bent, as in the semi-circular pipe shown in Figure 7-27. The 
minimum angle to the radial normal for the incident light 
shown is at the point A. This angle in terms of the radius of 
the bend and the light pipe width must exceed the critical angle 

R 
sinBA=R dsinO. (20) 

A R +d 

R 

Figure 7-27 Light can be guided along a eircularly bent fiber if Rid > 1/(n - 1) as then 
there is always total internal reflection each time the light is incident on the walls. 
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so that 

Rd 1- (21)
R/d+l n 

which when solved for Rid requires 

R 1 
- , (22)d n -I 

PROBLEMS 

Section 7-1 
1. For the following electric fields in a linear media of 
permittivity e and permeability ji find the charge density, 
magnetic field, and current density. 

(a) E = Eo(xi. +yi,) sin wt 
(b) E= Eo(yi. -xi,) cos wt 
(c) E = Re [Eoe "-zzi,. How must k., k,, and w be 

related so that J =0? 

2. An Ohmic conductor of arbitrary shape has an initial 
charge distribution po(r) at t = 0. 

(a) What is the charge distribution for all time? 
(b) The initial charge distribution is uniform and is 

confined between parallel plate electrodes of spacing d. What 
are the electric and magnetic fields when the electrodes are 
opened or short circuited? 

(c) Repeat (b) for coaxial cylindrical electrodes of inner 
radius a and outer radius b. 

(d) When does a time varying electric field not generate a 
magnetic field? 

3. (a) For linear media of permittivity s and permeability U, 
use the magnetic vector potential A to rewrite Faraday's law 
as the curl of a function. 

(b) Can a scalar potential function V be defined? What is 
the electric field in terms of V and A? The choice of V is not 
unique so pick V so that under static conditions E = -V V. 

(c) Use the results of (a) and (b) in Ampere's law with 
Maxwell's displacement current correction to obtain a single 
equation in A and V. (Hint: V x (V x A) = V(V - A) -V 2A.) 

(d) Since we are free to specify V - A, what value should we 
pick to make (c) an equation just in A? This is called setting 
the gauge. 

(e) Use the results of (a)-(d) in Gauss's law for D to obtain a 
single equation in V. 
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(f) Consider a sinusoidally varying point charge at r =0, 
Qe'. Solve (e) for r >0. 

Hint: 
I a ('2a a'3 

-- r- =-g(rV),rT rVr ar ar 

Define a new variable (rV). By symmetry, V only depends on r 
and waves can only propagate away from the charge and not 
towards it. As r -> 0, the potential approaches the quasi-static 
Coulomb potential. 

Section 7-2 
4. Poynting's theorem must be modified if we have a 
hysteretic material with a nonlinear and double-valued rela­
tionship between the polarization P and electric field E and 
the magnetization M and magnetic field H. 

Pr M 

(a) For these nonlinear constitutive laws put Poynting's 
theorem in the form 

awV S+-= -Pd - PP - PMat 

where Pp and PM are the power densities necessary to 
polarize and magnetize the material. 

(b) Sinusoidal electric and magnetic fields E = E, cos wt and 
H = H. cos wt are applied. How much energy density is dis­
sipated per cycle? 

5. An electromagnetic field is present within a superconduc­
tor with constituent relation 

=Jf 2E 
at 

(a) Show that Poynting's theorem can be written in the 
form 

V.S+ -=0 
at 

What is w? 
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(b) What is the velocity of the charge carriers each with 
charge q in terms of the current density J1? The number 
density of charge carriers is n. 

(c) What kind of energy does the superconductor add? 
(d) Rewrite Maxwell's equations with this constitutive law 

for fields that vary sinusoidally with time. 
(e) Derive the complex Poynting theorem in the form 

V - [it(r) x H*(r)]+2jw<w >= 0 

What is <w>? 

6. A paradoxical case of Poynting's theorem occurs when a 
static electric field is applied perpendicularly to a static 
magnetic field, as in the case of a pair of electrodes placed 
within a magnetic circuit. 

y -* 0 

y 

(a) What are E, H, and S? 
(b) What is the energy density stored in the system? 
(c) Verify Poynting's theorem. 

'7. The complex electric field amplitude has real and 
imaginary parts 

E(r) = E,.+jE2 

Under what conditions are the following scalar and vector 
products zero: 

(a) i - 10O 
(b) E - E*0 
(c) E xEA 0 
(d) EXE*I0 

Section 7.3 
8. Consider a lossy medium of permittivity a, permeability p., 
and Ohmic conductivity o. 

(a) Write down the field equations for an x-directed elec­
tric field. 
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(b) Obtain a single equation in E.. 
(c) If the fields vary sinusoidally with time, 

E.= Re [Z.(z) e"I 

what are the spatial dependences of the fields? 
(d) Specialize (c) to the (i) low loss limit (-/wis < 1) and (ii) 

large loss limit (o-/we >>1). 
(e) Repeat (a)-(c) if the medium is a plasma with constitu­

tive law 
aJ2 EE 
at 

(f) A current sheet Ko cos wti. is placed at z = 0. Find the 
electric and magnetic fields if the sheet is placed within an 
Ohmic conductor or within a plasma. 

9. A uniformly distributed volume current of thickness 2d, 
Jo cos wti., is a source of plane waves. 

| E0, 11 0 

- -2d ­

(a) From Maxwell's equations obtain a single differential 
equation relating E, to J.. 

(b) Find the electric and magnetic fields within and outside 
the current distribution. 

(c) How much time-average power per unit area is 
delivered by the current? 

(d) How does this generated power compare to the elec­
tromagnetic time-average power per unit area leaving the 
volume current at z =*d? 

10. A TEM wave (E., H,) propagates in a medium whose 
permittivity and permeability are functions of z, e(z), and 
IA(z). 

(a) Write down Maxwell's equations and obtain single 
partial differential equations in E. and H,.

(b) Consider the idealized case where e(z)=Ee" 1 and 
A(z)=s e-"Iz'. A current sheet Koe"'i, is at z =0. What are 
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the resulting electric and magnetic fields on each side of the 
sheet? 

(c) For what values of a are the solutions spatially 
evanescent or oscillatory? 

11. We wish to compare various measurements between two 
observers, the second moving at a constant velocity vi, with 
respect to the first. 

(a) The first observer measures simultaneous events at two 
positions z1 and so that i = t2. What is the time interval 
between the two events t' -t2 as measured by the second 
observer? 

z2 

(b) The first observer measures a time interval AL = tl -t2 
between two events at the same position z. What is the time 
interval as measured by the second observer? 

(c) The first observer measures the length of a stick as 
L =Z - zI. What is the length of the stick as measured by the 
second observer? 

12. A stationary observer measures the velocity of a particle 
as u = Ui.+ ui, + ui. 

(a) What velocity, u'=u'i.+u'i,+u'i,, does another 
observer moving at constant speed vi, measure? 

(b) Find u' for the following values of u where co is the free 
space speed of light: 

(i) U= coi. 
(ii) u= Coi, 

(iii) u=coi. 
(iv) u= (co/hF)[i.+i,+i.j 

(c) Do the results of (a) and (b) agree with the postulate 
that the speed of light for all observers is co? 

Section 7.4 
13. An electric field is of the form 

E= 100 ej(2wx 106-2.x1o2)i, volts/M 

(a) What is the frequency, wavelength, and speed of light 
in the medium? 

(b) If the medium has permeability go = 47r x 10~ 7 henry/m, 
what is the permittivity e, wave impedance q, and the magnetic 
field? 

(c) How much time-average power per unit area is carried 
by the wave? 

14. The electric field of an elliptically polarized plane wave in 
a medium with wave impedance q is 

E = Re (E.0i. + E,0 e'i,) e j(wiA) 

where E.o and Eo are real. 
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(a) What is the magnetic field? 
(b) What is the instantaneous and time-average power flux 

densities? 

15. In Section 3-1-4 we found that the force on one of the 
charges Q of a spherical atomic electric dipole of radius Ro is 

QF=Q E- Qd14reoRSJ 

where d is the dipole spacing. 
(a) Write Newton's law for this moveable charge with mass 

M assuming that the electric field varies sinusoidally with time 
as Eocoswt and solve for d. (Hint: Let 0= Q2/(M47rsoR0).) 

(b) What is the polarization P as a function of E if there are 
N dipoles per unit volume? What is the frequency dependent 
permittivity function e(w), where 

D(r) = s(w)E(r) 

This model is often appropriate for light propagating in 
dielectric media. 

(c) Use the results of (b).in Maxwell's equations to find the 
relation between the wavenumber k and frequency w. 

(d) For what frequency ranges do we have propagation or 
evanescence? 

(e) What are the phase and group velocities of the waves? 
(f) Derive the complex Poynting's theorem for this dis­

persive dielectric. 

16. High-frequency wave propagation in the ionosphere is 
partially described by the development in Section 7-4-4 except 
that we must include the earth's dc magnetic field, which we 
take to be Hoi,. 

(a) The charge carriers have charge q and mass m. Write the 
three components of Newton's force law neglecting collisions 
but including inertia and the Coulomb-Lorentz force law. 
Neglect the magnetic field amplitudes of the propagating 
waves compared to Ho in the Lorentz force law. 

(b) Solve for each component of the current density J in 
terms of the charge velocity components assuming that the 
propagating waves vary sinusoidally with time as e 
Hint: Define 

wou qj~toHo2 q2n , yo­. =_ 
me m 

(c) Use the results of (b) in Maxwell's equations for fields of 
the form e !t('*-kz) to solve for the wavenumber k in terms of w. 

(d) At what frequencies is the wavenumber zero or infinite? 
Over what frequency range do we have evanescence or 
propagation? 
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(e) For each of the two modes found in (c), what is the 
polarization of the electric field? 

(f) What is the phase velocity of each wave? Since each mode 
travels at a different speed, the atmosphere acts like an aniso­
tropic birefringent crystal. A linearly polarized wave 
E0 ei~tozi, is incident upon such a medium. Write this field 
as the sum of right and left circularly polarized waves. 
Hint: 

Eoi.= (i.+ji,)+ E(L-ji,) 

(g) If the transmitted field at z = 0 just inside the medium has 
amplitude E, e'i%, what are the electric and magnetic fields 
throughout the medium? 

17. Nitrobenzene with 1A = Ao and e = 35eO is placed between 
parallel plate electrodes of spacings and length I stressed by a 
dc.voltage VO. Measurements have shown that light polarized 
parallel to the dc electric field travels at the speed c1l, while light 
polarized perpendicular to the dc electric field travels slightly 
faster at the speed c,, being related to the dc electric field Eo 
and free space light wavelength as 

1 1 
-- =AB 0 

C.LC11 

where B is called the Kerr constant which for nitrobenzene is 
B -4.3 X 10~12 sec/V 2 at A = 500 nm. 

(a) Linearly polarized light with free space wavelength A 
500 nm is incident at 45* to the dc electric field. After exiting 
the Kerr cell, what is the phase difference between the field 
components of the light parallel and perpendicular to the dc 
electric field? 

(b) What are all the values of electric field strengths that 
allow the Kerr cell to act as a quarter- or half-wave plate? 

(c) The Kerr cell is placed between crossed polarizers 
(polariscope). What values of electric field allow maximum 
light transmission? No light transmission? 

Section 7.5 
18. A uniform plane wave with y-directed electric field is 
normally incident uPon a plasma medium at z = 0 with consti­
tutive law aJf/at = (pe E. The fields vary sinusoidally in time as 
e 

(a) What is the general form of the incident, reflected, and 
transmitted fields? 

(b) Applying the boundary conditions, find the field 
amplitudes. 

(c) What is the time-average electromagnetic power density 
in each region for w >w, and for w <w,? 
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19. A polarizing filter to microwaves is essentially formed by 
many highly conducting parallel wires whose spacing is much 
smaller than a wavelength. That polarization whose electric 
field is transverse to the wires passes through. The incident 
electric field is 

E = E. cos (wt - kz)i.+E, sin (wt - kz)i, 

wires 

I~ I~ i' 

(a) What is the incident magnetic field and incident power 
density? 

(b) What are the transmitted fields and power density? 
(c) Another set of polarizing wires are placed parallel but a 

distance d and orientated at an angle <0 to the first. What are 
the transmitted fields? 

20. A uniform plane wave with y-directed electric field 
E,=Eocosw(t-z/c) is normally incident upon a perfectly 
conducting plane that is moving with constant velocity vi., 
where v << c. 

(a) What are the total electric and magnetic fields in each 
region? 

(b) What is the frequency of the reflected wave? 
(c) What is the power flow density? Why can't we use the 

complex Poynting vector to find the time-average power? 
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y 

H, 

Section 7.6 
21. A dielectric (62, pL2) of thickness d coats a perfect conduc­
tor. A uniform plane wave is normally incident onto the 
coating from the surrounding medium with properties 
(El, I). 

x u-*o 

SS ­

Y Hi 

0 d 

(a) What is the general form of the fields in the two dielectric 
media? (Hint: Why can the transmitted electric field be writ­
ten as E, = Re [E, sin k2(z -d) e" i.]?) 

(b) Applying the boundary conditions, what are the field 
amplitudes? 

(c) What is the time-average power flow in each region? 
(d) What is the time-average radiation pressure on the 

conductor? 

Section 7.7 
22. An electric field of the form Re (E ee' e~ ?) propagates in 
a lossy conductor with permittivity E, permeability j&, and 
conductivitya-. If 'y = a +jk, what equalities must a and k obey? 
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23. A sheet of surface charge with charge density -o sin (wt ­
k.x) is placed at z =0 within a linear medium with properties 
(e, 4). 

at-=o sin(wt - kx 

e, )A I. , P 

/ 
(a) What are the electric and magnetic fields? 
(b) What surface current flows on the sheet? 

24. A current sheet of the form Re (KO el'(''-""i.) is located in 
free space at z =0. A dielectric medium (e, g) of semi-infinite 
extent is placed at z = d. 

Re[Koe j(t-kXz)X 

A 

eO, Mo 

'/ 
'2 

I > 
0d 

(a) For what range of frequency can we have a nonuniform 
plane wave in free space and a uniform plane wave in the 
dielectric? Nonuniform plane wave in each region? Uniform 
plane wave in each region? 

(b) What are the electric and magnetic fields everywhere? 
(c) What is the time-average z -directed power flow density 

in each region if we have a nonuniform plane wave in free 
space but a uniform plane wave in the dielectric? 

Section 7.8 
25. A uniform plane wave Re (EO ei"'~*-c~*zli,) is obliquely 
incident upon a right-angled perfectly conducting corner. The 
wave is incident at angle 9. to the z =0 wall. 
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E< 

H; 

(a) Try a solution composed of the incident and reflected 
waves off each surface of the conductor. What is the general 
form of solution? (Hint: There are four different waves.) 

(b) Applying the boundary conditions, what are the electric 
and magnetic fields? 

(c) What are the surface charge and current distributions 
on the conducting walls? 

(d) What is the force per unit area on each wall? 
(e) What is the power flow density? 

Section 7.9 
26. Fermat's principle of least time states that light, when 
reflected or refracted off an interface, will pick the path of least 
time to propagate between two points. 

C 1 C2 

B S C 

h3 -. 

A 

(a) A beam of light from point A is incident upon a dielec­
tric interface at angle 9, from the normal and is reflected 
through the point B at angle 9,.. In terms of Oj, 0,., h, and h2, and 
the speed of light cI, how long does it take light to travel from A 
to B along this path? What other relation is there between 9j, 0,, 
LAB, h1 and A2 ? 

(b) Find the angle 9. that satisfies Fermat's principle. What is 
0,.? 
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(c) In terms of 64, 6,, hI, h3 , and the light speeds cl and c2 in 
each medium, how long does it take light to travel from A to C? 

(d) Find the relationship between 63 and 6, that satisfies 
Fermat's principle. 

27. In many cases the permeability of dielectric media equals 
that of free space. In this limit show that the reflection and 
transmission coefficients for waves obliquely incident upon 
dielectric media are: E parallel to the interface 

sin (6O-60) 2 cos 61 sin 6, 
sin (61 +6,)' sin (61 +6,) 

H parallel to the interface 

tan (6- 6,) 2 cos 6. sin 6, 
tan (6+6,) sin (61+6,) cos (6,- 6,) 

28. White light is composed of the entire visible spectrum. 
The index of refraction n for most materials is a weak function 
of wavelength A, often described by Cauchy's equation 

n = A + B/A 2 

Glass n = A + Red 

M. OMM. "'range100.,-
Yellow 

Violet 

White light 

A beam of white light is incident at 30' to a piece of glass with 
A = 1.5 and B = 5 x 10-15 M2. What are the transmitted angles 
for the colors violet (400 nm), blue (450 nm), green (550 nm), 
yellow (600 nm), orange (650 nm), and red (700 nm)? This 
separation of colors is called dispersion. 

29. A dielectric slab of thickness d with speed of light c2 is 
placed within another dielectric medium of infinite extent with 
speed of light c1 , where cI<c 2 . An electromagnetic wave with 
H parallel to the interface is incident onto the slab at angle 64. 

(a) Find the electric and magnetic fields in each region. 
(Hint: Use Cramer's rule to find the four unknown field 
amplitudes in terms of E,.) 
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el, JAI el, A I 

si 

H1 

0 d 

(b) For what range of incident angle do we have uniform or 
nonuniform plane waves through the middle region? 

(c) What is the transmitted time-average power density with 
uniform or nonuniform plane waves through the middle 
region. How can we have power flow through the middle 
region with nonuniform plane waves? 

Section 7.10 
30. Consider the various prisms shown. 

M2 

45 0 
3T' 

n2 

60* 

(a) What is the minimum index of refraction ni necessary 
for .no time-average power to be transmitted across the 
hypotenuse when the prisms are in free space, n2 = 1, or water, 
n2= 1.33? 

(b) At these values of refractive index, what are the exiting 
angles 0,? 
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31. A fish below the surface of water with index of refraction 
n = 1.33 sees a star that he measures to be at 30* from the 
normal. What is the star's actual angle from the normal? 

n =1.33 

32. A straight light pipe with refractive index n, has a dielec­
tric coating with index n2 added for protection. The light pipe 
is usually within free space so that ns is typically unity. 

(a) Light within the pipe is incident upon the first interface 
at angle 01. What are the angles 62 and 6? 

(b) What value of 61 will make 63 just equal the critical angle 
for total internal reflection at the second interface? 

(c) How does this value differ from the critical angle if the 
coating was not present so that ni was directly in contact with 
n3? 

(d) If we require that total reflection occur at the first 
interface, what is the allowed range of incident angle 61. Must 
the coating have a larger or smaller index of refraction than 
the light pipe? 

33. A spherical piece of glass of radius R has refractive index 
n. 

(a) A vertical light ray is incident at the distance x (x <R) 
from the vertical diameter. At what distance y from the top of 
the sphere will the light ray intersect the vertical diameter? 
For what range of n and x will .the refracted light intersect the 
vertical diameter within the sphere? 
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<-x-> 

R 

R 

R' * 

w. 

(a) (b) 

(b) A vertical light beam of radius aR (a < 1) is incident 
upon a hemisphere of this glass that rests on a table top. What 
is the radius R' of the light on the table? 
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The uniform plane wave solutions developed in Chapter 7 
cannot in actuality exist throughout all space, as an infinite 
amount of energy would be required from the sources. 
However, TEM waves can also propagate in the region of 
finite volume between electrodes. Such electrode structures, 
known as transmission lines, are used for electromagnetic 
energy flow from power (60 Hz) to microwave frequencies, as 
delay lines due to the finite speed c of electromagnetic waves, 
and in pulse forming networks due to reflections at the end of 
the line. Because of the electrode boundaries, more general 
wave solutions are also permitted where the electric and 
magnetic fields are no longer perpendicular. These new 
solutions also allow electromagnetic power flow in closed 
single conductor structures known as waveguides. 

8-1 	 THE TRANSMISSION LINE EQUATIONS 

8-1-1 The Parallel Plate Transmission Line 

The general properties of transmission lines are illustrated 
in Figure 8-1 by the parallel plate electrodes a small distance d 
apart enclosing linear media with permittivity E and 
permeability jp. Because this spacing d is much less than the 
width w or length 1, we neglect fringing field effects and 
assume that the fields only depend on the z coordinate. 

The perfectly conducting electrodes impose the boundary 
conditions: 

(i) The tangential component of E is zero. 
(ii) 	 The normal component of B (and thus H in the linear 

media) is zero. 

With these constraints and the, neglect of fringing near the 
electrode edges, the fields cannot depend on x or y and thus 
are of the following form: 

E = E.(z, t)i, 
H =H,(z, t)i, 

which when substituted into Maxwell's equations yield 
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Figure 8-1 The simplest transmission line consists of two parallel perfectly conduct­
ing plates a small distance d apart. 

E aH,VxE= -a 
at 9z a 

E(2)E HA 
at az at 

We recognize these equations as the same ones developed 
for plane waves in Section 7-3-1. The wave solutions found 
there are also valid here. However, now it is more convenient 
to introduce the circuit variables of voltage and current along 
the transmission line, which will depend on z and t. 

Kirchoff's voltage and current laws will not hold along the 
transmission line as the electric field in (2) has nonzero curl 
and the current along the electrodes will have a divergence 
due to the time varying surface charge distribution, o-r = 

eE,(z, t). Because E has a curl, the voltage difference 
measured between any two points is not unique, as illustrated 
in Figure 8-2, where we see time varying magnetic flux pass­
ing through the contour LI. However, no magnetic flux 
passes through the path L2, where the potential difference is 
measured between the two electrodes at the same value of z, 
as the magnetic flux is parallel to the surface. Thus, the 
voltage can be uniquely defined between the two electrodes at 
the same value of z: 

2 

v(z, t)= E - dl = E.(z, t)d (3) 

z =const 
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L2 

;2 

#E-di-uodf~ -l = 
El ZI 

Figure 8-2 The potential difference measured between any two arbitrary points at 
different positions z, and zs on the transmission line is not unique-the line integral L, 
of the electric field is nonzero since the contour has magnetic flux passing through it. If 
the contour L2 lies within a plane of constant z such as at z,, no magnetic flux passes 
through it so that the voltage difference between the two electrodes at the same value 
of z is unique. 

Similarly, the tangential component of H is discontinuous 
at each plate by a surface current :K. Thus, the total current 
i(z, t) flowing in the z direction on the lower plate is 

i(z, t)= Kw = Hw (4) 

Substituting (3) and (4) back into (2) results in the trans­
mission line equations: 

av 8i 

az 8t 

8i av 
(5) 

z -at 

where L and C are the inductance and capacitance per unit 
length of the parallel plate structure: 

pd
L = -henry/m, C=--farad/m (6)

w d 

If both quantities are multiplied by the length of the line 1, 
we obtain the inductance of a single turn plane loop if the line 
were short circuited, and the capacitance of a parallel plate 
capacitor if the line were open circuited. 

It is no accident that the LC product 

LC= eSA = 1/c2 (7) 
is related to the speed of light in the medium. 

8-1-2 General Transmission Line Structures 

The transmission line equations of (5) are valid for any 
two-conductor structure of arbitrary shape in the transverse 
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xy plane but whose cross-sectional area does not change along 
its axis in the z direction. L and C are the inductance and 
capacitance per unit length as would be calculated in the 
quasi-static limits. Various simple types of transmission lines 
are shown in Figure 8-3. Note that, in general, the field 
equations of (2) must be extended to allow for x and y 
components but still no z components: 

E = ET(x, y, z, t)= E.i+Ei,, E,= 0 
(8)

H = HT(x,y, z, )= H.i.+Hi,, H =0 

We use the subscript T in (8) to remind ourselves that the 
fields lie purely in the transverse xy plane. We can then also 
distinguish between spatial derivatives along the z axis (a/az) 
from those in the transverse plane (a/ax, alay): 

V=VT+iz a (9) 
a az 

ax ay 

We may then write Maxwell's equations as 

a aHT 
VTXET+--(i. X ET)= - aT 

az at 

VTXHI+---(i. x HT)= E­
az at 

VT- ET=0 (10) 

VT-HT=O 

The following vector properties for the terms in (10) apply: 

(i) VTxHT and VTXET, lie purely in the z direction. 
(ii) i x ET and i2 X HT lie purely in the xy plane. 

C- D- 1­

Two wire line 

Coaxial cable Wire above plane 

Figure 8-3 Various types of simple transmission lines. 



572 Guided Electromagnetic Waves 

Thus, the equations in (10) may be separated by equating 
vector components: 

VTXET=, VrXHr=0 

VT - ET=0, Vr-Hr(=) 

8(i ) -(i.XHT) 8E=8 HrTazBz at (at (12) 
8 OET-(i.XHT)=E-­

az at 

where the Faraday's law equalities are obtained by crossing 
with i, and expanding the double cross product 

i. X (i. XET)=iZ(i ET)-ET(i. - i.)= -ET (13) 

and remembering that i, - ET =0. 
The set of 'equations in (11) tell us that the field depen­

dences on the transverse coordinates are the same as if the 
system were static and source free. Thus, all the tools 
developed for solving static field solutions, including the two-
dimensional Laplace's equations and the method of images, 
can be used to solve for ET and HT in the transverse xy plane. 

We need to relate the fields to the voltage and current 
defined as a function of z and t for the transmission line of 
arbitrary shape shown in Figure 8-4 as 

2 

V(Z, t)= E- (14) 

i(z, t)= tour - ds 
at constant z 
enclosing the 
inner conductor 

The related quantities of charge per unit length q and flux 
per unit length A along the transmission line are 

q(z,t)=E ET-nds 
CO"st (15) 

A(Z, t) = / HT -(i. Xdl) 
z-const 

The capacitance and inductance per unit length are then 
defined as the ratios: 

C - q)_ e fL ET - ds 
V(z, t) E, -Td- I (16) 

-(i._ Xd) 
_ (z _ P fHL 

i(z, t) - fL H- ds -cons 
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ds=-n xi, 
X 

2 H n 

Figure 8-4 A general transmission line has two perfect conductors whose cross-
sectional area does not change in the direction along its z axis, but whose shape in the 
transverse xy plane is arbitrary. The electric and magnetic fields are perpendicular, lie 
in the transverse xy plane, and have the same dependence on x and y as if the fields 
were static. 

which are constants as the geometry of the transmission line 
does not vary with z. Even though the fields change with z, the 
ratios in (16) do not depend on the field amplitudes. 

To obtain the general transmission line equations, we dot 
the upper equation in (12) with dl, which can be brought 
inside the derivatives since dI only varies with x and y and not 
z or t. We then integrate the resulting equation over a line at 
constant z joining the two electrodes: 

y (i2 X H,) - dl) E- - U) = j 

=- f2 H,. - (L. X dl)) (17) 

where the last equality is obtained using the scalar triple 
product allowing the interchange of the dot and the cross: 

(i. X HT) - dl= --(HT Xi) - d1= -HT- (i X dl) (18) 

We recognize the left-hand side of (17) as the z derivative 
of the voltage defined in (14), while the right-hand side is the 
negative time derivative of the flux per unit length defined in 
(15): 

av 8A ai 
---- =-L- (19)az at at 

We could also have derived this last relation by dotting the 
upper equation in (12) with the normal n to the inner 
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conductor and then integrating over the contour L sur­
rounding the inner conductor: 

-Erds)= ay~ n - (ixXHT) ds) = -- HT d 

(20) 

where the last equality was again obtained by interchanging 
the dot and the cross in the scalar triple product identity: 

n - (i. XHT)=(nx i.) - HT=-HT - ds (21) 

The left-hand side of (20) is proportional to the charge per 
unit length defined in (15), while the right-hand side is pro­
portional to the current defined in (14): 

laq ai a>Cv 6A ai (2- -y* C -es(22)Eaz at az at 
Since (19) and (22) must be identical, we obtain the general 

result previously obtained in Section 6-5-6 that the 
inductance and capacitance per unit length of any arbitrarily 
shaped transmission line are related as 

LC = IL (23) 

We obtain the second transmission line equation by dotting 
the lower equation in (12) with dl and integrating between 
electrodes: 

HT - (i X d1))E, - dl) =_ (, HT) -dl = -a 

(24) 

to yield from (14)-(16) and (23) 

av 18A L ai ai av
6-=---=-- -=-=-C-E (25)

at j az Z az az at 

EXAMPLE 8-1 THE COAXIAL TRANSMISSION LINE 

Consider the coaxial transmission line shown in Figure 8-3 
composed of two perfectly conducting concentric cylinders of 
radii a and b enclosing a linear medium with permittivity e 
and permeability 1L. We solve for the transverse dependence 
of the fields as if the problem were static, independent of 
time. If the voltage difference between cylinders is v with the 
inner cylinder carrying a total current i the static fields are 

r rIn (b/a)' 2 7rr 
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The surface charge per unit length q and magnetic flux per 
unit length A are 

q = eE,(r=a)2na in(ba
In (b/a) 

A = fH, dr = l -n 
21r a 

so that the capacitance and inductance per unit length of this 
structure are 

L=A= Ln bC=-q= 2E 
v In (b/a)' i 21r a 

where we note that as required 

LC = ey 

Substituting Er and H4 into (12) yields the following trans­
mission line equations: 

Er aH, av = i 

az at az at 

aH afE, ai av 
e- -C­

az at az at 

8-1-3 Distributed Circuit Representation 

Thus far we have emphasized the field theory point of view 
from which we have derived relations for the voltage and 
current. However, we can also easily derive the transmission 
line equations using a distributed equivalent circuit derived 
from the following criteria: 

(i) 	 The flow of current through a lossless medium between 
two conductors is entirely by displacement current, in 
exactly the same way as a capacitor. 

(ii) 	 The flow of current along lossless electrodes generates a 
magnetic field as in an inductor. 

Thus, we may discretize the transmission line into many 
small incremental sections of length Az with series inductance 
L Az and shunt capacitance C Az, where L and C are the 
inductance and capacitance per unit lengths. We can also take 
into account the small series resistance of the electrodes R Az, 
where R is the resistance per unit length (ohms per meter) 
and the shunt conductance loss in the dielectric G Az, where 
G is. the conductance per unit length (siemens per meter). If 
the transmission line and dielectric are lossless, R =0, G =0. 
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The resulting equivalent circuit for a lossy transmission line 
shown in Figure 8-5 shows that the current at z + Az and z 
differ by the amount flowing through the shunt capacitance 
and conductance: 

av(z, t)i(z,t)-i(z+Az,t)=CAz +GAzv(z,t) (26)at 
Similarly, the voltage difference at z +Az from z is due to the 
drop across the series inductor and resistor: 

8i(z +Az, t)
v(z, t)-v(z+Az, t)= L Az- +i(z+Az, t)R Az (27)at 

By dividing (26) and (27) through by Az and taking the 
limit as Az-+0, we obtain the lossy transmission line equa­
tions: 

i(z+Az,t)-i(z,t) ai av
im =--=-C--GvAz-0 AZ az at 

(28) 
v(z+Az,t)-v(z,t) av ai .lim =--=-L-- iR

sz-0 Az az at 
which reduce to (19) and (25) when R and G are zero. 

8-1-4 Power Flow 

Multiplying the upper equation in (28) by v and the lower 
by i and then adding yields the circuit equivalent form of 
Poynting's theorem: 

a(vi)=a(tC2 +Li)-Gv-i 
2 R (29) 

az at. 

ilz - As, t) V(S - As, t) A~s, t) V(Z i(s + As, t) sv( ,+ A 
LAs Ras Las Ras LAS Ras Las 

C Gas CAS Gas Ca, Gas 

Z--As 2 2 as 

v(,)- v(. +A.,t) = LA.yi( + A.,t) + its+ A., )R A. 

i(s, t) - is + As. t) = CAz I v(z, t) + GAWSv(', t) 

Figure 8-5 Distributed circuit model of a transmission line including small series and 
shunt resistive losses. 
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The power flow vi is converted into energy storage (ACv 2 + 
ALi2 ) or is dissipated in the resistance and conductance per 
unit lengths. 

From the fields point of view the total electromagnetic 
power flowing down the transmission line at any position z is 

P(z,t)=j (ETxHT)-idS= ET-(HTxit)dS (30) 

where S is the region between electrodes in Figure 8-4. 
Because the transverse electric field is curl free, we can define 
the scalar potential 

VXET=O*ET =-VTV (31) 

so that (30) can be rewritten as 

JP(z, t) = (i X HT) VTVdS (32) 

It is useful to examine the vector expansion 

.20 
VT- [V(i. X H)]=(i. X HT) VTV+ VVTr- (iX H ) 

(33) 

where the last term is zero because i. is a constant vector and 
HT is also curl free: 

VT-* (i.xHT)=HT-(VTXi.)-i. (VTXHT)=O (34) 

Then (32) can be converted to a line integral using the two-
dimensional form of the divergence theorem: 

P(z, t)=J VT- [ V(I. X H)]dS 

(35) 
=-f V(i 1 XHr)-nds 

contours on 
the surfaces of 
both electrodes 

where the line integral is evaluated at constant z along the 
surface of both electrodes. The minus sign arises in (35) 
because n is defined inwards in Figure 8-4 rather than 
outwards as is usual in the divergence theorem. Since we are 
free to pick our zero potential reference anywhere, we take 
the outer conductor to be at zero voltage. Then the line 
integral in (35) is only nonzero over the inner conductor, 
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where V v: 

P(zt) =- f(i.XHT)-nds 
inner 
conductor 

=v f(HT X it) - n ds 
inner 
conductor 

=v HT -(i 2 x n) ds 
inne~tr 
condco 

= v HT ds 
inne~ur 
condco 

= vi (36) 

where we realized that (i, x n) ds = ds, defined in Figure 8-4 if 
L lies along the surface of the inner conductor. The elec­
tromagnetic power flowing down a transmission line just 
equals the circuit power. 

8-1-5 The Wave Equation 

Restricting ourselves now to lossless transmission lines so 
that R = G =0 in (28), the two coupled equations in voltage 
and current can be reduced to two single wave equations in v 
and i: 

a2V 2 82v 
-=c ­at aZ2 

a~i a~i(37) 

where the speed of the waves is 

1 1 
c m/sec (38) 

As we found in Section 7-3-2 the solutions to (37) are 
propagating waves in the z directions at the speed c: 

v(z, t)=V(t -z/c)+V-(t+z/c) 

i(z, t) = I+(t - z/c) + I-(t + z/c) 

where the functions V+, V.-, I, and I- are .determined by 
boundary conditions imposed by sources and transmission 
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line terminations. By substituting these solutions back into 
(28) with R = G = 0, we find the voltage and current functions 
related as 

V 4 = I'Zo 
(40)

V- =-I-zo 

where 

Zo =vJL/C ohm (41) 

is known as the characteristic impedance of the transmission 
line, analogous to the wave impedance - in Chapter 7. Its 
inverse Yo = I/ZO is also used and is termed the characteristic 
admittance. In practice, it is difficult to measure L and C of a 
transmission line directly. It is easier to measure the wave 
speed c and characteristic impedance Zo and then calculate L 
and C from (38) and (41). 

The most useful form of the transmission line solutions of 
(39) that we will use is 

v(z, t)= V.(t - z/c) + V(t + z/c) 

i(z, 1)= Yo[V+(t - z/c) - V-(t + z/c)] 

Note the complete duality between these voltage-current 
solutions and the plane wave solutions in Section 7-3-2 for the 
electric and magnetic fields. 

8-2 TRANSMISSION LINE TRANSIENT WAVES 

The easiest way to solve for transient waves on transmission 
lines is through use of physical reasoning as opposed to 
mathematical rigor. Since the waves travel at a speed c, once 
generated they cannot reach any position z until a time z/c 
later. Waves traveling in the positive z direction are described 
by the function V,(t-z/c) and waves traveling in the -z 
direction by V_(t + z/c). However, at any time t and position z, 
the voltage is equal to the sum of both solutions while the 
current is proportional to their difference. 

8-2-1 Transients on Infinitely Long Transmission Lines 

The transmission line shown in Figure 8-6a extends to 
infinity in the positive z direction. A time varying voltage 
source V(t) that is turned on at t =0 is applied at z =0 to the 
line which is initially unexcited. A positively traveling wave 
V+(t - z/c) propagates away from the source. There is no 
negatively traveling wave, V-(t + z/c) = 0. These physical 
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a(O, 0) 

Vit) Zo = , = = 1 V(t) D Z 

i> 2 z=0
0 

(a) (b) 

v(z, t) Vt) 
'-2VO­

22 

cT 

2VO­

T 
4 

T 
2 

3T 
4 

T 5T 
4 

3T 
2 

IT 
4 

2T _T 

4 
5T 
2 

t 

(c) 

R, R, i(Ot ) 

+ 
z+ 

VMt ZO, c VMt) Zo v(O, t) = R, + ZOV(t) 

Z=0 
0 

(d) 

Figure 8-6 (a) A semi-infinite transmission line excited by a voltage source at z = 0. (b) 
To the source, the transmission line looks like a resistor Z, equal to the characteristic 
impedance. (c) The spatial distribution of the voltage v(z, t) at various times for a 
staircase pulse of V(t). (d) If the voltage source is applied to the transmission line 
through a series resistance R,, the voltage across the line at z =0 is given by the voltage 
divider relation. 

arguments are verified mathematically by realizing that at 
t =0 the voltage and current are zero for z >0, 

v(z, t = 0) = V+(-z/c) + V(z/c)= 0 

i(z, t =0) = Yo[V+(-z/c) - V(z/c)]= 0 
which only allows the trivial solutions 

V+(-z/c) = 0, V-(z/c) =0 (2) 

Since z can only be positive, whenever the argument of V, is 
negative and of V_ positive, the functions are zero. Since i can 
only be positive, the argument of V-(t + z/c) is always positive 



Transmission Line Transient Waves 581 

so that the function is always zero. The argument of V,(t ­
z/c) can be positive, allowing a nonzero solution if t > z/c 
agreeing with our conclusions reached by physical 
arguments. 

With V(t + z/c) =0, the voltage and current are related as 

v(z, t) = V+(t - z/c) 	 3 

i(z, t)= YoV+(t - z/c) 

The line voltage and current have the same shape as the 
source, delayed in time for any z by z/c with the current scaled 
in amplitude by Yo. Thus as far as the source is concerned, 
the transmission line looks like a resistor of value Zo yielding 
the equivalent circuit at z =0 shown in Figure 8-6b. At z =0, 
the voltage equals that of the source 

v(0, t) = V(t) = V+(t) 	 (4) 

If V(t) is the staircase pulse of total duration T shown in 
Figure 8-6c, the pulse extends in space over the spatial 
interval: 

0fz-ct, 0St-T 
(5)

c(t -T):5Z:5ct, t> T 

The analysis is the same even if the voltage source is in 
series with a source resistance R., as in Figure 8-6d. At z =0 
the transmission line still looks like a resistor of value Zo so 
that the transmission line voltage divides in the ratio given by 
the equivalent circuit shown: 

v(z = 0, t) = V(t) = V+(t)
R,+Zo 

(6) 
V(t)

i(z = 0, t) = YoV+(t) = R.+) 

The total solution is then identical to that of (3) and (4) with 
the voltage and current amplitudes reduced by the voltage 
divider ratio Zo/(R, + Z,). 

8-2-2 Reflections from Resistive Terminations 

(a) 	 Reflection Coefficient 
All transmission lines must have an end. In Figure 8-7 we 

see a positively traveling wave incident upon a load resistor RL 
at z = L The reflected wave will travel back towards the source 
at z =0 as a V- wave. At the z = I end the following circuit 
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i= 	 1,t) 

,V, 

ZO,c . RL 	 v(= ,t) 

KZ 

z=I 
V(Z = 	 , t) = V+ + V_ =iz = 1, tIRL = RL YO[V, - V. I 

V. RL -ZO 
L V4 RL +ZO 

Figure 8-7 A V. wave incident upon the end of a transmission line with a load 
resistor RL is reflected as a V- wave. 

relations hold: 

v(l, 	t) = V+(t - /c) + V-(t + 1/c) 

= i(l, t)RL 

= YoRL[V+(t - 1/c) - V(t + 1/c)] (7) 

We then find the amplitude of the negatively traveling wave 
in terms of the incident positively traveling wave as 

V-(t +l/c) RL+ZO
FL= V = Rz(8) 

where rL is known as the reflection coefficient that is of the 
same form as the reflection coefficient R in Section 7-6-1 for 
normally incident uniform plane waves on a dielectric. 

The reflection coefficient gives us the relative amplitude of 
the returning V. wave compared to the incident V+ wave. 
There are several important limits of (8): 

(i) 	 If RL = ZO, the reflection coefficient is zero (FL =0) SO 
that there is no reflected wave and the line is said to be 
matched. 

(ii) 	 If the line is short circuited (RL = 0), then 7L = -1. The 
reflected wave is equal in amplitude but opposite in sign 
to the incident wave. In general, if RL <Zo, the reflected 
voltage wave has its polarity reversed. 

(iii) 	 If the line is open circuited (RL = 00), then FL = + 1. The 
reflected wave is identical to the incident wave. In 
general, if RL >ZO, the reflected voltage wave is of the 
same polarity as the incident wave. 

(b) 	 Step Voltage 
A dc battery of voltage Vo with series resistance R., is 

switched onto the transmission line at t=0, as shown in 
Figure 8-8a. At z =0, the source has no knowledge of the 

I 
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+ III1 0 
VO -- ZO, c, T =/c RL 

z=0 =I 
(a) 

i =Yo(V+ -V RS i= Yo(V+ - VA­

++I 

VO Zo V+V+ + V_ RL 

z=0 Z=I 
o +R& - ZO RL -& V
 

R,=+Z, + RS +ZO-_= 
 R +ZO + 

ro rs r 
(b) 

Figure 8-8 (a) A dc voltage Vo is switched onto a resistively loaded transmission line 
through a source resistance R,. (b) The equivalent circuits at z = 0 and z = I allow us to 
calculate the reflected voltage wave amplitudes in terms of the incident waves. 

line's length or load termination, so as for an infinitely long 
line the transmission line looks like a resistor of value Zo to 
the source. There is no V- wave initially. The V+ wave is 
determined by the voltage divider ratio of the series source 
resistance and transmission line characteristic impedance as 
given by (6). 

This V, wave travels down the line at speed c where it is 
reflected at z = I for t > T, where T = I/c is the transit time for 
a wave propagating between the two ends. The new V- wave 
generated is related to the incident V+ wave by the reflection 
coefficient IL. As the V, wave continues to propagate in the 
positive z direction, the V- wave propagates back towards the 
source. The total voltage at any point on the line is equal to 
the sum of V, and V_ while the current is proportional to 
their difference. 

When the V- wave reaches the end of the transmission line 
at z =0 at time 2 T, in general a new V, wave is generated, 
which can be found by solving the equivalent circuit shown in 
Figure 8-8b: 

v(0, t) + i(0, t)R, = Vo> V+(0, t) + V(., t) 

+ YoR,[V+(0, t)-V-(0, t)]= VO (9) 
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to yield 
ZO VO R, -Zo 

V(0,t)= r'V-(0, t)+ Zo F,=R.(10)Zo+R, R,+Z0 


where F., is just the reflection coefficient at the source end. 
This new V. wave propagates towards the load again 
generating a new V. wave as the reflections continue. 

If the source resistance is matched to the line, R, = Zo so 
that F, =0, then V+ is constant for all time and the steady state 
is reached for t >2 T If the load was matched, the steady state 
is reached for i> T no matter the value of R,. There are no 
further reflections from the end of a matched line. In Figure 
8-9 we plot representative voltage and current spatial dis­
tributions for various times assuming the source is matched to 
the line for the load being matched, open, or short circuited. 

(I) Matched Line 
When RL = Zo the load reflection coefficient is zero so that 

V= VO/2 for all time. The wavefront propagates down the 
line with the voltage and current being identical in shape. 
The system is in the dc steady state for t T. 

R,= Zo 

V_ ZO, c, T = 1/c RL 

V(Z't0 t<T i(Z'zf) <T 

VO V+ YOVO yov+ 

Ct 1
2 2 

Ct I > 
(b) 

Figure 8-9 (a) A dc voltage is switched onto a transmission line with load resistance 
RL through a source resistance R, matched to the line. (b) Regardless of the load 
resistance, half the source voltage propagates down the line towards the load. If the 
load is also matched to the line (RL = ZO), there are no reflections and the steady state 
of v(z, I Z 7) = VO/2, i(z, tL1) = YOVO/2 is reached for I a T. (c) If the line is short 
circuited (RL = 0), then FL = - I so that the V+ and V_ waves cancel for the voltage but 
add for the current wherever they overlap in space. Since the source end is matched, 
no further reflections arise at z = 0 so that the steady state is reached for t : 2T. (d) If 
the line is open circuited (RL = 0) so that FL = + 1, the V+ and V_ waves add for the 
voltage but cancel for the current. 
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v(z, t) = V + V_	 i(z, t) = YOV,-V_ 

t T<t<2T 

f T<t <2T 
Yo Vo 

V0 V+ YO V0 Yo V+ 

1-c(t-T) I	 1-c(t-T) I 

VJ	 Yo V_ 

Short circuited line, RL 0, (v(z, t > 2T) = 0, i(z, t > 2T) = Yo Vo) 

(c) 

v(z, ) =V+ + V	 i(z, t) = Yo V -V 

I T<t<2T	 t T<t<2T 

V 0 

V0 Yo Vo Y 0 V, 

Yo V -~ V 
c~t ­T 

J-c-It-T) 1 '­

Open circuited line, RL = -, (v(z, t > 2T) = V0 , i(z, t > 2T) = 0) 

(d) 

Figure 8-9 

(ii) 	Open Circuited Line 
When RL = 00 the reflection coefficient is unity so that V,= 

V. When the incident and reflected waves overlap in space 
the voltages add to a stairstep pulse shape while the current is 
zero. For t2 T, the voltage is Vo everywhere on the line 
while the current is zero. 

(iii) Short Circuited Line 
When RL = 0 the load reflection coefficient is -1 so that 

V,= -V_. When the incident and reflected waves overlap in 
space, the total voltage is zero while the current is now a 
stairstep pulse shape. For t22T the voltage is zero every­
where on the line while the current is Vo/Zo. 

8-2-3 Approach to the dc Steady State 

If the load end is matched, the steady state is reached after 
one transit time T= I/c for the wave to propagate from the 
source to the load. If the source end is matched, after one 
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round trip 2 T=2/c no further reflections occur. If neither 
end is matched, reflections continue on forever. However, for 
nonzero and noninfinite source and load resistances, the 
reflection coefficient is always less than unity in magnitude so 
that each successive reflection is reduced in amplitude. After 
a few round-trips, the changes in V, and V. become smaller 
and eventually negligible. If the source resistance is zero and 
the load resistance is either zero or infinite, the transient 
pulses continue to propagate back and forth forever in the 
lossless line, as the magnitude of the reflection coefficients are 
unity. 

Consider again the dc voltage source in Figure 8-8a 
switched through a source resistance R. at t =0 onto a 
transmission line loaded at its z = I end with a load resistor RL. 
We showed in (10) that the V, wave generated at the z =0 
end is related to the source and an incoming V. wave as 

Z, (11) V+=1 0 VO+rV_, 17= ,
R +Zo' R,+Zo 

Similarly, at z = 1, an incident V, wave is converted into a V_ 
wave through the load reflection coefficient: 

v-=R-VZ, FL= 
RL+ZO 

(12) 

We can now tabulate the voltage at z = 1 using the following 
reasoning: 

(i) 

(ii) 

(iii) 

(iv) 

For the time interval t < T the voltage at z = I is zero as 
no wave has yet reached the end. 
At z=0 for 0s t52T, V_=0 resulting in a V, wave 
emanating from z =0 with amplitude V+ = Io Vo. 
When this V, wave reaches z = , a V_ wave is generated 
with amplitude V.. = IFLV. The incident V+ wave at 
z =I remains unchanged until another interval of 2 T, 
whereupon the just generated V. wave after being 
reflected from z = 0 as a new V+ wave given by (11) 
again returns to z = L. 
Thus, the voltage at z = I only changes at times (2 n -
1) T, n = 1, 2,. .. , while the voltage at z = 0 changes at 
times 2(n ­ 1) T The resulting voltage waveforms at the 
ends are stairstep patterns with steps at these times. 

The nth traveling V, wave is then related to the source and 
the (n -1)th V_ wave at z =0 as 

V4.= 1 0 VO+18,V)-( (13) 
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while the (n - 1)th V_ wave is related to the incident (n - 1)th 
V, wave at z = I as 

V~g-(n1)= rLV.- ,) (14) 

Using (14) in (13) yields a single linear constant coefficient 
difference equation in V+,: 

V+.-flrsrLV+(.1)=OVo (15) 

For a particular solution we see that V,. being a constant 
satisfies (15): 

V+n= cc(1- rFL) =rovo= Vo (16) 

To this solution we can add any homogeneous solution 
assuming the right-hand side of (15) is zero: 

V+-rsrLV+(_lI)=0 (17) 

We try a solution of the form 

V+n= AAn (18) 

which when substituted into (17) requires 

AA "-'(A - rFL)=0= A =rjL (19) 

The total solution is then a sum of the particular and 

homogeneous solutions: 

V = r5 Vo+A(rrL )" (20) 

The constant A is found by realizing that the first transient 
wave is 

r0
VI=roVo= Vo+A(r,) (21) 

which requires A to be 

A = o-_(22) 

so that (20) becomes 

V4.= 17 [-(r,)"] (23) 

Raising the index of (14) by one then gives the nth V_ wave 
as 

V_. = rLV4. (24) 
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so that the total voltage at z = I after n reflections at times 
(2n - 1)T, n = 1, 2, .. . , is 

VR =V~+V~voro(l+FL)
V1=Vr.+V_.= [1-(FrL)"] (25) 

or in terms of the source and load resistances 

RL
V = R Vo[ 1 - (FL)"] (26)RL + R, 

The steady-state results as n - oo. If either R, or RL are 
nonzero or noninfinite, the product of U~rL must be less than 
unity. Under these conditions 

liM (rWX) = 0 (27) 
(1r~rLI<I) 

so that in the steady state 

lim V. = RL V0 (28).-_0 RS+R, 

which is just the voltage divider ratio as if the transmission 
line was just a pair of zero-resistance connecting wires. Note 
also that if either end is matched so that either r, or FL is 
zero, the voltage at the load end is immediately in the steady 
state after the time T. 

In Figure 8-10 the load is plotted versus time with R, =0 
and RL = 3ZO so that ,]FL = -b and with RL =}ZO so that 

t=O 

o a 
- R3ZOV0 Z0 , c, T = 1c Z1 

0_________ -( 1 3. iz 
u(z = I, t) 

200SVo 

k __ Steady state 
VO-V 16 32 Vo 

_ _1 _ _ _L Vo 

2 VO 

T 3T 5T 7T 9T 11T 

R=1 n=2 n=3 n=4 n=5 

Figure 8-10 The load voltage as a function of time when R,=0 and RL = 3ZO so that 
rTL = -- (solid) and with RL = AZO so that 17,FL= 2 (dashed). The dc steady state is the 
same as if the transmission line were considered a pair of perfectly conducting wires in 
a circuit. 
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rfr = +. Then (26) becomes 

V,=Vo[ I -(-?)"=, R (=9ZV= V[1-(-2)"], RL = 3Zo (29) 

The step changes in load voltage oscillate about the steady-
state value V. = V. The steps rapidly become smaller having 
less than one-percent variation for n >7. 

If the source resistance is zero and the load resistance is 
either zero or infinite (short or open circuits), a lossless 
transmission line never reiches a dc steady state as the limit of 
(27) does not hold with FrFL=:- 1. Continuous reflections 
with no decrease in amplitude results in pulse waveforms for 
all time. However, in a real transmission line, small losses in 
the conductors and dielectric allow a steady state to be even­
tually reached. 

Consider the case when R, =0 and RL = 00 so that rFrL= 
-1. Then from (26) we have 

V = 0, n even (30)
2 VO, n odd 

which is sketched in Figure 8-1 Ia. 
For any source and load resistances the current through 

the load resistor at z = I is 

V,. V 0 10(+r ) 
RL RL(l-rrL) 

2Voro [i-(uLf)"] 
RL+Zo (,-r.T) 

If both R, and RL are zero so that 17 1L = 1, the short circuit 
current in (31) is in the indeterminate form 0/0, which can be 
evaluated using l'H6pital's rule: 

li .=2Voro [-n(.,1Ft)"1] 
r.rLj RL+Z (-1) 

2VOn 
(32)

Zo 

As shown by the solid line in Figure 8-11 b, the current 
continually increases in a stepwise fashion. As n increases to 
infinity, the current also becomes infinite, which is expected 
for a battery connected across a short circuit. 

8-2-4 Inductors and Capacitors as Quasi-static Approximations to 
Transmission Lines 

If the transmission line was one meter long with a free 
space dielectric medium, the round trip transit time 2 T= 21/c 

31 
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vIs= 1,t 
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Figure 8-11 The (a) open circuit voltage and (b) short circuit current at the z = I end 
of the transmission line for R, =0. No dc steady state is reached because the system is 
lossless. If the short circuited transmission line is modeled as an inductor in the 
quasi-static limit, a step voltage input results in a linearly increasing current (shown 
dashed). The exact transmission line response is the solid staircase waveform. 

is approximately 6 nsec. For many circuit applications this 
time is so fast that it may be considered instantaneous. In this 
limit the quasi-static circuit element approximation is valid. 

For example, consider again the short circuited trans­
mission line (RL =0) of length I with zero source resistance. 
In the magnetic quasi-static limit we would call the structure 
an inductor with inductance LI (remember, L is the 
inductance per unit length) so that the terminal voltage and 
current are related as 

di 
v = (L)- (33)

dt 
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If a constant voltage VO is applied at t =0, the current is 
obtained by integration of (33) as 

i =- t (34)
Ll 

where we use the initial condition of zero current at t = 0. The 
linear time dependence of the current, plotted as the dashed 
line in Figure 8-11 b, approximates the rising staircase wave­
form obtained from the exact transmission line analysis of 
(32). 

Similarly, if the transmission line were open circuited with 
RL = co, it would be a capacitor of value C1 in the electric 
quasi-static limit so that the voltage on the line charges up 
through the source resistance R, with time constant r = RCI 
as 

v(t) = Vo(1 - e-") (35) 

The exact transmission line voltage at the z = I end is given by 
(26) with RL = 00 so that FL = 1: 

V.= VO( - F,") (36) 

where the source reflection coefficient can be written as 

R.- Zo 
R, +Zo 

(37)
R, + -IIC 

If we multiply the numerator and denominator of (37) 
through by C, we have 

R,C1 - 1, L_ 

R,C1 +1L-C5 

T-T I-TIT (38) 
T+T 1+T/T 

where 

T= iiLC= /c (39) 

For the quasi-static limit to be valid, the wave transit time T 
must be much faster than any other time scale of interest so 
that T/T< 1. In Figure 8-12 we plot (35) and (36) for two 
values of TIT and see that the quasi-static and transmission 
line results approach each other as T/r.becomes small. 

When the roundtrip wave transit time is so small compared 
to the time scale of interest so as to appear to be instan­
taneous, the circuit treatment is an excellent approximation. 
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v (a = a, t) 

'T t 
.1 .25 1. 2. 3. 

Figure 8-12 The open circuit voltage at z= I for a step voltage applied at (=0 
through a source resistance R, for various values of T/r, which is the ratio of prop­
agation time T= /c to quasi-static charging time r= RCI. The dashed curve shows the 
exponential rise obtained by a circuit analysis assuming the open circuited transmission 
line is a capacitor. 

If this propagation time is significant, then the transmission 
line equations must be used. 

8-2-5 Reflections from Arbitrary Terminations 

For resistive terminations we have been able to relate 
reflected wave amplitudes in terms of an incident wave ampli­
tude through the use of a reflection coefficient becauise the 
voltage and current in the resistor are algebraically related. 
For an arbitrary termination, which may include any 
component such as capacitors, inductors, diodes, transistors, 
or even another transmission line with perhaps a different 
characteristic impedance, it is necessary to solve a circuit 
problem at the end of the line. For the arbitrary element with 
voltage VL and current IL at z = 1, shown in Figure 8-13a, the 
voltage and current at the end of line are related as 

v(z = 1, t) = VLQ) = V+(t - /c) +V..(t + 1/c) (40) 

= 1, ) = IL() Yo[V+(t - I/c) - V-(t + /c)] (41) 

We assume that we know the incident V+ wave and wish to 
find the reflected V_ wave. We then eliminate the unknown 
V_ in (40) and (41) to obtain 

2V+(t - I/c) = VL(t)+ IL(t)ZO (42) 

which suggests the equivalent circuit in Figure 8-13b. 
For a particular lumped termination we solve the 

equivalent circuit for VL(t) or IL(t). Since V+(t - /c) is already 
known as it is incident upon the termination, once VL) or 
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IL (t) = YO I V (t -1/C - V_(t +I/) 

i(s =t) VL (t)= V+(t -1/c)+ V_ (t +Lc) L (t) 

ZO ,(S 22V., ft -tc110 VLM 

s=1 

(a) (b) 

Figure 8-13 A transmission line with an (a) arbitrary load at the z= I end can be 
analyzed from the equivalent circuit in (b). Since V. is known, calculation of the load 
current or voltage yields the reflected wave V_. 

IL(t) is calculated from the equivalent circuit, V-(t + 1/c) can 
be calculated as V-= VL - V+. 

For instance, consider the lossless transmission lines of 
length I shown in Figure 8-14a terminated at the end with 
either a lumped capacitor CL or an inductor LL. A step 
voltage at t=0 is applied at z=0 through a source resistor 
matched to the line. 

The source at z =0 is unaware of the termination at z=I 
until a time 2T. Until this time it launches a V+ wave of 
amplitude VO/2. At z = 1, the equivalent circuit for the capaci­
tive termination is shown in Figure 8-14b. Whereas resistive 
terminations just altered wave amplitudes upon reflection, 
inductive and capacitive terminations introduce differential 
equations. 

From (42), the voltage across the capacitor v, obeys the 
differential equation 

dv 
ZoCL--'+ v, = 2V+ = Vo, t>T (43)

dt 
with solution 

v'(0)= VO[ I- e_--n1zOcL] t>T (44) 

Note that the voltage waveform plotted in Figure 8-14b 
begins at time T= I/c. 

Thus, the returning V- wave is given as 

V= v. - V+ = Vo/2+ Voe -0-i)/ZOC (45) 

This reflected wave travels back to z =0, where no further 
reflections occur since the source end is matched. The cur­
rent at z = I is then 

i,= C '=- e-('-Tzoc-, t>T (46)
di Zo 

and is also plotted in Figure 8-14b. 



ZO, C CL V(t) Z, C L 

V(t) - 5=0 z=i 2=10 2= 

-1 
Vor­

(a) 

iIs =1, t) 

Vo/Z4 - * > TIZoCL 
i (t) 

T t + + 
2V+ Cv , (t)V =, t) 

VO [ 1 -e-( t-TZOCL] t>T 2=l 
VO­

T t 

v~z =I, t) 

VoeIt 7 )ZoILL t> 
ZO i (t) 

TtT ++ 

-2V+ L VL(t) 
iz= I, t) 

(VO/r)[1 -e-t -r Z
 
- -- -- - - - -t >7
 

(c) 

Figure 8-14 (a) A step voltage is applied to transmission lines loaded at z = I with a 
capacitor CL or inductor LL. The load voltage and current are calculated from the (b) 
resistive-capacitive or (c) resistive-inductive equivalent circuits at z = I to yield 
exponential waveforms with respective time constants r = ZOCL and r = LLSZO as the 
solutions approach the dc steady state. The waveforms begin after the initial V. wave 
arrives at z = I after a time T=1/c. There are no further reflections as the source end is 
matched. 
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If the end at z =0 were not matched, a new V, would be 
generated. When it reached z = 1, we would again solve the 
RC circuit with the capacitor now initially charged. The 
reflections would continue, eventually becoming negligible if 
R., is nonzero. 

Similarly, the governing differential equation for the 
inductive load obtained from the equivalent circuit in Figure 
8-14c is 

diL
LLI-+iLZo =2V+= Vo,

dt 
t>T (47) 

with solution 

iL(=IL(I-e-(-rz01), t>T (48)
Zo 

The voltage across the inductor is 

VL = LL = Vo e-(-7ZoIL, t> T (49)
dt 

Again since the end at z =0 is matched, the returning V-
wave from z = I is not reflected at z =0. Thus the total voltage 
and current for all time at z = I is given by (48) and (49) and is 
sketched in Figure 8-14c. 

8-3 SINUSOIDAL TIME VARIATIONS 

8-3-1 Solutions to the Transmission Line Equations 

Often transmission lines are excited by sinusoidally varying 
sources so that the line voltage and current also vary sinusoi­
dally with time: 

v(z, t) = Re [i(z) e"'I( 

i(z, t)= Re [f(z) ej"] 

Then as we found for TEM waves in Section 7-4, the voltage 
and current are found from the wave equation solutions of 
Section 8-1-5 as linear combinations of exponential functions 
with arguments t - z/c and t + z/c: 

v(z, t) = Re ['Y+ eic(-+c) _e-I*+')] 

i(z, t)= Yo Re [Ve,"~4 -_ el" 'Ic)] (2) 

Now the phasor amplitudes + and V- are complex numbers 
and do not depend on z or t. 
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By factoring out the sinusoidal time dependence in (2), the 
spatial dependences of the voltage and current are 

+jA. (3)
f(z)= YO(V e "' - V e~'") 

where the wavenumber is again defined as 

k = w/c 	 (4) 

8-3-2 Lossless Terminations 

(a) Short Circuited Line 
The transmission line shown in Figure 8-15a is excited by a 

sinusoidal voltage source at z = -1 imposing the boundary 
condition 

V(z =l t) = VO Cos Wt 

= Re (VO e*') i (z = -L)= Vo=Y, ek+Y- e 
(5) 

Note that to use (3) we must write all sinusoids in complex 
notation. Then since all time variations are of the form e", 
we may suppress writing it each time and work only with the 
spatial variations of (3). 

Because the transmission line is short circuited, we have the 
additional boundary condition 

v(z = 0, 0)=0> N(Z =0) = 0 = +Y_ (6) 

which when simultaneously solved with (5) yields 

2 j sin ki 

The spatial dependences of the voltage and current are 
then 

) Vo(e-iX -- e'k) Vo sin kz 

2j sin kl sin ki 
A, +.k(8)

VoYo(e~' +e) .VoYo cos kz 
2j sin ki sin hi 

The instantaneous voltage and current as functions of space 
and time are then 

sin kz 

i(z, t) = Re [i(z) e"] - VOY 	 cos kz sin wt 
sinki 
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VO CsW 

-z 2=0 
_ VO sinkz 
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V/sin ki 
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(a) 

Figure 8-15 The voltage and current distributions on a (a) short circuited and (b) 
open circuited transmission line excited by sinusoidal voltage sources at z = -L If the 
lines are much shorter than a wavelength, they act like reactive circuit elements. (c) As 
the frequency is raised, the impedance reflected back as a function of z can look 
capacitive or inductive making the transition through open or short circuits. 

The spatial distributions of voltage and current as a 
function of z at a specific instant of time are plotted in Figure 
8-15a and are seen to be 90* out of phase with one another in 
space with their distributions periodic with wavelength A 
given by 

2r 2irc (10) 
A W 
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Figure 8-15 
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The complex impedance at any position z is defined as 

i(z)
Z(z)=-((11)

1(z)
 

which for this special case of a short circuited line is found 
from (8) as 

Z(z)= -jZo tan kz 	 (12) 

In particular, at z= -, the transmission line appears to the 
generator as an impedance of value 

Z(z = -1)= jZo tan kl 	 (13) 

From the solid lines in Figure 8-15c we see that there are 
various regimes of interest: 

(i) 	 When the line is an integer multiple of a half 
wavelength long so that k1= nar, n = 1, 2, 3, .. ., the 
impedance at z= -1 is zero and the transmission line 
looks like a short circuit. 

(ii) 	 When the-line is an odd integer multiple of a quarter 
wavelength long so that ki=(2n - 1)ir/2, n = 1, 2, .. . , 
the impedance at z = -1 is infinite and the transmission 
line looks like an open circuit. 

(iii) 	 Between the short and open circuit limits (n - 1)r < k1 <. 
(2n-1)ir/2, n=l,2,3,..., Z(z=-I) has a positive 
reactance and hence looks like an inductor. 

(iv) 	 Between the open and short circuit limits (n -2)1r <k1 < 
ner, n = 1, 2, . . , Z(z = -1) has a negative reactance arid 
so looks like a capacitor. 

Thus, the short circuited transmission line takes on all 
reactive values, both positive (inductive) and negative 
(capacitive), including open and short circuits as a function of 
Ri Thus, if either the length of the line I or the frequency is 
changed, the impedance of the transmission line is changed. 

Examining (8) we also notice that if sin k1 =0, (kl =n, 
n = 1, 2, ... ), the voltage and current become infinite (in 
practice the voltage and current become large limited only by 
losses). Under these conditions, the system is said to be 
resonant with the resonant frequencies given by 

w.= nrc/l, n = 1, 2,3,... (14) 

Any voltage source applied at these frequencies will result in 
very large voltages and currents on the line. 

(b) 	 Open Circuited Line 
If the short circuit is replaced by an open circuit, as in 

Figure 8-15b, and for variety we change the source at z = -1 to 
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VO sin wt the boundary conditions are 

i(z =0, t)=0 
(15)

v(z =-, t) = Vo sin wt = Re (-jVo ej") 

Using (3) the complex amplitudes obey the relations 

C(z = 0)=0 = YO(V+ - V.) 

(z= -1) = -jVO =Ye"+Ye- (16) 

which has solutions 

-jVO (17) 

The spatial dependences of the voltage and current are then 

;(Z)= (e-I+e-)= cos kz
2 cos ki cos kI 

j jkz Y(18)
VO YO 

f(z )= *(e~"-e*A) = - " sin kz
Cos k cos ki 

with instantaneous solutions as a function of space and time: 

V0 cos kz 
v(z, t) = Re [;(z) ej"]= sin o 

cos ki 
(19) 

i(z, t) = Re [i(z) eji']=-- YO sin kz cos wt
Cos ki 

The impedance at z = -1 is 

Z(z - ) - = -jZO cot ki (20) 

Again the impedance is purely reactive, as shown by the 
dashed lines in Figure 8-15c, alternating signs every quarter 
wavelength so that the open circuit load looks to the voltage 
source as an inductor, capacitor, short or open circuit 
depending on the frequency and length of the line. 

Resonance will occur if 

coski=0 (21) 

or 

ki= (2n -1) r/2, n = 1, 2, 3,... (22) 

so that the resonant frequencies are 

,- (2n-l)wc21 (23) 
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8-3-3 Reactive Circuit Elements as Approximations to Short Transmission 
Lines 

Let us re-examine the results obtained for short and open 
circuited lines in the limit when I is much shorter than the 
wavelength A so that in this long wavelength limit the spatial 
trigonometric functions can be approximated as 

- kzsin kzJim (24)
hi.i 1cos kz- I 

Using these approximations, the voltage, current, and 
impedance for the short circuited line excited by a voltage 
source Vo cos wt can be obtained from (9) and (13) as 

Voz
v(z, t)= -- cos wt, v(-, t)= V cos Wt

I 

. . VoYo .Vo sin oiL 
lim i(z, t)= sin wt, i(-, )= (25)

Z( L) I ki (L)w 

Z(- 1) = jZOk1 = j--OI= joi( LI)
c 

We see that the short circuited transmission line acts as an 
inductor of value (Li) (remember that L is the inductance per 
unit length), where we used the relations 

1 Lf 1 
Zo- -- , CC (26) 

Note that at z=-I, 

di(-I, t) 
(27)v(-1, t)=(LI) dt 

Similarly for the open circuited line we obtain: 

v(z, t)= Vo sin wt 
lin i(z, t)=-VOYokz cos t, i(-i, t) = (CI)w V cos Wt 

-jZ(-)=ZO
ki (Ci)w 

(28) 

For the open circuited transmission line, the terminal 
voltage and current are simply related as for a capacitor, 

dv(-l, t)
i(-I,L)=(CI) d (29) 

with capacitance given by (Cl). 
In general, if the frequency of excitation is low enough so 

that the length of a transmission line is much shorter than the 
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wavelength, the circuit approximations of inductance and 
capacitance are appropriate. However, it must be remem­
bered that if the frequencies of interest are so high that the 
length of a circuit element is comparable to the wavelength, it 
no longer acts like that element. In fact, as found in Section 
8-3-2, a capacitor can even look like an inductor, a short 
circuit, or an open circuit at high enough frequency while vice 
versa an inductor can also look capacitive, a short or an open 
circuit. 

In general, if the termination is neither a short nor an open 
circuit, the voltage and current distribution becomes more 
involved to calculate and is the subject of Section 8-4. 

8-3-4 Effects of Line Losses 

(a) Distributed Circuit Approach 
If the dielectric and transmission line walls have Ohmic 

losses, the voltage and current waves decay as they propagate. 
Because the governing equations of Section 8-1-3 are linear 
with constant coefficients, in the sinusoidal steady state we 
assume solutions of the form 

v(z, t)= Re (Y e("")( 
(30) 

i(z, t) = Re (I ej"~k)) 

where now w and k are not simply related as the nondisper­
sive relation in (4). Rather we substitute (30) into Eq. (28) in 
Section 8-1-3: 

az at 
cv =- t-G =iI=-(j ) 

-= -L -iR * -jkV = -(Liw +R)I
az at 

which requires that 

V jk Ljw + R
,W=-=- (32)
I (Cjw+G) jk 

We solve (32) self-consistently for k as 

k2 = -(Ljw + R)(Cjwo + G) = LCw2-jw(RC+ LG) - RG 
(33) 

The wavenumber is thus complex so that we find the real 
and imaginary parts from (33) as 

= -RGk '=,+jkk?-k?LCC 
(34)

2k, = -w(RC+ LG) 
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In the low loss limit where wRC< 1 and wLG< 1, the 
spatial decay of ki is small compared to the propagation 
wavenumber k,. In this limit we have the following approxi­
mate solution: 

k,.ki LC = wlc 

lim w(RC+LG) !R i+GjiL] (35)
wRC& I ki=- +- R + 

La 2h, 2 L 

+2(RYo+ GZo) 

We use the upper sign for waves propagating in the +z 
direction and the lower sign for waves traveling in the -z 
direction. 

(b) 	Distortionless lines 
Using the value of k of (33), 

k = -(Lj + R)(Cjw + G)]"2 (36) 

in (32) gives us the frequency dependent wave impedance for 
waves traveling in the z direction as 

+ RL) 1/2:, Ljw+R 1/2 VLw = 	 i(37),r = 
I Ciw + G, C W + GIC 

If the line parameters are adjusted so that 

R G 
-=-	 (38)

L C 

the impedance in (37) becomes frequency independent and 
equal to the lossless line impedance. Under the conditions of 
(38) the complex wavenumber reduces to 

k, = .,LC, k, =+4IRG (39) 

Although the waves are attenuated, all frequencies propagate 
at the same phase and group velocities as for a lossless line 

(1) 1 

(40)do., 1 
Vg = dk, J 

Since all the Fourier components of a pulse excitation will 
travel at the same speed, the shape of the pulse remains 
unchanged as it propagates down the line. Such lines are 
called distortionless. 
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(c) Fields Approach 
If R = 0, we can directly find the TEM wave solutions using 

the same solutions found for plane waves in Section 7-4-3. 
There we found that a dielectric with permittivity e and small 
Ohmic conductivity a has a complex wavenumber: 

lim k ~ (41) 
al.<1 \_C 2/ 

Equating (41) to (35) with R =0 requires that GZO = o-q. 
The tangential component of H at the perfectly conducting 

transmission line walls is discontinuous by a surface current. 
However, if the wall has a large but noninfinite Ohmic 
conductivity o-., the fields penetrate in with a characteristic 
distance equal to the skin depth 8 =2/op&c-.. The resulting 
z-directed current gives rise to a z-directed electric field so 
that the waves are no longer purely TEM. 

Because we assume this loss to be small, we can use an 
approximate perturbation method to find the spatial decay 
rate of the fields. We assume that the fields between parallel 
plane electrodes are essentially the same as when the system is 
lossless except now being exponentially attenuated as e-"", 
where a = -ki: 

E.(z, t) = Re [Eej("-kx) e-] 
(42) 

H,(z, t):= Re ej(" =,> e-"], k,.=­

From the real part of the complex Poynting's theorem 
derived in Section 7-2-4, we relate the divergence of the 
time-average electromagnetic power density to the time-
average dissipated power: 

V- <S>= -<Pd> (43) 

Using the divergence theorem we integrate (43) over a 
volume of thickness Az that encompasses the entire width and 
thickness of the line, as shown in Figure 8-16: 

VV-<S>dV= f<S>-dS 

= <S,(z+Az)>dS 

- <S,(z)> dS= <Pd> dV (44) 

The power <Pd> is dissipated in the dielectric and in the 
walls. Defining the total electromagnetic power as 

<P(z)>= I <S(z)>dS (45) 
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Figure 8-16 A transmission line with lossy walls and dielectric results in waves that 
decay as they propagate. The spatial decay rate a of the fields is approximately 
proportional to the ratio of time average dissipated power per unit length <PuL> to the 
total time average electromagnetic power flow <P> down the line. 

(44) can be rewritten as 

<P(z+Az)>-<P()>= <Pd> dxdydz (46) 

Dividing through by dz = Az, we have in the infinitesimal limit 

. <P(z+Az)>-<P(z)> d<P>
him 	 = z = - <Pd>dx dy 

= -<PdL>	 (47) 

where <Pa> is the power dissipated per unit length. Since 
the fields vary as e-", the power flow that is proportional to 
the square of the fields must vary as e so that 

d<P>
d= -2a<P>=-<PdL> (48)
dz 

which when solved for the spatial decay rate is proportional to 
the ratio of dissipated power per unit length to the total 



606 Guided Electromagnetic Waves 

electromagnetic power flowing down the transmission line: 

I <PdL> (49)
2 <P> 

For our lossy transmission line, the power is dissipated both 
in the walls and in the dielectric. Fortunately, it is not neces­
sary to solve the complicated field problem within the walls 
because we already approximately know the magnetic field at 
the walls from (42). Since the wall current is effectively 
confined to the skin depth 8, the cross-sectional area through 
which the current flows is essentially w8 so that we can define 
the surface conductivity as o-8, where the electric field at the 
wall is related to the lossless surface current as 

K = a8E. (50) 

The surface current in the wall is approximately found from 
the magnetic field in (42) as 

K = -H, = -E.17 (51) 

The time-average power dissipated in the wall is then 

=I J =1 J.| W,
<PdL>.aii=- Re (E. - K*)=- =- 2 (52)

2 1 2 o.8 2o ,v 2 52 

The total time-average dissipated power in the walls and 
dielectric per unit length for a transmission line system of 
depth w and plate spacing d is then 

<PdL>= 2<Pi>i.ii+cZ| 2 wd 

= (7 2 ' +d) (53) 

where we multiply (52) by two because of the losses in both 
electrodes. The time-average electromagnetic power is 

I [E|2<P>=- -wd (54)
2 q 

so that the spatial decay rate is found from (49) as 

a = -k = 1 22 + d\-!= I-O + (55)
2\ av.8 d 2\ e8 

Comparing (55) to (35) we see that 

GZoao,, RYO 2 

1 d Oaw 2=>Z=-=-=q, G=-, R (56)
Yo w d 5.w ( 
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8-4 ARBITRARY IMPEDANCE TERMINATIONS 

8-4-1 The Generalized Reflection Coefficient 

A lossless transmission line excited at z = -1 with a sinusoi­
dal voltage source is now terminated at its other end at z =0 
with an arbitrary impedance ZL, which in general can be a 
complex number. Defining the load voltage and current at 
z =0 as 

v(z = 0, t)= vL(t) = Re (VL es"') 

i(z = 0, t) = iL(t) = Re (IL en"), IL = VEJZL 

where VL and IL are complex amplitudes, the boundary 
conditions at z =0 are 

V,+V_ = VL (2) 

YO(V - V) = IL = VLJZL 

We define the reflection coefficient as the ratio 

Fr = V-/V+ (3) 

and solve as 

FL - ZL - Zo (4) 
ZL + Zo 

Here in the sinusoidal steady state with reactive loads, FL 
can be a complex number as ZL may be complex. For tran­
sient pulse waveforms, FL was only defined for resistive loads. 
For capacitative and inductive terminations, the reflections 
were given by solutions to differential equations in time. Now 
that we are only considering sinusoidal time variations so that 
time derivatives are replaced by jw, we can generalize FL for 
the sinusoidal steady state. 

It is convenient to further define the generalized reflection 
coefficient as 

(z)= V e V 2jkz e2jkz (5)
V, e-k V+ 

where FL is just F(z = 0). Then the voltage and current on the 
line can be expressed as 

i(z) = V+e-"[I +F(z)] 

f(z)= YoV, e-'h[I- F(z)]( 

The advantage to this notation is that now the impedance 
along the line can be expressed as 

Z(z) i^(z) l+F(z) 7 
Z.((Zz= (7) 

Zo f(z)Z0 I - I(Z) 
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where Z. is defined as the normalized impedance. We can 
now solve (7) for F(z) as 

Z (z)- 1
F 	 z(Z) (8) 

Note the following properties of Z,(z) and F(z) for passive 
loads: 

(i) 	 Z,(z) is generally complex. For passive loads its real part 
is allowed over the range from zero to infinity while its 
imaginary part can extend from negative to positive 
infinity. 

(ii) 	 The magnitude of F(z), IFL1 must be less than or equal 
to 1 for passive loads. 

(iii) 	 From (5), if z is increased or decreased by a half 
wavelength, F(z) and hence Z.(z) remain unchanged. 
Thus, if the impedance is known at any position, the 
impedance of all-points integer multiples of a half 
wavelength away have the same impedance. 

(iv) 	 From (5), if z is increased or decreased by a quarter 
wavelength, F(z) changes sign, while from (7) Z,(z) goes 
to its reciprocal= 1IZ(z) Y.(z). 

(v) 	 If the line is matched, ZL = Zo, then FL = 0 and Z,(z) = 1. 
The impedance is the same everywhere along the line. 

8-4-2 Simple Examples 

(a) 	 Load Impedance Reflected Back to the Source 
Properties (iii)-(v) allow simple computations for trans­

mission line systems that have lengths which are integer 
multiples of quarter or half wavelengths. Often it is desired to 
maximize the power delivered to a load at the end of a 
transmission line by adding a lumped admittance Y across the 
line. 	For the system shown in Figure 8-17a, the impedance of 
the 	load is reflected back to the generator and then added in 
parallel to the lumped reactive admittance Y. The normalized 
load 	impedance of (RL + jXL)/Zo inverts when reflected back 
to the source by a quarter wavelength to Zo/(RL +jXL). Since 
this 	is the normalized impedance the actual impedance is 
found by multiplying by Zo to yield Z(z = -A/4)= 
ZO/(RL +jXL). The admittance of this reflected load then adds 
in parallel to Y to yield a total admittance of Y+ (RL +0X)/ZZ. 
If Y 	is pure imaginary and of opposite sign to the reflected 
load 	susceptance with value -jXL/ZO, maximum power is 
delivered to the line if the source resistance Rs also equals the 
resulting line input impedance, Rs = ZIRL. Since Y is purely 
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Z,= RL + jXL 

Vocoswt ZL =RL + jXL
 

(a) 

Z-2 

____ Z2_____ RL 

| Z.. = Z, if 4 
= vZRLZ 2 

(b) 

Figure 8-17 The normalized impedance reflected back through a quarter-wave-long 
line inverts. (a) The time-average power delivered to a complex load can be maximized 
if Y is adjusted to just cancel the reactive admittance of the load reflected back to the 
source with R, equaling the resulting input resistance. (b) If the length 12 of the second 
transmission line shown is a quarter wave long or an odd integer multiple of A/4 and its 
characteristic impedance is equal to the geometric average of Z' and RL, the input 
impedance Z. is matched to Z,. 

reactive and the transmission line is lossless, half the time-
average power delivered by the source is dissipated in the load: 

IVo 1 RLV(
<P>=- - L ­ (9)

8 Rs 8 Zo2
 

Such a reactive element Y is usually made from a variable 
length short circuited transmission line called a stub. As 
shown in Section 8-3-2a, a short circuited lossless line always 
has aipure reactive impedance. 

To verify that the power in (9) is actually dissipated in the 
load, we write the spatial distribution of voltage and current 
along the line as 

i(z) =V+ e-"(l + r e)s(1 

i(z) = YoV+e-*(I - FL e2 j)(1 
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where the reflection coefficient for this load is given by (4) as 

RL +jXL -Zo 
RL+jXL+Zo( 

At z = -1 = -A/4 we have the boundary condition 

i(z =-1)= Vo/2 V+ e iki(I +rek) (12) 

=v,(1 - rL) 

which allows us to solve for V+ as 

-jVo, -jV0V+= V(l = -L)Z (RL+XL+Zo) (13)
2(l -- FL) 4Zo 

The time-average power dissipated in the load is then 

<PL> - Re [ (z = O)f*(z = 0)] 

=j (z =0)J2 RL 

= Zv| 
2 -rL (2YRL
 

= ' V2 YRL (14)
 

which agrees with (9). 

(b) QuarterWavelength Matching 
It is desired to match the load resistor RL to the trans­

mission line with characteristic impedance Z, for any value of 
its length 1I. As shown in Figure 8-17b, we connect the load to 
Z, via another transmission line with characteristic 
impedance Z2. We wish to find the values of Z 2 and 12 neces­
sary to match RL to Z,. 

This problem is analogous to the dielectric coating problem 
of Example 7-1, where it was found that reflections could be 
eliminated if the coating thickness between two different 
dielectric media was an odd integer multiple of a quarter 
wavelength and whose wave impedance was equal to the 
geometric average of the impedance in each adjacent region. 
The normalized load on Z2 is then Z.2= RJZ2. If 12 is an odd 
integer multiple of a quarter wavelength long, the normalized 
impedance Z,2 reflected back to the first line inverts to Z 2/RL. 
The actual impedance is obtained by multiplying this 
normalized impedance by Z 2 to give Z2/RL. For Zin to be 
matched to Z, for any value of I,, this impedance must be 
matched to Z1 : 

=Z/RL => Z2 = (15))RL 
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8-4-3 The Smith Chart 

Because the range of allowed values of rL must be 
contained within a unit circle in the complex plane, all values 
of Z.(z) can be mapped by a transformation within this unit 
circle using (8). This transformation is what makes the substi­
tutions of (3)-(8) so valuable. A graphical aid of this mathe­
matical transformation was developed by P. H. Smith in 1939 
and is known as the Smith chart. Using the Smith chart avoids 
the tedium in problem solving with complex numbers. 

Let us define the real and imaginary parts of the normal­
ized impedance at some value of z as 

Z.(z)=r+jx (16) 

The reflection coefficient similarly has real and imaginary 
parts given as 

r(z)= r,+ ir, (17) 

Using (7) we have 

j- r,-jF: (18) 

Multiplying numerator and denominator by the complex 
conjugate of the denominator (1-T,+jri) and separating 
real and imaginary parts yields 

1--2 

(1-f)2+f(i-r +r?(19) 
2ri 

(1 -r,) 2 +r 

Since we wish to plot (19) in the r,-ri plane we rewrite 
these equations as 

1I+r 2 (1+r)2 (20) 

1)2+ xi1)2 x 

Both equations in (20) describe a family of orthogonal 
circles.The upper equation is that of a circle of radius 1/(1 +r) 
whose center is at the position ri = 0, r, = r/('+r). The lower 
equation is a circle of radius I 1/xJ centered at the position 

,= 1, ri = i/x. Figure 8-18a illustrates these circles for a 
particular value of r and x, while Figure 8-1 8b shows a few 
representative values of r and x. In Figure 8-19, we have a 
complete Smith chart. Only those parts of the circles that lie 
within the unit circle in the I plane are considered for passive 
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Figure 8-18 For passive loads the Smith chart is constructed within the unit circle in 
the complex IF plane. (a) Circles of constant normalized resistance r and reactance x 
are constructed with the centers and radii shown. (b) Smith chart construction for 
various values of r and x. 

resistive-reactive loads. The values of 1F(z) themselves are 
usually not important and so are not listed, though they can 
be easily found from (8). Note that all circles pass through the 
point ,. = 1, Ui = 0. 

The outside of the circle is calibrated in wavelengths 
toward the generator, so if the impedance is known at any 
point on the transmission line (usually at the load end), the 
impedance at any other point on the line can be found using 
just a compass and a ruler. From the definition of r(z) in (5) 
with z negative, we move clockwise around the Smith chart 
when heading towards the source and counterclockwise when 
moving towards the load. 
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(b) 

In particular, consider the transmission line system in 
Figure 8-20a. The normalized load impedance is Z, =1+ j. 
Using the Smith chart in Figure 8-20b, we find the load 
impedance at position A. The effective impedance reflected 
back to z = -1 must lie on the circle of constant radius return­
ing to A whenever I is an integer multiple of a half 
wavelength. The table in Figure 8-20 lists the impedance at 
z = -- for various line lengths. Note that at point C, where 
I= A/4, that the normalized impedance is the reciprocal of 
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Figure 8-19 A complete Smith chart. 

that at A. Similarly the normalized impedance at B is the 
reciprocal of that at D. 

The current from the voltage source is found using the 
equivalent circuit shown in Figure 8-20c as 

i =1f| sin (wat-4) (21) 

where the current magnitude and phase angle are 

Sj+Vot Im [Z(z = -1)] 
150+Z(z=-)1' ta 50+Re[Z(z=-l)] 

(22) 

Representative numerical values are listed in Figure 8-20. 



50
 

Vosinct Z =50(0 +j) 

z- z=0 (a) 

88
 

Point I Z(z= I) fIiZo/Vo 4 
i= 1l IsIn(wt -#) A 0, A/2 l+j 0.447 26.60 

50 jV0 B A/8 2-j 0.316 -18.4* 
50 +Z(z-1) C A/4 j(1 -j) 0.632 -18.4" 

D 8A .4+.2j 0.707 8.1. 

-jV+ z-z tan- Im(Z(z = -1)) 1
 
-50 + Re(Z(z = -l))J
 

(c) 

Figure 8-20 (a) The load impedance at z = 0 reflected back to the source is found 
using the (b) Smith chart for various line lengths. Once this impedance is known the 
source current is found by solving the simple series circuit in (c). 

615 



616 Guided Electromagnetic Waves 

84-4 Standing Wave Parameters 

The impedance and reflection coefficient are not easily 
directly measured at microwave frequencies. In practice, one 
slides an ac voltmeter across a slotted transmission line and 
measures the magnitude of the peak or rms voltage and not 
its phase angle. 

From (6) the magnitude of the voltage and current at any 
position z is 

I (z) =IV1+I I+(z)l 
(23) 

| (z)|= Yof V+ II - R(z) 

From (23), the variations of the voltage and current 
magnitudes can be drawn by a simple construction in the F 
plane, as shown in Figure 8-21. Note again that I V+| is just a 
real number independent of z and that I F(z) S 1 for a passive 
termination. We plot Ii + r(z)l and I - F(z) since these 
terms are proportional to the voltage and current magni­
tudes, respectively. The following properties from this con-

Figure 8-21 The voltage and current magnitudes along a transmission line are 
respectively proportional to the lengths of the vectors |I + (z)I and Ii- r(z)I in the 
complex r plane. 
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struction are apparent: 

(i) 	 The magnitude of the current is smallest and the 
voltage magnitude largest when F(z) = 1 at point A and 
vice versa when r(z) = -1 at point B. 

(ii) 	 The voltage and current are in phase at the points of 
maximum or minimum magnitude of either at points A 
or B. 

(iii) 	 A rotation of r(z) by an angle ir corresponds to a 
change of A/4 in z, thus any voltage (or current) maxi­
mum is separated by A/4 from its nearest minima on 
either side. 

By plotting the lengths of the phasors I F(z)|, as in 
Figure 8-22, we obtain a plot of what is called the standing 
wave pattern on the line. Observe that the curves are not 
sinusoidal. The minima are sharper than the maxima so the 
minima are usually located in position more precisely by 
measurement than the maxima. 

From Figures 8-21 and 8-22, the ratio of the maximum 
voltage magnitude to the minimum voltage magnitude is 
defined as the voltage standing wave ratio, or VSWR for 
short: 

I (z)I = 1I+L1 =VSWR (24) 
| 0z)|min I -I FL I 

The VSWR is measured by simply recording the largest and 
smallest readings of a sliding voltmeter. Once the VSWR is 
measured, the reflection coefficient magnitude can be cal­
culated from (24) as 

VSWR- 1 
IIVSWR + ( 

The angle 4 of the reflection coefficient 

L L26) 

can also be determined from these standing wave measure­
ments. According to Figure 8-21, r(z) must swing clockwise 
through an angle 0 + ir as we move from the load at z =0 
toward the generator to the first voltage minimum at B. The 
shortest distance dnin that we must move to reach the first 
voltage minimum is given by 

2kdmin= + r (27) 

or 

4 " 1 	 (28)
ir A 
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Figure 8-22 Voltage and current standing wave patterns plotted for various values of 
the VSWR. 

A measurement of dmia, as well as a determination of the 
wavelength (the distance between successive minima or 
maxima is A/2) yields the complex reflection coefficient of the 
load using (25) and (28). Once we know the complex 
reflection coefficient we can calculate the load impedance 
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from (7). These standing wave measurements are sufficient to 
determine the terminating load impedance ZL. These 
measurement properties of the load reflection coefficient and 
its relation to the load impedance are of great importance at 
high frequencies where the absolute measurement of voltage 
or current may be difficult. Some special cases of interest are: 

(i) 	 Matched line-If rL =0, then VSWR =1. The voltage 
magnitude is constant everywhere on the line. 

(ii) 	 Short or open circuited line-If IrLI = 1, then VSWR 
co. The minimum voltage on the line is zero. 

(iii) 	 The peak normalized voltage 1i(z)/V+1 is 1 +IrLI while 
the minimum normalized voltage is 1-| rLj. 

(iv) 	 The normalized voltage at z =0 is I 1+ r, I while the 
normalized current | i(z)/ Yo V at z = 0 is I1I - r|. 

(v) 	 If the load impedance is real (ZL = RL), then (4) shows 
us that rL is real. Then evaluating (7) at z =0, where 
r(z =0)=r, we see that when ZL > Zo that VSWR= 
ZSJZo while if ZL < Zo, VSWR = Zo/ZL. 

For a general termination, if we know the VSWR and dmin, 
we can calculate the load impedance from (7) as 

+IrLI e 
= ZoZL I1-IrLi e"' 

[VSWR+ 1 +(VSWR - 1) e)*]= Zo[VSWR+ 1 -(VSWR - 1) ej] (29) 

Multiplying through by e-" 2 and then simplifying yields 

j tan (4/2)]
ZL = Zo[VSWR ­

S-[1 -j 	 VSWR tan (4/2)] 

_ Z0[1 -j VSWR tan kdmin] (30)
[VSWR - j tan kdmin] 

EXAMPLE 8-2 VOLTAGE STANDING WAVE RATIO 

The VSWR on a 50-Ohm (characteristic impedance) 
transmission line is 2. The distance between successive voltage 
minima is 40 cm while the distance from the load to the first 
minima is 10 cm. What is the reflection coefficient and load 
impedance? 
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SOLUTION 

We are given 

VSWR =2 

21r(10) w 

2(40) 4 

The reflection coefficient is given from (25)-(28) as 

L =3 e ­

while the load impedance is found from (30) as 

50(1-2j)
2-j 

=40-30johm 

8-5 STUB TUNING 

In practice, most sources are connected to a transmission 
line through a series resistance matched to the line. This 
eliminates transient reflections when the excitation is turned 
on or off. To maximize the power flow to a load, it is also 
necessary for the load impedance reflected back to the source 
to be equal to the source impedance and thus equal to the 
characteristic impedance of the line, ZO. This matching of the 
load to the line for an arbitrary termination can only be 
performed by adding additional elements along the line. 

Usually these elements are short circuited transmission 
lines, called stubs, whose lengths can be varied. The reactance 
of the stub can be changed over the range from -joO to joO 
simply byvarying its length, as found in Section 8-3-2, for the 
short circuited line. Because stubs are usually connected in 
parallel to a transmission line, it is more convenient to work 
with admittances rather than impedances as admittances in 
parallel simply add. 

8-5-1 Use of the Smith Chart for Admittance Calculations 

Fortunately the Smith chart can also be directly used for 
admittance calculations where the normalized admittance is 
defined as 

Y(z) 1 
YO Z.(z) 
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If the normalized load admittance Y.L is known, straight­
forward impedance calculations first require the computation 

Z.L = I/ Y.L (2) 

so that we could enter the Smith chart at Z.L. Then we rotate 
by the required angle corresponding to 2kz and read the new 
Zn(z). Then we again compute its reciprocal to find 

Y.(z)=1/Z.(z) (3) 

The two operations of taking the reciprocal are tedious. We 
can use the Smith chart itself to invert the impedance by using 
the fact that the normalized impedance is inverted by a A/4 
section of line, so that a rotation of 1'(z) by 180* changes a 
normalized impedance into its reciprocal. Hence, if the 
admittance is given, we enter the Smith chart with a given 
value of normalized admittance Y. and rotate by 180* to find 
Z.. We then rotate by the appropriate number of wavelengths 
to find Z.(z). Finally, we again rotate by 1800 to find Y.(z)= 
1I/Z.(z). We have actually rotated the reflection coefficient by 
an angle of 2r+2kz. Rotation by 27r on the Smith chart, 
however, brings us back to wherever we started, so that only 
the 2kz rotation is significant. As long as we do an even 
number of ir rotations by entering the Smith chart with an 
admittance and leaving again with an admittance, we can use 
the Smith chart with normalized admittances exactly as if they 
were normalized impedances. 

EXAMPLE 8-3 USE OF THE SMITH CHART FOR ADMITTANCE 
CALCULATIONS 

The load impedance on a 50-Ohm line is 

Z, = 50(1 +j) 

What is the admittance of the load? 

SOLUTION 

By direct computation we have 

1 1 (1-j) 
ZL 50(1+j) 100 

To use the Smith chart we find the normalized impedance at 
A in Figure 8-23: 

ZL = I +j 
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Figure 8-23 The Smith chart offers a convenient way to find the reciprocal of a 
complex number using the property that the normalized impedance reflected back by 
a quarter wavelength inverts. Thus, the normalized admittance is found by locating 
the normalized impedance and rotating this point by 1800 about the constant I Q'1 
circle. 

The normalized admittance that is the reciprocal of the 
normalized impedance is found by locating the impedance a 
distance A/4 away from the load end at B.: 

Y, = 0.5(-j)=> YL = YYo (I j)/100 

Note that the point B is just 1800 away from A on the 
constant I FL circle. For more complicated loads the Smith 
chart is a convenient way to find the reciprocal of a complex 
number. 
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8-5-2 Single-Stub Matching 

A termination of value ZL = 50(l + j) on a 50-Ohm trans­
mission line is to be matched by means of a short circuited 
stub at a distance L from the load, as shown in Figure 8-24a. 
We need to find the line length 11 and the length of the stub 12 

such that the impedance at the junction is matched to the line 
(Zi. =50 Ohm). Then we know that all further points to the 
left of the junction have the same impedance of 50 Ohms. 

Because of the parallel connection, it is simpler to use the 
Smith chart as an admittance transformation. The normal­
ized load admittance can be computed using the Smith chart 
by rotating by 180* from the normalized load impedance at A, 
as was shown in Figure 8-23 and Example 8-3, 

Z L = I+j (4) 

to yield 

Y.L = 0.501 -) (5) 

at the point B. 
Now we know from Section 8-3-2 that the short circuited 

stub can only add an imaginary component to the admittance. 
Since we want the total normalized admittance to be unity to 
the left of the stub in Figure 8-24 

Yi.= YI+ Y2= 1 (6) 

when YnL is reflected back to be Y, it must wind up on the 
circle whose real part is 1 (as Y2 can only be imaginary), which 
occurs either at C or back at A allowing L to be either 0.25A at 
A or (0.25 +0.177)A =0.427A at C (or these values plus any 
integer multiple of A/2). Then Y, is either of the following two 
conjugate values: 

_ 
11-j, 1I=0.427A (C) 

For Yi. to be unity we must pick Y2 to have an imaginary 
part to just cancel the imaginary part of Y,: 

j-j, 1 =0.25A 
Y2= 1 .5 (8) 

= 0.427A1,1+, 

which means, since the shorted end has an infinite admit­
tance at D that the stub must be of length such as to rotate the 
admittance to the points E or F requiring a stub length L2 of 
(A/8)(E) or (3A/8)(F) (or these values plus any integer multiple 
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Figure 8-24 (a) A single stub tuner consisting of a variable length short circuited line 
12 can match any load to the line by putting the stub at the appropriate distance 1, from 
the load. (b) Smith chart construction. (c) Voltage standing wave pattern. 
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of A/2). Thus, the solutions can be summarized as 

or 11 = 0.25A +nA/2, 12 = A/8+ mA/2 (9) 
11 = 0.427A + nA/2, 12 = 3A/8 + mA/2 

where n and m are any nonnegative integers (including zero). 
When the load is matched by the stub to the line, the VSWR 

to the left of the stub is unity, while to the right of the stub 
over the length 11 the reflection coefficient is 

F, = ZnL- Il (10) 
ZnL+l 2+j 

which has magnitude 

FL\ = l/,r=0.447 (I1) 

so that the voltage standing wave ratio is 

Il+I lFLI 6 (12
VSWR= -F 2.62 (12) 

The disadvantage to single-stub tuning is that it is not easy 
to vary the length I,. Generally new elements can only be 
connected at the ends of the line and not inbetween. 

8-5-3 Double-Stub Matching 

This difficulty of not having a variable length line can be 
overcome by using two short circuited stubs a fixed length 
apart, as shown in Figure 8-25a. This fixed length is usually 
IA. A match is made by adjusting the length of the stubs 1, and 
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Figure 8-25 (a) A double stub tuner of fixed spacing cannot match all loads but is 
useful because additional elements can only be placed at transmission line terminations 
and not at any general position along a line as required for a single-stub tuner. (b) 
Smith chart construction. If the stubs are 1A apart, normalized load admittances whose 
real part exceeds 2 cannot be matched. 
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12. One problem with the double-stub tuner is that not all 
loads can be matched for a given stub spacing. 

The normalized admittances at each junction are related as 

Y. = Y + YLYG=V1~YL(13) (3 
Y.= 	Y2+Yb 

where Y, and Y2 are the purely reactive admittances of the 
stubs reflected back to the junctions while Y is the admit­
tance of Y. reflected back towards the load by 3A. For a match 
we require that Y, be unity. Since Y2 iA purely imaginary, the 
real part of Y must lie on the circle with a real part of unity. 
Then Y. must lie somewhere on this circle when each point 
on the circle is reflected back by 2A. This generates another 
circle that is 32r back in the counterclockwise direction as we 
are moving toward the load, as illustrated in Figure 8-25b. To 
find the conditions for a match, we work from left to right 
towards the load using the following reasoning: 

(i) 	 Since Y2 is purely imaginary, the real part of Y must lie 
on the circle with a real part of unity, as in Figure 8-25b. 

(ii) 	 Every possible point on Y must be reflected towards the 
load by 1A to find the locus of possible match for Y.. This 
generates another circle that is ir back in the counter­
clockwise direction as we move towards the load, as in 
Figure 8-25b. 

Again since Y is purely imaginary, the real part of Y. must 
also equal the real part of the load admittance. This yields two 
possible solutions if the load admittance is outside the 
forbidden circle enclosing all load admittances with a real 
part greater than 2. Only loads with normalized admittances 
whose real part is less than 2 can be matched by the double-
stub tuner of 3A spacing. Of course, if a load is within the 
forbidden circle, it can be matched by a double-stub tuner if 
the stub spacing is different than 3A. 

EXAMPLE 8-4 DOUBLE-STUB MATCHING 

The load impedance ZL = 50(1 +j) on a 50-Ohm line is to 
be matched by a double-stub tuner of 8A spacing. What stub 
lengths 11 and 12 are necessary? 

SOLUTION 

The normalized load impedance Z.L = 1+j corresponds to 
a normalized load admittance: 

Y.L 	= 0.5(1 -j) 
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Figure 8-26 (a) The Smnith chart construction for a double-stub tuner of SA spacing 

with Z,.= I+j. (b) The voltage standing wave pattern. 
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Then the two solutions for Y. lie on the intersection of the 
circle shown in Figure 8-26a with the r = 0.5 circle: 

Y. = 0.5-0.14j 

Y- 2 =0.5- 1.85j 

We then find Y, by solving for the imaginary part of the 

upper equation in (13): 

0.36j=>11=0.305A (F) 

S-l.35j=l1=0.lA (E) 

By rotating the Ya solutions by -A back to the generator 
(270* clockwise, which is equivalent to 90* counterclockwise), 
their intersection with the r = 1 circle gives the solutions for 
Yb as 

Ybi = 1.0-0.72j 

Yb2 = 1.0+2.7j 

This requires Y2 to be 

- IM (Yb) = 0.72j=>1 2 =0.349A (G)Y2 
-2.7j'l> 2 =0.056A (H) 

The voltage standing wave pattern along the line and stubs is 
shown in Figure 8.26b. Note the continuity of voltage at the 
junctions. The actual stub lengths can be those listed plus any 
integer multiple of A/2. 

8-6 THE RECTANGULAR WAVEGUIDE 

We showed in Section 8-1-2 that the electric and magnetic 
fields for TEM waves have the same form of solutions in the 
plane transverse to the transmission line axis as for statics. The 
inner conductor within a closed transmission line structure 
such as a coaxial cable is necessary for TEM waves since it 
carries a surface current and a surface charge distribution, 
which are the source for the magnetic and electric fields. A 
hollow conducting structure, called a waveguide, cannot pro­
pagate TEM waves since the static fields inside a conducting 
structure enclosing no current or charge is zero. 

However, new solutions with electric or magnetic fields 
along the waveguide axis as well as in the transverse plane are 
allowed. Such solutions can also propagate along transmission 
lines. Here the axial displacement current can act as a source 

http:1.0+2.7j
http:S-l.35j=l1=0.lA
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of the transverse magnetic field giving rise to transverse 
magnetic (TM) modes as the magnetic field lies entirely 
within the transverse plane. Similarly, an axial time varying 
magnetic field generates transverse electric (TE) modes. The 
most general allowed solutions on a transmission line are 
TEM, TM, and TE modes. Removing the inner conductor on 
a closed transmission line leaves a waveguide that can only 
propagate TM and TE modes. 

8-6-1 Governing Equations 

To develop these general solutions we return to Maxwell's 
equations in a linear source-free material: 

VxE=-wy-H
8t 

VxH= e­
at 

EV-E=0 

p~V-H=O 

Taking the curl of Faraday's law, we expand the double cross 
product and then substitute Ampere's law to obtain a simple 
vector equation in E alone: 

Vx(VxE)=V(V -E)-V 2E 

a 
= -p (V XH) 

a2E 
2y- E(2) = ­

Since V - E =0 from Gauss's law when the charge density is 
zero, (2) reduces to the vector wave equation in E: 

a E C =1 
E(3)

V2E=I18E= 2 1,c= 3 
c 

If we take the curl of Ampere's law and perform similar 
operations, we also obtain the vector wave equation in H: 

1 82H 
V2H = I(4)C2at2 
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The solutions for E and H in (3) and (4) are not independent. 
If we solve for either E or H, the other field is obtained from 
(1). The vector wave equations in (3) and (4) are valid for any 
shaped waveguide. In particular, we limit ourselves in this 
text to waveguides whose cross-sectional shape is rectangular, 
as shown in Figure 8-27. 

8-6-2 Transverse Magnetic (TM) Modes 

We first consider TM modes where the magnetic field has x 
and y components but no z component. It is simplest to solve 
(3) for the z component of electric field and then obtain the 
other electric and magnetic field components in terms of E. 
directly from Maxwell's equations in (1). 

We thus assume solutions of the form 

E = Re [E,(x, y) ei(""k=)l (5) 

where an exponential z dependence is assumed because the 
cross-sectional area of the waveguide is assumed to be uni­
form in z so that none of the coefficients in (1) depends on z. 
Then substituting into (3) yields the Helmholtz equation: 

a2Ez a2 E, 2 2__ 
2+ 2 kz 2 Pz== (6) 

yx ay c 

b p 

Figure 8-27 A lossless waveguide with rectangular cross section. 
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This equation can be solved by assuming the same product 
solution as used for solving Laplace's equation in Section 4-2-1, 
of the form 

E.(x, y) = X(x) Y(y) (7) 

where X(x) is only a function of the x coordinate and Y(y) is 
only a function of y. Substituting this assumed form of solu­
tion into (6) and dividing through by X(x) Y(y) yields 

1 d2 X 1 d k2y W2 
-w+----=k2- (8)

Xdx2 Y dy 2 C2 

When solving Laplace's equation in Section 4-2-1 the right-
hand side was zero. Here the reasoning is the same. The first 
term on the left-hand side in (8) is only a function of x while 
the second term is only a function of y. The only way a 
function of x and a function of y can add up to a constant for 
all x and y is if each function alone is a constant, 

I d2X=-k2 
X &x2 

I d = _k2 
,Y dy2 

where the separation constants must obey the relation 

c (10)kk= k= 
When we solved Laplace's equation in Section 4-2-6, there 
was no time dependence so that w = 0. Then we found that at 
least one of the wavenumbers was imaginary, yielding decay­
ing solutions. For finite frequencies it is possible for all three 
wavenumbers to be real for pure propagation. The values of 
these wavenumbers will be determined by the dimensions of 
the waveguide through the boundary conditions. 

The solutions to (9) are sinusoids so that the transverse 
dependence of the axial electric field Ez(x, y) is 

E.(x, y) = (A, sin kx + A 2 cos kx)(B1 sin ky + B2 cos ky) 
(11) 

Because the rectangular waveguide in Figure 8-27 is 
composed of perfectly conducting walls, the tangential 
component of electric field at the walls is zero: 

(x, y =0)= 0, Z.(x =0, y)=0 
(12)

E.(x, y = b)=0, Z.(x = a, y)=0 

These boundary conditions then require that A 2 and B2 are 
zero so that (11) simplifies to 

E(x, y)= E0 sin kAx sin ky (13) 
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where E0 is a field amplitude related to a source strength and 
the transverse wavenumbers must obey the equalities 

k,= mir/a, m= 1, 2, 3, ... 

k, = nsr/b, n = 1, 2,3,. ... 

Note that if either m or n is zero in (13), the axial electric field 
is zero. The waveguide solutions are thus described as TM, 
modes where both m and n are integers greater than zero. 

The other electric field components are found from the z 
component of Faraday's law, where H. = 0 and the charge-
free Gauss's law in (1): 

aE, aEx 

ax 
aExaEy 

Oy 

lEz= 
(15) 

ax ay az 

By taking a/ax of the top equation and alay of the lower 
equation, we eliminate Ex to obtain 

a2E, + 2E, -216a2E,2 2, (6 
ax ay ay az 

where the right-hand side is known from (13). The general 
solution for E, must be of the same form as (11), again 
requiring the tangential component of electric field to be zero 
at the waveguide walls, 

E(x = 0, y)= 0, E,(x = a, y)= 0 (17) 

so that the solution to (16) is 

jk,E0
E,= k+k, sin kx coskyy (18) 

We then solve for Ex using the upper equation in (15): 

- jk~kE0k2k2 cos kx sin ky (19)
2 2 

where we see that the boundary conditions 

(x,y=0)=0, Z(x,y=b)=0 (20) 

are satisfied. 
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The magnetic field is most easily found from Faraday's law 

(x,y)=- VX E(x, y) (21)
IWA 

to yield 

A- I (cE1 aEY\ 
j \ ( ay az I 

j +k2 Eo sin k~x cos ky 

-jwEk, 

+k2E+ sin kx cos k,y 

, - (22)jyaz ax 

k~k2E0 
. 2 2(k+ 2 cos k x sin ky 

jwEk,+ 

-+ ki +k2Y Eo cos kxsin ky 

ff= 0 

Note the boundary conditions of the normal component of H 
being zero at the waveguide walls are automatically satisfied: 

H,(x,y=0)=0, H,(x,y=b)=0 (23) 

H.(x=0, y)=0, ',(x=a, y)=0 

The surface charge distribution on the waveguide walls is 
found from the discontinuity of normal D fields: 

6f(x =0, y)= eP.(x= 0,Y)=- " 2 E sin ky
A+k2 

5f(x = a, y)= -eZ.(x = a, y)= 2 Eo cosmir sin ky 
2 (24) 

5(x, y =0)= EZ,(x, y =0)= k 2 Eo sin kx 

Y E=s(x, y = b)= -eZ,(x, = Eo cos nir sin kx 
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Similarly, the surface currents are found by the discontinuity 
in the tangential components of H to be purely z directed: 

k~k2EO sin k~x
K.(x, y =0) = -. (x, y = 0)-= 2 

jcop(k + k') 

K(x,y b) H(x,y b)- jsk kkoLk2E2)) sin kxcos nin 

2 xk+kY) (25) 
IZ-- I-O- k~k2E0 .(x =0,y)=,(x=0, )= sin k~y

jXyy ,2+ki) 

k k2E0 cos mir sin k~yk,(x = a, y) = -H,(x = a, y) = ­ jwp(k 2 2)+ ky) 

We see that if m or n are even, the surface charges and 
surface currents on opposite walls are of opposite sign, while 
if m or n are odd, they are of the same sign. This helps us in 
plotting the field lines for the various TM,. modes shown in 
Figure 8-28. The electric field is always normal and the 
magnetic field tangential to the waveguide walls. Where the 
surface charge is positive, the electric field points out of the 
wall, while it points in where the surface charge is negative. 
For higher order modes the field patterns shown in Figure 
8-28 repeat within the waveguide. 

Slots are often cut in waveguide walls to allow the insertion 
of a small sliding probe that measures the electric field. These 
slots must be placed at positions of zero surface current so 
that the field distributions of a particular mode are only 
negligibly disturbed. If a slot is cut along the z direction on 
the y = b surface at x = a/2, the surface current given in (25) is 
zero for TM modes if sin (ka/2) =0, which is true for the 
m = even modes. 

8-6-3 Transverse Electric (TE) Modes 

When the electric field lies entirely in the xy plane, it is most 
convenient to first solve (4) for H.. Then as for TM modes we 
assume a solution of the form 

H = Re [H,(x, y) e)t'^)] (26) 

which when substituted into (4) yields 

2 h + 2 2_ 2) J4H =0 (27)
C2ax2 ay 2 
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Electric field (-) 
-

-jkekEo
+ E- .kE cos kx sin ky 

+ E,= i+k sin kx cos ky 

Z.=E0 sin kx sin k~y 

+ 

dy E, k, tan kx 
dx E. k. tank,y

x---------3--
+ 

TM11 
2>[cos kx](,) const 

cos k,y
y 

Magnetic field (- - -)+ +t +2> - -~2 
H, = E sin kx cos ky

kA2 +kY 

H,= 2+2Eo cos kx sin ky
+ / kZ 
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+ dx H. k, cot ky 

=> sin k~x sin k~y =const 
Ak 

, k,k ,_~ =2k2= -k 1/2 
+ + + - - - a a b L ' 

TM 
2 1 

Figure 8-28 The transverse electric and magnetic field lines for the TM,1 and TM2 1 modes. The electric field is 
purely z directed where the field lines converge. 
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Again this equation is solved by assuming a product solution 
and separating to yield a solution of the same form as (11): 

H.(x, y) =(A, sin kx + A 2 cos kx)(B, sin ky+B 2 cos ky) (28) 

The boundary conditions of zero normal components of H 
at the waveguide walls require that 

H.(x =0, y)=0, H,(x = a, y)=0 
(29) 

H,(x, y =0)=0, H,(x, y = b)= 0 

Using identical operations as in (15)-(20) for the TM modes 
the magnetic field solutions are 

A jk kHo mr n'ir 
A. =yk sin k~x COS ky, k. = m, k,. 

- jk~k,H0 30 
(30)H,+= k+kcos kx sinyy 

H.= Ho cos k,,x cos ky 

The electric field is then most easily obtained from 
Ampere's law in (1), 

=IV xH (31)
]we 

to yield 

jW6 y az 

- k,k2 H0 
j k2 +k cos k~x sin ky 

- 2 Ho cos k~x sin ky
k 

Z, 1 - (32)
jWE az ax 

kk2H0 )snkxCSk 

jwE (k2 + ky)s ~ o ~ 

=i-2 2 Ho sin kx cos ky 

=0 

We see in (32) that as required the tangential components 
of the electric field at the waveguide walls are zero. The 



638 Guided Electromagnetic Waves 

surface charge densities on each of the walls are: 

6f(x = 0, Y) = 6E.(x = 0, Y) = j(,(k2+,*k2 sin k~y)Y 

&(x = a, y)= -dE.(x = a, y)= cos mr sin ky 

. (33)hkk2 H0 ) 
o,(xy=0)=eE,(x,y=0)= jw(k 2k sincx 

k.k2HO
&5(x, y = b) = -eE,(x, y = b)= -2) os n sin kx 

jew.(k.2 ky)csn'sn 

For TE modes, the surface currents determined from the 
discontinuity of tangential H now flow in closed paths on the 
waveguide walls: 

K(x = 0, y)= i. X H(x = 0, y) 

= i.H,(x =0, y)-i,H,(x =0, y) 

K(x = a, y)= -i. X H(x = a, y) 

= -iH,('x = a, y)+iH,.(x = a, y) 

k(x, y 0)= i, X H(x, y =0) 

= -iH. 1 (x, y =0) + i.(x, y = 0) 

k(x, y = b)= -i, X H(x, y = b) 

= i.H(x, y = b) -i..(x, y = b) 

Note that for TE modes either n or m (but not both) can be 
zero and still yield a nontrivial set of solutions. As shown in 
Figure 8-29, when n is zero there is no variation in the fields 
in the y direction and the electric field is purely y directed 
while the magnetic field has no y component. The TE1 and 
TE2 1 field patterns are representative of the higher order 
modes. 

8-6-4 Cut-Off 

The transverse wavenumbers are 

k , k, = b (35)
ab 

so that the axial variation of the fields is obtained from (10) as 

kt-2 =M2 ] -1-
2 

- / T
2

] ( 62 
k,, = .2- (36)-C C~ab(6 
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+ -- + 

. jkHoY ­ H 2 + 2 sin kx cos k,y 

+ jk k,H0H,= Cos kAx sin k,y
\K.. \N. +7/ 
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Figure 8-29 (a) The transverse electric and magnetic field lines for various TE modes. The magnetic field is purely z directed where the field 
lines converge. The TE10 mode is called the dominant mode since it has the lowest cut-off frequency. (b) Surface current lines for the TEIO mode. 
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4 24 

Figure 8-29 

Thus, although k. and k, are real, A2 can be either pure real or 
pure imaginary. A real value of k represents power flow 
down the waveguide in the z direction. An imaginary value of 
k, means exponential decay with no time-average power flow. 
The transition from propagating waves (k. real) to evanes­
cence (k. imaginary) occurs for k. =0. The frequency when . 
is zero is called the cut-off frequency w,: 

&, = c (!r) 2+ n)2]/2(37) 

This frequency varies for each mode with the mode 
parameters m and n. If we assume that a is greater than b, the 
lowest cut-off frequency occurs for the TE10 mode, which is 
called the dominant or fundamental mode. No modes can 
propagate below this lowest critical frequency w~O: 

VTC 0 
(38)W(o =>fO="'-= cHz 

a 21r 2a 

If an air-filled waveguide has a = I cm, then f~o 
1.5x 10'Hz, while if a=10m, then fo=15MHz. This 
explains why we usually cannot hear the radio when driving 
through a tunnel. As the frequency is raised above wco, 
further modes can propagate. 
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The phase and group velocity of the waves are 

/2( flW)2]l.2kP 7'P MWr 2 nr22 

(39)d- k'c2 c 2 2 

Vg -= - = >gV=Cdk, w vp 

At cut-off, vg =0 and vp = c with their product always a 
constant. 

8-6-5 Waveguide Power Flow 

The time-averaged power flow per unit area through the 
waveguide is found from the Poynting vector: 

<S>= - Re (EXX *) 	 (40) 

(a) 	Power Flow for the TM Modes 
Substituting the field solutions found in Section 8-6-2 into 

(40) yields 

<S >= k Re [(Z~i. +Zi,+ZPi) e -'k x (R'* i + H('i,) e+)k*z] 

=I Re [(Z4i 	 - H* )i. +Z.(* i, - I*is)] e-(kj-**1 

(41) 

where we remember that k. may be imaginary for a particular 
mode if the frequency is below cut-off. For propagating modes 
where k. is real so that k. = k*, there is no z dependence in (41). 
For evanescent modes where k. is pure imaginary, the z 
dependence of the Poynting vector is a real decaying 
exponential of the form e-21 k-". For either case we see from (13) 
and (22) that the product of E. with ff. and H, is pure 
imaginary so that the real parts of the x- and y-directed time 
average power flow are zero in (41). Only the z-directed power 
flow can have a time average: 

S >= ~| 2) Re [k, e~(k -***(k cos kx sin2 ky
2(kx +k ) 

+k sin2 kx cos2 kyy)]i. 	 (42) 

If k, is imaginary, we have that <S> = 0 while a real k, results 
in a nonzero time-average power flow. The total z-directed 
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power flow is found by integrating (42) over the cross-
sectional area of the waveguide: 

<P>= <S.>dxdy 

wekabE( 
8(k2+k,) (43) 

where it is assumed that k. is real, and we used the following 
identities: 

sin 2 mo dx a (I m_ I 
si- a dx=--mlT\2 --- 4sin ala )1Jo a 0 

_ a/2, m#0 

a, m=0 

For the TM modes, both m and n must be nonzero. 

(b) Power Flow for the TE Modes 
The same reasoning is used for the electromagnetic fields 

found in Section 8-6-3 substituted into (40): 

<S > =1 Re [(Z.ix + Zii,) e~1**z x (14 i +fl ig +Bfl* ) j*z 

- 2 Re [(EZ.H* - E,H* )i. - H (E iy - Ei.)] e-(k=-*)z 
(45) 

Similarly, again we have that the product of H* with Z. and 
E, is pure imaginary so that there are no x- and y-directed 
time average power flows. The z-directed power flow reduces to 

<S!>=- (k 2 COS 2 k~x sin2 ky
S2 Yk+k) 

+k sin2 k x cos 2 ky) Re (k, e~(- k) (46) 

Again we have nonzero z-directed time average power flow 
only if k. is real. Then the total z-directed power is 

(olyk.abH( 
a b + m,n#0 

<P>= f <S,> dxdy= 8(.+' (47)
0. kabH, (47= 
4(k+2)morn 



7 7 a a

The Rectangular Waveguide 643 

where we again used the identities of (44). Note the factor of 
2 differences in (47) for either the TEO or TEO, modes. Both 
m and n cannot be zero as the TEOO mode reduces to the 
trivial spatially constant uncoupled z-directed magnetic field. 

8-6-6 Wall Losses 

If the waveguide walls have a high but noninfinite Ohmic 
conductivity a-,., we can calculate the spatial attenuation rate 
using the approximate perturbation approach described in 
Section 8-3-4b. The fields decay as e", where 

a=I < > (48)
<P>2 

where <Pa.> is the time-average dissipated power per unit 
length and <P> is the electromagnetic power flow in the 
lossless waveguide derived in Section 8-6-5 for each of the 
modes. 

In particular, we calculate a for the TEO mode (k.= 
r/a, A,=0). The waveguide fields are then 

$= ofisin -rx+cos7ai
in a ai 

E=- ~AHo sin -Mi 
IT a (49) 

The surface current on each wall is found from (34) as 

k(x = 0, y) =k(x = a, y) =-Hoi 

( IaI) (50)
K(x, y=0)= -K(x, y =b)= HO -i.-- sin -+i. cos1!­

-

With lossy walls the electric field component E. within the 
walls is in the same direction as the surface current propor­
tional by a surface conductivity o-8, where 8 is the skin depth 
as found in Section 8-3-4b. The time-average dissipated power 
density per unit area in the walls is then: 

<P(x = 0, y)>= <Pd(x = a, y)> 

=2ARe (E. I*)=H 
2 o.8 (51) 

<P(x, y = 0)> =<P(x, y b)> 

=_ _( k~a -_ 

2 o.8[\ )/ a aJ 
_I HO !) 2 sinsin 1rX +2 _rcos2 1 

The total time average dissipated power per unit length 
<Pd> required in (48) is obtained by integrating each of the 
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terms in (51) along the waveguide walls: 
b 

<Pd>= [<P(x =0, y)>+<P(x = a, y)>] dy 

+2<Pd(x,y=0)>+<P(x,y=b)>]dx 

H b H a _ I=+_2 cosS2 dx 

0-.8 + 0 	 J. L si/ a a ] 

=- b+ak a 2 _ H![b a(w2 (52)
o-.8 2[\ir/ J Ja.8L 2\irec2 

while the electromagnetic power above cut-off for the TEo 
mode is given by (47), 

=W k.abH, (53) 
4(7r/a)2 

so that 

)[ a( ( 2a2((<Pb)2r2 -TbS2 

a=- = 	 (54)

2 <P> wpabko-.8 
where 

)=--> a (55) 

8-7 DIELECTRIC WAVEGUIDE 

We found in Section 7-10-6 for fiber optics that elec­
tromagnetic waves can also be guided by dielectric structures 
if the wave travels from the dielectric to free space at an angle 
of incidence greater than the critical angle. Waves prop­
agating along the dielectric of thickness 2d in Figure 8-30 are 
still described by the vector wave equations derived in Section 
8-6-1. 

8-7-1 TM Solutions 

We wish to find solutions where the fields are essentially 
confined within the dielectric. We neglect variations with y so 
that for TM waves propagating in the z direction the z 
component of electric field is given in Section 8-6-2 as 

Re [A 2 e e kWz) ' ], x :d 

&(xt)= 	 Re [(Al sin kx+B1 cos kx) eit"'--z*], Ixl5d (1) 
Re [As e"(x*d) e t-hz ], xe5 -d 
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-EEven '-d) Odd 
mode mode 

d 

2d cosk, x sinkx 

-d 

e'( x+d) 

Eo, P0 

Figure 8-30 TE and TM modes can also propagate along dielectric structures. The 
fields can be essentially confined to the dielectric over a frequency range if the speed of 
the wave in the dielectric is less than that outside. It is convenient to separate the 
solutions into even and odd modes. 

where we choose to write the solution outside the dielectric in 
the decaying wave form so that the fields are predominantly 
localized around the dielectric. 

The wavenumbers and decay rate obey the relations 

kx +k. = l~t ((2)
a2 2 2~ 

The z component of the wavenumber must be the same in all 
regions so that the boundary conditions can be met at each 
interface. For propagation in the dielectric and evanescence in 
free space, we must have that 

&o/wop < k(<)El (3) 

All the other electric and magnetic field components can be 
found from (1) in the same fashion as for metal waveguides in 
Section 8-6-2. However, it is convenient to separately consider 
each of the solutions for E, within the dielectric. 

(a) Odd Solutions 
If E, in each half-plane above and below the centerline are 

oppositely directed, the field within the dielectric must vary 
solely as sin kxx: 

A 2 e "' x d 

Z = A I sin kx, \x\ ! d (4) 

A,, e"(x*d), x-s-d 
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Then because in the absence of volume charge the electric 
field has no divergence, 

- A2 e~"* x;?! d 
a 

aZ4 jk
jk.E> E. - A, cos kx, I xj - d (5)

ax kx 

kA, e""d), x! -d 
a 

while from Faraday's law the magnetic field is 

1 aE 
A,= - - -jkZ --. 

jweoA2 e--d), x-d 

.eaj (6) 
coskx, IxI d 

jweoAs e"(x+d), x5 -d 
a 

At the boundaries where x = :d the tangential electric and 
magnetic fields are continuous: 

E.(x = Ed-)= E(x =*d+)> A1 sin k~d = A 2 

-A, sin kd=A 3 

-jO)EA 1 --jouoA 2 (7)
H,(x =d-)= H,(x =d+) > Icos k~d =­

k a 

-jweA 1 jweoA3cos k,d = 
k, a 

which when simultaneously solved yields 

A 2 sa 
- = sin kU =-cos kd

eok,.A-1 
=>a =a=-k.tankd (8)

As3Ea 6 
-= -sink~d = -cos kd 
A I Eokx 

The allowed values of a and k. are obtained by self-consis­
tently solving (8) and (2), which in general requires a 
numerical method. The critical condition for a guided wave 
occurs when a =0, which requires that kd = nr and k.= 
w 2E The critical frequency is then obtained from (2) as 

2 kx (nir/d)2 
= - (9)

EA - LoAo E - Eo/o 
Note that this occurs for real frequencies only if elL > Eo.o. 
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(b) Even Solutions 
If E. is in the same direction above and below the dielectric, 

solutions are similarly 

B2 -a(x~d, x 2 d 
Z.= Bcoskx, Ix|5d (10) 

B3 e*(x+d), x:s -d 

jkB -a(x-d)l 

. jk, 

-zB2e , x -d 

a 

k
-,=1 sin kx, 	 (12)B |xI-5d 

0 EB" x5.a(,+d) -d 
a 

Continuity of tangential electric and magnetic fields at x = td 
requires 

B 1 cos kd = B2 , B, cos kd = B 

B, sinkd= B2, w sin kd =jeoBs (13)
k a , a 

or 
B2 ea 
S=coskd =- - sin kd 
B Sok :: a =-- cot kd 	 (14) 

B =coskd = - - sin kd 
B, EAk 

8-7-2 TE Solutions 

The same procedure is performed for the TE solutions by 
first solving for Hz. 

(a) 	Odd Solutions 

(A2 e-a(2~), x &d 
(15)

Ix|s d
sin(kx,A 2A,A3 a"x"d), x:5 -- d 
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AAe-O"', 
a 

x~d 

H= -Alcoskx, \xi d (16) 

a 

A (x""*), x--d 

a 
-a~x-d) 

E,= kAcoskx,
A2 

\xl d (17) 

a 
AA3ea'", x5-d 

where continuity of tangential E and H across the boundaries 
requires 

a = k tan k~d (18) 

(b) Even Solutions 

B2 e- , x z d 
H, B, coskx, k xI d (19) 

- Be ~'(+d), x s -d 

a 

-B e'**, \x\ :5di= -B, sin kx, x25-d (20) 

k 
-"B3 e"+'), x 5 -d 
a 

k. 
where a and A. are related as 

a=-, k.cot k.d (22) 
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PROBLEMS 

Section 8-1 
1. Find the inductance and capacitance per unit length and 
the characteristic impedance for the wire above plane and two 
wire line shown in Figure 8-3. (Hint: See Section 2-6-4c.) 

2. The inductance and capacitance per unit length on a 
lossless transmission line is a weak function of z as the dis­
tance between electrodes changes slowly with z. 

Re(Voe"'t Rewoj-')L(s), C(z) 

0 1 

(a) For this case write the transmission line equations as 
single equations in voltage and current. 

(b) Consider an exponential line, where 

L(z) = Lo e"', C(z)= Co ea2 

If the voltage and current vary sinusoidally with time as 

v(z, t) = Re [i(z) e"'], i(z, 1) = Re [i(z) e""'] 

find the general form of solution for the spatial distributions 
of i(z) and f(z). 

(c) The transmission line is excited by a voltage source 
Vo cos wt at z =0. What are the voltage and current dis­
tributions if the line is short or open circuited at z = I? 

(d) For what range of frequency do the waves strictly 
decay with distance? What is the cut-off frequency for wave 
propagation? 

(e) What are the resonant frequencies of the short 
circuited line? 

(f) What condition determines the resonant frequencies of 
the open circuited line. 

3. Two conductors of length I extending over the radial 
distance a:5 r:5 b are at a constant angle a apart. 

(a) What are the electric and magnetic fields in terms of the 
voltage and current? 

(b) Find the inductance and capacitance per unit length. 
What is the characteristic impedance? 
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b r 

a 

E. p 

v(t) Depth D 

i(t) 

4. A parallel plate transmission line is filled with a conducting 
plasma with constitutive law 

-a eE 
at 

y81 0 
1 z 

(a) How are the electric and magnetic fields related? 
(b) What are the transmission line equations for the voltage 

and current? 
(c) For sinusoidal signals of the form e "'-, how are 

w and k related? Over what frequency range do we have 
propagation or decay? 

(d) The transmission line is short circuited at z = 0 and 
excited by a voltage source Vo cos wt at z= -1. What are the 
voltage and current distributions? 

(e) What are the resonant frequencies of the system? 

5. An unusual type of distributed system is formed by series 
capacitors and shunt inductors. 

t) i(z, t) i (z+ Az,t)V(Z -Az, 
v(z, t) v(z+Az,t)
 

Cc c C

Az Az Az z 

L L L L L 

(a) What are the governing partial differential equations 
relating the voltage and current? 
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(b) What is the dispersion relation between w and k for 
signals of the form e'i "k*? 

(c) What are the group and phase velocities of the waves? 
Why are such systems called "backward wave"? 

(d) A voltage VO cos wt is applied at z = -L with the z = 0 
end short circuited. What are the voltage and current dis­
tributions along the line? 

(e) What are the resonant frequencies of the system? 

Section 8-2 
6. An infinitely long transmission line is excited at its center 
by a step voltage Vo turned on at t =0. The line is initially at 
rest. 

Zo V(t) Zo 

0 

(a) Plot the voltage and current distributions at time T. 
(b) At this time T the voltage is set to zero. Plot the voltage 

and current everywhere at time 2 T. 

7. A transmission line of length I excited by a step voltage 
source has its ends connected together. Plot the voltage and 
current at. z= 1/4, /2, and 31/4 as a function of time. 

closes at t= 

VO~ 

8. The dc steady state is reached for a transmission line 
loaded at z = I with a resistor RL and excited at z =0 by a dc 
voltage Vo applied through a source resistor R,. The voltage 
source is suddenly set to zero at t =0. 

(a) What is the initial voltage and current along the line? 
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fu io f t m 
a t e =_esb F d t etgV() 

V +1 

0 ­

(b) Find the voltage at the z = I end as a function of time. 
(Hint: Use difference equations.) 

9. A step current source turned on at t = 0 is connected to the 
z =0 end of a transmission line in parallel with a source 
resistance R,. A load resistor RL is connected at z = L 

Mf) Zo RL 

(a) What is the load voltage and current as a function of 
time? (Hint: Use a Thevenin equivalent network at z =0 
with the results of Section 8-2-3.) 

(b) With R, = co plot versus time the load voltage when 
RL = co and the load current when RL = 0. 

(c) If R, = co and Rt = ao, solve for the load voltage in the 
quasi-static limit assuming the transmission line is a capacitor. 
Compare with (b). 

(d) If R, is finite but RL =0, what is the time dependence of 
the load current? 

(e) Repeat (d) in the quasi-static limit where the trans­
mission line behaves as an inductor. When are the results of 
(d) and (e) approximately equal? 

10. Switched transmission line systems with an initial dc 
voltage can be used to generate high voltage pulses of short 
time duration. The line shown is charged up to a dc voltage 
Vo when at t =0 the load switch is closed and the source 
switch is opened. 

Opens at t = 0 Closes at t = 0 

V. . Zo, T RL = ZO 

_-T . __ 

6 i 
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(a) What are the initial line voltage and current? What are 
V+ and V.? 

(b) Sketch the time dependence of the load voltage. 

11. For the trapezoidal voltage excitation shown, plot versus 
time the current waveforms at z =0 and z = L for RL = 2ZO 
and RL =2ZO. 

Rs = Zo 
v(t) 

VO 
v(t) ZO, T = L 2Zo 

_C D I 

T 3T 4T 

0 1 

12. A step voltage is applied to a loaded transmission line 
with RL = 2ZO through a matching source resistor. 

RS = Zo 

v(t) 

VO VMt)_ Z_, T = - eRL = 2Zo 

0 I 

v(t) 

VC 

vt) v(t)
A 

2Vo 

vt) 

T t 

V0 

To 
2T 

T 2T 

V0 -

T 2T t 

- Vo 

(b) (c) 

(a) Sketch the source current i,(t). 
(b) Using superposition of delayed step voltages find the 

time dependence of i,(t) for the various pulse voltages 
shown. 

(c) By integrating the appropriate solution of (b), find i,(t) 
if the applied voltage is the triangle wave shown. 

13. A dc voltage has been applied for a long time to the 
.transmission line circuit shown with switches S, and S2 open 
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when at t =0: 

(a) S2 is suddenly closed with S, kept open; 
(b) S, is suddenly closed with S2 kept open; 
(c) Both S, and S2 are closed. 

2Zo 

Vo . Zo. T = 

ZO S2 
2ZoT 

C 

For each of these cases plot the source current i,(t) versus time. 

14. For each of the transmission line circuits shown, the 
switch opens at t =0 after the dc voltage has been applied for 
a long time. 

Opens at t = 0 

V0 -T ZO Z0 , T L 

0 I 

2Zo 

OpensV. 2Zo Zo, T TC at t 0 
-T .T i 

1 1 .
 
0 I
 

(a) What are the transmission line voltages and currents 
right before the switches open? What are V+ and V. at t =0? 

(b) Plot the voltage and current as a function of time at 
z = /2. 

15. A transmission line is connected to another transmission 
line with double the characteristic impedance. 

(a) With switch S2 open, switch S, is suddenly closed at 
t =0. Plot the voltage and current as a function of time half­
way down each line at points a and b. 

(b) Repeat (a) if S2 is closed. 
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S 1 b 

Va Zo, T, 
S2 

2ZZ 

2ZO, T2 2ZO 

1= crj >- 12 c2 T2 > 

Section 8-3 
16. A transmission line is excited by a voltage source Vo cos Wt 
at z = -L The transmission line is loaded with a purely reac­
tive load with impedance jX at z =0. 

Vocosct ZO ix 

-I 0 

(a) Find the voltage and current distribution along the line. 
(b) Find an expression for the resonant frequencies of the 

system if the load is capacitive or inductive. What is the 
solution if IX| = Zo? 

(c) Repeat (a) and (b) if the transmission line is excited by a 
current source I0 cos wt at z = -1. 

17. (a) Find the resistance and conductance per unit lengths 
for a coaxial cable whose dielectric has a small Ohmic 
conductivity o- -and walls have a large conductivity o-, 
(Hint: The skin depth 8 is much smaller than the radii or 
thickness of either conductor.) 

= ~. . . .......... .. a 

(b) What is the decay rate of the fields due to the losses? 
(c) If the dielectric is lossless (o- =0) with a fixed value of 
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outer radius b, what value of inner radius a will minimize the 
decay rate? (Hint: 1+1/3.6-ln 3.6.) 

18. A transmission line of length I is loaded by a resistor RL. 

Vocoswat ZO RL 

-l 0 

(a) Find the voltage and current distributions along the 
line. 

(b) Reduce the solutions of (a) when the line is much 
shorter than a wavelength. 

(c) Find the approximate equivalent circuits in the long 
wavelength limit (kl< 1) when RL is very small (RL< Zo) and 
when it is very large (RL w ZO). 

Section 8-4 
19. For the transmission line shown: 

R, 

Vo osWt Y=jB ZO = 50 Z 100( 

=0 
2 4 

4 

(a) Find the values of lumped reactive admittance Y = jB and 
non-zero source resistance R, that maximizes the power delivered 
by the source. (Hint: Do not use the Smith chart.) 

(b) What is the time-average power dissipated in the load? 

20. (a) Find the time-average power delivered by the source 
for the transmission line system shown when the switch is 
open or closed. (Hint: Do not use the Smith chart.) 

4400 

Vocos Wt Zo = 100 ZO = 50 RL 100 

(b) For each switch position, what is the time average 
power dissipated in the load resistor R? 
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(c) For each switch position what is the VSWR on each 
line? 

21. (a) Using the Smith chart find the source current 
delivered (magnitude and phase) for the transmission line 
system shown, for I= A/8, A/4, 3A/8, and A/2. 

VO cos WI 2 = 50 ZL = 500 - 2p 

-I C _______ 

(b) For each value of 1, what are the time-average powers 
delivered by the source and dissipated in the load impedance 
ZL? 

(c) What is the VSWR? 

22. (a) Without using the Smith chart find the voltage and 
current distributions for the transmission line system shown. 

4 

VO cosWt Z, = 50 ZL =1O0 

(b) What is the VSWR? 
(c) At what positions are the voltages a maximum or a 

minimum? What is the voltage magnitude at these positions? 

23. The VSWR on a 100-Ohm transmission line is 3. The 
distance between successive voltage minima is 50 cm while the 
distance from the load to the first minima is 20 cm. What are 
the reflection coefficient and load impedance? 

Section 8-5 

24. For each of the following load impedances in the single-
stub tuning transmission line system shown, find all values of 
the length of the line 1I and stub length 12 necessary to match 
the load to the line. 

(a) ZL= 00(l -j) (c) ZL=25(2-j) 
(b) ZL =50(l+2j) (d) ZL= 2 5(l+2j) 
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Z =50 D ZL 

Z0 = 50 

25. For each of the following load impedances in the double-
stub tuning transmission line system shown, find stub lengths 
11 and 12 to match the load to the line. 

a8 

ZLZ,= 50 

z=50 

Z,= 50 

12 

(a) ZL=I 00(1 -j) (c) ZL = 25(2-j) 
(b) ZL =50(1+2j) (d) Z4 =25(1+2j) 

26. (a) Without using the Smith chart, find the input 
impedance Zi. at z = -l = -A/4 for each of the loads shown. 

(b) What is the input current i(z = -1, t) for each of the 
loads? 
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__________________ A A a 

+ Z' 
VO Cos WO ZO L W 

-I 0 

R =ZO 

Vo coso(Z) vV: = 0 

(c) The frequency of the source is doubled to 2(io. The line 
length I and loads L and C remain unchanged. Repeat (a) and 
(b). 

(d) The frequency of the source is halved to 4 ao. Repeat (a) 
and (b). 

Section 8-6 

27. A rectangular metal waveguide is filled with a plasma 
with constitutive law 

at 

(a) Find the TE and TM solutions that satisfy the boundary 
conditions. 

(b) What is the wavenumber A. along the axis? What is the 
cut-off frequency? 

(c) What are the phase and group velocities of the waves? 
(d) What is the total electromagnetic power flowing down 

the waveguide for each of the modes? 
(e) If the walls have a large but finite conductivity, what is 

the spatial decay rate for TE10 propagating waves? 

28. (a) Find the power dissipated in the walls of a waveguide 
with large but finite conductivity i-s for the TM,,, modes 
(Hint: Use Equation (25).) 

(b) What is the spatial decay rate for propagating waves? 

29. (a) Find the equations of the electric and magnetic field 
lines in the xy plane for the TE and TM modes. 

(b) Find the surface current field lines on each of the 
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waveguide surfaces for the TE,. modes. Hint: 

J tan xdx = -In cos x 

J cot xdx = In sin x 

(c) For all modes verify the conservation of charge relation 
on the x = 0 surface: 

V, - K+Lo=0at 

30. (a) Find the first ten lowest cut-off frequencies if a= b 
1 cr in a free space waveguide. 

(b) What are the necessary dimensions for a square free 
space waveguide to have a lowest cut-off frequency of 10'0, 
108, 106, 10 , or 102 Hz? 

31. A rectangular waveguide of height b and width a is short 
circuited by perfectly conducting planes at z =0 and z = L. 

(a) Find the general form of the TE and TM electric and 
magnetic fields. (Hint: Remember to consider waves travel­
ing in the *z directions.) 

(b) What are the natural frequencies of this resonator? 
(c) If the walls have a large conductivity a, find the total 

time-average power <Ps> dissipated in the TE10 1 mode. 
(d) What is the total time-average electromagnetic energy 

< W> stored in the resonator? 
(e) Find the Q of the resonator, defined as 

WO< W> 
<Pd> 

where wo is the resonant frequency. 

Section 8.7 
32. (a) Find the critical frequency where the spatial decay 
rate a is zero for all the dielectric modes considered. 

(b) Find approximate values of a, k.,, and k, for a very thin 
dielectric, where kd< 1. 

(c) For each of the solutions find the time-average power 
per unit length in each region. 

(d) If the dielectric has a small Ohmic conductivity o, what 
is the approximate attenuation rate of the fields. 

33. A dielectric waveguide of thickness d is placed upon a 
perfect conductor. 

(a) Which modes can propagate along the dielectric? 
(b) For each of these modes, what are the surface current 

and charges on the conductor? 
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E0, A0 
d 

(c) Verify the conservation of charge relation: 

V, - K+ao=0 
at 

(d) If the conductor has a large but noninfinite Ohmic 
conductivity o-., what is the approximate power per unit area 
dissipated? 

(e) What is the approximate attenuation rate of the fields? 





chapter 9
 

radiation 



664 Radiation 

In low-frequency electric circuits and along transmission 
lines, power is guided from a source to a load along highly 
conducting wires with the fields predominantly confined to 
the region around the wires. At very high frequencies these 
wires become antennas as this power can radiate away into 
space without the need of any guiding structure. 

9-1 THE RETARDED POTENTIALS 

9-1-1 Nonhomogeneous Wave Equations 

Maxwell's equations in complete generality are 

VxE= (1)
at 

aD 
VxH=J +- (2)at 
V - B=0 (3) 

V-D=pf (4) 

In our development we will use the following vector iden­
tities 

Vx(VV)=O (5) 

V - (VXA)=0 (6) 

Vx (V xA)=V(V -A)-V 2 A (7) 

where A and Vcan be any functions but in particular will be 
the magnetic vector potential and electric scalar potential, 
respectively. 

Because in (3) the magnetic field has no divergence, the 
identity in (6) allows us to again define the vector potential A 
as we had for quasi-statics in Section 5-4: 

B=VXA (8) 

so that Faraday's law in (1) can be rewritten as 

Vx(E+- =0 (9) 
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Then (5) tells us that any curl-free vector can be written as the 
gradient of a scalar so that (9) becomes 

aA
E+--= -VV (10)

at 

where we introduce the negative sign on the right-hand side 
so that V becomes the electric potential in a static situation 
when A is independent of time. We solve (10) for the electric 
field and with (8) rewrite (2) for linear dielectric media (D= 
eE,B=pH): 

V~ ~ X( A)=jf+ VaV _a'Al c, 1 
VxVx)=~y-2- 2 , -, (gI

C at at EA 

The vector identity of (7) allows us to reduce (11) to 

Via 1 02A 
VA-V V -A+ C2 j-C-----tJf-- (12) 

Thus far, we have only specified the curl of A in (8). The 
Helmholtz theorem discussed in Section 5-4-1 told us that to 
uniquely specify the vector potential we must also specify the 
divergence of A. This is called setting the gauge. Examining 
(12) we see that if we set 

V - A = . (13) 
c at 

the middle term on the left-hand side of (12) becomes zero so 
that the resulting relation between A and J1 is the non­
homogeneous vector wave equation: 

V2A - IaA= -yjf (14) 

The condition of (13) is called the Lorentz gauge. Note that 
for static conditions, V - A =0, which is the value also picked 
in Section 5-4-2 for the magneto-quasi-static field. With (14) 
we can solve for A when the current distribution J1 is given 
and then use (13) to solve for V. The scalar potential can also 
be found directly by using (10) in Gauss's law of (4) as 

V2V+a(V -A)= ' (15)
at E 

The second term can be put in terms of V by using the 
Lorentz gauge condition of (13) to yield the scalar wave 
equation: 

.2,__ I a = - (16)
C2 at2 616 
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-Note again that for static situations this relation reduces to 
Poisson's equation, the governing equation for the quasi-static 
electric potential. 

9-1-2 Solutions to the Wave Equation 

We see that the three scalar equations of (14) (one equation 
for each vector component) and that of (16) are in the same 
form. If we can thus find the general solution to any one of 
these equations, we know the general solution to all of them. 

As we had earlier proceeded for quasi-static fields, we will 
find the solution to (16) for a point charge source. Then the 
solution for any charge distribution is obtained using super­
position by integrating the solution for a point charge over all 
incremental charge elements. 

In particular, consider a stationary point charge at r =0 
that is an arbitrary function of time Q(t). By symmetry, the 
resulting potential can only be a function of r so that (16) 
becomes 

1 1 a2n VV 

(17)
r - =0, r>O 

where the right-hand side is zero because the charge density 
is zero everywhere except at r=0. By multiplying (17) 
through by r and realizing that 

1 a saV a2 
--r - =-,(rV) (18) 

r ar( cDr 

we rewrite (17) as a homogeneous wave equation in the vari­
able (rV):. 

a' 1 a' 
(rV)-; (rV)=0 (19)

ar c t 
which we know from Section 7-3-2 has solutions 

IrV = f4. t -1 +f.. _+ (20) 

We throw out the negatively traveling wave solution as there 
are no sources for r>0 so that all waves emanate radially 
outward from the point charge at r=0. The arbitrary 
function f. is evaluated by realizing that as r -> 0 there can be 
no propagation delay effects so that the potential should 
approach the quasi-static Coulomb poterntial of a point 
charge: 

lim VQ= Q *- (21)u-o 41rEr 41r 
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The potential due to a point charge is then obtained from 
(20) and (21) replacing time t with the retarded time t - rc: 

Q(t - r/c) (22)
V(r, t)= (22)r 

The potential at time t depends not on the present value of 
charge but on the charge value a propagation time r/c earlier 
when the wave now received was launched. 

The potential due to an arbitrary volume distribution of 
charge pf(t) is obtained by replacing Q(t) with the differential 
charge element p1 (t) dV and integrating over the volume of 
charge: 

rpf(t-rgp/c )
V(r, t)= ae (tr-rQp dV (23) 

fallcharge 477ergp 

where rQp is the distance between the charge as a source at 
point Q and the field point at P. 

The vector potential in (14) is in the same direction as the 
current density Jj. The solution for A can be directly obtained 
from (23) realizing that each component of A obeys the same 
equation as (16) if we replace pf/s by p&J1: 

A(r, t) = U JAt - rQp/c) dV (24) 
fall curren 41rrQp 

9-2 RADIATION FROM POINT DIPOLES 

9-2-1 The Electric Dipole 

The simplest building block for a transmitting antenna is 
that of a uniform current flowing along a conductor of 
incremental length dl as shown in Figure 9-1. We assume that 
this current varies sinusoidally with time as 

i(t)=Re (fe") (1) 

Because the current is discontinuous at the ends, charge must 
be deposited there being of opposite sign at each end [q(t)= 
Re (Q e")]: 

i(t)= dt I=jW>Q, Z= 2 
(2) 

This forms an electric dipole with moment 

p= q dl i (3) 

If we can find the potentials and fields from this simple 
element, the solution for any current distribution is easily 
found by superposition. 
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P 

dilQ r 

ro+ dIcosO 

d2 

di Y 
c0 

2 

Pd 2Cos2 2 

Figure 9-1 A point dipole antenna is composed of a very short uniformly distributed 
current-carrying wire. Because the current is discontinuous at the ends, equal magni­
tude but opposite polarity charges accumulate there forming an electric dipole. 

By symmetry, the vector potential cannot depend on the 
angle 4, 

A. = Re [A. (r, 0) ei. (4) 

and must be in the same direction as the current: 

A,(r, t)= Re d1/2 ifeiE-O-rg40) dz] (5) 
-1+2 4 rrQp 

Because the dipole is of infinitesimal length, the distance 
from the dipole to any field point is just the spherical radial 
distance r and is constant for all points on the short wire. 
Then the integral in (5) reduces to a pure multiplication to 
yield 

= dIe~5kr, A.(r, t)= Re [A.(r) ej""] (6)1 

47rr 

where we again introduce the wavenumber k = wo/c and 
neglect writing the sinusoidal time dependence present in all 
field and source quantities. The spherical components of A, 



= V , E(r, t)= Re [E(r, 0) e""']
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are (i2 = i, cos 0 - i sin 0): 

A= Azcoso, Ae=-A sinO, A.=0 (7) 

Once the vector potential is known, the electric and 

magnetic fields are most easily found from 

N= V X A, H(r, t) = Re [H(r, 0) e"] 

(8) 

I 

Before we find these fields, let's examine an alternate 
approach. 

9-2-2 Alternate Derivation Using the Scalar Potential 

It was easiest to find the vector potential for the point 
electric dipole because the integration in (5) reduced to a 
simple multiplication. The scalar potential is due solely to the 
opposite point charges at each end of the dipole, 

V=- -(9)4ire ( r, r_ 

where r+ and r- are the distances from the respective dipole 
charges to any field point, as shown in Figure 9-1. Just as we 
found for the quasi-static electric dipole in Section 3-1-1, we 
cannot let r+ and r_ equal r as a zero potential would result. 
As we showed in Section 3-1-1, a first-order correction must 
be made, where 

dl 
r+~r--cos 8 

(10)
dl 

r_ - r +- cos 0
2 

so that (9) becomes 

S ejk (dL/2) cos 0 ---jk(dL/2) cos 6 

A rer dl /e dl )(11)I Io1+-cos8 
2 r ) 2r 

Because the dipole length dl is assumed much smaller than 
the field distance r and the wavelength, the phase factors in 
the exponentials are small so they and the I/r dependence in 
the denominators can be expanded in a first-order Taylor 
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series to result in: 

lim e- I+ cos 1+ cos 

db K \I d1ie \ 
) r ( 

Cos 4d Cos - -jk c
dIIdc Ijr( 

$ 2dl 

= 2 ei' cos 0(1+jkr) (12)
41rer 

When the frequency becomes very low so that the wavenum­
ber also becomes small, (12) reduces to the quasi-static electric 
dipole potential found in Section 3-1-1 with dipole moment 
f= Q dl. However, we see that the radiation correction terms 
in (12) dominate at higher frequencies (large k) far from the 
dipole (kr *1) so that the potential only dies off as 1/r rather 
than the quasi-static I/r2 . Using the relationships Q = I/j0 
and c = 1/vj, (12) could have been obtained immediately 
from (6) and (7) with the Lorentz gauge condition of Eq. (13) in 
Section 9-1-1: 

Z= (r2Z,)+ 1 (Asin 0) Y = ­
]w jo \r' ar r sin 8 / 

p~Idlc2 (l+jkr) _~ 
= d 2 e cos0 

4 rjw r2 

Qdl 
= 2(1+* )e Cos 0 (13) 

9-2-3 The Electric and Magnetic Fields 

Using (6), the fields are directly found from (8) as 

Hi= VxA 

MA 
S - ae , 

-i-- k2 sin I-+- I e (14)
41r likr (jkr)2) 
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E=. VXH 

(j\ sin )i, - -(rao)iotoE r sin 0 aO r ar 

Vi[cosO I + 1) idlk2 /;r1 1~-l k 2 
41r E r s jkr)2+ (jkr) 

+i, sin --- + + I e-I (15)(15)
Ien jkr (Jkr)2 (jkr) e 

Note that even this simple source generates a fairly 
complicated electromagnetic field. The magnetic field in (14) 
points purely in the < direction as expected by the right-hand 
rule for a z-directed current. The term that varies as 1/r2 is 
called the induction field or near field for it predominates at 
distances close to the dipole and exists even at zero frequency. 
The new term, which varies as 1/r, is called the radiation field 
since it dominates at distances far from the dipole and will be 
shown to be responsible for time-average power flow away 
from the source. The near field term does not contribute to 
power flow but is due to the stored energy in the magnetic field 
and thus results in reactive power. 

The 1/r3 terms in (15) are just the electric dipole field terms 
present even at zero frequency and so are often called the 
electrostatic solution. They predominate at distances close to 
the dipole and thus are the near fields. The electric field also 
has an intermediate field that varies as I/r 2, but more 
important is the radiation field term in the io component, 
which varies as I/r. At large distances (kr > 1) this term 
dominates. 

In the far field limit (kr >> 1), the electric and magnetic fields 
are related to each other in the same way as for plane waves: 

o-Id k2A = O sin 0 elim E0 
kr>1 e jkr 41r 

(16) 

The electric and magnetic fields are perpendicular and their 
ratio is equal to the wave impedance 1= Vi7I. This is because 
in the far field limit the spherical wavefronts approximate a 
plane. 

9-2-4 Electric Field Lines 

Outside the dipole the volume charge density is zero, which 
allows us to define an electric vector potential C: 

V - E = 0>E = V x C (17) 
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Because the electric field in (15) only has r and 0 components, 
C must only have a <0 component, Co(r, 0): 

E = VX C= -- (sin 6C)i,-- -(rCO)i (18)
r sin 08B r Or 

We follow the same procedure developed in Section 4-4-3b, 
where the electric field lines are given by 

- (sin BC,)
dr = E, = 6 

rdB Ee sn0a (19))sin B-(rC,)Or 
which can be rewritten as an exact differential, 

(r sin 0C) dr + (r sin BC,) dO =0 > d(r sin C4,) = 0 

(20) 

so that the field lines are just lines of constant stream-function 
r sin BC,. C, is found by equating each vector component in 
(18) to the solution in (15): 

I a 
(sin C,6)r -sin0Es 

=E,=i cCos t e+ to
4T r (jkr))(jkr" 

(21
I da 

' 
4si(s (-kr) (kr / (2)) 

=E_=-isin + + - -kr 

(21)
 
which integrates to 

0 d=ZL sin0 1- e~-jk' (22)
4r iTT_ r ( (kr)) 

Then assuming f is real, the instantaneous value of Cs is 

C,= Re (C06 ej") 

fd ,sn 0cos (wt - kr) + si (t-k) (23)
41r E r k 

so that, omitting the constant amplitude factor in (23), the 
field lines are 

rC, sin 0 = const =sins2 cos (wt - kr) + sn(tkr = const 

(24) 



0 

s 

sin2 0 [cos kr - s =const 

y
wt = 0 wt 2Electrostatic 

(a) dipole field solution (b) 

Figure 9-2 The electric field lines for a point electric dipole at wt =0 and t = 7r/2. 
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These field lines are plotted in Figure 9-2 at two values of 
time. We can check our result with the static field lines for a 
dipole given in Section 3-1-1. Remembering that k = w/c, at 
low frequencies, 

lrn cos (wt - kr) 1 (25)
-0 sin (cot - kr) (t - rc) t 

kr r/c r/c 

so that, in the low-frequency limit at a fixed time, (24) 
approaches the result of Eq. (6) of Section 3-1-1: 

lim sin 2 0 -, = const (26) 

Note that the field lines near the dipole are those of a static 
dipole field, as drawn in Figure 3-2. In the far field limit 

lim sin 2 0 cos (ot - kr)= const (27)
kr,l 

the field lines repeat with period A = 27r/k. 

9-2-5 Radiation Resistance 

Using the electric and magnetic fields of Section 9-2-3, the 
time-average power density is 

<S >=2'Re (Ex*) 

= 
_____rk 1 + -

2(4 7r)2 s 7(jkr)+ (jkr) 
Re 11fdl2-q4[i, sin 2 + 

+i, sin*20+ 
( jkr)2 (jkr)) 

1 \ZoI sin 0. 
(28)2 q (k 2 Ir 

where Zo is defined in (16). 
Only the far fields contributed to the time-average power 

flow. The near and intermediate fields contributed only 
imaginary terms in (28) representing reactive power. 

The power density varies with the angle 0, being zero along 
the electric dipole's axis (0 = 0, 7r) and maximum at right 
angles to it (0 = 7r/2), illustrated by the radiation power 
pattern in Fig. 9-3. The strength of the power density is 
proportional to the length of the vector from the origin tG the 
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II 

9 

Figure 9-3 The strength of the electric field and power density due to a z-directed 
point dipole as a function of angle (J is proportional to the length of the vector from 
the origin to the radiation pattern. 

radiation pattern. These directional properties are useful in 
beam steering, where the directions of power Row can be 
controlled. 

The total time-average power radiated by the electric 
dipole is found by integrating the Poynting vector over a 
spherical surface at any radius r: 

(29) 
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As far as the dipole is concerned, this radiated power is lost 
in the same way as if it were dissipated in a resistance R, 

<> |2 R (30) 

where this equivalent resistance is called the radiation resis­
tance: 

( 3d)2 k-= (31)
67r 3 \A/ A 

In free space 'qo=N/o/Eo- 1207r, the radiation resistance is 

Ro=807r2( 2 (free space) (32) 

These results are only true for point dipoles, where dl is 
much less than a wavelength (dl/A< 1). This verifies the vali­
dity of the quasi-static approximation for geometries much 
smaller than a radiated wavelength, as the radiated power is 
then negligible. 

If the current on a dipole is not constant but rather varies 
with z over the length, the only term that varies with z for the 
vector potential in (5) is I(z): 

+d1/2 ld(z) e -kr'p [ Ae-jkro +dI/2 
A,(r)= Re / dz Re I(z)dz]

fd42 irr-p 4rQp /2 
(33) 

where, because the dipole is of infinitesimal length, the dis­
tance rQp from any point on the dipole to any field point far 
from the dipole is essentially r, independent of z. Then, all 
further results for the electric and magnetic fields are the 
same as in Section 9-2-3 if we replace the actual dipole length 
dl by its effective length, 

1 +dL/2 
dleff=- I(z)dz (34) 

10 d/2 

where Zo is the terminal current feeding the center of the 
dipole. 

Generally the current is zero at the open circuited ends, as 
for the linear distribution shown in Figure 9-4, 

_Io(l1-2z/d1), 0:5 z 54l2 
IZ= Io(1+2z/dl), -d1/2:5z-0(5 

so that the effective length is half the actual length: 

deff- 1(z)dz= (36) 
1I0 02 2 
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z Pz 

0 r vo 

dieff = dl2 

d - -d/2 d1d2 1 

)dles = d1/2 (z)dz 
-d1/2 

x 

(a) (b) 

Figure 9-4 (a) If a point electric dipole has a nonuniform current distribution, the 
solutions are of the same form if we replace the actual dipole length dl by an effective 
length dl.ff. (b) For a triangular current distribution the effective length is half the true 
length. 

Because the fields are reduced by half, the radiation resis­
tance is then reduced by : 

R= =201r2 (37) 

In free space the relative permeability /A, and relative 
permittivity e, are unity. 

Note also that with a spatially dependent current dis­
tribution, a line charge distribution is found over the whole 
length of the dipole and not just on the ends: 

- i diA=- (38)
jo> dz 

For the linear current distribution described by (35), we see 
that: 

S2Io Oszsdl/2
A =5 z(39)
jodl -dl/2 :z50 

9-2-6 Rayleigh Scattering (orwhy is the sky blue?) 

If a plane wave electric field Re [Eo e"*i.] is incident upon an 
atom that is much smaller than the wavelength, the induced 
dipole moment also contributes to the resultant field, as illus­
trated in Figure 9-5. The scattered power is perpendicular to 
the induced dipole moment. Using the dipole model 
developed in Section 3-1-4, where a negative spherical electron 
cloud of radius RO with total charge -Q surrounds a fixed 



E =Re(Eoe J9) 

S incident 

S scAttered a 

. . .. 


!T.~ 

(a) 

rgE 

(b> 

Figure 9-5 An incident electric field polarizes dipoles that then re-radiate their 
energy primarily perpendicular to the polarizing electric field. The time-average 
scattered power increases with the fourth power of frequency so shorter wavelengths 
of light are scattered more than longer wavelengths. (a) During the daytime an earth 
observer sees more of the blue scattered light so the sky looks blue (short wavelengths). 
(b) Near sunset the light reaching the observer lacks blue so the sky appears reddish 
(long wavelength). 

678 



Radiation from Point Dipoles 679 

positive point nucleus, Newton's law for the charged cloud 
with mass m is: 

d 2 
x 2 QEo j. 2 Q2 
+ Wx=-Re e 1 , (=W3 (40)
d( M 4,rEmRo 

The resulting dipole moment is then 

Q2 Eo/m 
p = 2 2 (41) 

(00 -t 

where we neglect damping effects. This dipole then re-radi­
ates with solutions given in Sections 9-2-1-9-2-5 using the 
dipole moment of (41) (Idl-jop). The total time-average 
power radiated is then found from (29) as 

< =_ir1 w47(Q2Eo/m)2
2 2 2<P>= c = 12T 2 o- (42)12rc 12rc _0 7 

To approximately compute wo, we use the approximate 
radius of the electron found in Section 3-8-2 by equating the 
energy stored in Einstein's relativistic formula relating mass 
to energy: 

2 3Q2 3Q 2 

mc = -> ii-mc 1.69x 10- 5m(43) 

Then from (40) 

5/3207Tmc 3 
' 

3Q2Co ~2.3 X 1023 radian/sec (44) 

is much greater than light frequencies (to 1015) so that (42) 
becomes approximately 

Jim <>= 7 Q2Eow 2 
lim <P> ­ (45)wO>> 127r( mcw 

This result was originally derived by Rayleigh to explain the 
blueness of the sky. Since the scattered power is proportional 
to (04, shorter wavelength light dominates. However, near 
sunset the light is scattered parallel to the earth rather than 
towards it. The blue light received by an observer at the earth 
is diminished so that the longer wavelengths dominate and 
the sky appears reddish. 

9-2-7 Radiation from a Point Magnetic Dipole 

A closed sinusoidally varying current loop of very small size 
flowing in the z = 0 plane also generates radiating waves. 
Because the loop is closed, the current has no divergence so 
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that there is no charge and the scalar potential is zero. The 
vector potential phasor amplitude is then 

A(r)= f - eiTQp dl (46)
4 

lrro 

We assume the dipole to be much smaller than a wavelength, 
k(rQp-r)« 1, so that the exponential factor in (46) can be 
linearized to 

lim e-ik'Qp = elk'e-('Qp-') ==eir[ -jk(rQp-r)] 

(47) 

Then (46) reduces to 

A(r)=f e--iQ+jkr-) di 
47r \rQP 

=e* - -! di-jk
4 7r rop 

dl jk f dl (48) =---e k(1+jkr) ­
4ir\ J rQP J / 

where all terms that depend on r can be taken outside the 
integrals because r is independent of dl. The second integral 
is zero because the vector current has constant magnitude 
and flows in a closed loop so that its average direction 
integrated over the loop is zero. This is most easily seen with a 
rectangular loop where opposite sides of the loop contribute 
equal magnitude but opposite signs to the integral, which 
thus sums to zero. If the loop is circular with radius a, 

2w2 21r-si 
idt= higa d4 -> i, d4= (-sin i. + cos Oi,) dO =0 

(49) 

the integral is again zero as the average value of the unit 
vector i# around the loop is zero. 

The remaining integral is the same as for quasi-statics 
except that it is multiplied by the factor (1+ jkr) e ''. Using 
the results of Section 5-5-1, the quasi-static vector potential is 
also multiplied by this quantity: 

AM sin 0(1+ jkr) eik*'i,, A f dS (50)
47rr2 
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The electric and magnetic fields are then 

f=-VxA= jk e-ik' 2Cos 2+ 
s LOS ~ (jkr)2 (jkr) J 

[ 1 1 1\1 
+1e[slnl--+ +2+ (51)s

jkr (jkr)+(jkr)-"7 

E1 xN= 7e--krsin0 +G
jWE 4r (jkr) (jkr)Y/ 

The magnetic dipole field solutions are the dual to those of 
the electric dipole where the electric and magnetic fields 
reverse roles if we replace the electric dipole moment with the 
magnetic dipole moment: 

p = dl Idl 
-= --- - ->m(52) 

e e )oe 

9-3 POINT DIPOLE ARRAYS 

The power density for a point electric dipole varies with the 
broad angular distribution sin2 0. Often it is desired that the 
power pattern be highly directive with certain angles carrying 
most of the power with negligible power density at other 
angles. It is also necessary that the directions for maximum 
power flow be controllable with no mechanical motion of the 
antenna. These requirements can be met by using more 
dipoles in a periodic array. 

9-3-1 A Simple Two Element Array 

To illustrate the basic principles of antenna arrays we 
consider the two element electric dipole array shown in 
Figure 9-6. We assume each element carries uniform currents 
I and i2 and has lengths d1l and d12 , respectively. The ele­
ments are a distance 2a apart. The fields at any point P are 
given by the superposition of fields due to each dipole alone. 
Since we are only interested in the far field radiation pattern 
where 01 2= 0, we use the solutions of Eq. (16) in Section 
9-2-3 to write: 

E, sin Oe-l+E2 sin 0 e-rz'2 

jkri jkr2 
where 

-P 1 dl,k2 P 12 d12 k 
E=r , = 
4ir4 

E2 
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Z 

2 2
r2= [r + a -2arcos(ir -t )1 

2 
r + asin 0cos 

2a 2 

2 2
[r + a -2arcos 112 J r -asinOcoso 

cos =i,. -i sin0coso 

-Jd, 
a 

Figure 9-6 The field at any point P due to two-point dipoles is just the sum of the 
fields due to each dipole alone taking into account the difference in distances to each 
dipole. 

Remember, we can superpose the fields but we cannot 
superpose the power flows. 

From the law of cosines the distances r, and are relatedr2 

as 

r2 =[r2 + a2 -2ar cos (7-_6)] 2 =[r 2 + a2 +2arcos e] 

r = [r2 + a 2-2ar cos e]112 

where 6 is the angle between the unit radial vector i, and the x 
axis: 

cos = ir = sin 0 cos 4 

Since we are interested in the far field pattern, we linearize (2) 
to 

r2 r2 +2 r +- r sin 0cos 4]r + a sin0 cos4 

lim 
r a (3) 

r, -- r 1+-( 2 sin 0 Cos ~r - a sin 0 cos 
2 r2 r 

In this far field limit, the correction terms have little effect in 
the denominators of (1) but can have significant effect in the 
exponential phase factors if a is comparable to a wavelength 
so that ka is near or greater than unity. In this spirit we 
include the first-order correction terms of (3) in the phase 

2 
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factors of (1), but not anywhere else, so that (1) is rewritten as 

jkr1 sin 6 e-k (ij d11 ejk' s"O- + f, d1 2 e-'k" 0""'t) (4) 
4 7rr 

elemret factor array factor 

The first factor is called the element factor because it is the 
radiation field per unit current element (f dl) due to a single 
dipole at the origin. The second factor is called the array 
factor because it only depends on the geometry and excita­
tions (magnitude and phase) of each dipole element in the 
array. 

To examine (4) in greater detail, we assume the two dipoles 
are identical in length and that the currents have the same 
magnitude but can differ in phase x: 

dl, = dl2 =dl 

I= =, = Ie'x =E0, E= oe" (5)fEi 

so that (4) can be written as 

2Le r sin 6e j2 cos (ka sin 6cos q -- (6) = f 
jkr 2 

Now the far fields also depend on 0. In particular, we focus 
attention on the 6 = 7r/2 plane. Then the power flow, 

lim <Sr>= \I = 2 cos ka cos (7)
=(/2 2kr) (24 

depends strongly on the dipole spacing 2a and current phase 
difference X. 

(a) Broadside Array 
Consider the case where the currents are in phase (X = 0) 

but the dipole spacing is a half wavelength (2a = A/2). Then, 
as illustrated by the radiation pattern in Figure 9-7a, the field 
strengths cancel along the x axis while they add along the y 
axis. This is because along the y axis r, = r2 , so the fields due to 
each dipole add, while along the x axis the distances differ by 
a half wavelength so that the dipole fields cancel. Wherever 
the array factor phase (ka cos 0 -x/ 2 ) is an integer multiple of 
7T, the power density is maximum, while wherever it is an odd 
integer multiple of Tr/2, the power density is zero. Because 
this radiation pattern is maximum in the direction perpendic­
ular to the. array, it is called a broadside pattern. 
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Al) 10ox3. x	 x-a -a a	 a<1 
<S, >aCOs2( 	 !cos$j), ), x = 1! <S,>OcOs2(!cos 0 I ), X = 

2 2 8 4 2 c 2 
X = 0	 <S,> cos2 cos$-

Broadside 
(a) (b)	 (C) 

r__ r-) 
-a a -a a 

<S,>acos2! cos0_- f), x = -w	 <S,>aCO2 I COS0_, X = 
2 8 4 2 2 
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2a - A/2 

Figure 9-7 The power radiation pattern due to two-point dipoles depends strongly 
on the dipole spacing and current phases. With a half wavelength dipole spacing 
(2a = A/2), the radiation pattern is drawn for various values of current phase difference 
in the 6= ir/2 plane. The broadside array in (a) with the currents in phase (X =0) has 
the power lobe in the direction perpendicular to the array while the end-fire array in 
(e) has out-of-phase currents (x = 7r) with the power lobe in the direction along the 
array. 
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(b) End-fire Array 
If, however, for the same half wavelength spacing the cur­

rents are out of phase (X = 1r), the fields add along the x axis 
but cancel along the y axis. Here, even though the path 
lengths along the y axis are the same for each dipole, because 
the currents are out of phase the fields cancel. Along the x 
axis the extra 7r phase because of the half wavelength path 
difference is just canceled by the current phase difference of 
ir so that the fields due to each dipole add. The radiation 
pattern is called end-fire because the power is maximum in 
the direction along the array, as shown in Figure 9-7e. 

(c) Arbitrary Current Phase 
For arbitrary current phase angles and dipole spacings, a 

great variety of radiation patterns can be obtained, as illus­
trated by the sequences in Figures 9-7 and 9-8. More power 
lobes appear as the dipole spacing is increased. 

9-3-2 An N Dipole Array 

If we have (2N+ 1) equally spaced dipoles, as shown in 
Figure 9-9, the nth dipole's distance to the far field point is 
approximately, 

lim rn~r-nasinocoso (8) 

so that the array factor of (4) generalizes to 

AF= +NY in dl.e1sinb0"cos"" (9)
-N 

where for symmetry we assume that there are as many dipoles 
to the left (negative n) as to the right (positive n) of the z axis, 
including one at the origin (n = 0). In the event that a dipole is 
not present at a given location, we simply let its current be 
zero. The array factor can be varied by changing the current 
magnitude or phase in the dipoles. For simplicity here, we 
assume that all dipoles have the same length dl, the same 
current magnitude 1o, and differ in phase from its neighbors 
by a constant angle Xo so that 

In = Io e-1"0, --N nc n s N (10) 

and (9) becomes 

+ N 
AF = o dl Y, dn(kAasin 0 cOs-xo) (1 

-N 
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Figure 9-8 With a full wavelength dipole spacing (2a =A) there are four main power 
lobes. 
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Defining the parameter 

3=eej(ka sinecos #Xo) (12) 

the geometric series in (11) can be written as 

S= -N P"#-N + -N+l. I 4 +-24 +- I 2+ 

+ ,9N 1 + N (13) 

If we multiply this series by ( and subtract from (13), we have 

S(1 (3) -N _ N+1 (14) 

which allows us to write the series sum in closed form as 

N+1 v(N+1/2)_(N+1/2)--Ns= 
1--3 = 3-1/2l_/2 

sin [(N+ )(ka sin 0 cos 4)-Xo)] (15) 
sin [-(ka sin 6 cos 4 -Xo)I 

In particular, we again focus on the solution in the 0= 7r/2 

plane so that the array factor is 

AF= Io dl sin [(N+)(ka cos 4X-o)] (16)
sin [A(ka .cos 4 - Yo)] 

The radiation pattern is proportional to the square of the 
array factor. Maxima occur where 

ka cos 4-Xo= 2nir n=0, 1,2,... (17) 

The principal maximum is for n =0 as illustrated in Figure 
9-10 for various values of ka and Xo. The larger the number 
of dipoles N, the narrower the principal maximum with 
smaller amplitude side lobes. This allows for a highly direc­
tive beam at angle 4 controlled by the incremental current 
phase angle Xo, so that cos 4 = Xo/ka, which allows for elec­
tronic beam steering by simply changing Xo. 

9-4 LONG DIPOLE ANTENNAS 

The radiated power, proportional to (dli/A )2, is small for 
point dipole antennas where the dipole's length dl is. much 
less than the wavelength A. More power can be radiated if the 
length of the antenna is increased. Then however, the fields 
due to each section of the antenna may not add construc­
tively. 
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n =-N 

2 

n -s3 n s 
n 

0y 

3 ddI3 

n = 

current I(z). For simplicity we restrict ourselves to the far 
field pattern where r ~'L. Then, as we found for dipole 
arrays, the differences in radial distance for each incremental 
current element of length dz are only important in the 
exponential phase factors and not in the /r dependences. 

From Section 9-2-3, the incremental current element at 
position z generates a far electric field: 

=jk'q 1(z ) dz
dE0 dI, A= sin eA(r-cos 0) 1)-

41T r 

where we again assume that in the far field the angle 6 is the 
same for all incremental current elements. 

The total far electric field due to the entire current dis­
tribution is obtained by integration over all current elements: 

E =- sin OC z)Uel cos dz (2) 

If the current distribution is known, the integral in (2) can 
be directly evaluated. The practical problem is difficult 
because the current distribution along the antenna is deter­
mined by the near fields through the boundary conditions. 
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a = / 

N= 2 
N=1 

N= 3N= 1 N= 2 
X0= /2

Xo = 0 
x 

a = /2 

N= 1 N= 2 N= 1 N =2 
Xo = 0 X = m/2 

Figure 9-10 The radiation pattern for an N dipole linear array for various values of 
N, dipole spacing 2a, and relative current phase Xo in the 6 = ir/2 plane. 

Since the fields and currents are coupled, an exact solution is 
impossible no matter how simple the antenna geometry. In 
practice, one guesses a current distribution and calculates the 
resultant (near and far) fields. If all boundary conditions 
along the antenna are satisfied, then the solution has been 
found. Unfortunately, this never happens with the first guess. 
Thus based on the field solution obtained from the originally 
guessed current, a corrected current distribution is used and 
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N= 1 N 1 
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Figure 9-10 

the resulting fields are again calculated. This procedure is 
numerically iterated until convergence is obtained with self-
consistent fields and currents. 

9-4-2 Uniform Current 

A particularly simple case is when f(z)= fo is a constant. 
Then (2) becomes: 

jkE0 sin Oe o +u " 
47rr E/2 

47re jkzcos 6 L2 

4 -7rI k CS 0 1kL/ 

1071 tan 
4t7rr 

e 2j sin
L 

kL 
-cos

\2 
9) (3) 
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The time-average power density is then 

<S'>= i1 IjI2 1 2 tanJ20 sin2 [(kL/2) cos 0] (4) 
2 1(kr)2 (kL/2)2 

27 

where 

i-E= foLqk-"(5fLk 2 (5)
47r 

This power density is plotted versus angle 6 in Figure 9-12 
for various lengths L. The principal maximum always 
appears at 6= ir/2. becoming sharper as L increases. For 
L >A, zero power density occurs at angles 

Cos = 2 =n , n=2,... (6)
kL L 

Secondary maxima then occur at nearby angles but at much 
smaller amplitudes compared to the main lobe at 6= 7r/2. 

9-4-3 Radiation Resistance 

The total time-average radiated power is obtained by 

integrating (4) over all angles: 

<P>= <S,>r2 sin 0 dO d4 

IZo| 2 r " sin3 0 2 kL 6) dO (7) 
2k2 q(kL/2)2 J=o cos 6si s ( 

If we introduce the change of variable, 

kL kL 
v = cos 0, dv= Usin 0 d6 (8)

2 '2
 

the integral of (7) becomes 

<P>-= i -WI 2 sin2 vdv kL sinl2v2dv
kP2k +Al/2 \-kL 2 v(kL/2)2 

(9) 

The first term is easily integrable as 

fsin 
2 dv = -{ 4vsin 2v (10) 

The second integral results in a new tabulated function Si(x) 
called the sine integral, defined as: 

Si(x)= {sintdt (II)
ft 
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Figure 9-11 (a) For a long dipole antenna, each incremental current element at 
coordinate z is at a slightly different distance to any field point P. (b) The simplest case 
study has the current uniformly distributed over the length of the dipole. 

which is plotted in Figure 9-13. Then the second integral in 
(9) can be expanded and integrated by parts: 

sin 2 v (I -cos 2v) dv 
fV 2v2 

= _ cos 2v dv22v 2V 

I cos2v( sin 2vd(2v) 
2v 2v 2v 

= +cos 2v+Si(2v) (12)
2v 2v 

Then evaluating the integrals of (10) and (12) in (9) at the 
upper and lower limits yields the time-average power as: 

<P>= +cos kL -2 + kLSi(kL) (13)
k2k (kL/2) 2 kL 

where we used the fact that the sine integral is an odd 
function Si(x)= -Si(x). 

Using (5), the radiation resistance is then 

2<P> 71 sin kL 
R ^ 2 = + cos kL -2+kLSi(kL) (14)

|Io|2 27r kL 
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Figure 9-12 The radiation pattern for a long dipole for various values of its length. 
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x'O.2 
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Figure 9-13 The sine integral Si(x) increases linearly for small arguments and 
approaches ir/2 for large arguments oscillating about this value for intermediate 
arguments. 
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Figure 9-14 The radiation resistance for a dipole antenna carrying a uniformly 
distributed current increases with the square of its length when it is short (L/A < 1) and 
only linearly with its length when it is long (L/A > 1). For short lengths, the radiation 
resistance approximates that of a point dipole. 
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which is plotted versus kL in Fig. 9-14. This result can be 
checked in the limit as L becomes very small (kL < 1) since the 
radiation resistance should approach that of a point dipole 
given in Section 9-2-5. In this short dipole limit the bracketed 
terms in (14) are 

sin kL (kL)2 

kL 6 

knkL II coskU I(kL )2 ((15) 
2 

kLSi(kL) (kL)2 

so that (14) reduces to 

lim R -v (kL )2 2rn L 2 2 (L (16)8 02 r 3 3 A A Er 

which agrees with the results in Section 9-2-5. Note that for 
large dipoles (kL >> 1), the sine integral term dominates with 
Si(kL) approaching a constant value of 7r/2 so that 

lim R _- = 60 r2 L (17)
kL 1 4 Er A 

PROBLEMS 

Section 9-1 
1. We wish to find the properties of waves propagating 
within a linear dielectric medium that also has an Ohmic 
conductivity o-. 

(a) What are Maxwell's equations in this medium? 
(b) Defining vector and scalar potentials, what gauge 

condition decouples these potentials? 
(c) A point charge at r = 0 varies sinusoidally with time as 

Q(t) = Re (Q e'"). What is the scalar potential? 
(d) Repeat (a)-(c) for waves in a plasma medium with 

constitutive law 

aSf= w eE 
at 

2. An infinite current sheet at z = 0 varies as 
Re [K0 e - il. 

(a) Find the vector and scalar potentials. 
(b) What are the electric and magnetic fields? 
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(c) Repeat (a) and (b) if the current is uniformly dis­
tributed over a planar slab of thickness 2a: 

r(o -a<z <aej"'-*'it, 

jfIIzi =>a I 

3. A sphere of radius R has a uniform surface charge dis­
tribution oy = Re (&o e"') where the time varying surface 
charge is due to a purely radial conduction current. 

(a) Find the scalar and vector potentials, inside and outside 
the sphere. (Hint: r 2 = r2 +R 2 -2rR cos 0; rQ drQP= 
rR sin 0dO.) 

(b) What are the electric and magnetic fields everywhere? 

Section 9.2 
4. Find the effective lengths, radiation resistances and line 
charge distributions for each of the following current dis­
tributions valid for IzI <dl/2 on a point electric dipole with 
short length dl: 

(a) I(z)= Io cos az 
(b) f(z)= Io e-IZI 
(c) I(z)= Io cosh az 

5. What is the time-average power density, total time-average 
power, and radiation resistance of a point magnetic dipole? 

6. A plane wave electric field Re (Eo el*') is incident upon a 
perfectly conducting spherical particle of radius R that is 
much smaller than the wavelength. 

(a) What is the induced dipole moment? (Hint: See 
Section 4-4-3.) 

(b) If the small particle is, instead, a pure lossless dielectric 
with permittivity e, what is the induced dipole moment? 

(c) For both of these cases, what is the time-average scat­
tered power? 

7. A plane wave magnetic field Re (HO e'") is incident upon a 
perfectly conducting particle that is much smaller than the 
wavelength. 

(a) What is the induced magnetic dipole moment? 
(Hint: See Section 5-7-2ii and 5-5-1.) 

(b) What. are the re-radiated electric and magnetic fields? 
(c) What is the time-average scattered power? How does it 

vary with frequency? 

8. (a) For the magnetic dipole, how are the magnetic field 
lines related to the vector potential A? 

(b) What is the equation of these field lines? 

Section 9.3 
9. Two aligned dipoles f, dl and f2 dt are placed along the z 
axis a distance 2a apart. The dipoles have the same length 
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i 

r2 

Y2dl 

r 

2a

4I 
Y 

1, dl 

while the currents have equal magnitudes but phase 
difference x. 

(a) What are the far electric and magnetic fields? 
(b) What is the time-average power density? 
(c) At what angles is the power density zero or maximum? 
(d) For 2a = A/2, what values of X give a broadside or 

end-fire array? 
(e) Repeat (a)-(c) for 2N+ 1 equally spaced aligned dipoles 

along the z axis with incremental phase difference Xo. 

10. Three dipoles of equal length dl are placed along the z 
axis. 

i d1 

2 dl >p Y* 
a l 

(a) Find the far electric and magnetic fields. 
(b) What is the time average power density? 
(c) For each of the following cases find the angles where 

the power density is zero or maximum. 

(i 3=Z= Io, Z2 = 21o 
(ii) I 3= s= Io, I2= -21o 
(iii) I, = -I3 = I0, I2 = 2jIO 
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11. Many closely spaced point dipoles of length dl placed 
along the x axis driven in phase approximate a z-directed 
current sheet Re (KO e1"'iz) of length L. 

z 

Surface current Re(Koe j )i 

> y 

ZL 

x d 

(a) Find the far fields from this current sheet. 
(b) At what angles is the power density minimum or 

maximum? 

Section 9.4 
12. Find the far fields and time-average power density for 
each of the following current distributions on a long dipole: 

(a) 	 I(z) Io(1 -2z/L), 0 < z < L/2 

IIO(1+2z/L), -L/2<z<O 

Hint: 

ze"dz 	 2 (az- 1)
f a 

(b) i(z)= Io cos 7rz/L, -L/2 < z < L/2 

Hint: 

ca cos pz +p sinpz) 
2e cos Pz dz =e (a2 +p ) 

(c) For these cases find the radiation resistance when 
kL < 1. 
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SOLUTIONS TO SELECTED PROBLEMS 

Chapter 1 

1. Area 	= 7ra 
2 

3. (a) A + B= 6fi - 2i, -6i. 

(b) A-B=6 

(c) A x B= -14x+ 12i,- 18i, 

5. (b) B111=2(--i. +2i, -- i), B, =5i + i, -3i 

7. (a) A - B= -75 

(b) AxB=-100i. 

(c) 6 = 126.87' 

12. (a) 	 Vf=(az+3bx 2 y)i+bx 3 i,+axi. 

14. (a) 	 V-A=3 

17. (b) 	 b='abc 

18. (a) 	 VXA=(x -y 2 )iyi, _X 2 

23. (b) 	Vf1 f , 1 af. 
h. au h. av h. 8w 

(c) dV = huhh. du dv dw 

(d) V-A= - (hh.Au)+-(huhA)+--(hh,,Aw)
huhhw au 8v Ow 

(V x A). 	= -- [a(hAw) _a(hA)
h.,hw 	 av aw 

25. a) rp=.iii,(b) rQp i. - 5i, +2i = i- +125. (a) rap =3-0, (b) ior = 

rQp /3 

(c) 	 5i. +n= 

Chapter 2 

1rR p
 
3 q
 

3. Eo= ­

4. 	 Q2= 27reod3 Mg
 

Q i _
 

5. (a) w = QIQ2 1/2
L47reOR 3m J 
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7. (a) M i 2 

(b) = -qq2 
27reom r ro) 

()=r 3/2
(d) t=jrO [ 2 

qEoL2
8. h= 2 my 2 

6V3
10. (b) q =-7 

12. (a) q = 2Aoa, 

27rmEo12 

-no 

(b) q = i7rpoan, (c) q = 2ooabir 

15. 0 =tan-'[2EOMg 

AL

16. (a) E,=27rEor L r 

(b) E = 2 , 0 [sin-+ (L x >0 

18. (a) E,= -Xoa 2 

EO[z 2+ a213/27r 

A 0a2 

20. (a ) E , = r + 

A0z2 
27reO(a +z2 2 a) 

22. (a) QT 47rEOAR 4 

23. (c) PO (x2-d 2) |xj <d 
E,,= 2eod 

0 |xl>d 
25. (c) 2por r<a 

3eoa 
E, 2 

pa r>a 
L3eor 

26. E = pi 
2eo 2E 

27. W=- Acyo1
4e 
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rQ (b) r = 4R 28. (a) vo q
27rsRm' 

29. (a) E=-2Axi.,pf=-2Aeo 

31. (a) Av =ro 
Q0 

32. (a) dq 	 -
R 

dz' 

33. (c) V~- oa 2 cos 6, (d) r =rosin2
0 

4reor 

= ­34. (d) q, 

36. (a) E, = - In f 1­
27rEo\ 	 y/ 

q ( q qEo /4 

38. (a) xo= l67reoEo, (b) VvQ] 

q(c) W= 
2 

161reod 

43. (e) A = -= R2 R2 
2 

44. (g) qT=-47rEoR21r 

Chapter 3 

2. 	 (a) p =A oL2, (e) p. =QR 

3Q 
4. (a) po - TrR-3 

4iirsoR'3Eo 
7. (a) d =4 .RQ 

Q 
8. (b) =27reoEo

L2 

R3 

10. (a) Pins=D3 

sinhx/ld12. 	 (a) V(x)= /o 
2 snh 1/1d 

maRAor­15. (b) Q= 
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A 
17. (a) Dr= 

27rr 

19. (a) A'=-A"= E 2 ,,, 21+A 

23. (a) 	 Por r<R 

0 r>R 

s In & 
%26. (a) R = 

ID(0-2 - 0%) 

b)C= 27rt(62a -e31. 
(b -a) In Ea 

El b 

33. of(r=a1)= POao( 1 -e / er.);Tr
3a, 

35. 	 p=poe -" '(3eA 

Vo sinh V'ikR(z - 1)
38. (a) v(z)=- sn~~ 

sinh Nf2_RG 

41. (b) EIN[E2(l) - E 2(0)] + dv = J(t)l
2 d 

V 0/l 212 
(c) E(l)= , T -- (-- 12)(f) 2= 

LtVO VO 
1 212 

(Vo \ 
42. (c) E?= 0 = 

Ro-R) 2vrEpl 

43. (a) W 	 - p- E 

44. W= 1 2 R3 

47. 	 (a) W= 

81reoR 

48. (a) Wj.j=4CVo, (b) W 4.J= 0CVo 

49. (b) W=-pE(cos-1) 

50. h = -(e - o) 2 
p,,,s 
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5 2oA Pod 2 
52. (b) f,=-- o 

2 (s+d)LsoJ 

54. 	 (b) f= (e-o) 

In ­
a 

55. 
2 s 

1 2 dC -NV4R~eo
56. (c) T =-v -­

2 dO s 

(a) v(t)= OrfUwt57. 
41reoR 

58. (a) p!=poe-<16U 

1 2 nC 1 r3nC
59. (a) nCi >-+ 	 , (c) -> , o

R RL 2 R' 2 C 

Chapter 4 

2. (a) O-o cos aye-' x >0 
2EaV= 

cos aye= x<O 
126a 

sin ny sinh nr( -x) 

4. (a) V = d d 

nodd n sinh­

7. (a) V,,= 2 sin ax 
eoa 

12. P2 -P1­

2 -Eorcost Osrsa 

-Eor+ 
2eor 

cos4 r>a 

13. 	 (a) E= Eo(1+L) cos4+ A(i-Eo- sin.0i 

A (t)
(b) cos 4 < ,t (c) Ama.= 4 

reaEo 
41rEaEo' 
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a:5 r:5 b 

Voz 
b - r s c 

8p,,,gR17. (b) Eo0 
27E 

22. V(2, 2)= V(3, 2)= V(2, 3)= V(3, 3)= -4. 

23. 	 (a) V(2,2)= -1.0000, V(3,2)= -. 5000, V(2,3) 

= -. 5000, V(3, 3)=.0000 

(b) V(2, 2) = 1.2500, V(3, 2) = -. 2500, V(2, 3) 

=.2500, V(3, 3)= -1.2500 

Chapter 5 

8b2mVo(b) B> 	 , (e) B2> 2 )22. es	 e(b 2 -a 

3. Bo= ­
qvo 

4. (d) = 	 2 m RBO 

8. (c) J=o-(E+vxB) 

nj&OI vT
10. (a) B.= 2oI(a2+b 2, (c) B.=Mrab	 2va tan-n 

goKoir12. (a) B. 
4 

1 3. (a) B = L,+ r " 

15. (b) B, =mjod
2 

(y-a) IyI <a 
17. 	 (b) B.= 2a 

1 0 jyj >a 

18. (d) y= atx=-00 

21. (a) m2=jqaa 
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23. wo=vSM 

27. (a) 	 I'=(p2-M ) 2LI11yI(AI +pA2) =si 

-Mo. 

34. 	 (a) H = 2 

j[cos Oir+sin i,6] 

12S 

35. (a) 	H.(x)= - (x - d), 2 Is 
Dd (b) 2D= +M 

36. (a) f.= A(y - 0o)HEDs, (b) 	f, = j 0 M0 Ds [H0 + MoI 

Chapter 6 

1. (a) M=po[D -iD--T,a	 [D 

3. (d) v (t)=vo 20sin lt + cos Ptl e- 0= 

i (t ) =MH4 sin 3t eBobo3 

(e) vo> Bobs 

4. (a) M= ONsIn a, M = oN[R -,/7-a7]
27r b
 

2
 
=3pO(IdS)
7. (c) 

32 rd 

8. 	 (a) H.= K(t), (b) K(t)= Ko X
 
\xo- VtP
 

ro-da4 (9. (a) i=-	 dr, (C) P 
2 dt 

10. L =poN2[b- bF-a7] 

14. 	 (a) 2= , = 
v, 2N1 i, N2 

16. (a) 	 V 0c=J.B.d (n.-p _)
q(p.+n,+ n_) 
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1O Vol R217. (b),(c) EMF=- In ,
27r R1 

(d) EMF=- In R2 
27r R, 

18. 	 (a) H=0,B=poMoi,, (b) voc=-(b2-a2 
2 

20. 	 (b) V> 
Aoo-ND 

21. 	 (a) (R + Rf)
G 

4Lf 
(b) 	 C,,j, = 2; C > Ccrit(dc), C < Ccrai(ac)

[R,+Rf-- Gw] 

( I [ R,+R-G2u2 

(C) 	 woLfC 2Lf 

22. (b) H, (x, t) = 2I sin-ner
n=I nrD d 

n odd 

.'o4H 0 nTx
23. 	 (c) H,(x, t) = Ho - sin r e _ 

n=1 n7r d 
n odd 

(-I 	 )n4K, (2n +1)ry , 
-e	 25. (b) H(y, t) = -Ko+ Z cos I ­

n=o ir(2n +1) L2D J 

r (+)y18 +e -(0 +)Y18 
(d) i (y)=Ko K[e(I)D8 +e - )D/8 

R_)26. (a) H (x) = KoR_ [2e R~x/ R+e 

--e +21 R12 

27. 	 (a) H (x)=Koe xeRx/2 R213 122 2 2 

28. 	 (a) 

Ko (1 A -ek(xs)(i. +ji) 1+ +)e- -jii 

$(x)=<0<x<s A 0S 

2K, e '( - -_k Ix 
y 	 ­ x>s 

-k + I+ AkIe h 
Ao7 L Oy 
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cosh k(x -d/2)
29. (a) H,=HH o hk/

cosh M1/2 

2Ira Ji[(a/8)(1 -j)] 

33. (a) T=-L 0cos wotsin 26 

34. 	 (c) T = M0 1I1 2 COS 0, 

02(f) 0(t)= 6o cos#t+ asin6t e 

35. (a) L(x)= -ln, (b) .	 o In b 
27r a 41r a 

-I2(,L 
12 

-- jo) In b 
a 

37. h = 2 2 224 7r p,,,(b - a ) 

Chapter 7 

4. (b) W=4[PEc+poMH] 

jiojo sin kd eo(z=Pd) z>d 
9. (b) Z.(z) [no sin kd -in os kd] z< -d

jon COS kz | z| <d we [no sin kd -jn cos kd] 

aj&,..UF~z) -T(az/2)10. (b) E.=Eoe e z<G0 = w 2 g -­
z<O 4 

11. (a) tl - t2 = 2(Z2 - Z 1), 
co 

(b) t' - t2= Y(tl-t2), (C) Z 2- Z'1y 

(a) u'= U,-V u.,I1-(vu/co)12. 
1-vu/co 1v.c 

15. (b) e(w)=eo I+ 2_2 
(00- &2] 

2 2 

16. 	 (c) k 1 
c w(w-Fwo)J 

20. (a) E=E0 cosw t- -COSa 	 - ­

22. a2 -k=-w2 s=, -k=12
is 
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26. 	 (a) LI+L2 =si sin 6 +s, sin 0,=h, tan e2+h 2 tan 0, 

31. 	 e,=41.70 

33. 	 (a) I- 2 ; /2 n -2 

(b) 	 R'=aR 
[Vn"( -a")Vn - a+ a2] 

Chapter 8 

2. 	 (c) 6(z)- Vo sin - (Short circuited end)P(z ) e 
sins l 

2Vo sin 2kz cos2at
24. 	 (c) w =.,+ksc , (d) v(z, t)= sin Al 

5. 	 (b) k 
1 

14. 	 (a) V=- V-= 2Rz 

16. 	 (b) tan ki = -XYo
 

1+
 
21. 	 (c) VSWR = =r5.83 

22. 	 (b) VSWR = 2 

23. 	 ZL = 170.08 - 133.29j 

nA MA 
24. 	(a) ll=.137A+ , 12 =.089A + 

nA MA 
1=.279A+ ,12=.411A+­

nA mA 
25. 	(a) I =.166A+-, l2 =.411A + 

l=077 	 fltMi
1 =.7A+T, 12 =.043+-2 

2(wrla) [b+(a/2)(o. 2 alTc )
27. 	 (e) a = 2 wjpabk~c-.8 2) 

28. 	 (b) = 2e(bk +ak ) 
a.8k.ab(k.2+k, 

http:e,=41.70
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29. 	 (a) TE mode: 

electric field: cos k7x cos ky = const 

magnetic field: sin (k.x)(k/ 2 =) const
sin ky 

31. 	 (b) + +(nT)(P7T) 

32. (a) 	 w 2 =-
k2 

8IA -SopA-o 

Chapter 9 

1. 	 (c) V = Q e-v l'' -*"' 

4. 	 (a) dlff 2 sin (adl!2) (z)- sin az 
a ja' 

6. (a) , =4ireoR3Zo 

(c) (P)= 1 27,
12 7rC 

7. 	 (a) mi.d= 21rHoR 3 

8. 	 (b) sins kr) sin (wt -kr) = const 

9. 	 (a) ZEP sin oe3(krx2) cos ka cos 0 ­

A 2jKod e~kr . kL.S1. 	 E,= 4 cose sin (L sin cos 	0) 

2. (ar=ir o cos [( ­e-rCo 	 LCos )-i 12. (a) t, =TL sin 9 
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Addition, vector, 9-10
 
Admittance, characteristic, 579
 
A field, 336. See also Vector potential
 
Amber, 50
 
Ampere, unit, 55
 
Ampere's circuital law, 334
 

displacement current correction to, 488
 
Ampere's experiments, 322
 
Amperian currents, 348
 
Analyzer, 518
 
Angular momentum, 350
 
Anisotropic media, 516-520
 
Antennas:
 

long dipole, 687-695
 
N element array, 685-687
 
point electric dipole, 667-677
 
point magnetic dipole, 679-681
 
two element array, 681-685
 

Array:
 
broadside, 683
 
endfire, 685
 
factor, 683, 685, 687
 
N element, 685-687
 
two element, 681-685
 

Atmosphere, as leaky spherical capacitor,
 
195-197
 

Atom, binding energy of, 211-212
 
Attenuation constant:
 

dielectric waveguide, 646-648
 
lossy transmission line, 602-606
 
lossy rectangular waveguide, 644
 
non-uniform plane waves, 531-532
 

Autotransformer, 474
 
Avogadro's number, 136
 
Axisymmetric solutions to Laplace's
 

equation, 286-288
 

Backward wave distributed system, 651
 
Barium titanate, 150
 
Base units, 55
 
Batteries due to lightning, 197
 
Bessel's equation, 280, 482
 

functions, 281
 
Betatron, 402-404
 

oscillations, 404
 
Bewley, L. V., 433, 475
 
B field, see Magnetic field
 
Binding energy, of atom, 211-212
 

of crystal, 205-206
 
Biot-Savart law, 322-323
 
Birefringence, 518-520
 
Bohr atomic model, 111-112
 

Bohr magneton, 350
 
Bohr radius, 63
 
Boltzmann constant, 155
 
Boltzmann distribution, 156
 
Boundary conditions:
 

normal component of:
 
current density J, 168-169
 
displacement field D, 163-164
 
magnetic field B, 366
 
polarization P, 165-166
 
eOE, 165-166
 

tangential component of:
 
electric field E, 162-163
 
magnetic field H, 359-360
 
magnetization M, 360
 

Breakdown, electric strength, 93, 223
 
'electromechanical, 252
 

Brewster's angle, 540-543
 
and polarization by reflection, 547
 

Broadside array, 683
 

Capacitance:
 
as approximation to short transmission
 

line, 589-592, 601
 
coaxial cylindrical electrodes, 176-177
 
concentric spherical electrodes, 176­

177
 
energy stored in, 212-213
 
force on, 219-223
 
any geometry, 172
 
isolated sphere, 178, 213
 
parallel plate electrodes, 173-177
 
per unit length on transmission line,
 

570, 572
 
power flow in, 491-493
 
reflections from at end of transmission
 

line, 593-594
 
and resistance, 177
 
in series or parallel, 242-243
 
slanted conducting planes, 273
 
two contacting spheres, 178-181
 
two wire line, 101-103
 

Cartesian coordinates, 29-30
 
Cauchy's equation, 563
 
Cauchy-Riemann equations, 305
 
Chalmers, J. A., 293
 
Characteristic admittance, 579
 
Characteristic impedance, 579
 
Charge:
 

by contact, 50
 
differential elements, 60
 
distributions, 59-63
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and electric field, 56-57
 
force between two electrons, 56
 
forces on, 51-52
 
and Gauss's law, 74-76
 
polarization, 140-142, 149
 

Charge relaxation, series lossy capacitor,
 
184-189
 

time, 182-184
 
transient, 182
 
uniformly charged sphere, 183-184
 

Child-Langmuir law, 200
 
Circuit theory as quasi-static approxima­

tion, 490
 
Circular polarization, 515-516
 
Circulation, 29
 

differential sized contour, 30
 
and Stokes' theorem,.35
 

Coaxial cable, capacitance, 176-177
 
inductance, 456-458
 
resistance, 172
 

Coefficient of coupling, 415
 
Coercive electric field, 151
 
Coercive magnetic field, 356-357
 
Cole-Cole plot, 234
 
Collision frequency, 154
 
Commutator, 429
 
Complex permittivity, 509, 524
 
Complex Poynting's theorem, 494-496
 
Complex propagation constant, 530-532
 
Conductance per unit length, 190
 
Conduction, 51
 

drift-diffusion, 156-159
 
Ohmic, 159-160
 
superconductors, 160-161
 

Conductivity, 159-160
 
of earth's atmosphere, 195
 
and resistance, 170
 

Conjugate functions, 305
 
Conservation of charge, 152-154
 

boundary condition, 168-169
 
inconsistency with Ampere's law, 488­

489
 
on perfect conductor with time varying
 

surface charge, 537
 
Conservation of energy, 199
 
Constitutive laws:
 

linear dielectrics, 143-146
 
linear magnetic materials, 352, 356
 
Ohm's law, 159-160
 
superconductors, 160-161
 

Convection currents, 182, 194-195
 
Coordinate systems, 2-7
 

Cartesian (rectangular), 2-4
 
circular cylindrical, 4-7
 
inertial, 417
 

spherical, 4-7
 
Coulomb's force law, 54-55
 
Critical angle, 541-544
 
Cross (Vector) product, 13-16
 

and curl operation, 30
 
Crystal binding energy, 205-206
 
Curl:
 

Cartesian (rectangular) coordinates,
 
29-30
 

circulation, 29-31
 
curvilinear coordinates, 31
 
cylindrical coordinates, 31-33
 
of electric field, 86
 
of gradient, 38-39
 
of magnetic field, 333
 
spherical coordinates, 33-35
 
and Stokes' theorem, 35-38
 

Current, 152-154
 
boundary condition, 168-169
 
density, 153-154
 
over earth, 196
 
between electrodes, 169-170
 
through lossless capacitor, 178
 
through series lossy capacitor, 187-189
 
sheet, as source of non-uniform plane
 

waves, 532-534
 
as source of uniform plane waves,
 

500-503
 
Curvilinear coordinates, general, 46
 
Cut-off in rectangular waveguides, 638­

641
 
Cyclotron, 319-321
 

frequency, 316
 
Cylinder:
 

magnetically permeable, 357-359
 
and method of images, 97-103
 
permanently polarized, 166-168
 
surface charged, 80-82
 
with surface current, 335-336
 
in uniform electric field, 273-277
 

perfectly conducting, 278
 
perfectly insulating, 279
 

volume charged, 72, 82
 
with volume current, 336
 

Cylindrical coordinates, curl, 31
 
divergence, 24-26
 
gradient, 17
 

Debye length, 157-159
 
Debye unit, 139
 
Dees, 319
 
Del operator, 16
 

and complex propagation vector, 531
 
and curl, 30
 
and divergence, 24
 

http:theorem,.35
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and gradient, 16
 

Delta function, 187
 
Diamagnetism, 349-352
 
Dichroism, 517
 
Dielectric, 143
 

coating, 525-528
 
constant, 146-147
 
linear, 146-147
 
modeled as dilute suspension of con­

ducting spheres, 293
 
and point charge, 164-165
 
waveguide, 644-648
 

Difference equations:
 
capacitance of two contacting spheres,
 

179-181
 
distributed circuits, 47-48
 
self-excited electrostatic induction
 

machines, 227-230
 
transient transmission line waves, 586­

587
 
Differential:
 

charge elements, 60
 
current elements, 323
 
cylindrical charge element, 81-82
 
lengths and del operator, 16-17
 
line, surface, and volume elements, 4
 
planar charge element, 68
 
spherical charge element, 79-80
 

Diffusion, coefficient, 156
 
equation, 191
 

Diode, vacuum tube, 198-201
 
Dipole electric field:
 

far from permanently polarized cylin­
der, 168
 

far from two oppositely charged elec­
trodes, 169, 172
 

along symmetry axis, 58-59
 
two dimensional, 231, 274
 

Dipole moment, electric, 137
 
magnetic, 345
 

Directional cosines, 41
 
Dispersion, complex waves, 531
 

light, 563
 
Displacement current, 154, 178
 

as correction to Ampere's law, 488-489
 
Displacement field, 143
 

boundary condition, 163-164
 
parallel plate capacitor, 175
 
permanently polarized cylinder, 166­

168
 
in series capacitor, 185
 

Distortionless transmission line, 603
 
Distributed circuits:
 

backward wave, 650
 
inductive-capacitive, 47-48
 

resistive-capacitive, 189-194
 
transmission line model, 575-576
 

Divergence:
 
Cartesian (rectangular) coordinates, 23­

24
 
of curl, 39
 
curvilinear coordinates, 24
 
cylindrical coordinates, 24-26
 
of electric field, 83
 
of magnetic field, 333
 
spherical coordinates, 26
 
theorem, 26-28
 

and Gauss's law, 82-83
 
relating curl over volume to surface
 

integral, 44
 
relating gradient over volume to sur­

face integral, 43
 
Domains, ferroelectric, 50
 

ferromagnetic, 356-357
 
Dominant waveguide mode, 640
 
Doppler frequency shifts, 507-508
 
Dot (scalar) product, 11-13
 

and divergence operation, 24
 
and gradient operation, 16
 

Double refraction, 518-520
 
Double stub matching, 625-629
 
Drift-diffusion conduction, 156-159
 

Earth, fair weather electric field, 195
 
magnetic field, 424-425
 

Eddy currents, 401
 
Effective length of radiating electric di­

pole, 676-677
 
Einstein's relation, 156
 
Einstein's theory of relativity, 207
 
Electrets,-151
 

force on, 218
 
measurement of polarization, 239-240
 

Electric breakdown, 93, 223-224
 
mechanical, 252
 

Electric dipole, 136
 
electric field, 139
 
moment, 137-140, 231
 
potential, 136-137
 
radiating, 667-671
 
units, 139
 

Electric field, 56-57
 
boundary conditions, normal compo­

nent, 83, 165-166
 
tangential component, 162-163
 

of charge distribution, 63-64
 
of charged particle precipitation onto
 

sphere, 293
 
of cylinder with, surface charge, 71,
 

80-82
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volume charge, 72, 82
 
in conducting box, 269
 
discontinuity across surface charge, 83
 
of disk with surface charge, 69-71
 
due to lossy charged sphere, 183
 
due to spatially periodic potential sheet,
 

266
 
due to superposition of point charges, 

57-58
 
energy density, 208-209
 
and Faraday's law, 395
 
of finite length line charge, 89
 
and gradient of potential, 86
 
around high voltage insulator bushing,
 

284
 
of hoop with line charge, 69
 
between hyperbolic electrodes, 262
 
of infinitely long line charge, 64-65
 
of infinite sheets of surface charge, 65­

69
 
line integral, 85-86
 
local field around electric dipole, 145­

146
 
around lossy cylinder, 276
 
around lossy sphere, 289
 
numerical method, 298
 
around permanently polarized cylinder,
 

166-168
 
of permanently polarized cylinder, 166­

168
 
of point charge above dielectric bound­

ary, 165
 
of point charge near grounded plane,
 

107
 
of point charge near grounded sphere, 

106
 
of radiating electric dipole, 671
 
in resistive box, 263
 
in resistor, coaxial cylinder, 172
 

concentric sphere, 173
 
parallel plate, 171
 

of sphere with, surface charge, 76-79
 
volume charge, 79-80
 

transformation, 417
 
between two cones, 286
 
of two infinitely long opposite polarity
 

line charges, 94
 
of two point charges, 58-59
 
of uniformly charged volume, 68-69
 

Electric field lines:
 
around charged sphere in uniform field,
 

297
 
around cylinder in uniform field, 276­

277
 
due to spatially periodic potential 

sheet, 267
 
of electric dipole, 139
 
around high voltage insulator bushing,
 

284
 
between hyperbolic electrodes, 262
 
of radiating electric dipole, 671-673
 
within rectangular waveguide, 636, 639
 
around two infinitely long opposite
 

polarity line charges, 95-96
 
around uncharged sphere in uniform
 

field, 290-291
 
Electric potential, 86-87
 

of charge distribution, 87
 
within closed conducting box, 268, 300
 
due to spatially periodic potential sheet,
 

266
 
and electric field, 86-87
 
of finite length line charge, 88-89
 
around high voltage insulator bushing,
 

282-284
 
between hyperbolic electrodes, 262
 
of infinitely long line charge, 94
 
inside square conducting box, 299-301
 
of isolated sphere with charge, 109
 
around lossy cylinder in uniform elec­

tric field, 274
 
around lossy sphere in uniform electric
 

field, 288
 
within open resistive box, 263
 
of point charge, 87
 
of point charge above dielectric bound­

ary, 165
 
of point charge and grounded plane,
 

107
 
of point charge and grounded sphere, 

103
 
of sphere with, surface charge, 90-91
 

volume charge, 90-91
 
between two cones, 286
 
of two infinitely long line charges, 94
 
between upper atmosphere and earth's
 

surface, 196-197
 
and zero potential reference, ground,
 

87
 
Electric susceptibility, 146
 
Electromechanical breakdown, 252
 
Electromotive force (EMF), 395
 

due to switching, 433
 
due to time varying number of coil
 

turns, 433-435
 
in magnetic circuits, 406
 

Electron, beam injection into dielectrics,
 
201
 

charge and mass of, 56
 
radius of, 207
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Electronic polarization, 136
 
Electron volts, 206
 
Electroscope, 53-54
 
Electrostatic generators, and Faraday's
 

ice pail experiment, 53-54
 
induction machines, 224-230
 
Van de Graaff, 223-224
 

Electrostatic induction, 51-53
 
Faraday's ice pail experiment, 53-54
 
machines, 224-230
 

Electrostatic precipitation, 293, 307
 
Electrostatic radiating field, 671
 
Electrostriction, 151
 
Elliptical polarization, 515
 
Element factor, 683
 
Endfire array, 685
 
Energy:
 

binding, of atom, 211-212
 
of crystal, 205-206
 

and capacitance, 212-213, 220
 
and charge distributions, 204-208
 
conservation theorem, 199
 
and current distributions, 454
 
density, electric field, 208-209
 

magnetic field, 441-455
 
and inductance, 454
 
stored in charged spheres, 210
 

Equipotential, 84-85
 
Euerle, W. C., 227
 
Exponential transmission line, 649
 
External inductance, 456-457
 

Fair weather electric field, 195
 
Farad, 175
 
Faraday, M., 394
 

cage, 78
 
disk, 420-422
 
ice pail experiment, 53-54
 

Faraday's law of induction, 394-397,
 
489
 

and betatron, 403
 
for moving media, 417
 
and paradoxes, 430-435
 
and resistive loop, 412
 
and Stokes'theorem, 404
 

Far field radiation, 671
 
Fermat's principle, 562
 
Ferroelectrics, 149-151
 
Ferromagnetism, 357
 
Fiber optics, 550-552
 
Field emission, 109
 
Field lines, see Electric field lines;
 

Magnetic field lines
 
Flux, 22
 

and divergence, 21-26
 

and divergence theorem, 26-28
 
and Gauss's law, 74-75
 
and magnetic field, 338
 
magnetic through square loop, 342-343
 
and sources, 21-22
 
and vector potential, 338
 

Force:
 
on capacitor, 219-223
 
Coulomb's law, 54-56
 
on current carrying slab, 441, 444
 
between current sheets, 329
 
due to pressure gradient, 155
 
on electric dipole, 216
 
gravitational, 56
 
on inductor, 461
 
interfacial, 264
 
on linear induction machine, 449-450
 
between line charge and cylinder, 99
 
between line charge and plane, 97
 
between line current and perfect con­

ductor or infinitely permeable
 
medium, 363
 

between line currents, 314-315
 
on magnetically permeable medium,
 

363
 
on magnetic block, 465
 
on magnetic dipole, 352, 368-370
 
on magnetizable current loop, 370-375
 
on MHD machine, 430
 
on moving charge, 314-315
 
on one turn loop, 464
 
between point charge and dielectric
 

boundary, 165
 
between point charge and grounded
 

plane, 108
 
between point charge and grounded
 

sphere, 105
 
between point charges, 51-56
 
between point charge and sphere of
 

constant charge, 109
 
between point charge and sphere of
 

constant potential, 110
 
on polarizable medium, 215-219
 
on relay, 463
 
on surface charge, 213-215
 
between two contacting spheres, 181
 
between two cylinders, 100
 

Fourier series, 267
 
Frequency, 505-506
 
Fringing fields, 173-175
 
Fundamental waveguide mode, 640
 

Galilean coordinate transformation, 505
 
Galilean electric field transformation, 417
 
Garton, C. G., 252
 



716 Index 

Gas conduction model, 154-155
 
Gauge, setting, 665
 
Gauss's law, 75, 489
 

and boundary conditions:
 
normal component of current density,
 

168
 
normal component of displacement
 

field, 163-164
 
normal component of polarization,
 

165-166
 
normal component of e0 E, 83, 165­

166
 
and charge distributions, 75
 
and charge injection into dielectrics,
 

201-202
 
and conservation of charge, 154
 
and cylinders of charge, 80-82
 
and displacement field, 143
 
and divergence theorem, 82-83
 
and lossy charged spheres, 183-184
 
for magnetic field, 333
 
and point charge inside or outside vol­

ume, 74-7.5
 
and polarization field, 142
 
and resistors, coaxial cylinder, 172
 

parallel plate, 171
 
spherical, 173
 

and spheres of charge, 76-80
 
Generalized reflection coefficient, 607­

608
 
Generators, 427-429
 
Geometric relations between coordinate
 

systems, 7
 
Gibbs phenomenon, 269
 
Gradient:
 

in Cartesian (rectangular) coordinates,
 
16-17
 

in cylindrical coordinates, 17
 
and del operator, 16
 
and electric potential, 86
 
and line integral, 18-21
 
of reciprocal distance, 73
 
in spherical coordinates, 17-18
 
theorem, 43-44, 334, 370
 

Gravitational force, 56
 
Green's reciprocity theorem, 124
 
Green's theorem, 44
 
Ground, 87
 
Group velocity, 513
 

on distortionless transmission line, 603
 
in waveguide, 641
 

Guard ring, 173-174
 
Gyromagnetic ratio, 385
 

Half wave plate, 519
 

Hall effect, 321-322
 
Hall voltage, 322
 
Harmonics, 267-269
 
Helix, 317
 
Helmholtz coil, 331
 
Helmholtz equation, 631
 
Helmholtz theorem, 337-338, 665
 
H field, see Magnetic field
 
High voltage bushing, 282-284
 
Holes, 154, 321
 
Homopolar generator, 420-422
 

periodic speed reversals, 426-427
 
self-excited, 422-424
 
self-excited ac operation, 424-425
 

Horenstein, M. N., 282
 
Hyperbolic electrodes, 261-262
 
Hyperbolic functions, 264-265
 
Hysteresis, ferroelectric, 150-151
 

magnetic, 356-357
 
and Poynting's theorem, 553
 

Identities, vector, 38-39, 46-47
 
Images, see Method of Images
 
Impedance, characteristic, 579
 

of free space, 498
 
wave, 498
 

Impulse current, 187
 
Index of refraction, 540
 
Inductance:
 

of coaxial cable, 456-458, 575
 
external, 456-457
 
and ideal transformer, 414-415
 
internal, 457-458
 
and magnetic circuits, 407-411
 
mutual, 398
 
as quasi-static approximations to trans­

mission lines, 589-592, 601
 
reflections from at end of transmission
 

line, 594-595
 
and resistance and capacitance, 458­

459
 
self, 407
 
of solenoid, 408
 
of square loop, 343
 
of toroid, 409
 
per unit length on transmission line,
 

570, 572
 
Induction, electromagnetic, 394-395
 

electrostatic, 51-54, 224-230
 
machine, 446-450
 

Inertial coordinate system, 417
 
Internal inductance, 457-458
 
International system of units, 55
 
Ionic crystal energy, 205-206
 
Ionic polarization, 136-137
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Ionosphere plane wave propagation, 511­

512, 557
 
Isotopes, 318-319
 

Kelvin's dynamo, 227
 
Kerr effect, 520, 558
 
Kinetic energy, 199
 
Kirchoff's current law, 154, 490
 
Kirchoff's laws on transmission lines,
 

569-570
 
Kirchoff's voltage law, 86, 490
 

Laminations, 401-402, 470-471
 
Lange's Handbook of Chemistry, 147
 
Langevin equation, 251
 

for magnetic dipoles, 355
 
Langmuir- Child law, 200
 
Laplace's equation, 93, 258
 

Cartesian (rectangular) coordinates,
 
260
 

cylindrical coordinates, 271
 
and magnetic scalar potential, 365
 
spherical coordinates, 284
 

Laplacian of reciprocal distance, 73-74
 
Larmor angular velocity, 316
 
Laser, 517
 
Law of sines and cosines, 41
 
Leakage flux, 415
 
Left circular polarization, 516
 
Legendre's equation, 287
 
Legendre's polynomials, 287-288
 
Lenz's law, 395-397
 

and betatron, 403
 
Leyden jar, 227
 
L'Hpital's rule, 589
 
Lightning producing atmospheric charge,
 

197
 
Light pipe, 550-552, 565
 
Light velocity, 56, 497
 
Linear dielectrics, 143-147
 
Linear induction machine, 446-450
 
Linear magnetic material, 352, 356
 
Linear polarization, 515
 
Line charge:
 

distributions, 60
 
finite length, 88-89
 
hoop, 69
 
infinitely long, 64-65
 
method of images, 96-103
 
near conducting plane, 96-97
 
near cylinder, 97-99
 
two parallel, 93-96
 
two wire line, 99-103
 

Line current, 324
 
Line integral, 18-21
 

of electric field, 85
 
of gradient, 19-20
 
and Stokes' theorem, 36
 
and work, 18-19
 

Local electric field, 145-146
 
Lord Kelvin's dynamo, 227
 
Lorentz field, 238
 
Lorentz force law, 314-316
 
Lorentz gauge, 665
 
Lorentz transformation, 417, 505
 
Lossy capacitor, 184-189
 

Madelung, electrostatic energy, 205
 
Magnesium isotopes, 319
 
Magnetic charge, 489
 
Magnetic circuits, 405-407
 
Magnetic diffusion, 435
 

with convection, 444-446
 
equation, 437
 
Reynold's number, 446
 
skin depth, 442-443
 
transient, 438-441
 

Magnetic dipole, 344
 
field of, 346
 
radiation from, 679-681
 
vector potential, 345, 680
 

Magnetic energy:
 
density, 455
 
and electrical work, 452
 
and forces, 460-461
 
and inductance, 454
 
and mechanical work, 453, 460-461
 
stored in current distribution, 454
 

Magnetic field, 314, 322-323
 
and Ampere's circuital law, 333-334
 
boundary conditions, 359-360
 
due to cylinder of volume current, 336
 
due to finite length line current, 341
 
due to finite width surface current,
 

342
 
due to hollow cylinder of surface cur­

rent, 332, 336
 
due to hoop of line current, 330
 
due to infinitely long line current, 324­

325
 
due to magnetization, 348-349
 
due to single current sheet, 327
 
due to slab of volume current, 327
 
due to two hoops of line current
 

(Helmholtz coil), 331
 
due to two parallel current sheets, 328
 
in Helmholtz coil, 331
 
and Gauss's law, 332-333
 
of line current above perfect conductor
 

or infinitely permeable medium, 363
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of line current in permeable cylinder, 
358
 

in magnetic circuits, 405-407, 411
 
of magnetic dipole, 346
 
in magnetic slab within uniform field,
 

361
 
of radiating electric dipole, 670
 
of radiating magnetic dipole, 681
 
in solenoid, 408
 
of sphere in uniform field, 364-367
 
in toroid, 409
 
and vector potential, 336-338
 

Magnetic field lines, 342, 366-367
 
Magnetic flux, 333, 343
 

in magnetic circuits, 406-411
 
Magnetic flux density, 349
 
Magnetic scalar potential, 365
 
Magnetic susceptibility, 350, 352
 
Magnetite, 343
 
Magnetization, 343
 

currents, 346-348
 
Magnetohydrodynamics (MHD), 430
 
Magnetomotive force (mmf), 409
 
Magnetron, 375-376
 
Mahajan, S., 206
 
Malus, law of, 518
 
Mass spectrogr-- h, 318-319
 
Matched tranAission line, 582, 584
 
Maxwell's equations, 489, 664
 
Meissner effect, 451
 
MelcherJ. R., 227, 264, 420, 435
 
Method of images, 96
 

line charge near conducting plane, 96­
97
 

line charge near cylinder, 97-99
 
line charge near dielectric cylinder,
 

238-239
 
line 	current above perfect conductor or
 

infinitely permeable material, 361­
363
 

point charge near grounded plane, 
106-107
 

point charge near grounded sphere, 
103-106
 

point charge near sphere of constant
 
charge, 109
 

point charge near sphere of constant
 
potential, 110
 

two contacting spheres, 178-181
 
two parallel line charges, 93-96
 
two wire line, 99-103
 

M field, 343
 
MHD, 430
 
Michelson-Morley experiment, 503
 
Millikan oil drop experiment, 110-111
 

Mirror, 547
 
MKSA System of units, 55
 
Mobility, 156, 201, 293
 
Modulus of elasticity, 252
 
Momentum, angular, 350
 
Motors, 427-429
 
Mutual inductance, 398
 

Near radiation field, 671
 
Newton's force law, 155
 
Nondispersive waves, 503
 
Nonuniform plane waves, 529, 532-533
 

and critical angle, 542
 
Normal component boundary conditions:
 

current density, 168
 
displacement field, 163-164
 
magnetic field, 360
 
polarization and eOE, 165-166
 

Normal vector:
 
and boundary condition on displace­

ment field, 163-164
 
and contour (line) integral, 29
 
and divergence theorem, 27
 
and flux, 22
 
integrated over closed surface, 44
 
and surface integral, 22
 

Numerical method of solution to Poisson's
 
equation, 297-301
 

Oblique incidence of plane waves, onto
 
dielectric, 538-543
 

onto perfect conductor, 534-537
 
Oersted, 314
 
Ohmic losses, of plane waves, 508-511
 

in transmission lines, 602-606
 
in waveguides, 643-644
 

Ohm's law, 159-160
 
with convection currents, 182
 
in moving conductors, 418
 

Open circuited transmission lines, 585,
 
589-590, 599-600
 

Optical fibers, 550-552
 
Orientational polarization, 136-137
 
Orthogonal vectors and cross product, 14
 
Orthogonal vectors and dot product, 11­

12
 

Paddle wheel model for circulation, 30-31
 
Parallelogram, and cross (vector) product,
 

13
 
rule for vector addition and subtraction, 

9-10
 
Parallelpiped volume and scalar triple
 

product, 42
 
Paramagnetism, 352-356
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Perfect conductor, 159-160
 
Period, 506
 
Permeability, of free space, 322
 

magnetic, 352, 356
 
Permeance, 411
 
Permittivity:
 

complex, 509, 524
 
dielectric, 146-147
 
of free space, 56
 
frequency dependent, 511
 

P field, 140, 165-166. See also Polariza­
tion
 

Phase velocity, 513
 
on distortionless transmission line, 603
 
in waveguide, 641
 

Photoelastic stress, 520
 
Piezoelectricity, 151
 
Planck's constant, 350
 
Plane waves, 496-497
 

losses, 508-511
 
non-uniform, 530-533
 
normal incidence onto lossless dielec­

tric, 522-523
 
normal incidence onto lossy dielectric,
 

524-525
 
normal incidence onto perfect conduc­

tor, 520-522
 
oblique incidence onto dielectrics, 538­

544
 
oblique incidence onto perfect conduc­

tors, 534-537
 
power flow, 498, 532
 
uniform, 529-530
 

Plasma, conduction model, 154-155
 
frequency, 161, 511,
 
wave propagation, 511-512
 

Pleines,J., 206
 
Point charge:
 

above dielectric boundary, 164-165
 
within dielectric sphere, 147-149
 
force on, 55-58
 
near plane, 106-108
 
in plasma, 158-159
 
radiation from, 666-667
 
near sphere, 103-110
 

Poisson equation, 93, 258
 
and Helmholtz theorem, 338
 
and radiating waves, 665-666
 
within vacuum tube diode, 199
 

Poisson-Boltzmann equation, 157
 
Polariscope, 518-520
 
Polarizability, 143-144
 

and dielectric constant, 147
 
Polarization:
 

boundary conditions, 165-166
 

charge, 140-142, 149
 
cylinder, 166-168
 
and displacement field, 146-147
 
electronic, 136
 
force density, 215-219
 
ionic, 136
 
orientational, 136
 
in parallel plate capacitor, 176-177
 
by reflection, 546-547
 
spontaneous, 149-151
 
of waves, 514-516
 

Polarizers, 517-520
 
Polarizing angle, 547
 
Polar molecule, 136-137
 
Polar solutions to Laplace's equation,
 

271-272
 
Potential:
 

energy, 199
 
retarded, 664-667
 
scalar electric, 86-93, 664-667
 
scalar magnetic, 365-367
 
vector, 336, 664-667
 
see also Electric potential; Vector
 

potential
 
Power:
 

in capacitor, 220
 
on distributed transmission line, 576­

578
 
in electric circuits, 493-494
 
electromagnetic, 491
 
flow into dielectric by plane waves, 524
 
in ideal transformer, 415
 
in inductor, 461
 
from long dipole antenna, 692
 
in lossy capacitor, 492
 
from radiating electric dipole, 675-676
 
time average, 495
 
in waveguide, 641
 

Poynting's theorem, 490-491
 
complex, 494-496
 
for high frequency wave propagation,
 

512
 
and hysteresis, 553
 

Poynting's vector, 491
 
complex, 495
 
and complex propagation constant, 532
 
through dielectric coating, 528
 
due to current sheet, 503
 
of long dipole antenna, 691
 
for oblique incidence onto perfect con­

ductor, 536-537
 
through polarizer, 518
 
and radiation resistance, 674
 
in rectangular waveguide, 641­

642
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reflected and transmitted through loss-

less dielectric, 524
 

time average, 495
 
of two element array, 683
 
and vector wavenumber, 530
 

Precipitator, electrostatic, 293-297, 307
 
Pressure, 154
 

force due to, 155
 
radiation, 522
 

Primary transformer winding, 415
 
Prisms, 549-550
 
Product, cross, 13-16
 

dot, 11-13
 
vector, 13-16
 

Product solutions:
 
to Helmholtz equation, 632
 
to Laplace's equation:
 

Cartesian (rectangular) coordinates,
 
260
 

cylindrical coordinates, 271-272
 
spherical coordinates, 284-288
 

Pyroelectricity, 151
 

Q of resonator, 660
 
Quadrapole, 233
 
Quarter wave long dielectric coating, 528
 
Quarter wave long transmission line,
 

608-610
 
Quarter wave plate, 520
 
Quasi-static circuit theory approximation,
 

490
 
Quasi-static inductors and capacitors as
 

approximation to transmission
 
lines, 589-592
 

Quasi-static power, 493-494
 

Radiation:
 
from electric dipole, 667-677
 
field, 671
 
from magnetic dipole, 679-681
 
pressure, 522
 
resistance, 674-677, 691-694
 

Radius of electron, 207
 
Rationalized units, 55
 
Rayleigh scattering, 677-679
 
Reactive circuit elements as short trans­

mission line approximation, 601­
602
 

Reciprocal distance, 72
 
and Gauss's law, 74-75
 
gradient of, 73
 
laplacian of, 73-74
 

Reciprocity theorem, 124
 
Rectangular (Cartesian) coordinate sys­

tem, 2-4
 

curl, 29-30
 
divergence, 23-24
 
gradient, 16-17
 

Rectangular waveguide, 629-644. See also
 
Waveguide
 

Reference potential, 86-87
 
Reflected wave, plane waves, 520, 522,
 

535-536, 538, 542
 
transmission line, 581-582, 586-587,
 

592-595
 
Reflection, from mirror, 545
 

polarization by, 546-548
 
Reflection coefficient:
 

arbitrary terminations, 592-593
 
generalized, 607-608
 
of plane waves, 523
 
of resistive transmission line termina­

tions, 581-582
 
Refractive index, 540
 
Relative dielectric constant, 146
 
Relative magnetic permeability, 356
 
Relativity, 503-505
 
Relaxation, numerical method, 297-301
 
Relaxation time, 182
 

of lossy cylinder in uniform electric
 
field, 275
 

of two series lossy dielectrics, 186-187
 
Reluctance, 409
 

motor, 482-483
 
in parallel, 411
 
in series, 410
 

Resistance:
 
between electrodes, 169-170
 
between coaxial cylindrical electrodes,
 

172
 
in open box, 262-264
 
between parallel plate electrodes, 170­

171
 
in series and parallel, 186-187
 
between spherical electrodes, 173
 

Resistivity, 159
 
Remanent magnetization, 356-357
 
Remanent polarization, 151
 
Resonator, 660
 
Retarded potentials, 664-667
 
Reynold's number, magnetic, 446
 
Right circular polarization, 516
 
Right handed coordinates, 3-5
 
Right hand rule:
 

and circulation, 29-30
 
and cross products, 13-14
 
and Faraday's law, 395
 
and induced current on perfectly con­

ducting sphere, 367
 
and line integral, 29
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and magnetic dipole moment, 344-345
 
and magnetic field, 324
 

Saturation, magnetic, 356-357
 
polarization, 150-151
 

Saturation charge, 295
 
Scalar electric potential, 86-87
 
Scalar magnetic potential, 365
 
Scalar potential and radiating waves, 664­

667, 669-670
 
Scalar (dot) product, 11-13
 
Scalars, 7-8
 
Scalar triple product, 42
 
Schneider, J. M., 201
 
Seawater skin depth, 443
 
Secondary transformer winding, 415
 
Self-excited machines, electrostatic,
 

224-230
 
homopolar generator, 422-427
 

Self-inductance, see Inductance
 
Separation constants, to Helmholtz equa­

tion, 632
 
to Laplace's equation, 260-261, 271,
 

278-280, 286-287
 
Separation of variables:
 

in Helmholtz equation, 632
 
in Laplace's equation:
 

Cartesian, 260-261, 264-265, 270
 
cylindrical, 271, 277-282
 
spherical, 284-288
 

Short circuited transmission line, 585,
 
590, 596-599
 

Sidelobes, 688
 
Sine integral, 691, 694
 
SI units, 55-56, 322
 

capacitance, 175
 
resistance, 171
 

Skin depth, 442-443
 
with plane waves, 511, 525
 
and surface resistivity, 604-606, 643
 

Slip, 448
 
Single stub tuning, 623-625
 
Sinusoidal steady state:
 

and complex Poynting's theorem, 494­
495
 

and linear induction machine, 446-450
 
and magnetic diffusion, 442-444
 
and Maxwell's equations, 530-532
 
and radiating waves, 667-671
 
and series lossy capacitor, 188-189
 
and TEM waves, 505-507
 

Slot in waveguide, 635
 
Smith chart, 611-615
 

admittance calculations, 620-621
 
stub tuning, 623-629
 

Snell's law, 540
 
Sohon, H., 431
 
Solenoid self-inductance, 407-408
 
Space charge limited conduction, in di­

electrics, 201-203
 
in vacuum tube diode, 198-201
 

Speed coefficient, 421
 
Sphere:
 

capacitance of isolated, 178
 
of charge, 61-63, 76-80, 91
 
charge relaxation in, 183-184
 
earth as leaky capacitor, 195-197
 
as electrostatic precipitator, 293-297
 
lossy in uniform electric field, 288-293
 
method of images with point charge,
 

103-110
 
point charge within dielectric, 147-149
 
two charged, 92
 
two contacting, 178-181
 
in uniform magnetic field, 363-368
 

Spherical coordinates, 4-6
 
curl, 33-37
 
divergence, 26
 
gradient, 17
 

Spherical waves, 671
 
Spin, electron and nucleus, 344
 
Standing wave, 521-522
 
Standing wave parameters, 616-620
 
Stark, K. H., 252
 
Stewart, T. D., 237
 
Stokes' theorem, 35-38
 

and Ampere's law, 349
 
and electric field, 85-86
 
and identity of curl of gradient, 38-39
 
and magnetic flux, 338
 

Stream function:
 
of charged particle precipitation onto
 

sphere, 297
 
cylindrical coordinates, 276-277
 
of radiating electric dipole, 672
 
spherical coordinates, 290-291
 

Stub tuning, 620-629
 
Successive relaxation numerical method,
 

297-301
 
Superconductors, 160-161
 

and magnetic fields, 450-451
 
Surface charge distribution, 60
 

and boundary condition on current
 
density, 168
 

and boundary condition on displace­
ment field, 163-164
 

and boundary condition on eOE, 83,
 
166
 

on cylinder in uniform electric field, 
273-275
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of differential sheets, 68-69
 
disk, 69-71
 
electric field due to, 65-67
 
force on, 213-215
 
hollow cylinder, 71
 
induced by line charge near plane, 97
 
induced by point charge near plane,
 

107-108
 
induced by point charge near sphere,
 

106
 
and parallel plate capacitor, 175
 
on slanted conducting planes, 273
 
on spatially periodic potential sheet,
 

266
 
on sphere in uniform electric field, 289
 
between two lossy dielectrics, 186-187
 
two parallel opposite polarity sheets,
 

67-68
 
Surface conductivity, 435, 601
 
Susceptibility, electric, 146
 

magnetic, 350, 352
 

Tangential component boundary condi­
tions, electric field, 162-163
 

magnetic field, 359-360
 
Taylor, G. I., 264
 
Taylor series expansion, 298
 

of logarithm, 205
 
Temperature, ideal gas law, 154-155
 
TEM waves, see Transverse electromag­

netic waves
 
TE waves, see Transverse electric waves
 
Tesla, 314
 
Test charge, 57
 
Thermal voltage, 156, 158
 
Thermionic emission, 108-109
 

in vacuum tube diode, 198
 
Thomson, J. J., 377
 
Till, H. R., 201
 
Time constant:
 

charged particle precipitation onto
 
sphere, 296
 

charging of lossy cylinder, 273
 
discharge of earth's atmosphere, 197
 
distributed lossy cable, 192-194
 
magnetic diffusion, 440
 
ohmic charge relaxation, 182-184
 
resistor-inductor, 436
 
for self-excited electrostatic induction
 

machine, 226
 
series lossy capacitor, 186-188
 

Time dilation, 505
 
TM waves, see Transverse magnetic waves
 
Tolman, R. C., 237
 
Torque, on electric dipole, 215
 

on homopolar machine, 422
 
on magnetic dipole, 353
 

Toroid, 408-409
 
Tourmaline, 517
 
Transformer:
 

action, 411
 
autotransformer, 474
 
ideal, 413-416
 
impedance, 415-416
 
real, 416-417
 
twisted, 473-474
 

Transient charge relaxation, see Charge
 
relaxation
 

Transmission coefficient, 523
 
Transmission line:
 

approach to dc steady state, 585-589
 
equations, 568-576
 
losses, 602-603
 
sinusoidal steady state, 595-596
 
transient waves, 579-595
 

Transverse electric (TE) waves, in dielec­
tric waveguide, 647-648
 

in rectangular waveguide, 635-638
 
power flow, 642-643
 

Transverse electromagnetic (TEM) waves,
 
496-497
 

power flow, 532
 
transmission lines, 569-574
 

Transverse magnetic (TM) waves: in di­
electric waveguide, 644-647
 

power flow, 641-642
 
in rectangular waveguide, 631-635
 

Traveling waves, 497-500
 
Triple product, scalar, 42
 

vector, 42
 
Two wire line, 99-103
 

Uman, M. A., 195
 
Uniform plane waves, 529-530
 
Uniqueness, theorem, 258-259
 

of vector potential, 336-338
 
Unit:
 

capacitance, 175
 
rationalized MKSA, 55-56
 
resistance, 171
 
SI, 55-56
 

Unit vectors, 3-5
 
divergence and curl of, 45
 

Unpolarized waves, 546-547
 

Vacuum tube diode, 198-201
 
Van de Graaff generator, 223-224
 
Vector, 8-16
 

addition and subtraction, 9-11
 
cross(vector) product, 13-16
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distance between two points, 72
 
dot(scalar) product, 11-13
 
identities, 46-47
 

curl of gradient, 38-39
 
divergence of curl, 39
 
triple product, 42
 

magnitude, 8
 
multiplication by scalar, 8-9
 
product, 11-16
 
scalar (dot) product, 11-13
 

Vector potential, 336
 
of current distribution, 338
 
of finite length line current, 339
 
of finite width surface current, 341
 
of line current above perfect conductor
 

or infinitely permeable medium, 
363
 

of magnetic dipole, 345
 
and magnetic field lines, 342
 
and magnetic flux, 338
 
of radiating electric dipole, 668-669
 
of radiating waves, 667
 
uniqueness, 336-338
 

Velocity:
 
conduction charge, 156
 
electromagnetic waves, 500
 
group, 513
 
light, 56, 500
 
phase, 513
 

Virtual work, 460-461
 
VSWR, 616-620
 
Voltage, 86
 

nonuniqueness, 412
 
standing wave ratio, 616-620
 

Volume charge distributions, 60
 
cylinder, 72-82
 
slab, 68-69
 
sphere, 79-80
 

Von Hippel, A. R., 147
 

Water, light propagation in, 548-549
 
Watson, P. K., 201
 

Wave:
 
backward, 651
 
dispersive, 512-514
 
equation, 496-497
 
high frequency, 511-512
 
nondispersive, 503
 
plane, 496-497
 
properties, 499-500
 
radiating, 666-667
 
solutions, 497-499
 
sources, 500-503
 
standing, 521-522
 
transmission line, 578-579
 
traveling, 499-500
 

Waveguide:
 
dielectric, 644-648
 
equations, 630
 
power flow, 641-644
 
rectangular, 629-644
 
TE modes, 635-638
 
TM modes, 631-635
 
wall losses, 643-644
 

Wave impedance, 498
 
Wavelength, 506
 
Wavenumber, 505-506
 

on lossy transmission line, 604
 
as vector, 530
 

Wheelon, A. D., 181
 
Whipple, F. J. W., 293
 
White, H.J., 293
 
White light, 563
 
Wimshurst machine, 227
 
Woodson, H. H., 420, 435
 
Work:
 

to assemble charge distribution, 204-208
 
and dot product, 11
 
mechanical, 453
 
to move point charge, 84-85
 
to overcome electromagnetic forces, 452
 

Zeeman effect, 378
 
Zero potential reference, 87
 



VECTOR IDENTITIES 

(A x B) - C=A - (B xC)=(C x A) - B 

Ax(BXC)=B(A - C)-C(A - B) 

V - (VxA)=O 

V x(Vf)=0 

V(fg) =fVg+gVf 

V(A - B)= (A - V)B+(B -V)A 

+ Ax (V x B)+ B x (V x A) 

V - (fA) =fV - A+ (A - V)f 

V - (A x B)= B - (V x A) - A - (V x B) 

Vx (A x B)= A(V -B) - B(V - A) 

+(B - V)A-(A - V)B 

Vx(fA)=VfxA+fVxA 

(VxA)xA=(A -V)A-'V(A - A) 

Vx(VxA)=V(V - A)-V2 A 

INTEGRAL THEOREMS 

Line Integralof a Gradient 
b
 

Vf - d)=f(b)--f(a)
 

Divergence Theorem: 

A -dS
f V-AdV= 

Corollaries 

fdSt VfdV= 

jVVxAdV=-f- AxdS 

Stokes' Theorem: 

A-dl= (VxA)-dS
 
L s
 

Corollary 

ffdl= - VfxdS 
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