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The electric field distribution due to external sources is 
disturbed by the addition of a conducting or dielectric body 
because the resulting induced charges also contribute to the 
field. The complete solution must now also satisfy boundary 
conditions imposed by the materials. 

4-1 THE UNIQUENESS THEOREM 

Consider a linear dielectric material where the permittivity 
may vary with position: 

D=e (r)E = -e (r)VV (1) 

The special case of different constant permittivity media 
separated by an interface has e (r) as a step function. Using (1) 
in Gauss's law yields 

V - [e(r)V V]= -pf (2) 

which reduces to Poisson's equation in regions where e (r) is a 
constant. Let us call V, a solution to (2). 

The solution VL to the homogeneous equation 

V - [e(r)VV= 0 (3) 

which reduces to Laplace's equation when e(r) is constant, 
can be added to V, and still satisfy (2) because (2) is linear in 
the potential: 

V - [e (r)V(V, + VL)] = V - [e (r)V V.]+V - [e (r)V V] = -pf 
0 (4) 

Any linear physical problem must only have one solution 
yet (3) and thus (2) have many solutions. We need to find 
what boundary conditions are necessary to uniquely specify 
this solution. Our method is to consider two different solu­
tions V, and V2 for the same charge distribution 

V (eVVi)=-p, V - (eVV2)=-Pf (5) 

so that we can determine what boundary conditions force 
these solutions to be identical, V, = V2 . 
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The difference of these two solutions VT = V, - V2 obeys 
the homogeneous equation 

V - (EVVT)=0 (6) 

We examine the vector expansion 

V-(eVTVVT)= VTV - (EVVT)+eVVT . VVT=6eVVT (7) 
0 

noting that the first term in the expansion is zero from (6) and 
that the second term is never negative. 

We now integrate (7) over the volume of interest V, which 
may be of infinite extent and thus include all space 

.V.-(eVVVT)dV= eVTVVT-dS= JIVVTI2dV (8) 

The volume integral is converted to a surface integral over 
the surface bounding the region using the divergence 
theorem. Since the integrand in the last volume integral of (8) 
is never negative, the integral itself can only be zero if VT is 
zero at every point in the volume making the solution unique 
(VT =0> V = V2). To force the volume integral to be zero, 
the surface integral term in (8) must be zero. This requires 
that on the surface S the two solutions must have the same 
value (VI = V2) or their normal derivatives must be equal 
[V V - n = V V2 -n]. This last condition is equivalent to 
requiring that the normal components of the electric fields be 
equal (E = -V V). 

Thus, a problem is uniquely posed when in addition to 
giving the charge distribution, the potential or the normal 
component of the electric field on the bounding surface sur­
rounding the volume is specified. The bounding surface can 
be taken in sections with some sections having the potential 
specified and. other sections having the normal field 
component specified. 

If a particular solution satisfies (2) but it does not satisfy 
the boundary conditions, additional homogeneous solutions 
where pf =0, must be added so that the boundary conditions 
are met. No matter how a solution is obtained, even if 
guessed, if it satisfies (2) and all the boundary conditions, it is 
the only solution. 

4-2 BOUNDARY VALUE PROBLEMS IN CARTESIAN GEOMETRIES 

For most of the problems treated in Chapters 2 and 3 we 
restricted ourselves to one-dimensional problems where the 
electric field points in a single direction and only depends on 
that coordinate. For many cases, the volume is free of charge 
so that the system is described by Laplace's equation. Surface 



260 Electric FieldBoundary Value Problems 

charge is present only on interfacial boundaries separating 
dissimilar conducting materials. We now consider such 
volume charge-free problems with two- and three dimen­
sional variations. 

4-2-1 Separation of Variables 

Let us assume that within a region of space of constant 
permittivity with no volume charge, that solutions do not 
depend on the z coordinate. Then Laplace's equation reduces 
to 

a2V a2V 
-- y+ 2=0(1)8x y 

We try a solution that is a product of a function only of the x 
coordinate and a function only of y: 

V(x, y) = X(x) Y(y) (2) 

This assumed solution is often convenient to use if the system 
boundaries lay in constant x or constant y planes. Then along 
a boundary, one of the functions in (2) is constant. When (2) is 
substituted into (1) we have 

Yd 2X d2Yy d2X I d2'y
Y- +X =0,+2 = 0=>_ 0 (3)

S dy" X Yy 

where the partial derivatives become total derivatives because 
each function only depends on a single coordinate. The 
second relation is obtained by dividing through by XY so that 
the first term is only a function of x while the second is only a 
function of y. 

The only way the sum of these two terms can be zero for all 
values of x and y is if each term is separately equal to a 
constant so that (3) separates into two equations, 

1 d 2X 2 1 d2 Y_2 
= k =-kY (4) 

where k2 is called the separation constant and in general can 
be a complex number. These equations can then be rewritten 
as the ordinary differential equations: 

2d2X dY (5) 
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4-2-2 Zero Separation Constant Solutions 

When the separation constant is zero (k2 =0) the solutions 
to (5) are 

X = alx +bl, Y=cly+dl (6) 

where a,, b1 , cl, and dl are constants. The potential is given by 
the product of these terms which is of the form 

V= a2 +b 2x+c 2y+d 2xy (7) 

The linear and constant terms we have seen before, as the 
potential distribution within a parallel plate capacitor with no 
fringing, so that the electric field is uniform. The last term we 
have not seen previously. 

(a) Hyperbolic Electrodes 
A hyperbolically shaped electrode whose surface shape 

obeys the equation xy = ab is at potential Vo and is placed 
above a grounded right-angle corner as in Figure 4-1. The 

y 
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Equipotential lines ­ - -

VO ab 

Field lines -

-r x 
y2 -X2 = const. 

Figure 4-1 The equipotential and field lines for a hyperbolically shaped electrode at 
potential Vo above a right-angle conducting corner are orthogonal hyperbolas. 



262 Electric FieldBoundary Value Problems 

boundary conditions are 

V(x=0)= 0, V(y = 0)=0, V(xy = ab)= Vo (8) 

so that the solution can be obtained from (7) as 

V(x, y) Voxy/(ab) (9) 

The electric field is then 

V0E=-VV= L [yi.+xi,] (10)
ab 

The field lines drawn in Figure 4-1 are the perpendicular 
family of hyperbolas to the equipotential hyperbolas in (9): 

dy -=-->E. x 

dx E. y 
-= -x 22 =const (11) 

(b) Resistor in an Open Box 
A resistive medium is contained between two electrodes, 

one of which extends above and is bent through a right-angle 
corner as in Figure 4-2. We try zero separation constant 

S -0.0 - ­

0.1 - - -- EO, a 0 

03 - dx E s-y 

0.4 S 2 
_ (X 1)2 = const. 
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solutions given by (7) in each region enclosed by the elec­
trodes: 

V={al+bix+cy+dixy, o!ysd (12) 
a2 +b 2 x +c 2y +d 2xy, d:5 y 5 s 

With the potential constrained on the electrodes and being 
continuous across the interface, the boundary conditions are 

V(x =0)= Vo= a 1+c 1y > a1 = Vo, c 1 =0 (0!5 y S d) 

+b11+c y+djly>bj=-Vo/I, d1 =O 
V(x=l)= vo (O:sy d) 

a2+bul+c2y+d2ly =>a 2 +b 2 l=0, c2 +d 2 l=0 
(dSy ss) 

V(y=s)=O=a2 +b 2x+c2s+d2xs =>a2 +c 2s=O, b 2 +d 2s=O 

7070 
V(y=d,)=V(y =d-)=a1+bx+1 d+,d1 xd 

=a 2 +b 2 x +c 2d +d 2xd (13) 

=>a =Vo=a2 +c2d, b 1 = -Vo/l =b2 +d 2 d 

so that the constants in (12) are 

a1 = V0 , bi=-V0/l, c 1=0, d1 =0 

V0 V0 
a2 = , b2 =- (14)

(I - d/s) l(I - d/s)' 

V0 V0C2 =- d2 = 
s(1 - d/s)' Is(1 - d/s) 

The potential of (12) is then 

VO( - x/1), 0:5y!5d (5 
V - I- xy+-), d:yss 

s -d ( SIs/s 

with associated electric field 

V0 . VOix, 0:5 y:5 d 
E = -- V V = (16) 

ss) +!- -x , d<y<s 
s -d I s s 1)3 

Note that in the dc steady state, the conservation of charge 
boundary condition of Section 3-3-5 requires that no current 
cross the interfaces at y = 0 and y = d because of the surround­
ing zero conductivity regions. The current and, thus, the 
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electric field within the resistive medium must be purely 
tangential to the interfaces, E,(y=d..)=E,(y=0+)=0. The 
surface charge density on the interface at y = d is then due only 
to the normal electric field above, as below, the field is purely 
tangential: 

Of(y=d)=EoE,(y=d)--E, (y=d_)=E V - (17)
/s-d 	 1) 

The interfacial shear force is then 

1 	 2 

Fx= oyE.(y-d)wdx= w (18)
0 	 2(s-d) 

If the resistive material is liquid, this shear force can be used 
to pump the fluid.* 

4-2-3 Nonzero Separation Constant Solutions 

Further solutions to (5) with nonzero separation constant 
(k 2 

0 0) are 

X = A sinhkx +A 2 cosh kx = B1 e*+B2 e 
Y= C1 sin ky+C2 cos ky =D1 eiky+D2e-ky 

When k is real, the solutions of X are hyperbolic or 
equivalently exponential, as drawn in Figure 4-3, while those 
of Y are trigonometric. If k is pure imaginary, then X 
becomes trigonometric and Y is hyperbolic (or exponential). 

The solution to the potential is then given by the product 
of X and Y: 

V = E1 sin ky sinh kx + E2 sin ky cosh kx 

+E3 cos ky sinh kx + E4 cos ky cosh kx 

or equivalently 

V = F1 sin ky e"* + F2 sin ky e~k' + F3 COS ky e"* + F4 COS ky e *x 
(21) 

We can always add the solutions of (7) or any other 
Laplacian solutions to (20) and (21) to obtain a more general 

* 	See J. R. Melcher and G. I. Taylor, Electrohydrodynamics: A Review of the Role of 
InterfacialShear Stresses, Annual Rev. Fluid Mech., Vol. 1, Annual Reviews, Inc., Palo 
Alto, Calif., 1969, ed. by Searsand Van Dyke, pp. 111-146. See also J. R. Melcher, "Electric 
Fields and Moving Media", film produced for the National Committee on Electrical 
EngineeringFilms by the EducationalDevelopment Center, 39 Chapel St., Newton, Mass. 
02160. This film is describedin IEEE Trans. Education E-17, (1974) pp. 100-110. 
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Figure 4-3 The exponential and hyperbolic functions for positive and negative 
arguments. 

solution because Laplace's equation is linear. The values of 
the coefficients and of k are determined by boundary condi­
tions. 

When regions of space are of infinite extent in the x direc­
tion, it is often convenient to use the exponential solutions in 
(21) as it is obvious which solutions decay as x approaches co. 
For regions of finite extent, it is usually more convenient to 
use the hyperbolic expressions of (20). A general property of 
Laplace solutions are that they are oscillatory in one direction 
and decay in the perpendicular direction. 

4-2-4 Spatialy Periodic Excitation 

A sheet in the x =0 plane has the imposed periodic poten­
tial, V = Vo sin ay shown in Figure 4-4. In order to meet this 
boundary condition we use the solution of (21) with k = a. 
The potential must remain finite far away from the source so 
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Figure 4-4 The potential and electric field decay away from an infinite sheet with 
imposed spatially periodic voltage. The field lines emanate from positive surface 
charge on the sheet and terminate on negative surface charge. 

we write the solution separately for positive and negative x as 

", x-0V=sinaye 	 (22)
I Vo sin aye , xS0 

where we picked the amplitude coefficients to be continuous 
and match the excitation at x = 0. The electric field is then 

E=VV - Voae"[cosayi,-sinayix] x >0 
-Voae-[cos ayi +sin ayi], x<0 ( 

The surface charge density on the sheet is given by the dis­
continuity in normal component of D across the sheet: 

o(x =0) = e[E.(x = 0+) - E.(x = 0)] 

= 2E Voa sin ay	 (24) 
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The field lines drawn in Figure 4-4 obey the equation 

dy-y= E,,= x>O 25-F cot ay -:>cos ay e "=const >0 (25)
& E. x0 

4-2-5 Rectangular Harmonics 

When excitations are not sinusoidally periodic in space, 
they can be made so by expressing them in terms of a trig­
onometric Fourier series. Any periodic function of y can be 
expressed as an infinite sum of sinusoidal terms as 

f(y)= -bo + . a.sin +bn cos ) (26) 

where A is the fundamental period of f(y). 
The Fourier coefficients an are obtained by multiplying 

both sides of the equation by sin (2piry/A ) and integrating over 
a period. Since the parameter p is independent of the index n, 
we may bring the term inside the summation on the right 
hand side. Because the trigonometric functions are orthog­
onal to one another, they integrate to zero except when the 
function multiplies itself: 

pin si 2ntry dy=0, p +n 
fA i A snA d=A/2, P=n (7(27)~~2 

sin 2p[ cos 2niy dy=0
J" A A 

Every term in the series for n # p integrates to zero. Only the 
term for n = p is nonzero so that 

a,= f(y) sin 2pjdy (28)
A .A 

To obtain the coefficients b., we similarly multiply by 
cos (2piry/A) and integrate over a period: 

2 2pr
b,=- f(y)cos-p! dy (29)

A 0A 

Consider the conducting rectangular box of infinite extent 
in the x and z directions and of width d in the y direction 
shown in Figure 4-5. The potential along the x = 0 edge is Vo 
while all other surfaces are grounded at zero potential. Any 
periodic function can be used for f(y) if over the interval 
0:s y5 d, f(y) has the properties 

f(y)=Vo,0<y<d;f(y=0)=f(y=d)= ((30) 
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i.e 
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In particular, we choose the periodic square wave function 
with A==2d shown in Figure 4-6 so that performing the 
integrations in (28) and (29) yields 

S2Vo 

pir 

0, P even (1
 
4 VO/pir, p odd 

Thus the constant potential at x =0 can be written as the 
Fourier sine series 

4 VO 0" sin (ntry/d)V(x = 0)= VOw= - (32)
1r n..1 n 

n odd 
In Figure 4-6 we plot various partial sums of the Fourier 

series to show that as the number of terms taken becomes 
large, the series approaches the constant value VO except for 
the Gibbs overshoot of about 18% at y = 0 and y = d where the 
function is discontinuous. 

The advantage in writing VO in a Fourier sine series is that 
each term in the series has a similar solution as found in (22) 
where the separation constant for each term is k,, = nir/d with 
associated amplitude 4 Vo/(nir). 

The solution is only nonzero for x > 0 so we immediately 
write down the total potential solution as 

n " (31)s e)v=V(x, ed33
Ir n=i n 
, 
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Figure 4-6 Fourier series expansion of the imposed constant potential along the x = 0 
edge in Figure 4-5 for various partial sums. As the number of terms increases, the 
series approaches a constant except at the boundaries where the discontinuity in 
potential gives rise to the Gibbs phenomenon of an 18% overshoot with narrow width. 

The electric field is then 

E=-VV= -V- (-sin i o ­ (34)d dd 
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The field and equipotential lines are sketched in Figure 4-5. 
Note that for x d, the solution is dominated by the first 
harmonic. Far from a source, Laplacian solutions are insensi­
tive to the details of the source geometry. 

4-2-6 Three-Dimensional Solutions 

If the potential depends on the three coordinates (x, y, z), 
we generalize our approach by trying a product solution of 
the form 

V(x, y, z) = X(x) Y(y) Z(z) (35) 

which, when substituted into Laplace's equation, yields after 
division through by XYZ 

I d 2X 1 d 2Y l d2 Z 
Xd2+- +- 2=0 (36)X x Y dy Zd 

three terms each wholly a function of a single coordinate so 
that each term again must separately equal a constant: 

I d k2X2 1 d2Y 2 1 d2Z 2 

Xd Ydy Zdzkk+k (37) 

We change the sign of the separation constant for the z 
dependence as the sum of separation constants must be zero. 
The solutions for nonzero separation constants are 

X=A1 sin kx+A2 coskx 

Y=B1 sin ky+B2 cos k~y (38) 

Z= C1 sinh k~z+C2 cosh kaz =D1 ekz+D2 ek 

The solutions are written as if k, k,, and k. are real so that 
the x and y dependence is trigonometric while the z depen­
dence is hyperbolic or equivalently exponential. However, k.,
k,, or k. may be imaginary converting hyperbolic functions to 
trigonometric and vice versa. Because the squares of the 
separation constants must sum to zero at least one of the 
solutions in (38) must be trigonometric and one must be 
hyperbolic. The remaining solution may be either trigono­
metric or hyperbolic depending on the boundary conditions. 
If the separation constants are all zero, in addition to the 
solutions of (6) we have the similar addition 

Z = e z +f3) (39) 
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4-3 SEPARATION OF VARIABLES IN CYLINDRICAL GEOMETRY 

Product solutions to Laplace's equation in cylindrical 
coordinates 

18 (rV 1 a2 V a2V 
r r r )r r2O4V 8z 

also separate into solvable ordinary differential equations. 

4-3-1 Polar Solutions 

If the system geometry does not vary with z, we try a 
solution that is a product of functions which only depend on 
the radius r and angle 4: 

V(r, 4) = R(r)b(4) (2) 

which when substituted into (1) yields 

4) d dR Rd2.0 
r + 2=0 (3) 

r dr dr r* do 

This assumed solution is convenient when boundaries lay at a 
constant angle of 46 or have a constant radius, as one of the 
functions in (2) is then constant along the boundary. 

For (3) to separate, each term must only be a function of a 
single variable, so we multiply through by r2/R and set each 
term equal to a constant, which we write as n2: 

r d d 2 1 d4 2- r - n - - = -_n (4)
R dr ( dr ' (D do2 

The solution for 4) is easily solved as 

( A Isin n4+A2 cos n46, n00 5)
B 14+B2 , n=0 

The solution for the radial dependence is not as obvious. 
However, if we can find two independent solutions by any 
means, including guessing, the total solution is uniquely given 
as a linear combination of the two solutions. So, let us try a 
power-law solution of the form 

R = A r (6) 

which when substituted into (4) yields 

7p2= n 2 ->p = n (7) 
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For n # 0, (7) gives us two independent solutions. When n =0 
we refer back to (4) to solve 

dR 
r -= const* R= D ln r+D2 (8)

dr 

so that the solutions are 

RCjr"+C2 r-", n 

Dllnr+D, n=0 

We recognize the n =0 solution for the radial dependence 
as the potential due to a line charge. The n =0 solution for 
the 46 dependence shows that the potential increases linearly 
with angle. Generally n can be any complex number, 
although in usual situations where the domain is periodic and 
extends over the whole range 0 = 4 t 2wr, the potential at 
4 = 21r must equal that at 4 = 0 since they are the same point. 
This requires that n be an integer. 

EXAMPLE 4-1 SLANTED CONDUCTING PLANES 

Two planes of infinite extent in the z direction at an angle a 
to one another, as shown in Figure 4-7, are at a potential 
difference v. The planes do not intersect but come sufficiently 
close to one another that fringing fields at the electrode ends 
may be neglected. The electrodes extend from r = a to r = b. 
What is the approximate capacitance per unit length of the 
structure? 

+ o 

0 ab 

Figure 4-7 Two conducting planes at angle a stressed by a voltage v have a 
4-directed electric field. 
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SOLUTION 

We try the n =0 solution of (5) with no radial dependence 
as 

V=B 1 4+B2 

The boundary conditions impose the constraints 

V('0=0)=0, V(4=a)=v =v a 

The electric field is 

l dV v 
-=--­E= = 

r do ra 

The surface charge density on the upper electrode is then 

sv 
oy(f a) = -- E.*(-0 = a)=--­

ra 

with total charge per unit length 

E ev 	 b
A (,= a)= of(4 =a) dr =-ln-

J. 	 c a 

so that the capacitance per unit length is 

A e In (b/a) 
V a 

4-3-2 Cylinder in a Uniform Electric Field 

(a) Field Solutions 
An infinitely long cylinder of radius a, permittivity E2, and 

Ohmic conductivity 0-2 is placed within an infinite medium of 
permittivity E1 and conductivity o,-. A uniform electric field at 
infinity E = Eoi, is suddenly turned on at t =0. This problem 
is analogous to the series lossy capacitor treated in Section 
3-6-3. As there, we will similarly find that: 

(i) 	 At t = 0 the solution is the same as for two lossless 
dielectrics, independent of the conductivities, with no 
interfacial surface charge, described by the boundary 
condition 

o f(r = a) = Dr(r= a+)- Dr(r= a-) =0 

=eiEr(r=a,)=82 Er(r=a-) (10) 

(ii) 	 As t ->o , the steady-state solution depends only on 
the conductivities, with continuity of normal current 
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at the cylinder interface, 

erE,(r = a.) = c-2Er(r = a-) Jr(r= a,) = J,(r = a-) ­
(11) 

(iii) 	 The time constant describing the transition from the 
initial to steady-state solutions will depend on some 
weighted average of the ratio of permittivities to 
conductivities. 

To solve the general transient problem we must find the 
potential both inside and outside the cylinder, joining the 
solutions in each region via the boundary conditions at r = a. 

Trying the nonzero n solutions of (5) and (9), n must be an 
integer as the potential at 4 =0 and 4 = 21r must be equal, 
since they are the same point. For the most general case, an 
infinite series of terms is necessary, superposing solutions 
with n = 1, 2, 3, 4, - - - . However, because of the form of the 
uniform electric field applied at infinity, expressed in cylin­
drical coordinates as 

E(r- o)= Eoi.= E0 [i, cos 4-# sin 4] (12) 

we can meet all the boundary conditions using only the n = 1 
solution. 

Keeping the solution finite at r =0, we try solutions of the 
form 

V(r, 4)= A MrCOS4,r (13) 
I[B(t)r+C(t)/r] cos 4, r-I-a 

with associated electric field 

-A (t)[cos 4i, - sin 4i]= -A(t)i, r <a 

E= -VV= -[B(t)-Ct)/r2] cos Oir 	 (14) 

1 +[B(()+C(t)r21 sin 46id,, r>a 

We do not consider the sin 4 solution of (5) in (13) because at 
infinity the electric field would have to be y directed: 

V= Drsin 4 > E = -V V= -D[i, sin 4+i cos 4] = -Di, 
(15) 

The electric field within the cylinder is x directed. The 
solution outside is in part due to the imposed x-directed 
uniform field, so that as r - co the field of (14) must approach 
(12), requiring that B(t) = -Eo. The remaining contribution 
to the external field is equivalent to a two-dimensional line 
dipole (see Problem 3.1), with dipole moment per unit length: 

p.= Ad = 2'rsC(t)	 (16) 
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The other time-dependent amplitudes A (t) and C(t) are 
found from the following additional boundary conditions: 

(i) 	 the potential is continuous at r= a, which is the same 
as requiring continuity of the tangential component of 
E: 

V(r= a.)= V(r = a-)>E6(r= a-)=E#(r = a+) 

> Aa = Ba + C/a (17) 

(ii) charge must be conserved on the interface: 

Jr(r = a+) -J,(r = a)+ = 0 
at 

> a-1Er(r = a,) - 0-2Er(r = a-) 

+a 	 [e 1E,(r = a+)- e 2E,(r=a)] = 0 
at 

(18) 

In the steady state, (18) reduces to (11) for the continuity of 
normal current, while for t =0 the time derivative must be 
noninfinite so o is continuous and thus zero as given by (10). 

Using (17) in (18) we obtain a single equation in C(t): 

dC (0-1+0-2)= -a2 dEo)
d + + 2 C = -a (Eo(o l--0-2 )+(I-E 2 )-­
dt 61e1+E2 	 dt 

(19) 

Since EO is a step function in time, the last term on the 
right-hand side is an impulse function, which imposes the 
initial condition 

C(t = 0) = -a 2 ( 2) Eo (20) 

so that the total solution to (19) is 

+ 61+E2C(t) = aEo (2 2(o62-0261) 
\0.-+02 (0-j+02)(81+82) / 0-3+O-2 

(21) 
The interfacial surface charge is 

of(r = a, t) = e E,(r=a+) - E2E,(r a) 

= -e B--)+e 2A] cos q 

2(021-2)Eo+(ei+E2) Cos 

=2(o-2- 0-162)Eo[1-e-I]cosk (22)
0-1 + 02 
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The upper part of the cylinder (-r/250 7r/2) is charged of 
one sign while the lower half (7r/2:5 46 i ir) is charged with 
the opposite sign, the net charge on the cylinder being zero. 
The cylinder is uncharged at each point on its surface if the 
relaxation times in each medium are the same, E/o-1= e2/0-2 

The solution for the electric field at t =0 is 

2______ 2e1 E[eos[CS:r -sm die0]=26Eo., r< a 0 

61+62 E1+62 

Et=0 Eo[ 1+- 61+62 COS ,ir (23) 
[ ( r 61+62) 

-- ) sin Oi.], r>a 

The field inside the cylinder is in the same direction as the 
applied field, and is reduced in amplitude if 62>El and 
increased in amplitude if E2 <6 1, up to a limiting factor of two 
as e1 becomes large compared to E2. If E2 = E1, the solution 
reduces to the uniform applied field everywhere. 

The dc steady-state solution is identical in form to (23) if we 
replace the permittivities in each region by their conduc­
tivities; 

[cos 4O,- sin 40ij= i., r<a 
a-1+0-2 471+0-2
 

2
[( 02-2~ i 
E(t -+ co)=<Eo 1+- 0 cos Oi (24) 

r -I+E-2) 

- 1--,2,rl smin.0 , r>a 
r O-l+O-2 

(b) Field Line Plotting 
Because the region outside the cylinder is charge free, we 

know that V- E =0. From the identity derived in Section 
1-5-4b, that the divergence of the curl of a vector is zero, we 
thus know that the polar electric field with no z component 
can be expressed in the form 

E(r, 4)= VX X(r, O)i. 

I aY. aY. 
-,--14 (25) 

r a4 ar 

where x is called the stream function. Note that the stream 
function vector is in the direction perpendicular to the elec­
tric field so that its curl has components in the same direction 
as the field. 
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Along a field line, which is always perpendicular to the 
equipotential lines, 

dr = Er I o84 (26) 
r d4 Es rX/8r 

By cross multiplying and grouping terms on one side of the 

equation, (26) reduces to 

a1 al 
d =-dr+-dO =0>Y=const (27) 

ar 84 

Field lines are thus lines of constant 1. 
For the steady-state solution of (24), outside the cylinder 

=Er=Eo 1+ 2 cos 
r or+o2 (28) 

- =E4s=-Eo ( -a 22-O sin4 
ar r 2 Ol+0-2/ 

we find by integration that 

I= Eo( r+ ai2 ii sin# (29) 

The steady-state'field and equipotential lines are drawn in 
Figure 4-8 when the cylinder is perfectly conducting (- 2 -> x) 
or perfectly insulating (o-2 = 0). 

If the cylinder is highly conducting, the internal electric 
field is zero with the external electric field incident radially, as 
drawn in Figure 4-8a. In contrast, when the cylinder is per­
fectly insulating, the external field lines must be purely 
tangential to the cylinder as the incident normal current is 
zero, and the internal electric field has double the strength of 
the applied field, as drawn in Figure 4-8b. 

4-3-3 Three-Dimensional Solutions 

If the electric potential depends on all three coordinates, 
we try a product solution of the form 

V(r, 4-, z) = R(r)4(.)Z(z) (30) 

which when substituted into Laplace's equation yields 

ZF d dR RZd2 + d2Z (31) 
r dr\r + r2 dY2+R dz-2 = 0 (r-d r) 0dZ 

We now have a difficulty, as we cannot divide through by a 
factor to make each term a function only of a single variable. 
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2 r<a+ ) 0dr =- E - r- AV ao ar COSO r>a 
rdO E, 2) r a 

(i-'-) - r<ar0 
E=-V V= 2+ 2 

a + [(1 + _a- ) COS Ir 
-

(1 a () ia r > asin 

- ----------- - ---- 4.25 

- - --- -- 2.75 

~- --- - _---__.. 5~ .~~~~~~ - - 0.5 

V/(Eoa) 
--- 0.165- -- 02-- ------ 0.16- - - 0.0---- 0.5 

2.75 

a--------------------------------4.25 

Eoi =E-

Figure 4-8 Steady-state field and equipotential lines about a (a) perfectly conducting 
or (b) perfectly insulating cylinder in a uniform electric field. 

However, by dividing through by V = R(bZ, 

I d dR I d 24 1 d 2Z 
(32)

Rr dr (r +r)2 do2+Z dz2 0 

-k 2 k2 

we see that the first two terms are functions of r and 4 while 
the last term is only a function of z. This last term must 
therefore equal a constant: 

2 Alsinhkz+A 2 coshkz, k O 
I d Z (33)
Z dz LZ+A, 

k =0 

http:a--------------------------------4.25


- -- -- 
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r<a
=-2Eorcos$ 

-Eoa(a + )cosO r l a 

sinOiO)=2EOi,E = r<as 
V [ sa2 (+ sa2 

r>a r Sir -0 r2)ioI 

V 
Ea 

-- -4.25 

- -	 -------- 3.33 

- -- -- -- 2.5 

--	 - - ------- -2.0 

- C2 , 
---

2 -0 
-- --- - - ---­

------­0.5 
0.0 

---------­ 0.5 
-- a -

E1, 01 

- - ------­ 2.0 
-- ­

-

- -
---

--
- -

-
-

2.0 
2.5 

-	 3.33 

4.25 2 
a 

dr Er ___Coto 

rdo ~ E 2 cot$ 
Eoi= E6 (i, coso - i, sin$) ( r 

(b) 	 =>(- _ a)sin$ const 

Figure 4-8b 

The first two terms in (32) must now sum to -k 2 so that after 
multiplying through by r2 we have 

r 	d dR 2 2 1 d2 
D 

R r--rdr +k r +- =0 (34) 

Now again the first two terms are only a function of r, while 
the last term is only a function of 0 so that (34) again 
separates: 

r 	 d dR 2 2 
2 1 d 23 2rr- +k r =n -- n (5

dr dr ' D2 
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where n 2 is the second separation constant. The angular 
dependence thus has the same solutions as for the two-
dimensional case 

{Bsin n +B 2 cosnO, n=O (36)
B30 + B4, n =O 

The resulting differential equation for the radial dependence 

d dR 22 
r- (r- +(k2r2-n2)R=O (37)
dr dr) 

is Bessel's equation and for nonzero k has solutions in terms 

6. ­

5. ­ 1, (x) =j- J, (jx) 

4. 

3. 

2. 

1 2 (x)
 
Io (x)
 

1. 

2 2x 

-1. 

(a) 

Figure 4-9 The Bessel functions (a) J,(x) and I,(x), and (b) Y,(x) and K,,(x). 
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of tabulated functions: 

C1.J(kr)+C2 Y(kr), k *0 
R= 	 C3r"+C4r-', k=0, n 0 (38) 

C5 In r+C6 , k=0, n=O 

where J. is called a Bessel function of the first kind of order n 
and Y, is called the nth-order Bessel function of the second 
kind. When n = 0, the Bessel functions are of zero order while 
if k =0 the solutions reduce to the two-dimensional solutions 
of (9). 

Some of the properties and limiting values of the Bessel 
functions are illustrated in Figure 4-9. Remember that k 

2.5 

Ko x) 
2.0 

K, (x) K,(x) 7r/2)j J, (jx) + Y (jx)] 

K2 (x) 

1.5 

1.0 

Yo(x)
 

0.5 Y (x) Y (X)
2
 

4 6 8 10 

0.5 ­
7 22 

Figure 4-9b 
(b) 

-1.0 
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can also be purely imaginary as well as real. When k is real so 
that the z dependence is hyperbolic or equivalently exponen­
tial, the Bessel functions are oscillatory while if k is imaginary 
so that the axial dependence on z is trigonometric, it is con­
venient to define the nonoscillatory modified Bessel functions 
as 

I.(kr)=j "J.(jkr) 

K.(kr)j= u+j1 J(jkr)+jY.(jkr)] 

As in rectangular coordinates, if the solution to Laplace's 
equation decays in one direction, it is oscillatory in the 
perpendicular direction. 

4-3-4 High Voltage Insulator Bushing 

The high voltage insulator shown in Figure 4-10 consists 
of a cylindrical disk with Ohmic conductivity o- supported 
by a perfectly conducting cylindrical post above a ground 
plane.* 

The plane at z = 0 and the post at r = a are at zero potential, 
while a constant potential is imposed along the circumference 
of the disk at r = b. The region below the disk is free space so 
that no current can cross the surfaces at z = L and z = L - d. 
Because the boundaries lie along surfaces at constant z or 
constant r we try the simple zero separation constant solutions 
in (33) and (38), which are independent of angle 4: 

L-d<z<LV(rz) =Az+Blz lnr+C1 lnr+D1 , 
' A 2 z+B2zlnr+C2lnr+D2 , 0tz!L-d (40) 

Applying the boundary conditions we relate the coefficients 
as 

V(z =0)=0>C 2 =D 2 =0 

[A 2 +B 2 In a=0 
V(r=a)=0> A 1 +B 1lna=0 

IC1 Ina+D,=0 

V(r=b,z>L-d)=Vo> (41)
IC1 Inb+D = Vo 

V(z=(L-d).)=V(z=(L-d)+)='(L-d)(A2 +B2 lnr) 

=(L-d)(A1 +Bllnr)+Cilnr+Dj 

* M. N. Horenstein, "ParticleContaminationof High Voltage DC Insulators," PhD thesis, 
MassachusettsInstitute of Technology, 1978. 
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b 
a 

L E. 

V=VO@r= b 

E= 0 
cv- -c 

(a) I 

2 

b 

L 

V = VO V= VO 

a-­ | 

~.++ +++ + +'+: + d + + :+ I+ + I+ +1+ + + V0
Vo 

0.9 

0.8 
- , 0.7 

- - 0.6 
- -

0.5 

- / 0.4 

0.3 
-­ ~/ 
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0.1 

Field lines a--* 
Z2 = r 2 [In(r/a) ]

2 
+ const 

- - - - Equipotential V _ Vozln(r/a) 
lines (L -d)In(b/a) 

(b) 

Figure 4-10 (a) A finitely conducting disk is mounted upon a perfectly conducting 
cylindrical post and is placed on a perfectly conducting ground plane. (b) Field and 
equipotential lines. 



284 Electric Field Boundary Value Problems 

which yields the values 

0 ,V Vo In a
A, = B, = 0, Cl= 

In (b/a)' In (b/a) (42) 

B2 =(L- (/ C2 = D2=0(L -d) In (b/a)' (L - d) In (b/a)' 

The potential of (40) is then 

Vo In (r/a) 
L-dszsLJ
n(b/a) 

V(r, z)= (43)
Voz In (r/a) 0_zSL-d 

(L - d) In (b/a) 

with associated electric field 

V0 i L-d<z<L 
rIn(b/a)E=-VV= (44) 

0<z<L-d
(- ) n- b/V) In r+ 0, 

The field lines in the free space region are 

dr r r/z)Z2= r2 In r- +const (45)dzE,,r n (ra) I.a 2J 

and are plotted with the equipotential lines in Figure 4-10b. 

4-4 PRODUCT SOLUTIONS IN SPHERICAL GEOMETRY 

In spherical coordinates, Laplace's equation is 

Iar 2 V 2 s a (sin1 +1 V 

r~r\8/ r inG ao r2 sin 
(1) 

4-4-1 One-Dimensional Solutions 

If the solution only depends on a single spatial coordinate, 
the governing equations and solutions for each of the three 
coordinates are 

d r2 dV(r)= A( 
(i) (r r 1=> V(r)=- +A 2 (2) 



EXAMPLE 4-2 


ProductSolutions in Spherical Geometry 285 

(ii) (sin 6 dVG) = 0 =V(0)=B1 In (tan +B 2 

(3) 

d2 V(O)
(iii) d => V(O) = CIO4+ C2 (4) 

We recognize the radially dependent solution as the poten­
tial due to a point charge. The new solutions are those which 
only depend on 0 or 4. 

TWO CONES 

Two identical cones with surfaces at angles 0 = a and 0= 
ir -a and with vertices meeting at the origin, are at a poten­
tial difference v, as shown in Figure 4-11. Find the potential 
and electric field. 

SIn (tan k) 
.. (.)..=. - ­

2 In(tan ) 

E 2rsinO ln(tan ) 

.. .2 . .. .. . . 

Figure 4-11 Two cones with vertices meeting at the origin are at a potential 
difference v. 
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SOLUTION 

Because the boundaries are at constant values of 0, we try 
(3) as a solution: 

V(O)= B In [tan (0/2)1+ B2 

From the boundary conditions we have 

V(O = a) =v2 
-v v 

V(O = r - a) = -=>
2 

Bl = 
2 In [tan (&/2)] 

B2=0 

so that the potential is 

V(O)= v In [tan (0/2)] 
2 In [tan (a/2)] 

with electric field 

-v
E = -v V=i 

2r sin 9 In [tan (a/2)] 

4-4-2 Axisymmetric Solutions 

If the solution has no dependence on the coordinate 4, we 
try a product solution 

V(r, 9) = R(r)9(0) (5) 

which when substituted into (1), after multiplying through by 
r2 IRO, yields 

/dR d .dO I d 2 
- r 

R dr( 
-+ 

dr - 9n 
W-
d9 

sin -- =0 (6) 

Because each term is again only a function of a single vari­
able, each term is equal to a constant. Anticipating the form 
of the solution, we choose the separation constant as n(n + 1) 
so that (6) separates to 

r2 -n(n + 1)R =0 (7) 

d(snd9+<n(n+1)esine=0 
d9' dM 

(8) 

I 
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For the radial dependence we try a power-law solution 

R=Arp (9) 

which when substituted back into (7) requires 

p(p +1)=n(n +1) (10) 

which has the two solutions 

p =n, p =-(n +1) (1 

When n = 0 we re-obtain the I/r dependence due to a point 
charge. 

To solve (8) for the 9 dependence it is convenient to intro­
duce the change of variable 

i=cos9 (12) 

so that 

dO ----
dO 

dO dp =-si 
d16 dO 

dO -. -= _( ) -P)/ 2d 
dp 

sd(13) 
dp 

Then (8) becomes 

- (I-p2)- +n(n+1)0=0 (14)
dp ( dp 

which is known as Legendre's equation. When n is an integer, 
the solutions are written in terms of new functions: 

e= B.P.(P)+ C.Q.(P) (15) 

where the P.(P) are called Legendre polynomials of the first 
kind and are tabulated in Table 4-1. The Q. solutions are 
called the Legendre functions of the second kind for which 
the first few are also tabulated in Table 4-1. Since all the Q. 
are singular at 9=0 and 9= r, where P = * 1, for all problems 
which include these values of angle, the coefficients C. in (15) 
must be zero, so that many problems only involve the Legen­
dre polynomials of first kind, P.(cos 0). Then using (9)-(11) 
and (15) in (5), the general solution for the potential with no 
* dependence can be written as 

V(r,o)= Y (A.r"+Br~"+I))P.(cos0) (16) 
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Table 4-1 Legendre polynomials of first and second kind 

n P.(f= Cos 6) Q.(P =cos 6) 

0 1 -2LIn(jj) 

1 is =cos 6 
1 -2 

-4(3 _ 1) In2 2(3#2-1) 
+ 13) -p2 

='(3 cos2 0 _ 1) -4(53 - 3) In 1+# 3 

3 2(505-39) 

-1 (5 cos 6-3 cos 6) 

m Im(p2_ )
2'm! dpm 

4-4-3 Conducting Sphere in a Uniform Field 

(a) Field Solution 
A sphere of radius R, permittivity s2,and Ohmic conduc­

tivity a2 is placed within a medium of permittivity El and 
conductivity o1. A uniform dc electric field Eoi. is applied at 
infinity. Although the general solution of (16) requires an 
infinite number of terms, the form of the uniform field at 
infinity in spherical coordinates, 

E(r - 00) = Eoi. = Eo(i. cos 6 -ie sin 6) (17) 

suggests that all the boundary conditions can be met with just 
the n = 1 solution: 

r:sR 
V(r, 0).= (Ar cos 0, (18)

V(Br+ C/r2 )cos 0, r R 

We do not include the I/r2 solution within the sphere (r< R) 
as the potential must remain finite at r =0. The associated 

I 
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electric field is 

0-iO sin 0)=-Ai,, r<R 
E=-VV= 	 -A(ircos 

-(B -2Cr3 ) cos Oit+(B+C/r3)sin i., r>R 

(19) 

The electric field within the sphere is uniform and z direct­
ed while the solution outside is composed of the uniform 
z-directed field, for as r->o the field must approach (17) so 
that B = -Eo, plus the field due to a point dipole at the origin, 
with dipole moment 

p =41re 1C 	 (20) 

Additional steady-state boundary conditions are the 
continuity of the potential at r = R [equivalent to continuity of 
tangential E(r =R)], and continuity of normal current at 
r= R, 

V(r = R)= V(r = R-)=>Ee(r= R,)= E(r= R-) 

> AR=BR+C/R2 

J,(r= R+)= J,(r= R-):>o-E,(r= R+) = o-2E,(r = R-) (21) 

=c> 1 (B -2C/R)= Or 2A 

for which solutions are 

A = - 3- 1 Eo, B = -Eo, C = (c 2 -co 1 )R3 Eo (22)
2o-1 + 0-2 	 2o-+-2 

The electric field of (19) is then 

3c-1E0 	 3c-1E0(i cos 6-ie 	 sin 6)= .i, r<R
20-1 + -2 	 2a- + -2 

E=I Eo 1+2 R3-2 ) cos 6i, (23) 
r3(2o- + -2)) 

( 3(0-2 -a1) 	 s ]i, r>R 
r 3(2cr-1+ 0-2)) 

The interfacial surface charge is 

orf(r= R)= eiE,(r= R+)-e 2E,(r= R-) 

3(- 2s1 -1 0-1E2)Eo cos 0 (24)
2r, + 0r2 

which is of one sign on the upper part of the sphere and of 
opposite sign on the lower half of the sphere. The total 
charge on the entire sphere is zero. The charge is zero at 
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every point on the sphere if the relaxation times in each 
region are equal: 

=9 2(25) 
O*l 02 

The solution if both regions were lossless dielectrics with 
no interfacial surface charge, is similar in form to (23) if we 
replace the conductivities by their respective permittivities. 

(b) Field Line Plotting 
As we saw in Section 4-3-2b for a cylindrical geometry, the 

electric field in a volume charge-free region has no diver­
gence, so that it can be expressed as the curl of a vector. For 
an axisymmetric field in spherical coordinates we write the 
electric field as 

E'8'-Vx (X(r, 0). 

sr,,- r sin 0/ 

1 81, 1 a1, 
= 2 -IT- . i (26)

r sin 08o r sin0 ar 

Note again, that for a two-dimensional electric field, the 
stream function vector points in the direction orthogonal to 
both field components so that its curl has components in the 
same direction as the field. The stream function I is divided 
by r sin 0 so that the partial derivatives in (26) only operate on 
1. 

The field lines are tangent to the electric field 

dr = E, . 1 81180 (27) 
r d6 Es r81,1r 

which after cross multiplication yields 

d1=-dr+-d =0::>I=const (28)
8r 80 

so that again I is constant along a field line. 
For the solution of (23) outside the sphere, we relate the 

field components to the stream function using (26) as 

1 81, 2R_____-_
E,.= -=E= 1+ 3, cos8 

r2 sin 0 aO r (2o-1+ 2)) 

1 81, / R 3 (o,2 - 1 ) sine 
r sin 6 ar r3(2oi + 02)) 
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so that by integration the stream function is 

I= Eo 2+ sin2 8 (30)
2 r(2a + a2)) 

The steady-state field and equipotential lines are drawn in 
Figure 4-12 when the sphere is perfectly insulating (Or 2 = 0) or 
perfectly conducting (o2-00). 

v 2 
r> REoR[ + R2 I cos 

{EO(i, Cos 0- i.sinO)= EOi, r<R 

r ) Cos-i- - ( 1 + 2r ) s in i, } r > R 
E3 [ 

(1 
9
 

rd6 E
 
r3Coto 

R+ 

2-R I sin 20 const To RR r 
4.0 

------ -3.1 

-2.1 
-- -- -- - 1. 

- - - - -- .- - ---- ­

- -- -- - -0.45 
- - - - - - - - -*-.-- -- - - - - - - -- 0. 4

-0.75 
--- Eoi4 - -- ------ 1.4-

--------- ------ -- 0o.75 
- - - - --- - - - - --.-..--.-1.1 

----- 1.3 

_ 2.1 

----- .. ­

EO i, = E O(ir cos - i. sin 0) 

(a) 

Figure 4-12 Steady-state field and equipotential lines about a (a) perfectly insulating 
or (b) perfectly conducting sphere in a uniform electric field. 
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0 
r<R 

-EOR(r - )COS6 r>R 
t 

r<R 

E=-V V= ~ 2R3 
R3 

- V oi,' 1 _ ) sinioI r>REo[(1 + )Z ~ r 3 r 

(1+ 2R3 
dr E, r

3 coto 
rdO E0 (0 Re3 

r 

( )2]sin2 6 constr 2 -R 

- -2.75 

-1.75 
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02 0.25--------------- V--~-- - - 0 
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0.6 

------- 1.0 

1.75 
- - '~- 02-­
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2.75 

Eoi ,= Eo(icos -i sinG) 

(b) 

Figure 4-12b 

If the conductivity of the sphere is less than that of the 
surrounding medium (0-2<-1), the electric field within the 
sphere is larger than the applied field. The opposite is true 
for (U2 >o1 ). For the insulating sphere in Figure 4-12a, the 
field lines go around the sphere as no current can pass 
through. 

For the conducting sphere in Figure 4-12b, the electric field 
lines must be incident perpendicularly. This case is used as a 
polarization model, for as we see from (23) with 0-2 - O, the 
external field is the imposed field plus the field of a point 



Product Solutions in Spherical Geometry 293 

dipole with moment, 

p, = 47r 1R3 Eo (31) 

If a dielectric is modeled as a dilute suspension of nonin­
teracting, perfectly conducting spheres in free space with 
number density N, the dielectric constant is 

eoEo-+-P eoEo+ Np,E = = = Eo(1+4TR 3N) (32) 

4-4-4 Charged Particle Precipitation Onto a Sphere 

The solution for a perfectly conducting sphere surrounded 
by free space in a uniform electric field has been used as a 
model for the charging of rain drops.* This same model has 
also been applied to a new type of electrostatic precipitator 
where small charged particulates are collected on larger 
spheres.t 

Then, in addition to the uniform field Eoi, applied at 
infinity, a uniform flux of charged particulate with charge 
density po, which we take to be positive, is also injected, which 
travels along the field lines with mobility A. Those field lines 
that start at infinity where the charge is injected and that 
approach the sphere with negative radial electric field, 
deposit charged particulate, as in Figure 4-13. The charge 
then redistributes itself uniformly on the equipotential sur­
face so that the total charge on the sphere increases with time. 
Those field lines that do not intersect the sphere or those that 
start on the sphere do not deposit any charge. 

We assume that the self-field due to the injected charge is 
very much less than the applied field E0 . Then the solution of 
(23) with O-2 = C is correct here, with the addition of the radial 
field of a uniformly charged sphere with total charge Q(t): 

S 2R 3 R3 

E [EO cosO+ Q iEO(1 sin io,)+3) )
r 4 7r--r ) 

r>R (33) 

Charge only impacts the sphere where E,(r=R) is nega­
tive: 

Q
E,(r = R)= 3EO cos 9+ 2<0 (34)

4ireR 

* See: F. J. W. Whipple and J. A. Chalmers, On Wilson's Theory of the Collection of Charge 
by FallingDrops, Quart. J. Roy. Met. Soc. 70, (1944), p. 103.
 
t See: H. J. White, Industrial Electrostatic Precipitation Addison-Wesley, Reading. Mass.
 

1963, pp. 126-137. 
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Figure 4-13 Electric field lines around a uniformly charged perfectly conducting sphere in a uniform electric field with continuous
 
positive charge injection from z = -oo. Only those field lines that impact on the sphere with the electric field radially inward [E,(R) <0]
 
deposit charge. (a) If the total charge on the sphere starts out as negative charge with magnitude greater or equal to the critical charge,
 
the field lines within the distance y. of the z axis impact over the entire sphere. (b)-(d) As the sphere charges up it tends to repel some of
 
the incident charge and only part of the sphere collects charge. With increasing charge the angular window for charge collection
 
decreases as does y.,. (e) For Q - Q, no further charge collects on the sphere so that the charge remains constant thereafter. The angular
 
window and y, have shrunk to zero.
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which gives us a window for charge collection over the range 
of angle, where 

2- (35) cosO 2 Q
121reER 

Since the magnitude of the cosine must be less than unity, the 
maximum amount of charge that can be collected on the 
sphere is 

Q = 127reEoR 2 (36) 

As soon as this saturation charge is reached, all field lines 
emanate radially outward from the sphere so that no more 
charge can be collected. We define the critical angle 6. as the 
angle where the radial electric field is zero, defined when (35) 
is an equality cos 0, = -Q/Q,. The current density charging 
the sphere is 

J, = popE,(r= R) 

=3pogEo(cosO+QQ,), 0,<0< (37) 

The total charging current is then 

dQ r 2 
-=- J,2R2 sin 0dO 

= -6rpoAEoR 2 (cos 0 + Q/Q3 ) sin 0 dB 

= -6rposEoR 2 (-- cos 20 - (Q/Q,) cos 6) |=.. 

= -6irpop.EoR (- (1-cos 20,) +(Q/Q,) (1 +cos 0.)) 
(38) 

As long as IQ1 <Q, 0, is defined by the equality in (35). If Q 
exceeds Q,, which can only occur if the sphere is intentionally 
overcharged, then 0, = 7r and no further charging can occur 
as dQldt in (38) is zero. If Q is negative and exceeds Q, in 
magnitude, Q < -Q, then the whole sphere collects charge as 
0, =0. Then for these conditions we have 

-I , Q>Q, 

cos0,= -QIQ, -Q,<Q<Q, (39) 

1, Q<-Q, 

cos20,=2cos2 -C1={_1 )2 Q1> Q (40) 
12(Q/Q,)I'IQ<2 
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so that (38) becomes 

0, Q>Q. 

1 , Q,<Q<Q, (41)
dtj4s i,2 

d PoI Q 
6 Q, 

with integrated solutions 

Qo
 
Q1,
 
Qo+ (0t){
 

Q Q. 4 \ Q,/
Q= , -Q,<Q<Q, (42) 

1+ 1 _o 
4r Q, 

Qo Q <-Q
Q , 

where Qo is the initial charge at t=0 and the characteristic 
charging time is 

r = E/(Po) (43) 

If the initial charge Qo is less than -Q,, the charge magni­
tude decreases with the exponential law in (42) until the total 
charge reaches -Q, at t = to. Then the charging law switches 
to the next regime with Qo = -Q., where the charge passes 
through zero and asymptotically slowly approaches Q = Q,. 
The charge can never exceed Q, unless externally charged. It 
then remains constant at this value repelling any additional 
charge. If the initial charge Qo has magnitude less than Q., 
then to=0. The time dependence of the charge is plotted in 
Figure 4-14 for various initial charge values Qo. No matter 
the initial value of Qo for Q < Q,, it takes many time constants 
for the charge to closely approach the saturation value Q,. 
The force of repulsion on the injected charge increases as the 
charge on the sphere increases so that the charging current 
decreases. 

The field lines sketched in Figure 4-13 show how the fields 
change as the sphere charges up. The window for charge 
collection decreases with increasing charge. The field lines 
are found by adding the stream function of a uniformly 
charged sphere with total charge Q to the solution of (30) 
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2.0 

_____ = 15 1_Q _ QoQ0 QS Qs 

1.0 1 ----.0- ­ -- - - - - - - - - - - - -
-

ko+ ( - to

Q
 
6 8 10 Q. + ( - to
 

( 2.0 eo T (p ) 

-1.0 
0 

3. -Q QO ­
a. =QD, 

-2.0 

-3.0 

Figure 4-14 There are three regimes describing the charge build-up on the sphere. It 
takes many time constants ['r = e/(pos)] for the charge to approach the saturation value 
Q, because as the sphere charges up the Coulombic repulsive force increases so that 
most of the charge goes around the sphere. If the sphere is externally charged to a 
value in excess of the saturation charge, it remains constant as all additional charge is 
completely repelled. 

with 0-2->00: 

I= EoR 2 [!!+I sin 2 _Q coS 
(44)r 2 R 47re 

The streamline intersecting the sphere at r = R, 0 = 0,
separates those streamlines that deposit charge onto the 
sphere from those that travel past. 

4-5 A NUMERICAL METHOD-SUCCESSIVE RELAXATION 

In many cases, the geometry and boundary conditions are 
irregular so that closed form solutions are not possible. It 
then becomes necessary to solve Poisson's equation by a 
computational procedure. In this section we limit ourselves to 
dependence on only two Cartesian coordinates. 

4-5-1 Finite Difference Expansions 

The Taylor series expansion to second order of the poten­
tial V, at points a distance Ax on either side of the coordinate 
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(x, y), is 

2(1 
a V A. I 2V 

V(x+-Ax, y)' V(x, y)+ x+-V(x+-AX, y) -V(x'y)+- - Ax+---2- (,&X)2(Ax) 2 

ax 2Ox 
X.y 

If we add these two equations and solve for the second 
derivative, we have 

a
2V V(x+Ax, y)+ V(x -Ax, y)-2V(x, y) (2) 

ixT (Ax) 2 

Performing similar operations for small variations from y 
yields 

a9V V(x, y+Ay)+ V(x, y -Ay)-2V(x, y) 

y* (Ay) 2 (3) 

If we add (2) and (3) and furthermore let Ax = Ay, Poisson's 
equation can be approximated as 

a2 V 02 V 1
 
-y -' _iY _2 [V(x +Ax, y)+ V(x - Ax, y)
 

+V(x, y +Ay)+ V(x, y - Ay)-4V(x, y)] = 

(4) 

so that the potential at (x, y) is equal to the average potential 
of its four nearest neighbors plus a contribution due to any 
volume charge located at (x, y): 

V(x, y)= 4[V(x +Ax, y)+ V(x - Ax, y) 

pj(x y) (Ax)2 5 
+ V(x, y+ Ay)+ V(x, y- Ay)]+ 4 (5)

4e 

The components of the electric field are obtained by taking 
the difference of the two expressions in (1) 

E.(x,y)=- - [V(x+Ax, y)-V(x-Ax,y)]ax 2 AxL~xY 
(6) 

OV 1 
E,(x, y) = -- aV - -- ,[V(x, y + AY)- V(x, y - Ay)

ay MAy 

4-5-2 Potential Inside a Square Box 

Consider the square conducting box whose sides are con­
strained to different potentials, as shown in Figure (4-15). We 
discretize the system by drawing a square grid with four 
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d 

= 2V2 

V(3, 2) V(3, 3) 

3V V3 = 3 d 

2 - V(2, 2) V(2, 3) 

1 2 3 4 

Figure 4-15 The potentials at the four interior points of a square conducting box 
with imposed potentials on its surfaces are found by successive numerical relaxation. 
The potential at any charge free interior grid point is equal to the average potential of 
the four adjacent points. 

interior points. We must supply the potentials along the 
boundaries as proved in Section 4-1: 

4 4 

Vl= Y V(I, J= 1)= 1, V 3 = Y V(I, J= 4)=3 
I=1 1=1 

4 (7) 
V2= Y V(I=4,J)=2, V4 = Y V(I=1,J)=4 

4 

J=1 J=1 

Note the discontinuity in the potential at Che corners. 
We can write the charge-free discretized version of (5) as 

V(I, J) = 4[ V(I + 1, J) + V(I - 1, J) + V(I, J+ 1) + V(I, J - 1)] 

(8) 

We then guess any initial value of potential for all interior 
grid points not on the boundary. The boundary potentials 
must remain unchanged. Taking the interior points one at a 
time, we then improve our initial guess by computing the 
average potential of the four surrounding points. 

We take our initial guess for all interior points to be zero 
inside the box: 

V(2, 2) = 0, V(3, 3) = 0 
V(3, 2) = 0, V(2, 3) = 0 

Then our first improved estimate for V(2, 2) is 

V(2, 2)= [ V(2, 1)+ V(2, 3)+ V(1, 2)+ V(3, 2)] 

= [1+0+4+0]= 1.25 (10) 
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Using this value of V(2, 2) we improve our estimate for 
V(3, 2) as 

V(3, 2)= [V(2, 2)+ V(4, 2)+ V(3, 1)+ V(3, 3)] 
=4A1.25+2+1+0]= 1.0625 (11) 

Similarly for V(3, 3), 

V(3, 3)= [V(3, 2)+ V(3, 4)+ V(2, 3)+ V(4, 3)] 

=;[1.0625+3+0+2]= 1.5156 (12) 
and V(2, 3) 

V(2, 3)=1[ V(2, 2)+ V(2, 4)+ V(1, 3)+ V(3, 3)] 

=f[1.25+3+4+1.5156]=2.4414 (13) 

We then continue and repeat the procedure for the four 
interior points, always using the latest values of potential. As 
the number of iterations increase, the interior potential 
values approach the correct solutions. Table 4-2 shows the 
first ten iterations and should be compared to the exact solu­
tion to four decimal places, obtained by superposition of the 
rectangular harmonic solution in Section 4-2-5 (see problem 
4-4): 

VOx, y)= I . sin !!f'y(Vssinh 
.. n smh n s d d 

n odd 

- V, sinh nr(x-d)) 

+sin n( V2 sinh V4sinh n(y - d) (14) 

where Vi, V2, Vs and V4 are the boundary potentials that for 
this case are 

V 1=1, V2=2, Vs=3, V4=4 (15) 

To four decimal places the numerical solutions remain 
unchanged for further iterations past ten. 

Table 4-2 Potential values for the four interior points in 
Figure 4-15 obtained by successive relaxation for the first 
ten iterations 

0 1 2 3 4 5 

V1 0 1.2500 2.1260 2.3777 2.4670 2.4911 
V2 0 1.0625 1.6604 1.9133 1.9770 1.9935 

0 1.5156 2.2755 2.4409 2.4829 2.4952V3 

V4 0 2.4414 2.8504 2.9546 2.9875 2.9966 
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6 7 8 9 10 Exact 

2.4975 2.4993 2.4998 2.4999 2.5000 2.5000V1 
1.9982 1.9995 1.9999 2.0000 2.0000 1.9771V 2 

2.4987 2.4996 2.4999 2.5000 2.5000 2.5000V3 

2.9991 2.9997 2.9999 3.0000 3.0000 3.0229V4 

The results are surprisingly good considering the coarse 
grid of only four interior points. This relaxation procedure 
can be used for any values of boundary potentials, for any 
number of interior grid points, and can be applied to other 
boundary shapes. The more points used, the greater the 
accuracy. The method is easily implemented as a computer 
algorithm to do the repetitive operations. 

PROBLEMS 

Section 4.2 
1. The hyperbolic electrode system of Section 4-2-2a only 
extends over the range 0 : x : xo, 0 ! y t yo and has a depth D. 

(a) Neglecting fringing field effects what is the approxi­
mate capacitance? 

(b) A small positive test charge q (image charge effects are 
negligible) with mass m is released from rest from the surface 
of the hyperbolic electrode at x = xo, y = ab/xo. What is the 
velocity of the charge as a function of its position? 

(c) What is the velocity of the charge when it hits the 
opposite electrode? 

2. A sheet of free surface charge at x = 0 has charge dis­
tribution 

of = oo cos ay 

o =o cos ay 

)x 
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(a) What are the potential and electric field distributions? 
(b) What is the equation of the field lines? 

3. Two sheets of opposite polarity with their potential dis­
tributions constrained are a distance d apart. 

VO cos dy - VO cos ay 

y 

C -* X 

(a) What are the potential and electric field distributions 
everywhere? 

(b) What are the surface charge distributions on each 
sheet? 

4. A conducting rectangular box of width d and length 1 is of' 
infinite extent in the z direction. The potential along the x =0 
edge is V, while all other surfaces are grounded (V2= V3 

V4=0). 
3, 

V4d 

V1 V3 

V2 

(a) What are the potential and electric field distributions? 
(b) The potential at y = 0 is now raised to V2 while the 

surface at x =0 remains at potential VI. The other two sur­
faces remain at zero potential (V3= V4=0). What are the 
potential and electric field distributions? (Hint: Use super­
position.) 

(c) What is the potential distribution if each side is respec­
tively at nonzero potentials V1, V2, Vs, and V4? 

.
 I 
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5. A sheet with potential distribution 

V = Vo sin ax cos bz 

is placed parallel and 
conductors a distance d 
lower plane. 

between two parallel 
apart. It is a distance s 

grounded 
above the 

y 

d -

s -

0 -

E 

V = VO si nax cos bz 

(a) What are the potential and electric field distributions? 
(Hint: You can write the potential distribution by inspection 
using a spatially shifted hyperbolic function sinh c(y -d).) 

(b) What is the surface charge distribution on each plane at 
y=0,y=s, and y=d? 

6. A uniformly distributed surface charge o-o of width d and 
of infinite extent in the z direction is placed at x = 0 perpen­
dicular to two parallel grounded planes of spacing d. 

y 

d 

-x 

(a) What are the potential and electric field distributions? 
(Hint: Write o-o as a Fourier series.) 

(b) What is the induced surface charge distribution on each 
plane? 

(c) What is the total induced charge per unit length on 
each plane? Hint: 

.=, n 
n odd 

S r2 

8 
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7. A slab of volume charge of thickness d with volume charge 
density p1= po sin ax is placed upon a conducting ground 
plane. 

(a) Find a particular solution to Poisson's equation. Are the 
boundary conditions satisfied? 

(b) If the solution to (a) does not satisfy all the boundary 
conditions, add a Laplacian solution which does. 

(c) What is the electric field distribution everywhere and 
the surface charge distribution on the ground plane? 

(d) What is the force per unit length on the volume charge 
and on the ground plane for a section of width 2 r/a? Are 
these forces equal? 

(e) Repeat (a)-(c), if rather than free charge, the slab is a 
permanently polarized medium with polarization 

P= Po sin axi, 

8. Consider the Cartesian coordinates (x, y) and define the 

complex quantity 

z=x+jy, j=/ 

where z is not to be confused with the Cartesian coordinate. 
Any function of z also has real and imaginary parts 

w(z) = u(x, y)+jv(x, y) 

(a) Find u and v for the following functions: 

(i) z2 
(ii) sin z 

(iii) cos z 
(iv) e' 
(v) In z 

(b) Realizing that the partial derivatives of w are 

aw = dw az = dw au .av 
ax dz ax dz ax ax 
aw= dw az .dw .u .av 
ay dz ay 1 dz -~ y 

show that u and v must be related as 

au av au Ov 
Ox ay' ay ax 
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These relations are known as the Cauchy-Riemann equations 
and u and v are called conjugate functions. 

(c) Show that both u and v obey Laplace's equation. 
(d) Show that lines of constant u and v are perpendicular 

to each other in the xy plane. (Hint: Are Vu and Vv perpen­
dicular vectors?) 

Section 4.3 
9. A half cylindrical shell of length I having inner radius a 
and outer radius b is composed of two different lossy dielec­
tric materials (e1, o-1) for 0<4 <a and (e2, 0-2) for a <4< r. 
A step voltage Vo is applied at t =0. Neglect variations with z. 

Depth I 

b 

VO 

(a) What are the potential and electric field distributions 
within the shell at times t =0, t = co, and during the transient 
interval? (Hint: Assume potentials of the form V(O)=A(t)o 
+B(t) and neglect effects of the region outside the half 
cylindrical shell.) 

(b) What is the time dependence of the surface charge at 
O=a? 

(c) What is the resistance and capacitance? 

10. The potential on an infinitely long cylinder is constrained 
to be 

V(r = a)= Vo sin n46 

V V/2 

(bi) 

(a) Find the potential and electric field everywhere. 
(b) The potential is now changed so that it is constant on 
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each half of the cylinder: 

Vo/2, O<4<nr 
V(r=a. ')==V~. 0r)= - Vo/2 , vr < -0 < 2 7r 

Write this square wave of potential in a Fourier series. 
(c) Use the results of (a) and (b) to find the potential and 

electric field due to this square wave of potential. 

11. A cylindrical dielectric shell of inner radius a and outer 
radius b is placed in frce space within a uniform electric field 
Eoi.. What are the potential and electric field distributions 
everywhere? 

60 

4, = EO[i, cos 0-iosin 01 

12. A permanently polarized cylinder P2i. of radius a is 
placed within a polarized medium Pli, of infinite extent. A 
uniform electric field Eoi. is applied at infinity. There is no 
free charge on the cylinder. What are the potential and elec­
tric field distributions? 

P i 

tix 
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13. One type of electrostatic precipitator has a perfectly 
conducting cylinder of radius a placed within a uniform 
electric field Eoi.. A uniform flux of positive ions with charge 
qo and number density no are injected at infinity and travel 
along the field lines with mobility s. Those field lines that 
approach the cylinder with Er<0 deposit ions, which redis­
tribute themselves uniformly on the surface of the cylinder. 
The self-field due to the injected charge is negligible 
compared to E0 . 

x 

a 

Uniform flux of ions with mobility
 
E , number density no, and charge q0
 

(a) If the uniformly distributed charge per unit length on 
the cylinder is A(t), what is the field distribution? Where is 
the electric field zero? This point is called a critical point 
because ions flowing past one side of this point miss the 
cylinder while those on the other side are collected. What 
equation do the field lines obey? (Hint: To the field solution 
of Section 4-3-2a, add the field due to a line charge A.) 

(b) Over what range of angle 0, 0, <4 <27r - k ,, is there 
a window (shaded region in figure) for charge collection as a 
function of A (t)? (Hint: Er < 0 for charge collection.) 

(c) What is the maximum amount of charge per unit 
length that can be collected on the cylinder? 

(d) What is the cylinder charging current per unit length? 
(Hint: dI = -qonopEra do) 

(e) Over what range of y = y* at r = 0s,= -r7 do the 
injected ions impact on the cylinder as a function of A(t)? 
What is this charging current per unit length? Compare to 
(d). 

14. The cylinder of Section 4-3,2 placed within a lossy 
medium is allowed to reach the steady state. 

(a) At t = 0 the imposed electric field at infinity is suddenly 
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set to zero. What is the time dependence of the surface charge 
distribution at r = a? 

(b) Find the surface charge distribution if the field at 
infinity is a sinusoidal function of time E0 cos wt. 

15. A perfectly conducting cylindrical can of radius c open at 
one end has its inside surface coated with a resistive layer. 
The bottom at z = 0 and a perfectly conducting center post of 
radius a are at zero potential, while a constant potential Vo is 
imposed at the top of the can. 

_ V0 + 

-Oo 

0-­

00 

(a) What are the potential and electric field distributions 
within the structure (a<r<c, 0<z <l)? (Hint: Try the zero 
separation constant solutions n = 0, k = 0.) 

(b) What is the surface charge distribution and the total 
charge at r=a,r=b,and z =0? 

(c) What is the equation of the field lines in the free space 
region? 

16. An Ohmic conducting cylinder of radius a is surrounded 
by a grounded perfectly conducting cylindrical can of radius b 
open at one end. A voltage Vo is applied at the top of the 
resistive cylinder. Neglect variations with o. 

(a) What are the potential and electric field distributions 
within the structure, 0<z< 1, 0<r<b? (Hint: Try the 
zero separation constant solutions n =0, k =0 in each region.) 

(b) What is the surface charge distribution and total charge 
on the interface at r = a? 

(c) What is the equation or the field lines in the free space 
region? 
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VO
 

X II 

S b 

o--, 

0 

Section 4.4 
17. A perfectly conducting hemisphere of radius R is placed 
upon a ground plane of infinite extent. A uniform field Eoi. is 
applied at infinity. 

R 

(a) How much more charge is on the hemisphere than 
would be on the plane over the area occupied by the hemi­
sphere. 

(b) If the hemisphere has mass density pm and is in a 
gravity field -gi., how large must E0 be to lift the hemi­
sphere? Hint: 

cosm+i e 
sin 0 cos' 0 dO = -____0

m+1 

18. A sphere of radius R, permittivity e2, and Ohmic 
conductivity a-2 is placed within a medium of permittivity ei 
and conductivity o-,. A uniform electric field Eoi, is suddenly 
turned on at t = 0. 

(a) What are the necessary boundary and initial condi­
tions? 
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R 

~2.0 

(b) What are the potential and electric field distributions as 
a function of time? 

(c) What is the surface charge at r = R? 
(d) Repeat (b) and (c) if the applied field varies sinusoidally 

with time as EO cos ot and has been on a long time. 

19. The surface charge distribution on a dielectric sphere 
with permittivity 62 and radius R is 

crf = o-0( 3 cos2 0-1) 

The surrounding medium has permittivity eI. What are the 
potential and electric field distributions? (Hint: Try the n = 
2 solutions.) 

20. A permanently polarized sphere P2i, of radius R is 
placed within a polarized medium Pii.. A uniform electric 
field Eoi, is applied at infinity. There is no free charge at 
r R. What are the potential and electric field distributions? 

P2'Z 

R 

P~i 

EO iz 

21. A point dipole p= pi, is placed at the center of a dielec­
tric sphere that is surrounded by a different dielectric 
medium. There is no free surface charge on the interface. 
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What are the potential and electric field distributions? Hint: 

p cos 9
lim V(r, 0) = Cos­
r-0 47Er 22 

R 
P 

E2 

Section 4.5 
22. The conducting box with sides of length d in Section 
4-5-2 is filled with a uniform distribution of volume charge 
with density 

Po 7-2 [coul-m ]d2 

What are the potentials at the four interior points when the 
outside of the box is grounded? 

23. Repeat the relaxation procedure of Section 4-5-2 if the 
boundary potentials are: 

V2 =-2 V 2 =-2 

V1 = 1 

V1 =1 V 3 =3 V3 =-3 

V4 =-4 V4=4 

(a) (b) 

(a) V, = 1, V 2 = -2, V 3 = 3, V 4 = -4 

(b) V,= 1, V2 = -2, V3 = -3, V4 = 4 

(c) Compare to four decimal places with the exact solution. 
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The ancient Chinese knew that the iron oxide magnetite 
(FesO 4 ) attracted small pieces of iron. The first application of 
this effect was the navigation compass, which was not 
developed until the thirteenth century. No major advances 
were made again until the early nineteenth century when 
precise experiments discovered the properties of the 
magnetic field. 

5-1 FORCES ON MOVING CHARGES 

5-1-1 The Lorentz Force Law 

It was well known that magnets exert forces on each other, 
but in 1820 Oersted discovered that a magnet placed near a 
current carrying wire will align itself perpendicular to the 
wire. Each charge q in the wire, moving with velocity v in the 
magnetic field B [teslas, (kg-s 2 -A-')], felt the empirically 
determined Lorentz force perpendicular to both v and B 

f =q(vx B) (1) 

as illustrated in Figure 5-1. A distribution of charge feels a 
differential force df on each moving incremental charge 
element dq: 

df = dq(vx B) (2) 

V 

B q 

f q(v x B) 

Figure 5-1 A charge moving through a magnetic field experiences the Lorentz force 
perpendicular to both its motion and the magnetic field. 
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Moving charges over a line, surface, or volume, respectively 
constitute line, surface, and volume currents, as in Figure 5-2, 
where (2) becomes 

pfv x B dV= Jx B dV (J = pfv, volume current density) 

df= a-vxB dS=KXB dS 

(K = orfv, surface current density) (3) 

AfvxB dl =IxB dl (I=Afv, line current) 

B 

v : -- I dl =--ev 

di 

df = Idl x B 
(a) 

B 

dS 

K dS 

di > 

d1 KdSx B 
(b) 

B 

d V 

1K----------+-. JdV 

df JdVx B 
(c) 

Figure 5-2 Moving line, surface, and volume charge distributions constitute currents. 
(a) In metallic wires the net charge is zero since there are equal amounts of negative 
and positive charges so that the Coulombic force is zero. Since the positive charge is 
essentially stationary, only the moving electrons contribute to the line current in the 
direction opposite to their motion. (b) Surface current. (c) Volume current. 
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The total magnetic force on a current distribution is then 
obtained by integrating (3) over the total volume, surface, or 
contour containing the current. If there is a net charge with 
its associated electric field E, the total force densities include 
the Coulombic contribution: 

f=q(E+vxB) Newton 

FL=Af(E+vxB)=AfE+IXB N/m 

Fs=a'(E+vxB)=o-rE+KXB N/M2 

Fv=pf(E+vxB)=pfE+JXB N/M 3 

In many cases the net charge in a system is very small so that 
the Coulombic force is negligible. This is often true for 
conduction in metal wires. A net current still flows because of 
the difference in velocities of each charge carrier. 

Unlike the electric field, the magnetic field cannot change 
the kinetic energy of a moving charge as the force is perpen­
dicular to the velocity. It can alter the charge's trajectory but 
not its velocity magnitude. 

5-1-2 Charge Motions in a Uniform Magnetic Field 

The three components of Newton's law for a charge q of 
mass m moving through a uniform magnetic field Bi, are 

dv. 
m -d = qv,B,

di 

dv dv,m-=qvxB4' m--=-qv.B. (5)
dt dt 

dv. 
m =0 * v, = const 

The velocity component along the magnetic field is 
unaffected. Solving the first equation for v, and substituting 
the result into the siecond equation gives us a single equation 
in v.: 

d v +2 1 dv. qB. 
- , w=-m (6)S+WoV. = 0, V, =-

where Wo is called the Larmor angular velocity or the cyclo­
tron frequency (see Section 5-1-4). The solutions to (6) are 

v. =A sin wot + A 2 COS (7) 

1 dv, 
v, -- =A1 cos wot-A2 sin coot 

wo dt 
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where A I and A 2 are found from initial conditions. If at t =0, 

v(t = 0) = voi (8) 

then (7) and Figure 5-3a show that the particle travels in a 
circle, with constant speed vo in the xy plane: 

v = vo(cos aoti. -sin woti,) (9) 

with radius 

R = volwo (10) 

If the particle also has a velocity component along the 
magnetic field in the z direction, the charge trajectory 
becomes a helix, as shown in Figure 5-3b. 

y 
2-ir gB, 

Vo iY q 

V 0 
V 0 ix 

t (2n + 1) t =--(2n + 
WO wo 22 r 

_x 

Bzis/ -V01 WO (2n +- 1) 

(a) 

00 UUUU.MUUU 
- B, 

() 

Figure 5-3 (a) A positive charge q, initially moving perpendicular to a magnetic field, 
feels an orthogonal force putting the charge into a circular motion about the magnetic 
field where the Lorentz force is balanced by the centrifugal force. Note that the charge 
travels in the direction (in this case clockwise) so that its self-field through the loop [see 
Section 5-2-1] is opposite in direction to the applied field. (b) A velocity component in 
the direction of the magnetic field is unaffected resulting in a helical trajectory. 
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5-1-3 The Mass Spectrograph 

The mass spectrograph uses the circular motion derived in 
Section 5-1-2 to determine the masses of ions and to measure 
the relative proportions of isotopes, as shown in Figure 5-4. 
Charges enter between parallel plate electrodes with a y-
directed velocity distribution. To pick out those charges with 
a particular magnitude of velocity, perpendicular electric and 
magnetic fields are imposed so that the net force on a charge 
is 

q. (11.)q(E. +vB.) 

For charges to pass through the narrow slit at the end of the 
channel, they must not be deflected by the fields so that the 
force in (11) is zero. For a selected velocity v, = vo this 
requires a negatively x directed electric field 

V 
E. =- = - voBo (12)

S 

which is adjusted by fixing the applied voltage V. Once the 
charge passes through the slit, it no longer feels the electric 
field and is only under the influence of the magnetic field. It 
thus travels in a circle of radius 

r= = m (13) 
wo qBo 

+ v­

B0 i, 

Photographic 
plate 

Iq 

y 

insulator qBo -Ex 

Figure 5-4 The mass spectrograph measures the mass of an ion by the radius of its 
trajectory when moving perpendicular to a magnetic field. The crossed uniform 
electric field selects the ion velocity that can pass through the slit. 



Forces on Moving Charges 319 

which is directly proportional to the mass of the ion. By 
measuring the position of the charge when it hits the photo­
graphic plate, the mass of the ion can be calculated. Different 
isotopes that have the same number of protons but different 
amounts of neutrons will hit the plate at different positions. 

For example, if the mass spectrograph has an applied 
voltage of V= -100 V across a 1-cm gap (E. = -- 10 V/m) with 
a magnetic field of 1 tesla, only ions with velocity 

v,=-EIBo= 104 m/sec (14) 

will pass through. The three isotopes of magnesium, 12 Mg24 
25 26 

12Mg , 12Mg , each deficient of one electron, will hit the 
photographic plate at respective positions: 

2 x 10 4N(1.67 x 10- 27)d=2r= 1.610-'(1) 2X10 N 

= 0.48, 0.50, 0.52cm (15) 

where N is the number of protons and neutrons (m = 1.67 x 
10-27 kg) in the nucleus. 

5-1-4 The Cyclotron 

A cyclotron brings charged particles to very high speeds by 
many small repeated accelerations. Basically it is composed of 
a split hollow cylinder, as shown in Figure 5-5, where each 
half is called a "dee" because their shape is similar to the 

_ -- D2 

Y 

Figure 5-5 The cyclotron brings ions to high speed by many small repeated accelera­
tions by the electric field in the gap between dees. Within the dees the electric field is 
negligible so that the ions move in increasingly larger circular orbits due to an applied
magnetic field perpendicular to their motion. 

http:104N(1.67
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fourth letter of the alphabet. The dees are put at a sinusoi­
dally varying potential difference. A uniform magnetic field 
Boi, is applied along the axis of the cylinder. The electric field 
is essentially zero within the cylindrical volume and assumed 
uniform E, = v(t)/s in the small gap between dees. A charge 
source at the center of D, emits a charge q of mass m with zero 
velocity at the peak of the applied voltage at t = 0. The electric 
field in the gap accelerates the charge towards D2 . Because the 
gap is so small the voltage remains approximately constant at 
VO while the charge is traveling between dees so that its 
displacement and velocity are 

dv, q Vo qVO 
dt s Sm 

dy qVot 2 (16) 
dt 2ms 

The charge thus enters D2 at time t = [2ms 2/qV 0]" 2 later with 
velocity v, = -,12qVo/m. Within D 2 the electric field is negligible 
so that the charge travels in a circular orbit of radius r = 
v,/co = mvIqBo due to the magnetic field alone. The 
frequency of the voltage is adjusted to just equal the angular 
velocity wo = qBo/m of the charge, so that when the charge 
re-enters the gap between dees the polarity has reversed 
accelerating- the charge towards D, with increased 
velocity. This process is continually repeated, since every time 
the charge enters the gap the voltage polarity accelerates the 
charge towards the opposite dee, resulting in a larger radius 
of travel. Each time the charge crosses the gap its velocity is 
increased by the same amount so that after n gap traversals its 
velocity and orbit radius are 

V = , R1 = = (2nm Vo) 1/2 (17)
M - 0o qBO 

If the outer radius of the dees is R, the maximum speed of 
the charge 

Vma. =oR = -R (18) 

is reached after 2n = qB2R 2/mVo round trips when R. = R. 
For a hydrogen ion (q = 1.6x 10-' 9 coul, m = 1.67X 10-27 kg), 
within a magnetic field of 1 tesla (wo= 9.6 X 107 radian/sec) 
and peak voltage of 100 volts with a cyclotron radius of one 

9 6meter, we reach vma,= . x 10 7 m/s (which is about 30% of 
the speed of light) in about 2n -9.6 x 105 round-trips, which 
takes a time r=4nir/w, 27r/100-0.06 sec. To reach this 

http:27r/100-0.06
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speed with an electrostatic accelerator would require 
2 

b mv2 =qV4 Vmvma 4 8 x 106 Volts (19) 
2q 

The cyclotron works at much lower voltages because the 
angular velocity of the ions remains constant for fixed qBo/m 
and thus arrives at the gap in phase with the peak of the 
applied voltage so that it is sequentially accelerated towards 
the opposite dee. It is not used with electrons because their 
small mass allows them to reach relativistic velocities close to 
the speed of light, which then greatly increases their mass, 
decreasing their angular velocity wo, putting them out of 
phase with the voltage. 

5-1-5 HaDl Effect 

When charges flow perpendicular to a magnetic field, the 
transverse displacement due to the Lorentz force can give rise 
to an electric field. The geometry in Figure 5-6 has a uniform 
magnetic field Boi, applied to a material carrying a current in 
the y direction. For positive charges as for holes in a p-type 
semiconductor, the charge velocity is also in the positive y 
direction, while for negative charges as occur in metals or in 
n-type semiconductors, the charge velocity is in the negative y 
direction. In the steady state where the charge velocity does 
not vary with time, the net force on the charges must be zero, 

BO i, 

Figure 5-6 A magnetic field perpendicular to a current flow deflects the charges
transversely giving rise to an electric field and the Hall voltage. The polarity of the 
voltage is the same as the sign of tbe charge carriers. 
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which requires the presence of an x-directed electric field 

E+vx B=0->Ex = -v,Bo (20) 

A transverse potential difference then develops across the 
material called the Hall voltage: 

Vh=- Exdx =vBod (21) 

The Hall voltage has its polarity given by the sign of v,; 
positive voltage for positive charge carriers and negative 
voltage for negative charges. This measurement provides an 
easy way to determine the sign of the predominant charge 
carrier for conduction. 

5-2 MAGNETIC FIELD DUE TO CURRENTS 

Once it was demonstrated that electric currents exert forces 
on magnets, Ampere immediately showed that electric cur­
rents also exert forces on each other and that a magnet could 
be replaced by an equivalent current with the same result. 
Now magnetic fields could be turned on and off at will with 
their strength easily controlled. 

5-2-1 The Biot-Savart Law 

Biot and Savart quantified Ampere's measurements by 
showing that the magnetic field B at a distance r from a 
moving charge is 

goqv X i-
B= 47r2 teslas (kg-s -A') (1) 

as in Figure 5-7a, where go is a constant called the permeabil­
ity of free space and in SI units is defined as having the exact 
numerical value 

o= 47T X 10-7 henry/m (kg-m-A-2s 2 ) (2) 

The 47r is introduced in (1) for the same reason it was intro­
duced in Coulomb's law in Section 2-2-1. It will cancel out a 
47r contribution in frequently used laws that we will soon 
derive from (1). As for Coulomb's law, the magnetic field 
drops off inversely as the square of the distance, but its direc­
tion is now perpendicular both to the direction of charge flow 
and to the line joining the charge to the field point. 

In the experiments of Ampere and those of Biot and 
Savart, the charge flow was constrained as a line current 
within a wire. If the charge is distributed over a line with 
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Figure 5-7 The magnetic field generated by a current is perpendicular to the current 
and the unit vector joining the current element to the field point; (a) point charge; (b) 
line current; (c) surface current; (d) volume current. 

current I, or a surface with current per unit length K, or over 
a volume with current per unit area J, we use the differential-
sized current elements, as in Figures 5-7b-5-7d: 

I dl (line current) 

dq v = K dS (surface current) (3) 

I jdV (volume current) 

The total magnetic field for a current distribution is then 
obtained by integrating the contributions from all the incre­
mental elements: 

__ I dl x io-AO JL 2 (line current) 
41r QP 

so KdSXIQP
B-- -u--- (surface current) (4)

41r is rQP 

__ 

i-AoJJdVxiQP
­ (volume current) 

41r f rQp 
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The direction of the magnetic field due to a current element 
is found by the right-hand rule, where if the forefinger of the 
right hand points in the direction of current and the middle 
finger in the direction of the field point, then the thumb 
points in the direction of the magnetic field. This magnetic 
field B can then exert a force on other currents, as given in 
Section 5-1-1. 

5-2-2 Line Currents 

A constant current I, flows in the z direction along a wire of 
infinite extent, as in Figure 5-8a. Equivalently, the right-hand 
rule allows us to put our thumb in the direction of current. 
Then the fingers on the right hand curl in the direction of B, 
as shown in Figure 5-8a. The unit vector in the direction of 
the line joining an incremental current element I, dz at z to a 
field point P is 

r z
iQp = i,.cos 0 -i, sin 0=.- (5)

rQP rQP 

z
 

-p [r2 + r2 1/2 

dB, = p r Ii2d 
V 41Fr Qp 

r pr P iQP 

12 

1 =L B1' 0BO 2Ira 

go i12 L 

r 2ira 

/1 

I(b
CJ~BO 

(a) (b) 

Figure 5-8 (a) The magnetic field due to an infinitely long z-directed line current is 
in the 0 direction. (b) Two parallel line currents attract each other if flowing in the 
same direction and repel if oppositely directed. 
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with distance 

r 2=(z2+r2)1/2 (6) 

The magnetic field due to this current element is given by (4) 
as 

dB=. I dz(i XiQp) - AoIr dz 
247r rQp 41r(z 2+r ( 

The total magnetic field from the line current is obtained by 
integrating the contributions from all elements: 

AoIir [ dz 
B,-=BI 4r .Lc (z 2+r)2 3/2 

pjz1r z 
-2(Z2 2 1/247r r (z+r ) 10 

= 'o'i (8)
21rr 

If a second line current 12 of finite length L is placed at a 
distance a and parallel to I, as in Figure 5-8b, the force on 12 
due to the magnetic field of I, is 

+L/2 

f=J 12 dzi.xB 

-L/2 
+4L/2 lpoIi 

= I 2dz (iXi)
L/2 2ara 

_4 _1 1oi2L . 
(9)2ra ir 

If both currents flow in the same direction (1112>0), the 
force is attractive, while if they flow in opposite directions 
(1112<0), the force is repulsive. This is opposite in sense to 
the Coulombic force where opposite charges attract and like 
charges repel. 

5-2-3 Current Sheets 

(a) Single Sheet of Surface Current 
A constant current Koi, flows in the y =0 plane, as in 

Figure 5-9a. We break the sheet into incremental line cur­
rents Ko dx, each of which gives rise to a magnetic field as 
given by (8). From Table 1-2, the unit vector is is equivalent 
to the Cartesian components 

i' = -sin Oi. 2+cos 4i, (10) 
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dx 
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Figure 5-9 (a) A uniform surface current of infinite extent generates a uniform 
magnetic field oppositely directed on each side of the sheet. The magnetic field is 
perpendicular to the surface current but parallel to the plane of the sheet. (b) The 
magnetic field due to a slab of volume current is found by superimposing the fields 
due to incremental surface currents. (c) Two parallel but oppositely directed surface 
current sheets have fields that add in the region between the sheets but cancel outside 
the sheet. (d) The force on a current sheet is due to the average field on each side of 
the sheet as found by modeling the sheet as a uniform volume current distributed over 
an infinitesimal thickness A. 
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Figure 5-9 

The symmetrically located line charge elements a distance x 
on either side of a point P have y magnetic field components 
that cancel but x components that add. The total magnetic 
field is then 

Bx +0 AoKo sin iod 
B=--. 2 r (x2 + 2 )1/2 

-oKoy +0 dx 
2
21w . (x2 +y

- oKo tanIx 
21r y -cc 

_ -joKo/2, y> 0 (11)l.oKo/2, y <0 

The field is constant and oppositely directed on each side of 
the sheet. 

(b) Slab of Volume Current 
If the z-directed current Joi, is uniform over a thickness d, 

as in Figure 5-9b, we break the slab into incremental current 
sheets Jo dy'. The magnetic field from each current sheet is 
given by (11). When adding the contributions of all the 
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differential-sized sheets, those to the left of a field point give a 
negatively x directed magnetic field while those to the right 
contribute a positively x-directed field: 

. +d/2 -ojody' -oJod d 

Id/2 2 2 ' 2 
B==< -- jOd y <-- (12) 

J-d 2 2' 2
2 

p oo dy'+yfd/ oodyp Ajy 
2yfdy' d poJo dy' d d 

,/2 2 , 2 2 2 

The total force per unit area on the slab is zero: 
+d/2 +d/2 

Fs,=[ JoB dy=-, Jof y dy 

2 +d/2 

= 21fld =0 (13)
2 -d/2 

A current distribution cannot exert a net force on itself. 

(c) Two Parallel Current Sheets 
If a second current sheet with current flowing in the 

opposite direction - Koi, is placed at y = d parallel to a cur­
rent sheet Koi, at y = 0, as in Figure 5-9c, the magnetic field 
due to each sheet alone is 

-oKo .oKo. 
2 2 X, y >O 22 12o, y> d 

Bj= B2=' (14) 

_oKo < -/oKo.12 2, y'<0 22 ', y<d 

Thus in the region outside the sheets, the fields cancel while 
they add in the region between: 

B =, +2 -/yLKoi , 0<y d (5
B0, y<, (15) 

The force on a surface current element on the second sheet 
is 

df = -Koi dSxB (16) 

However, since the magnetic field is discontinuous at the 
current sheet, it is not clear which value of magnetic field to 
use. Tp take the limit properly, we model the current sheet at 
y = d as a thin volume current with density Jo and thickness A, 
as in Figure 5-9d, where KO = JoA. 
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The results of (12) show that in a slab of uniform volume 
current, the magnetic field changes linearly to its values at the 
surfaces 

B.(y = d -A)= -soKo (17) 
B.(y =d)=0 

so that the magnetic field within the slab is 

B. =loKo(y d) (18) 

The force per unit area on the slab is then 

Fs A Jo(y - d)i, dy 

-poKojo(y-d)2 . d 

Id-AA 2 

joKoJoA. poKo . 
2 2 (19) 

The force acts to separate the sheets because the currents are 
in opposite directions and thus repel one another. 

Just as we found for the electric field on either side of a 
sheet of surface charge in Section 3-9-1, when the magnetic 
field is discontinuous on either side of a current sheet K, 

B2being B, on one side and on the other, the average 
magnetic field is used to compute the force on the sheet: 

(Bi+ B2) (20)df=KdS x (20
2 

In our case 

Bi =- LoKoi., B2=0 (21) 

5-2-4 Hoops of Line Current 

(a) Single hoop 
A circular hoop of radius a centered about the origin in the 

xy plane carries a constant current I, as in Figure 5-1Oa. The 
distance from any point on the hoop to a point at z along the z 
axis is 

r 2(Z2+a2 1/2 (22) 

in the direction 

(-ai,+zi.) 
(23)Q (z2+ 2) 2 
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Figure 5-10 (a) The magnetic field due to a circular current loop is z directed along 
the axis of the hoop. (b) A Helmholtz coil, formed by two such hoops at a distance 
apart d equal to their radius, has an essentially uniform field 'iear the center at z = d/2. 
(c) The magnetic field on the axis of a cylinder with a 45-directed surface current is 
found by integrating the fields due to incremental current loops. 

so that the incremental magnetic field due to a current ele­
ment of differential size is 

dB= ""Ia d4a i)xiQP
4,rrto, 

= oIad (+
2 E)s/2(aiz+zir) (24)

47r(z +a 

The radial unit vector changes direction as a function of 4, 
being oppositely directed at -0, so that the total magnetic 
field due to the whole hoop is purely z directed: 

B ola2 2d 
2B 41r(z2 +a) 

2 
poIa 

(25)
2(z 2 +a 2)512 

The direction of the magnetic field can be checked using 
the right-hand rule. Curling the fingers on the right hand in 
the direction of.the current puts the thumb in the direction of 
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the magnetic field. Note that the magnetic field along the z axis 
is positively z directed both above and below the hoop. 

(b) Two Hoops (Hehnholtz Coil) 
Often it is desired to have an accessible region in space with 

an essentially uniform magnetic field. This can be arianged 
by placing another coil at z = d, as in Figure 5-1 Ob. Then the 
total magnetic field along the z axis is found by superposing 
the field of (25) for each hoop: 

I0 Ia2 1 1 
B.= 2 \(z2+a2)/2+ ((z - d)2+a )S/2) (26) 

We see then that the slope of B., 

aB. 3 oIa2 ( -z (z -d) \ 
2az 2 \(z 2 +a) 5 ((z -d) 2 +a 2)5/2) (27) 

is zero at z = d/2. The second derivative, 

a2B. 3poIa2 ( 5z 2 

az 2 (z 2+a )7/ (z 2 +a 2 )5 /2 

5(z-d)2 
1 (

((z - d) +a 2) ((z - d)2+ a 2)/2 

can also be set to zero at z = d/2, if d = a, giving a highly 
uniform field around the center of the system, as plotted in 
Figure 5-10b. Such a configuration is called a Helmholtz coil. 

(c) Hollow Cylinder of Surface Current 
A hollow cylinder of length L and radius a has a uniform 

surface current K0i* as in Figure 5-10c. Such a configuration 
is arranged in practice by tightly winding N turns of a wire 
around a cylinder and imposing a current I through the wire. 
Then the current per unit length is 

Ko= NIIL (29) 

The magnetic field along the z axis at the position z due to 
each incremental hoop at z' is found from (25) by replacing z 
by (z - z') and I by Ko dz': 

B.t a2Ko dz'
dB. 2[(z - Z')2+ a 2/ 
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The Magnetic FieUd 

The total axial magnetic field is then 

B 12 Oa2 dz' 
B.=-.2 2 [(z - z')+a' 

Jsoa2 Ko (z'-z) +02 

2 a _[(z,) +a2]I .'---/2 
_ioKo( -z+L/2 

2 \[(z - L/2)2 + a2 ]m 
+ 

[(z+L/2)2 +a2]"2 (31) 

As the cylinder becomes very long, the magnetic field far 
from the ends becomes approximately constant 

lim B.=p, K0 (32) 

DIVERGENCE AND CURL OF THE MAGNETIC FIELD 

Because of our success in examining various vector opera­
tions on the electric field, it is worthwhile to perform similar 
operations on the magnetic field. We will need to use the 
following vector identities from Section 1-5-4, Problem 1-24 
and Sections 2-4-1 and 2-4-2: 

V - (V XA)=0 (1) 

Vx(Vf)=O (2) 

(3) 
rQP) rop 

2( dV= 0,41, rQp=Orap= 0(4 (4)V r V= -­

V (A x B)= B - (V x A)- A - V x B (5) 

V x (A XB)= (B - V)A -(A - V)B+(V - B)A -(V - A)B (6) 

V(A - B)= (A - V)B+(B - V)A+ A x (V XB)+B x (V x A) 
(7) 

Gauss's Law for the Magnetic Field 

Using (3) the magnetic field due to a volume distribution of 
current J is rewritten as 

B=E2 Jx()dV 

=2 JA xV( dV (8)
4r Jv rP 
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If we take the divergence of the magnetic field with respect to 
field coordinates, the del operator can be brought inside the 
integral as the integral is only over the source coordinates: 

V-B -. Jxv dV (9) 
v L rQp 

The integrand can be expanded using (5) 

v-Jxv-)]=v(-,)- -(VXJ)-J-Vx[V(-)=0 

0 
0 (10) 

The first term on the right-hand side in (10) is zero because j 
is not a function of field coordinates, while the second term is 
zero from (2), the curl of the gradient is always zero. Then (9) 
reduces to 

V-B=0 (11) 

This contrasts with Gauss's law for the displacement field 
where the right-hand side is equal to the electric charge 
density. Since nobody has yet discovered any net magnetic 
charge, there is no source term on the right-hand side of (11). 

The divergence theorem gives us the equivalent integral 
representation 

(12)B-dS=0tV-BdV= 

which tells us that the net magnetic flux through a closed 
surface is always zero. As much flux enters a surface as leaves 
it. Since there are no magnetic charges to terminate the 
magnetic field, the field lines are always closed. 

5-3-2 Ampere's Circuital Law 

We similarly take the curl of (8) to obtain 

VxB=- VxJxVkI dV (13)
47r v I rQP 

where again the del operator can be brought inside the 
integral and only operates on rQp. 

We expand the integrand using (6): 

Vx JxV )= v -1( 
rP rQP) ~ i-VV rQP) 

0 

rQC) 
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where two terms on the right-hand side are zero because J is 
not a function of the field coordinates. Using the identity of 
(7), 

V J-v = [V(-V J+( -V)V( 
rQP) rQP) IrQP)
 

+ V x )+Jx [x I (15) 

0 

the second term on the right-hand side of (14) can be related 
to a pure gradient of a quantity because the first and third 
terms on the right of (15) are zero since J is not a function of 
field coordinates. The last term in (15) is zero because the curl 
of a gradient is always zero. Using (14) and (15), (13) can be 
rewritten as 

VxB=- I J - V( I )-JVk dV (16)4 1 v L rQp/J rQp/ 

Using the gradient theorem, a corollary to the divergence 
theorem, (see Problem 1-15a), the first volume integral is 
converted to a surface integral 

VdS . JVB (17)
41r s I 

rar/ , vrQ7 

This surface completely surrounds the current distribution so 
that S is outside in a zero current region where J =0 so that 
the surface integral is zero. The remaining volume integral is 
nonzero only when rQp =0, so that using (4) we finally obtain 

V x B= goJ (18) 

which is known as Ampere's law. 
Stokes' theorem applied to (18) results in Ampere's circuital 

law: 

Vx--. dS= -- dl= J-dS (19) 
s Lo S 

Like Gauss's law, choosing the right contour based on sym­
metry arguments often allows easy solutions for B. 

If we take the divergence of both sides of (18), the left-hand 
side is zero because the divergence of the curl of a vector is 
always zero. This requires that magnetic field systems have 
divergence-free currents so that charge cannot accumulate. 
Currents must always flow in closed loops. 
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5-3-3 Currents With Cylindrical Symmetry 

(a) Surface Current 
A surface current Koi, flows on the surface of an infinitely 

long hollow cylinder of radius a. Consider the two sym­
metrically located line charge elements dI = Ko ad4 and their 
effective fields at a point P in Figure 5-1 la. The magnetic 
field due to both current elements cancel in the radial direc­
tion but add in the 4 direction. The total magnetic field can 
be found by doing a difficult integration over 4. However, 

dB = dB1 + dB 2 

dB, 
dl= Koado . dB2\ 

a 

C5 p= Ia2+ r2 _-2arCOS n1 

(rP- c O )r, + a sin i, 
IQP rQ P fraction of the current 

crosses this surface 

No current 
crosses this 

a surface 

All the current 
crosses this urface 

r iI III 
A 

K =Ko i, Koi 

2 B 0 r <a 2r r 2 r <a 

B rd$= f - rd$=f 0 27rKoa r>a 0 Po Joira2 

(a) (b) (c) 

Figure 5-11 (a) The magnetic field of an infinitely long cylinder carrying a surface 
current parallel to its axis can be found using the Biot-Savart law for each incremental 
line current element. Symmetrically located elements have radial field components 
that cancel but 4 field components that add. (b) Now that we know that the field is 
purely 4 directed, it is easier to use Ampere's circuital law for a circular contour 
concentric with the cylinder. For r <a no current passes through the contour while for 
r>a all the current passes through the contour. (c) If the current is uniformly 
distributed over the cylinder the smaller contour now encloses a fraction of the 
current. 
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using Ampere's circuital law of (19) is much easier. Since we 
know the magnetic field is 4 directed and by symmetry can 
only depend on r and not 4 or z, we pick a circular contour of 
constant radius r as in Figure 5-11 b. Since dl= r d4 i# is in the 
same direction as B, the dot product between the magnetic 
field and dl becomes a pure multiplication. For r <a no cur­
rent passes through the surface enclosed by the contour, 
while for r>a all the current is purely perpendicular to the 
normal to the surface of the contour: 

B w"B* 2vrrB_ Ko21ra=I, r>a 

-t.d o 0, r<a 
(20) 

where I is the total current on the cylinder. 
The magnetic field is thus 

IoKoa/r= joI/(2arr), r > a 
0, r<a 

Outside the cylinder, the magnetic field is the same as if all 
the current was concentrated along the axis as a line current. 

(b) Volume Current 
If the cylinder has the current uniformly distributed over 

the volume as Joi , the contour surrounding the whole cylin­
der still has the total current I = Joira2 passing through it. If 
the contour has a radius smaller than that of the cylinder, 
only the fraction of current proportional to the enclosed area 
passes through the surface as shown in Figure 5-1 1c: 

B4 2rrB Jora =I r>a 
- r d= 2rrB,= fJO (22)

Lgo go Jo7r=Ir/a2, r<a 

so that the magnetic field is 

gojoa 2 oI=~oo r>a 
2r 2vrr' 

B, = (3
B ojor soIr (23) 

2 2 

i,2, r<a 

5-4 THE VECTOR POTENTIAL 

5-4-1 Uniqueness 

Since the divergence of the magnetic field is zero, we may 
write the magnetic field as the curl of a vector, 

V -B =0=>B= V x A (1) 
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where A is called the vector potential, as the divergence of the 
curl of any vector is always zero. Often it is easier to calculate 
A and then obtain the magnetic field from (1). 

From Ampere's law, the vector potential is related to the 
current density as 

V x B=V x (V x A)=V(V -A)-V 2A = poJ (2) 

We see that (1) does not uniquely define A, as we can add 
the gradient of any term to A and not change the value of the 
magnetic field, since the curl of the gradient of any function is 
always zero: 

A-+A+Vf>B=Vx(A+Vf)=VxA (3) 

Helmholtz's theorem states that to uniquely specify a 
vector, both its curl and divergence must be specified and that 
far from the sources, the fields must approach zero. To prove 
this theorem, let's say that we are given, the curl and diver­
gence of A and we are to determine what A is. Is there any 
other vector C, different from A that has the same curl and 
divergence? We try C of the form 

C=A+a (4) 

and we will prove that a is zero. 
By definition, the curl of C must equal the curl of A so that 

the curl of a must be zero: 

VxC=Vx(A+a)=VxA=Vxa=0 (5) 

This requires that a be derivable from the gradient of a scalar 
function f: 

V x a= 0>a=Vf (6) 

Similarly, the divergence condition requires that the diver­
gence of a be zero, 

V - C=V - (A+a)=V - A>V - a=0 (7) 

so that the Laplacian of f must be zero, 

V-a=V 2f=0 (8) 

In Chapter 2 we obtained a similar equation and solution for 
the electric potential that goes to zero far from the charge 
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distribution: 

V2= _ _ pdV (9)E Jv4rerr(9) 

If we equate f to V, then p must be zero giving us that the 
scalar function f is also zero. That is, the solution to Laplace's 
equation of (8) for zero sources everywhere is zero, even 
though Laplace's equation in a region does have nonzero 
solutions if there are sources in other regions of space. With f 
zero, from (6) we have that the vector a is also zero and then 
C = A, thereby proving Helmholtz's theorem. 

5-4-2 The Vector Potential of a Current Distribution 

Since we are free to specify the divergence of the vector 
potential, we take the simplest case and set it to zero: 

V A=0 (10) 

Then (2) reduces to 

V2A= -oJ(11) 

Each vector component of (11) is just Poisson's equation so 
that the solution is also analogous to (9) 

- o J dV
A --d (12)

41r fv rQp 

The vector potential is often easier to use since it is in the 
same direction as the current, and we can avoid the often 
complicated cross product in the Biot-Savart law. For moving 
point charges, as well as for surface and line currents, we use 
(12) with the appropriate current elements: 

J dV-+K dS-+I dL -+qv (13) 

5-4-3 The Vector Potential and Magnetic Flux 

Using Stokes' theorem, the magnetic flux through a surface 
can be expressed in terms of a line integral of the vector 
potential: 

<D B - dS Vx A - dS A - dl (14) 
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(a) Finite Length Line Current 
The problem of a line current I of length L, as in Figure 

5-12a appears to be nonphysical as the current must be 
continuous. However, we can imagine this line current to be 
part of a closed loop and we calculate the vector potential and 
magnetic field from this part of the loop. 

The distance rQp from the current element I dz' to the field 
point at coordinate (r, <5, z) is 

r2 = [(Z 1Z /)2+ r2]"2 (15) 

The vector potential is then 

_1_I 1/2 dz' 
[(z -z') 

2 +r11/24A r u 

tpoI -z + L/2+[(z - L/2)2+r2 12 
2 1 1 2

47r -(z+ L/2)+[(z+L/2) 2 +r

pOI( -z+L/2 +sinh z+L/21 (16) 
47r r r 

2 

P(r, 0, z) 

' 
+ r2(zZ')21/2 Sr 

SIdz' 

L 

(a) 

Figure 5-12 (a) The magnetic field due to a finite length line current is most easily 
found using the vector potential, which is in the direction of the current. This problem 
is physical only if the line current is considered to be part of a closed loop. (b) The 
magnetic field from a length w of surface current is found by superposing the vector 
potential of (a) with L - oo. The field lines are lines of constant A. (c) The magnetic 
flux through a square current loop is in the -x direction by the right-hand rule. 

x 
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dx' .-

di = KodxKo i 
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with associated magnetic field 

B=VxA 
(1 aA. A aA aA 1 a aAr 

r 8o 
" 

az 
i,+ 

az 
-'i 

r 
+- (-

r \r 
(rA,) 

84 
i 

8A,, 
ar 

-poIr 
4 2 2] 2 

,7T \[(z - L/2)2 + r2] _ z + L/2 + [(z - L/2)2 + r

[(z + L/2) 2 + r2 ] 112 _ (z + L2)+ [(z + L/2)2 + r] 1/2) 

po1I -z + L/2 z + L/2 .( 
+4rr \[r 2+(Z - L/2)21/2+[r2+(Z + L/2()2)2 

For large L, (17) approaches the field of an infinitely long 
line current as given in Section 5-2-2: 

A,= _ Inr+const 
27T 

lim (18) 

ar 27rr 

Note that the vector potential constant in (18) is infinite, but 
this is unimportant as this constant has no contribution to the 
magnetic field. 

(b) Finite Width Surface Current 
If a surface current Koi,, of width w, is formed by laying 

together many line current elements, as in Figure 5-12b, the 
vector potential at (x, y) from the line current element KO dx' at 
position x' is given by (18): 

dA, =-oKo dx' In [(x - x') 2 +y 2] (19)4 7r 

The total vector potential is found by integrating over all 
elements: 
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A.=- -LoK +w/2 In [(x -x') 2 +y ] dx' 
41rI w12 

-LoKo (x'- x) In [(x-x')2 +y]2(x'-x)
41r 

+2y tan-

K2 - x Inx +y = r 1 

+2 +x ) n 2)x+ 2 2 

-2w +2y tan' g2 +X2 W / (20)*
-Wy _+ /41) 

The magnetic field is then 

ax ay _ 

= OKO 2 tanx+ln i +w/2)2 +Y247r -w2/4 (x-w/2)2+Y2 
(21) 

The vector potential in two-dimensional geometries is also 
useful in plotting field lines, 

dy = B, --8A/x (22) 
dx B. aA./ay 

for if we cross multiply (22), 

-'dx+ -'dy=dA=0->A.=const (23) 
ax ay 

we see that it is constant on a field line. The field lines in 
Figure 5-12b are just lines of constant A,. The vector poten­
tial thus plays the same role as the electric stream function in 
Sections 4.3.2b and 4.4.3b. 

(c) Flux Through a Square Loop 
The vector potential for the square loop in Figure 5-12c with 

very small radius a is found by superposing (16) for each side 
with each component of A in the same direction as the current 
in each leg. The resulting magnetic field is then given by four 

*tan (a - b)+ tan-' (a + b)= tan-' 1-a'2 
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terms like that in (17) so that the flux can be directly computed 
by integrating the normal component of B over the loop area. 
This method is straightforward but the algebra is cumber­
some. 

An easier method is to use (14) since we already know the 
vector potential along each leg. We pick a contour that runs 
along the inside wire boundary at small radius a. Since each 
leg is identical, we only have to integrate over one leg, then 
multiply the result by 4: 

-a+D/2 

4)=4 A, dz 
ra-D/2 

_ ,O -a+D/2 sinh +D/2 _ z+D/2 
irf.- D/2 aa ) 

= o _ 1 -D/+ --­- -z) sinh Z) +a 21/ 

V H 2 a [2 

D +z2 + 21/21 -a+D/2
D+Z sinW z+D/2+ 
2 a 2 a-D/2 

=2 oI -- a sinh- I +al+(D -a) sinhV D-a 

a) 2 + -[(D - a21/2) (24) 

As a becomes very small, (24) reduces to 

lim4D=2 LD sinh D 1) (25)
a-0 7r \a/ 

We see that the flux through the loop is proportional to the 
current. This proportionality constant is called the self-
inductance and is only a function of the geometry: 

1L = = 2 - sinh-' - )- 1 (26)
I 7T\( ( 

Inductance is more fully developed in Chapter 6. 

5-5 MAGNETIZATION 

Our development thus far has been restricted to magnetic 
fields in free space arising from imposed current dis­
tributions. Just as small charge displacements in dielectric 
materials contributed to the electric field, atomic motions 
constitute microscopic currents, which also contribute to the 
magnetic field. There is a direct analogy between polarization 
and magnetization, so our development will parallel that of 
Section 3-1. 
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5-5-1 The Magnetic Dipole 

Classical atomic models describe an atom as orbiting elec­
trons about a positively charged nucleus, as in Figure 5-13. 

Figure 5-13 Atomic currents arise from orbiting electrons in addition to the spin 
contributions from the electron and nucleus. 

The nucleus and electron can also be imagined to be spin­
ning. The simplest model for these atomic currents is analo­
gous to the electric dipole and consists of a small current loop 
of area dS carrying a current I, as in Figure 5-14. Because 
atomic dimensions are so small, we are only interested in the 
magnetic field far from this magnetic dipole. Then the shape 
of the loop is not important, thus for simplicity we take it to be 
rectangular. 

The vector potential for this loop is then 

I I I I 
A=-.i dx idy i, r4 rs (1)
41r r3 r 

where we assume that the distance from any point on each 
side of the loop to the field point P is approximately constant. 

z 

m = Idxdyi! m =IdS 

1P 

r3' 

r2 r1 

dSdxdyi, 

dy X ,
dx r4 X 

dS 

S ir i V COSX, 
A dy ,-(- )=COSX2 

Figure 5-14 A magnetic dipole consists of a small circulating current loop. The 
magnetic moment is in the direction normal to the loop by the right-hand rule. 
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Using the law of cosines, these distances are related as 

r=r2+ -Yrdycosi; r=r2+ ( Xdxc 

2 (2)r) = - r dy COS x1, r2 =r+ - +rdx COS X2() 
2 =2 d2()

2 2 (dy2
r 3 =r +) + rdycos X, r 4 r + -+rdx COS X2 

where the angles X, and X2 are related to the spherical coor­
dinates from Table 1-2 as 

i, i,=cosX =sin6 sin (3) 

-i,-ix= cos X2= -sin 6 cos k 

In the far field limit (1) becomes 

lim A = /.0I [dx( I 
>>dx 41r [r dy dy 1/2 

r>>dy 1 + -+2 cOSX 
S2r 2r 

1 1/2
1+-2 cosi 

r\ dx dx 1 112 
r + -(-+2 cos K2)
 

2r 2r
 

dx 1 1/2)]

1+- (--2 cos X2


2r 2r 

2~ 11rdxdy[cos Xiii +cos X2i,] (4) 

Using (3), (4) further reduces to 

MoI dS 
A = 47Tr 2 sin [ - sin i + cos 0i,] 

MoIdS 
2 (5)

= 4Tr sin Oi4, 

where we again used Table 1-2 to write the bracketed 
Cartesian unit vector term as is. The magnetic dipole 
moment m is defined as the vector in the direction perpen­
dicular to the loop (in this case i,) by the right-hand rule with 
magnitude equal to the product of the current and loop area: 

m= I dS i =I dS (6) 
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Then the vector potential can be more generally written as 

A = 7sinNO=7x, (7)4lrr 47rr2 

with associated magnetic field 

1 a i a
a(A,6sin O)i, - (rAs)ie B=VxA= ­

r sin 0 r area 

p.om 
- M [2 cos Oir+ sin i] (8)

4,7rr' 

This field is identical in form to the electric dipole field of 
Section 3-1-1 if we replace p/Eo by Mom. 

5-5-2 Magnetization Currents 

Ampere modeled magnetic materials as having the volume 
filled with such infinitesimal circulating current loops with 
number density N, as illustrated in Figure 5-15. The 
magnetization vector M is then defined as the magnetic dipole 
density: 

M= Nm= NI dS amp/m (9) 

For the differential sized contour in the xy plane shown in 
Figure 5-15, only those dipoles with moments in the x or y 
directions (thus z components of currents) will give rise to 
currents crossing perpendicularly through the surface 
bounded by the contour. Those dipoles completely within the 
contour give no net current as the current passes through the 
contour twice, once in the positive z direction and on its 
return in the negative z direction. Only those dipoles on 
either side of the edges-so that the current only passes 
through the contour once, with the return outside the 
contour-give a net current through the loop. 

Because the length of the contour sides Ax and Ay are of 
differential size, we assume that the dipoles along each edge 
do not change magnitude or direction. Then the net total 
current linked by the contour near each side is equal to the 
pioduct of the current per dipole I and the number of 
dipoles that just pass through the contour once. If the normal 
vector to the dipole loop (in the direction of m) makes an 
angle 0 with respect to the direction of the contour side at 
position x, the net current linked along the line at x is 

- INdS Ay cos 01,= -M,(x) Ay (10) 

The minus sign arises because the current within the contour 
adjacent to the line at coordinate x flows in the - z direction. 
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Figure 5-15 Many such magnetic dipoles within a material linking a closed contour 
gives rise to an effective magnetization current that is also a source of the magnetic 
field. 

Similarly, near the edge at coordinate x +Ax, the net current 
linked perpendicular to the contour is 

IN dSAy cos 01.+ =M,(x+Ax) Ay (11) 
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Along the edges at y and y + Ay, the current contributions are 

INdS Ax cos 01,= M,(y) Ax 

-INdS Ax cos 61,,A, = -M (y +Ay) Ax (12) 

The total current in the z direction linked by this contour is 
thus the sum of contributions in (10)-(12): 

Itot= AX AY(M, (x+AX)- M,(x)_ Mx(Y +AY)- M.(Y) 
I, ~A AY=AxA 

(13) 
If the magnetization is uniform, the net total current is zero 
as the current passing through the loop at one side is canceled 
by the current flowing in the opposite direction at the other 
side. Only if the magnetization changes with position can 
there be a net current through the loop's surface. This can be 
accomplished if either the current per dipole, area per dipole, 
density of dipoles, of angle of orientation of the dipoles is a 
function of position. 

In the limit as Ax and Ay become small, terms on the 
right-hand side in (13) define partial derivatives so that the 
current per unit area in the z direction is 

Iz ., / M, OM,\lim Im m= (V X M), (14)
A,-0 Ax Ay ax ayAy-0 

which we recognize as the z component of the curl of the 
magnetization. If we had orientated our loop in the xz or yz 
planes, the current density components would similarly obey 
the relations 

j,= , = (V xM)az ax) 
(15) 

(V x M)(=(aM. amy)jx = 
ay az 

so that in general 

Jm=VxM (16) 

where we subscript the current density with an m to represent 
the magnetization current density, often called the Amperian 
current density. 

These currents are also sources of the magnetic field and 
can be used in Ampere's law as 

V x -= 
B J_+J= J+V x M (17) 

where Jf is the free current due to the motion of free charges 
as contrasted to the magnetization current J_, which is due to 
the motion of bound charges in materials. 
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As we can only impose free currents, it is convenient to 
define the vector H as the magnetic field intensity to be 
distinguished from B, which we will now call the magnetic 
flux density: 

B 
H =--M=> B= o(H + M) (18)

Ao 

Then (17) can be recast as 

Vx - M) =V x H=J, (19)
Ao/ 

The divergence and flux relations of Section 5-3-1 are 
unchanged and are in terms of the magnetic flux density B. 
In free space, where M = 0, the relation of (19) between B and 
H reduces to 

B=pOH (20) 

This is analogous to the development of the polarization 
with the relationships of D, E, and P. Note that in (18), the 
constant parameter uo multiplies both H and M, unlike the 
permittivity eo which only multiplies E. 

Equation (19) can be put into an equivalent integral form 
using Stokes' theorem: 

(21)I (VH)-dS= H-dl= J,-dS 

The free current density J1 is the source of the H field, the 
magnetization current density J. is the source of the M field, 
while the total current, Jf+J., is the source of the B field. 

5-5-3 Magnetic Materials 

There are direct analogies between the polarization pro­
cesses found in dielectrics and magnetic effects. The consti­
tutive law relating the magnetization M to an applied 
magnetic field H is found by applying the Lorentz force to 
our atomic models. 

(a) Diamagnetism 
The orbiting electrons as atomic current loops is analogous 

to electronic polarization, with the current in the direction 
opposite to their velocity. If the electron (e = 1.6x 10- 9coul) 
rotates at angular speed w at radius R, as in Figure 5-16, the 
current and dipole moment are 

I=- m=IrR2= R (22)
2,fr 2 
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L=m, wR 2i=- m 

-eB 

ID 2 
2'2 

2m =-IrR20 ~w 

Figure 5-16 The orbiting electron has its magnetic moment m in the direction 
opposite to its angular momentum L because the current is opposite to the electron's 
velocity. 

Note that the angular momentum L and magnetic moment m 
are oppositely directed and are related as 

L = mRi, x v=moR2 i.= -2m, (23) 
e 

where m, = 9.1 X 10-3' kg is the electron mass. 
Since quantum theory requires the angular momentum to 

be quantized in units of h/2w, where Planck's constant is 
4h=6.62xi0 'joule-sec, the smallest unit of magnetic 

moment, known as the Bohr magneton, is 

mB = A ~9.3 x 10 24 amp-m2 (24)
41rm, 

Within a homogeneous material these dipoles are 
randomly distributed so that for every electron orbiting in 
one direction, another electron nearby is orbiting in the 
opposite direction so that in the absence of an applied 
magnetic field there is no net magnetization. 

The Coulombic attractive force on the orbiting electron 
towards the nucleus with atomic number Z is balanced by the 
centrifugal force: 

Ze2 

m.10 2R = 4eo2 2 (25) 
41reoR 

Since the left-hand side is just proportional to the square of 
the quantized angular momentum, the orbit radius R is also 
quantized for which the smallest value is 

47T- 0 h 2 5X10 " 
R = M,-e2 m (26) 
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with resulting angular speed 

C = Z2e sM. 1 3 X 10' 6 Z2 (27) 
(4re)2(h/2Fr 

When a magnetic field Hoi, is applied, as in Figure 5-17, 
electron loops with magnetic moment opposite to the field 
feel an additional radial force inwards, while loops with 
colinear moment and field feel a radial force outwards. Since 
the orbital radius R cannot change because it is quantized, 
this magnetic force results in a change of orbital speed Aw: 

e +(w +AwI)RIoHo) m,(w +Awl) 2 R= e 
(41reoR 

m,(W +AW 2)2R = e Ze 2-(W +AW 2)RyoHo (28)
(47rsoR 

where the first electron speeds up while the second one slows 
down. 

Because the change in speed Aw is much less than the 
natural speed w, we solve (28) approximately as 

ewApoHoAwl = 
2ma - ejoHo (29) 

- epi oHo 

2mpw + eyoHo 

where we neglect quantities of order (AW)2 . However, even 
with very high magnetic field strengths of Ho= 106 amp/m we 
see that usually 

eI.oHo< 2mwo 

(1.6 X 10~ 19)(41r X 101).106 < 2(9.1 X 10-3")(1.3 X I 0'r)(30) 

Hoi, Hoi, 

-e v x B 

evxR + 

Figure 5-17 Diamagnetic effects, although usually small, arise in all materials because 
dipoles with moments parallel to the magnetic field have an increase in the orbiting 
electron speed while those dipoles with moments opposite to the field have a decrease 
in speed. The loop radius remains constant because it is quantized. 
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so that (29) further reduces to 

Aw - Aw 2 " eyoHo _1. 1X I 5 Ho (31)
2m, 

The net magnetic moment for this pair of loops, 

eR2 2_ p oR 2 

M 2 (w2 -oi)=-eR2 Aw e Ho (32)
2 2m, 

is opposite in direction to the applied magnetic field. 
If we have N such loop pairs per unit volume, the 

magnetization field is 

NesioR2 
M=Nm= - Hoi. (33)

2m,
 

which is also oppositely directed to the applied magnetic field. 
Since the magnetization is linearly related to the field, we 

define the magnetic susceptibility Xm as 

M= XmH, X- = -2 0R (34) 
2m,
 

where X, is negative. The magnetic flux density is then 

B = AO(H +M)= po(1+Xm)H = Aog H = yH (35) 

where , = 1 +Xm is called the relative permeability and A is 
the permeability. In free space Xm = 0 so that ji,= 1 and 
A = yLo. The last relation in (35) is usually convenient to use, as 
all the results in free space are still correct within linear 
permeable material if we replace ylo by 1L. In diamagnetic 
materials, where the susceptibility is negative, we have that 
y, < 1, y < jO. However, substituting in our typical values 

Ne2oR 4.4 X 10 35 

Xm = - 2 z2 N (36)
2m ­

we see that even with Nz 1030 atoms/M3 , Xy is much less than 
unity so that diamagnetic effects are very small. 

(b) Paramagnetism 
As for orientation polarization, an applied magnetic field 

exerts a torque on each dipole tending to align its moment 
with the field, as illustrated for the rectangular magnetic 
dipole with moment at an angle 0 to a uniform magnetic field 
B in Figure 5-18a. The force on each leg is 

dfI = - df2 = I Ax i. X B = I Ax[Bi, - Bzi,] 
df3 = -df 4 = I Ay i, B= I Ay(- B.+Bj+,j) 

In a uniform magnetic field, the forces on opposite legs are 
equal in magnitude but opposite in direction so that the net 
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2 

df4 =-Ii xBAy=-IAy(-Bxi, +Bi 2 ) 

df1 =Iix BAx = IAx [By i, -B , i _ 

AxB B >2 

df2 -Iii x BAx =- Ax(B i, -B, i 

d =Iiy x BAy = Ay-B, i + B, ii 

B 

BB 

Ayx 

Figure 5-18 (a) A torque is exerted on a magnetic dipole with moment at an angle 9 
to an applied magnetic field. (b) From Boltzmann statistics, thermal agitation opposes 
the alignment of magnetic dipoles. All the dipoles at an angle 0, together have a net 
magnetization in the direction of the applied field. 

force on the loop is zero. However, there is a torque: 

4 

T= l',rxdf. 

(-i,xdf 1 +,,xd 2 )+ 2 (i~xdfi- df4 ) 

= I Ax Ay(B.i,-B,i.)=:mXB (38) 
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The incremental amount of work necessary to turn the 
dipole by a small angle dO is 

dW = Td = myzoHo sin 0 dO (39) 

so that the total amount of work necessa'ry to turn the dipole 
from 0 =0 to any value of 0 is 

W= TdO= -myoH cos 0I = mj.oHo(1-cos 0) 

(40) 

This work is stored as potential energy, for if the dipole is 
released it will try to orient itself with its moment parallel to 
the field. Thermal agitation opposes this alignment where 
Boltzmann statistics describes the number density of dipoles 
having energy W as 

n = ne -WAT = n I mpoHO(I-cos 0)/kT = noemoLOHo cos 0/hT 

(41) 

where we lump the constant energy contribution in (40) 
within the amplitude no, which is found by specifying the 
average number density of dipoles N within a sphere of 
radius R: 

2w R1 r 
N=i- I noe's*0r2sin 0 drdOdo 

rR 9 o .o f-0 

=no sin 0e' "**dO (42) 

where we let 
a = myoHo/kT (43) 

With the change of variable 

u =acos 0, du = -a sin 9 dO (44) 

the integration in (42) becomes 

N= e' du =-s sinh a (45)
2a a 

so that (41) becomes 

Na e (46) 
sinh a 

From Figure 5-18b we see that all the dipoles in the shell 
over the interval 0 to 0 + dO contribute to a net magnetization. 
which is in the direction of the applied magnetic field: 

dM= cos 0 r2 sin drdO do (47)
3irR 
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so that the total magnetization due to all the dipoles within 
the sphere is 

maN a 
M=I sin 0 cos Oec de (48)

2 sinh a J.= 

Again using the change of variable in (44), (48) integrates 
to 

--nN C"
M= ue" du 

2a sinh aI 

-mN u _-" 
2a sinh a 
= m [e -( -- )a

-inN 
2a siha[e-a(-a-1)-ea(a -l)I 

-ainN 

= [-a cosh a+sinh a] 
a sinh a 

= mN[coth a - 1/a] (49) 

which is known as the Langevin equation and is plotted as a 
function of reciprocal temperature in Figure 5-19. At low 
temperatures (high a) the magnetization saturates at M = mN 
as all the dipoles have their moments aligned with the field. 
At room temperature, a is typically very small. Using the 
parameters in (26) and (27) in a strong magnetic field of 
Ho= 106 amps/m, a is much less than unity: 

a=mkoHo R2 OHO=8x 10-4 (50)
kT 2 kT 

M 

IMmNa MI3 

M = mN(cotha--a) 

5 10 15 

a- kT 

Figure 5-19 The Langevin equation describes the net magnetization. At low 
temperatures (high a) all the dipoles align with the field causing saturation. At high 
temperatures (a << 1) the magnetization increases linearly with field. 
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In this limit, Langevin's equation simplifies to 

lim M- M 1+a2/2 1 
aI La+a3/6 a] 

MN((I+a 2/2)(1-a/6) 1 
a a] 

mNa ptom2 N 
3 kTH (51)3 3hT 0 

In this limit the magnetic susceptibility Xm is positive: 

o2N 

M=X.H, X.= 3T (52) 

but even with N 1030 atoms/M3 , it is still very small: 

X-7 X 10-4 (53) 

(c) Ferromagnetism 
As for ferroelectrics (see Section 3-1-5), sufficiently high 

coupling between adjacent magnetic dipoles in some iron 
alloys causes them to spontaneously align even in the absence 
of an applied magnetic field. Each of these microscopic 
domains act like a permanent magnet, but they are randomly 
distributed throughout the material so that the macroscopic 
magnetization is zero. When a magnetic field is applied, the 
dipoles tend to align with the field so that domains with a 
magnetization along the field grow at the expense of non­
aligned domains. 

The friction-like behavior of domain wall motion is a lossy 
process so that the magnetization varies with the magnetic 
field in a nonlinear way, as described by the hysteresis loop in 
Figure 5-20. A strong field aligns all the domains to satura­
tion. Upon decreasing H, the magnetization lags behind so 
that a remanent magnetization M, exists even with zero field. 
In this condition we have a permanent magnet. To bring the 
magnetization to zero requires a negative coercive field - H,. 

Although nonlinear, the main engineering importance of 
ferromagnetic materials is that the relative permeability s,. is 
often in the thousands: 

IL= IIO= B/H (54) 

This value is often so high that in engineering applications we 
idealize it to be infinity. In this limit 

lim B=tyH=>H=0, B finite (55) 

the H field becomes zero to keep the B field finite. 
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M 

- Hl 

/H, 

Figure 5-20 Ferromagnetic materials exhibit hysteresis where the magnetization 
saturates at high field strengths and retains a net remanent magnetization M, even 
when H is zero. A coercive field -H, is required to bring the magnetization back to 
zero. 

EXAMPLE 5-1 INFINITE LINE CURRENT WITHIN A 
MAGNETICALLY PERMEABLE CYLINDER 

A line current I of infinite extent is within a cylinder of 
radius a that has permeability 1L, as in Figure 5-21. The 
cylinder is surrounded by free space. What are the B, H, and 
M fields everywhere? What is the magnetization current? 

t i 

BO 
I-, 

2rr t Line current 

( -1)1 
2rr 

Sr r 

Surface current 

K. =-(A -- 1) 

Figure 5-21 A free line current of infinite extent placed within a permeable cylinder 
gives rise to a line magnetization current along the axis and an oppositely directed 
surface magnetization current on the cylinder surface. 
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SOLUTION 

Pick a circular contour of radius r around the current. 
Using the integral form of Ampere's law, (21), the H field is 
of the same form whether inside or outside the cylinder: 

H -d1= H,27rr= I=>H =-­
L 27rr 

The magnetic flux density differs in each region because the 
permeability differs: 

pgH=-, 0<r<a 
2wrr 

Bo H 4= A r > a
27rr' 

The magnetization is obtained from the relation 

B
M=--_ H 

go 
as 

I) H, - O<r<a 
Mo = (Ao / o 21rr' 

10, r>a 

The volume magnetization current can be found using 
(16): 

J =VM = i, +-(rMs)i,=0, 0<r<a 
az r ar 

There is no bulk magnetization current because there are no 
bulk free currents. However, there is a line magnetization 
current at r =0 and a surface magnetization current at r = a. 
They are easily found using the integral form of (16) from 
Stokes' theorem: 

J.dSJsVxM-dS= LM-dl= 

Pick a cortour around the center of the cylinder with r <a: 

M4s27rr = ( oI= IM 

where I. is the magnetization line current. The result 
remains unchanged for any radius r <a as no more current is 
enclosed since J.=0 for 0<r<a., As .soon as r>a, Mo 
becomes zero so that the total magnetization current becomes 
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zero. Therefore, at r = a a surface magnetization current 
must flow whose total current is equal in magnitude but 
opposite in sign to the line magnetization current: 

= - (Z-u)K.,. = ---­
2ra so2ira 

5-6 BOUNDARY CONDITIONS 

At interfacial boundaries separating materials of differing 
properties, the magnetic fields on either side of the boundary 
must obey certain conditions. The procedure is to use the 
integral form of the field laws for differential sized contours, 
surfaces, and volumes in the same way as was performed for 
electric fields in Section 3-3. 

To summarize our development thus far, the field laws 
for magnetic fields in differential and integral form are 

VxH=Jf, fH-di= Jf-dS (1) 

VxM=J,., fM-dl= J,.-dS (2) 

V-B=0, JB-dS=0 (3) 

5-6-1 Tangential Component of H 

We apply Ampere's circuital law of (1) to the contour of 
differential size enclosing the interface, as shown in Figure 
5-22a. Because the interface is assumed to be infinitely thin, 
the short sides labelled c and d are of zero length and so offer 

B2 

Free surface current K 1 n
 
H2 perpendicular to contour L Area dS
 up out of the page.
 

d 2 

'P L H2--H,) K, n - (81 - B2) = 0 

2 
C 

H, (a) (b) 

Figure 5-22 (a) The tangential component of H can be discontinuous in a free 
surface current across a boundary. (b) The normal component of B is always continu­
ous across an interface. 
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no contribution to the line integral. The remaining two sides 
yield 

fH -dl=(H,- H2,) dl = KA.dl (4) 

where KA. is the component of free surface current perpen­
dicular to the contour by the right-hand rule in this case up out 
of the page. Thus, the tangential component of magnetic field 
can be discontinuous by a free surface current, 

(HI - H2,)= Kf.>n X(H2 - H)= Kf (5) 

where the unit normal points from region 1 towards region 2. 
If there is no surface current, the tangential component of H 
is continuous. 

5-6-2 Tangential Component of M 

Equation (2) is of the same form as (6) so we may use the 
results of (5) replacing H by M and Kf by K,,, the surface 
magnetization current: 

(Mi- M 2,)=K,., nX(M2-Ml)=K. (6) 

This boundary condition confirms the result for surface 

magnetization current found in Example 5-1. 

5-6-3 Normal Component of B 

Figure 5-22b shows a small volume whose upper and lower 
surfaces are parallel and are on either side of the interface. 
The short cylindrical side, being of zero length, offers no 
contribution to (3), which thus reduces to 

B-dS= (B2 ,1-B 1 ) dS=0 (7) 

yielding the boundary condition that the component of B 
normal to an interface of discontinuity is always continuous: 

B1. - B2.=0>n - (BI - B2 )= 0 (8) 

EXAMPLE 5-2 MAGNETIC SLAB WITHIN A UNIFORM MAGNETIC 
FIELD 

A slab of infinite extent in the x and y directions is placed 
within a uniform magnetic field Hoi, as shown in Figure 5-23. 
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I
 
i 

i,t Hoi 0 tHo 

Mo Mo 

Mai , H -- (Ho -Mo) 

Mo Mo 

Hoia Ho(i 

(a) (b) 

Figure 5-23 A (a) permanently magnetized or (b) linear magnetizable material is 
placed within a uniform magnetic field. 

Find the H field within the slab when it is 
(a) permanently magnetized with magnetization Moi, 
(b) a linear permeable material with permeability A. 

SOLUTION 

For both cases, (8) requires that the B field across the 
boundaries be continuous as it is normally incident. 

(a) For the permanently magnetized slab, this requires that 

y0 H 0 =po(H + Mo)>H = Ho-Mo 

Note that when there is no externally applied field (Ho = 0), 
the resulting field within the slab is oppositely directed to the 
magnetization so that B = 0. 

(b) For a linear permeable medium (8) requires 

yxoHo = IH=>H = A0Ho 

For p. >po the internal magnetic field is reduced. If H0 is set 
to zero, the magnetic field within the slab is also zero. 

5-7 MAGNETIC FIELD BOUNDARY VALUE PROBLEMS 

5-7-1 The Method of Images 

A line current I of infinite extent in the z direction is a 
distance d above a plane that is either perfectly conducting or 
infinitely permeable, as shown in Figure 5-24. For both cases 
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2 x + - d) 
2 

= Const 
x2 +(y +d)2110 Y d 

[x 2 2 2 
+ (y-d) 1 [X + (y+ d = Const 

0o (y d 
A. t 

JA* d 

(b) 

Figure 5-24 (a) A line current above a perfect conductor induces an oppositely 
directed surface current that is equivalent to a symmetrically located image line 
current. (b) The field due to a line current above an infinitely permeable medium is the 
same as if the medium were replaced by an image current now in the same direction as 
the original line current. 

the H field within the material must be zero but the boundary 
conditions at the interface are different. In the perfect 
conductor both B and H must be zero, so that at the interface 
the normal component of B and thus H must be continuous 
and thus zero. The tangential component of H is dis­
continuous in a surface current. 

In the infinitely permeable material H is zero but B is finite. 
No surface current can flow because the material is not a 
conductor, so the tangential component of H is continuous 
and thus zero. The B field must be normally incident. 

Both sets of boundary conditions can be met by placing an 
image current I at y = - d flowing in the opposite direction 
for the conductor and in the same direction for the perme­
able material. 



Magnetic Field Boundary Value Problems 363 

Using the upper sign for the conductor and the lower sign 
for the infinitely permeable material, the vector potential due 
to both currents is found by superposing the vector potential 
found in Section 5-4-3a, Eq. (18), for each infinitely long line 
current: 

-IO 
2A.= -

21r 
{ln [x2 +(y -d) 21"2 FIn [x2 +(y+d)211 1 

= {ln [x 2+(y -d)2] F In [x +(y +d) 2 ]} (1)4 1w 

with resultant magnetic field 

1 1~.A. aAz)H =-IVxA=--I(X a i,--AAo pAo ()y 8x 

- II (y -d)i. -xi,, (y +d)i. -xA, (2
21r[x 2+(y-d)2] [X2+(y+d)2 (2) 

The surface current distribution for the conducting case is 
given by the discontinuity in tangential H, 

Id
K. =-H.(y=)= [2 2 (3) 

which has total current 

I + Id + dx 
I=K~dx=J(
 2 21r L (x +d ) 

-- tan ­ - (4)
ir d d I-­

just equal to the image current. 
The force per unit length on the current for each case is 

just due to the magnetic field from its image: 

2 

f *.OI (5)
47rd 

being repulsive for the conductor and attractive for the 
permeable material. 

The magnetic field lines plotted in Figure 5-24 are just lines 
of constant A, as derived in Section 5-4-3b. Right next to the 
line current the self-field term dominates and the field lines 
are circles. The far field in Figure 5-24b, when the line and 
image current are in the same direction, is the same as if we 
had a single line current of 21. 
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5-7-2 Sphere in a Uniform Magnetic Field 

A sphere of radius R is placed within a uniform magnetic 
field Hoi.. The sphere and surrounding medium may have 
any of the following properties illustrated in Figure 5-25: 

(i) 	 Sphere has permeability /12 and surrounding medium 
has permeability pr. 

(ii) 	 Perfectly conducting sphere in free space. 
(iii) 	 Uniformly magnetized sphere M2i, in a uniformly 

magnetized medium Mli.. 

For each of these three cases, there are no free currents in 
either region so that the governing equations in each region 
are 

V-B=0 

VxH=O 	 (5) 

K 

2 
+_ (_)2 sin o = Const[.fr 2 R 

R 

(a) 	 Hoi = Ho(i, cosO - i0 sin6) 

Figure 5-25 Magnetic field lines about an (a) infinitely permeable and (b) perfectly 
conducting sphere in a uniform magnetic field. 
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[- + (1)2] sin
2
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I) 

Ho i , =Ho(icos - i sinel y 

Figure 5-25 
(b) 

Because the curl of H is zero, we can define a scalar magnetic 
potential 

H =VX (6) 

where we avoid the use of a negative sign as is used with the 
electric field since the potential x is only introduced as a 
mathematical convenience and has no physical significance. 
With B proportional to H or for uniform magnetization, the 
divergence of H is also zero so that the scalar magnetic 
potential obeys Laplace's equation in each region: 

v2x =0 (7) 

We can then use the same techniques developed for the 
electric field in Section 4-4 by trying a scalar potential in each 
region as 

Ar cos 0, r<R{ 
(8)

(Dr+C/r2) cos 0 r>R 
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The associated magnetic field is then 

H=V XIi,+ ,+ 1 IX4-i

Or r 80 r sin084 

(D-2C/r3)cosTi,-(D+ C/r)sin Oig, r>R (9){A(i, cos 0-io sin 0)= Ai, 
r<R 

For the three cases, the magnetic field far from the sphere 
must approach the uniform applied field: 

H(r=c0)=Hoi.=Ho(i,.cose-io sin 0)>D=Ho (10) 

The other constants, A and C, are found from the boundary 
conditions at r = R. The field within the sphere is uniform, in 
the same direction as the applied field. The solution outside 
the sphere is the imposed field plus a contribution as if there 
were a magnetic dipole at the center of the sphere with 
moment m, - 4rC. 

(i) If the sphere has a different permeability from the sur­
rounding region, both the tangential components of H and 
the normal components of B are continuous across the 
spherical surface: 

He(r=R)= H,(r= R_)' A = D +C/R 3 

B,(r= R+) =B,(r = R-)=iH,(r = R,) = y 2H,(r =R-) 

which yields solutions 

A = pI___, C - A2-A R5Ho (12)
p2+2pi 2+ 2 MI 

The magnetic field distribution is then 

3pi1Ho .3. SpHoi.
(i,Cos 0 - , sin )= , r < R 

92+ 2 1L p2+2pJ 

I]C i, (13) H=- Ho 1+2 (.2- s1 r pI2+2AI J 

-/ NJ sin }, r>R 
r 3 p2+ 21A ) 

The magnetic field lines are plotted in Figure 5-25a when 
IA2-*O. In this limit, H within the sphere is zero, so that the 
field lines incident on the sphere are purely radial. The field 
lines plotted are just lines of constant stream function 1, 
found in the same way as for the analogous electric field 
problem in Section 4-4-3b. 
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.(ii) If the sphere is perfectly conducting, the internal 
magnetic field is zero so that A = 0. The normal component 
of B right outside the sphere is then also zero: 

H,(r = R) = 0> C = HOR3 /2 (14) 

yielding the solution 

H=Ho 1 3 cosir- I+3) sin ioj, r>R 
R)2rr 

(15) 

The interfacial surface current at r = R is obtained from the 
discontinuity in the tangential component of H: 

K5= He(r=R)=-2H sin 6 (16) 

The current flows in the .negative < direction around the 
sphere. The right-hand rule, illustrated in Figure 5-25b, 
shows that the resulting field from the induced current acts in 
the direction opposite to the imposed field. This opposition 
results in the zero magnetic field inside the sphere. 

The field lines plotted in Figure 5-25b are purely tangential 
to the perfectly conducting sphere as required by (14). 

(iii) If both regions are uniformly magnetized, the bound­
ary conditions are 

Ho(r = R,)= Ho(r=R_)4A = D+C/R 3 

B,(r = R ) = B,(r R)) H,(r = R+) + M 1 cos 0 

=H,(r=R_)+M2 cos9 (17) 

with solutions 

A = H,+A(Mi - M 2) (18)
R3 

C=- (MI - M2) 

so that the magnetic field is 

[Ho+ - (M1 - M2 )][cos Oi, - sin io]
3 

=[H0 +-(M1-M 2)]i. r<R
3 

3 (19)2RH=(H0 - 3 (M1 -M 2 )lcos~i,
3r3 

R 3 

r3HOMl +-M2))sin Oi0, r>R 

Because the magnetization is uniform in each region, the 
curl of M is zero everywhere but at the surface of the sphere, 



368 The Magnetic Field 

so that the volume magnetization current is zero with a sur­
face magnetization current at r = R given by 

Km = n x (Mi - M2 ) 

= i, x (MI - M 2)i.
 

= i, x (MI - M 2)(i, cos 0 - sin Oio)
 

= - (MI - M 2) sin Oik (20) 

5-8 MAGNETIC FIELDS AND FORCES 

5-8-1 Magnetizable Media 

A magnetizable medium carrying a free current J1 is placed 
within a magnetic field B, which is a function of position. In 
addition to the Lorentz force, the medium feels the forces on 
all its magnetic dipoles. Focus attention on the rectangular 
magnetic dipole shown in Figure 5-26. The force on each 
current carrying leg is 

f = i dl x (Bi + Byi, + Bi ) 

> f(x)= -i Ay[-Bji + Bri] 

f(x + Ax) =i Ay[ - Bi, + Bix]j \. 

f(y) = i Ax[Byi, -Bi,]j , 

f(y +Ay) = - i Ax[Byi, - Bzi,]l ,A, (1) 

so that the total force on the dipole is 

f = f(x)+f(x+Ax)+f(y)+f(y +Ay) 

. B,(x +Ax)-B,(x ) .Bx(x+ Ax )-B (x ). , Ax AY 1 Ax Ax 

B.(y+Ay)-Bz(y) . B,(y+Ay)--B,(y).
+ Ay 1i (2) 

B 

/t 

Sx 

Figure 5-26 A magnetic dipole in a magnetic field B. 
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In the limit of infinitesimal Ax and Ay the bracketed terms 
define partial derivatives while the coefficient is just the 
magnetic dipole moment m = i Ax Ay i : 

lim f= M.--LB.-_8.a (3)+- ,+---,,
Ay-0 ax ax ay ay 

Ampere's and Gauss's law for the magnetic field relate the 
field components as 

V - B =0 = - ( + (4) 
az \Ox ay 

VxB=pto(Jf+VxM)= OJT -- = AOJT. 
ay az 

aB. aB. 
----- = AoJT,Oz Ox 

- = AoJ. (5)
Ox Oy 

which puts (3) in the form 

f = m, -- I + i I - O(JTi, -JT.i,).Oz z I z 

=(m - V)B+pomX JT (6) 

where JT is the sum of free and magnetization currents. 
If there are N such dipoles per unit volume, the force 

density on the dipoles and on the free current is 

F=Nf= (M- V)B+iLoMXJT+J!XB 

= lo(M - V)(H+M)+AoM x (Jf+V X M)+poJJ X (H+M) 

= po(M - V)(H+M)+ oM x (V x M) +IJ x H (7) 

Using the vector identity 

M x (V x M)= -(M - V)M+1V(M - M) (8) 

(7) can be reduced to 

F= Lo(M - V)H +lojf XH +V (M -M) (9) 

The total force on the body is just the volume integral of F: 

f = fv F dV (10) 



370 The Magnetic Field 

In particular, the last contribution in (9) can be converted 
to a surface integral using the gradient theorem, a corollary 
to the divergence theorem (see Problem 1-15a): 

V( "M - M dV=f M - MdS (11) 

Since this surface S surrounds the magnetizable medium, it 
is in a region where M = 0 so that the integrals in (11) are 
zero. For this reason the force density of (9) is written as 

F= io(M - V)H + oJfX H (12) 

It is the first term on the right-hand side in (12) that accounts 
for an iron object to be drawn towards a magnet. Magnetiz­
able materials are attracted towards regions of higher H. 

5-8-2 Force on a Current Loop 

(a) Lorentz Force Only 
Two parallel wires are connected together by a wire that is 

free to move, as shown in Figure 5-27a. A current I is 
imposed and the whole loop is placed in a uniform magnetic 
field Boi.. The Lorentz force on the moveable wire is 

f, = IBol (13) 

where we neglect the magnetic field generated by the current, 
assuming it to be much smaller than the imposed field B0 . 

(b) Magnetization Force Only 
The sliding wire is now surrounded by an infinitely 

permeable hollow cylinder of iliner radius a and outer radius 
b, both being small compared to the wire's length 1, as in 
Figure 5-27b. For distances near the cylinder, the solution is 
approximately the same as if the wire were infinitely long. For 
r>0 there is no current, thus the magnetic field is curl and 
divergence free within each medium so that the magnetic 
scalar potential obeys Laplace's equation as in Section 5-7-2. 
In cylindrical geometry we use the results of Section 4-3 and 
try a scalar potential of the form 

x=(Ar+ )cos (14) 
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x 
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f 
'Y 

(a) 

x 

B 
yoo f = IBoliy t I Pa 

(b) BOix = Bo(i, coso io sin ) 
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B 

Srb2hi, IA 

rbI 

(c) 

Figure 5-27 (a) The Lorentz-force on a current carrying wire in a magnetic field. (b) 
If the current-carrying wire is surrounded by an infinitely permeable hollow cylinder, 
there is no Lorentz force as the imposed magnetic field is zero where the current is. 
However, the magnetization force on the cylinder is the same as in (a). (c) The total 
force on a current-carrying magnetically permeable wire is also unchanged. 

in each region, where B = VX because V x B = 0. The 
constants are evaluated by requiring that the magnetic field 
approach the imposed field Boi. at r = 0 and be normally 
incident onto the infinitely permeable cylinder at r =a and 
r = b. In addition, we must add the magnetic field generated 
by the line current. The magnetic field in each region is then 
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(see Problem 32a): 

sII 4, O<r<a 

2Bob2 
2 2b -a [ 

as22IL 
r 2 

rr +- Is-sin 0i,n2arr 
B=­

a<r<b (15) 

B 21+yCos #I ­ sin di, +.E- i', 
R r r 27rr 

r>b 

Note the infinite flux density in the iron (A - oo) due to the 
line current that sets up the finite H field. However, we see 
that none of the imposed magnetic field is incident upon the 
current carrying wire because it is shielded by the infinitely 
permeable cylindrical shell so that the Lorentz force contri­
bution on the wire is zero. There is, however, a magnetization 
force on the cylindrical shell where the internal magnetic field 
H is entirely due to the line current, H, = I/27rr because with 
i - oo, the contribution due to BO is negligibly small: 

F = o(M - V)H 

(aM, 
= (A) (16)(3r r aw 

Within the infinitely permeable shell the magnetization and 
H fields are 

H#21rr 

AoMr=Br-oflrH=b2- a ) cos4 (17) 

2Bob2 / \ ( - o)IM~oM = Bo - &oH= 2- 1+- sin 4+
(b 2 - r/ 2irr 

Although Hs only depends on r, the unit vector i, depends on 

i,=(-sini.+cosi,) (18) 

so that the force density of (16) becomes 

F= - Bj I6+ (B.0 - ~oH#)I d00 
22? 21rr2 d4 

= [- B(- sin Oi.+cos Oi,) 

+ (B,* - p~oH#)(- cos 46i. - sin Oi,)] 
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I 2Bobe2t 2 

=2 21r2-bs -as -L2r) cos 0(-sin Oi. +cos Oi,)irr r 

--(1 +- sin O(cos Oi. + sin i,) 

+ (/ - AO) (cos ) ijI +sin Oil)

21rrI
 

2a2I (2Bob 2 
=Fr2L b-2 -2 sin 0 cos 0 i. r2 i') 

+ O - I 1(cos i. +sin Oi,)] (19)
27rr 

The total force on the cylinder is obtained by integrating 
(19) over r and 4: 

2w J b 

f= Flrdrdo (20) 
-=0 r=a 

All the trigonometric terms in (19) integrate to zero over 4 so 
that the total force is 

2Bob 2Il ar2
 
A, 2 2 -3 dr


(b -a ) .. ar 

22Bob2I1 a

(b -a) r2a 

=IB01 (21) 

The force on the cylinder is the same as that of an unshield­
ed current-carrying wire given by (13). If the iron core has a 
finite permeability, the total force on the wire (Lorentz force) 
and on the cylinder (magnetization force) is again equal to 
(13). This fact is used in rotating machinery where current-
carrying wires are placed in slots surrounded by highly 
permeable iron material. Most of the force on the whole 
assembly is on the iron and not on the wire so that very little 
restraining force is necessary to hold the wire in place. The 
force on a current-carrying wire surrounded by iron is often 
calculated using only the Lorentz force, neglecting the 
presence of the iron. The correct answer is obtained but for 
the wrong reasons. Actually there is very little B field near the 
wire as it is almost surrounded by the high permeability iron 
so that the Lorentz force on the wire is very small. The force 
is actually on the iron core. 
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(c) Lorentz and Magnetization Forces 
If the wire itself is highly permeable with a uniformly 

distributed current, as in Figure 5-27c, the magnetic field is 
(see Problem 32a) 

2B0 Ir(, OrCOS 4 - is sin 0) + Ir2 4
A +jo l2rb 

2B0 I 
= i.+ 2(-yi.+xi,), r<b 

H= /+ IL rb (22) 
B0 + bo2i 

A0 R r2 + OS 

- A -1- sin Oi,6 + I i, r> b 
r2 A +A0o) 2r 

It is convenient to write the fields within the cylinder in 
Cartesian coordinates using (18) as then the force density 
given by (12) is 

F = pO(M -V)H +Aojf X H 

= (A - A0)(H - V)H + iL x H 

= (A - IAO) (H. ax+ H, T~y)(H.i. + Hi,)+ ;b2(H.i, - Hi.) 

(23) 

Since within the cylinder (r < b) the partial derivatives of H 
are 

,3H. aH, 
ax ay(24) 

aH. aH, I 
ay - ax -ib 

(23) reduces to 

F=(IA-o)(H. i,+H, H + A (H.,-Hi.)lxay rbT 

=2 (IA+ho)(H.i,-Hi.) 

I(p+po) 2B, -y \. Ix 1 
2'rb2 +po/A+ A 0 (25) 

Realizing from Table 1-2 that 

yi, +xi = r[sin Oi, +cos 4i.] = r26) (26) 
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the force density can be written as 

F=IB, I 2(st+y0) 

F 2 2 2 r (sin ki, +cos 0i ) (27)
-rbrb (2 Irb ) 

The total force on the permeable wire is 

2,r b 

f = Flrdr do (28) 

We see that the trigonometric terms in (27) integrate to zero 
so that only the first term contributes: 

2,IB 01 b 

f,= 2 rdrdo 

=IB1 (29) 

The total force on the wire is independent of its magnetic 
permeability. 

PROBLEMS 

Section 5-1 
1. A charge q of mass m moves through a uniform magnetic 
field Boi,. At t =0 its velocity and displacement are 

v(t = 0) = vooi + VYoi, + v~o0z 

r(t = 0) = xoi. + yoi, + zoi 

(a) What is the subsequent velocity and displacement? 
(b) Show that its motion projected onto the xy plane is a 

circle. What is the radius of this circle and where is its center? 
(c) What is the time dependence of the kinetic energy of 

the charge 2mlvI 2? 

2. A magnetron is essentially a parallel plate capacitor 
stressed by constant voltage Vo where electrons of charge -e 
are emitted at x = 0, y = 0 with zero initial velocity. A trans­
verse magnetic field Boi, is applied. Neglect the electric and 
magnetic fields due to the electrons in comparison to the 
applied field. 

(a) What is the velocity and displacement of an electron, 
injected with zero initial velocity at t = 0? 

(b) What value of magnetic field will just prevent the elec­
trons from reaching the other electrode? This is the cut-off 
magnetic field. 
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Y-111
VO 

y 
Sx 

GBoi 

-- S- ­

(a) 

V0 

a 

b 

(c) 

(c) A magnetron is built with coaxial electrodes where 
electrons are injected from r = a, 4 =0 with zero initial veloc­
ity. Using the relations from Table 1-2, 

i, = cos 4i. + sin Oi, 

i,= -sin 4i. +cos Oi, 

show that 

di, . d46 v4 . 
dt di r 

di, . d4 v,. 
dt dt r 

What is the acceleration of a charge with velocity 

V Vri, +Vqi? 

(d) Find the velocity of the electrons as a function of radial 
position. 
Hint: 

dv, dVrdr dVr d 1 2 

dt dr dt Vr dr dr 

dv, dvodr dvo 
dt dr dt V dr 

(e) What is the cutoff magnetic field? Check your answer 
with (b) in the limit b = a +s where s < a. 

3. A charge q of mass m within a gravity field -gi, has an 
initial velocity voi.. A magnetic field Boi is applied. What 
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i 
q V 

Bo i, 

value of BO will keep the particle moving at constant speed in 
mg the x direction? 

4. The charge to mass ratio of an electron e/m was first 
measured by Sir J. J. Thomson in 1897 by the cathode-ray 
tube device shown. Electrons emitted by the cathode pass 
through a slit in the anode into a region with crossed electric 
and magnetic fields, both being perpendicular to the elec­
trons velocity. The end of the tube is coated with a fluorescent 
material that produces a bright spot where the electron beam 
impacts. 

V1 

V2 

Screen 

(a) What is the velocity of the electrons when passing 
through the slit if their initial cathode velocity is vo? 

(b) The electric field E and magnetic field B are adjusted so 
that the vertical deflection of the beam is zero. What is the 
initial electron velocity? (Neglect gravity.) 

(c) The voltage V2 is now set to zero. What is the radius R 
of the electrons motion about the magnetic field? 

(d) What is e/m in terms of E, B, and R? 

5. A charge q of mass m at t = 0 crosses the origin with 
velocity vo = v.oi. + v,oi,. For each of the following applied 
magnetic fields, where and when does the charge again cross 

Y the y =0 plane? 
(a) B= Boi. 
(b) B= Boi, 
(c) B=Boi. 

So = voti, cos6 + iv sin6] 

x 
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6. In 1896 Zeeman observed that an atom in a magnetic field 
had a fine splitting of its spectral lines. A classical theory of 
the Zeeman effect, developed by Lorentz, modeled the elec­
tron with mass m as being bound to the nucleus by a spring-
like force with spring constant k so that in the absence of a 
magnetic field its natural frequency was wk = . 

(a) A magnetic field Boi, is applied. Write Newton's law for 
the x, y, and z displacements of the electron including the 
spring and Lorentz forces. 

(b) Because these equations are linear, guess exponential 
solutions of the form e". What are the natural frequencies? 

(c) Because wh is typically in the optical range (wh ­
10 5 radian/sec), show that the frequency splitting is small 
compared to wk even for a strong field of B0 = 1 tesla. In this 
limit, find approximate expressions for the natural frequen­
cies of (b). 

7. A charge q moves through a region where there is an 
electric field E and magnetic field B. The medium is very 
viscous so that inertial effects are negligible, 

Pv=q(E+vxB) 

where 6 is the viscous drag coefficient. What is the velocity of 
the charge? (Hint: (vxB)XB= -v(B-B)+B(v-B) and 
v - B= (q/#)E - B.) 

8. Charges of mass m, charge q, and number density n move 
through a conducting material and collide with the host 
medium with a collision frequency P in the presence of an 
electric field E and magnetic field B. 

(a) Write Newton's first law for the charge carriers, along 
the same lines as developed in Section 3-2-2, with the addition 
of the Lorentz force. 

(b) Neglecting particle inertia and diffusion, solve for the 
particle velocity v. 

(c) What is the constitutive law relating the current density
J =qnv to E and B. This is the generalized Ohm's law in the 
presence of a magnetic field. 

(d) What is the Ohmic conductivity or? A current i is passed 
through this material in the presence of a perpendicular 
magnetic field. A resistor RL is connected across the 
terminals. What is the Hall voltage? (See top of page 379). 

(e) What value of RL maximizes the power dissipated in the 
load? 
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a Pregula 

(a) 

(d) 

- RL Vh 

IdBoiz 

Section 5.2 
9. A point charge q is traveling within the magnetic field of 
an infinitely long line current I. At r = ro its velocity is 

v(t = 0) = Vri, + Vb 0i, + Vzoi 

Its subsequent velocity is only a function of r. 
(a) What is the velocity of the charge as a function of 

position? Hint: See Problem 2c and 2d, 

dx = (lnx)2 

(b) What is the kinetic energy of the charge? 
(c) What is the closest distance that the charge can 

approach the line current if v6 0 = 0? 

10. Find the magnetic field at the point P shown for the 
following line currents: 

n.sided 
regular 

equilateral
polygon 

(b) (c) 

(e) (f) 

11. Two long parallel line currents of mass per unit length 
m in a gravity field g each carry a current I in opposite 
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0 

I 

directions. They are suspended by cords of length L What is 
the angle 6 between the cords? 

12. A constant current KOi6 flows on the surface of a sphere 
of radius R. 

R 

Koi# 

(a) What is the magnetic field at the center of the sphere? 
(HINT: i, x i, = ie= cos 0 cos Oi. +cos 0 sin Oi, -sin Oi,.) 

(b) Use the results of (a) to find the magnetic field at the 
center of a spherical shell of inner radius R1 and outer radius 
R2 carrying a uniformly distributed volume current jois. 
13. A line current I of length 2L flows along the z axis. 

a 

-Y K = Koi 
2Lx 

(a) Y (a)y(b) 
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(a) What is the magnetic field everywhere in the z =0 
plane? 

(b) Use the results of (a) to find the magnetic field in the 
z = 0 plane due to an infinitely long current sheet of height 2L 
and uniform current density Koi. Hint: Let u= x2+y2 

du 1 . _ bu+2a 

fu(u2+bu-a)12 [ ubsi+4a 

14. Closely spaced wires are wound about an infinitely long
0cylindrical core at pitch angle o. A current flowing in the 

wires then approximates a surface current 

K = KO(i. sin 80+i, cos 00) 

K = Ko(ij sin 0 + io cosOO) 

00 

- .2a­

What is the magnetic field everywhere? 

15. An infinite slab carries a uniform current Joi, except 
within a cylindrical hole of radius a centered within the slab. 

Y 

12SJO 

(a) (b) 
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(a) Find the magnetic field everywhere? (Hint: Use 
superposition replacing the hole by two oppositely directed 
currents.) 

(b) An infinitely long cylinder of radius a carrying a uni­
form current Joi, has an off-axis hole of radius b with center a 
distance d from the center of the cylinder. What is the 
magnetic field within the hole? (Hint: Convert to Cartesian 
coordinates ri = xi-yix.) 

Section 5.3 
16. Which of the following vectors can be a magnetic field B? 
If so, what is the current density J? 

(a) B=ari, 
(b) B= a(xi,--yi.) 
(c) B=a(xi.-yi,) 
(d) B= ario 

17. Find the magnetic field everywhere for each of the 
following current distributions: 

(a) 

(a) J 	 joi, 

(b) j 	 y i., 
a 

joi , 
(c) 	 j= -joi,,, 

for.i,
(d) 	 j= a 

0, 

..............
 

(c) 

-a<y<O 

-a<y<a 

O<r<a 
a < r < b 

~ 

r>a 
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Section 5.4 
18. Two parallel semi-infinite current sheets a distance d 
apart have their currents flowing in opposite directions and 
extend over the interval -00 < x <0. 

y 

2d -Koi, x 

- iK0 

(a) What is the vector potential? (Hint: Use superposition 
of the results in Section 5-3-4b.) 

(b) What is the magnetic field everywhere? 
(c) How much magnetic flux per unit length emanates 

through the open face at x = 0? How much magnetic flux per 
unit length passes through each current sheet? 

(d) A magnetic field line emanates at the position yo(O < 

yo < d) in the x = 0 plane. At what value of y is this field line at 
x =-00? 

19. (a) Show that V - A 0 for the finite length line current 
in Section 5-4-3a. Why is this so? 

z 

In 3 y 

(b) Find the vector potential for a square loop. 
(c) What is V - A now? 

20. Find the magnetic vector potential and ma netic field for 
the following current distributions: (Hint: VfA = V(V - A) ­
V x (V x A)) 

(i) Infinitely long cylinder of radius a carrying a 
(a) surface current KOi5 
(b) surface current, Koi, 
(c) volume current Joi, 
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a 

x 

(a) (d) 

(ii) Infinitely long slab of thickness d carrying a 

(d) volume cur'ent Joi 
lox. 

(e) volume current x 

Section 5.5 
21. A general definition for the magnetic dipole moment for 
any shaped current loop is 

m=- rxI dl 
2 

If the current is distributed over a surface or volume or is due 
to a moving point charge we use 

Idi -qv-*KdS-+JdV 

What is the magnetic dipole moment for the following cur­
rent distributions: 

(a) a point charge q rotated at constant angular speed w at 
radius a; 

(b) a circular current loop of radius a carrying a current I; 
(c) a disk of radius a with surface current Koi4; 
(d) a uniformly distributed sphere of surface or volume 

charge with total charge Q and radius R rotating in the 4 
direction at constant angular speed w. (Hint: i, X i# = -i = 
-[cos 0 cos #i.+cos 6 sin Oi, - sin Gi]) 

22. Two identical point magnetic dipoles m with magnetic 
polarizability a (m =aH) are a distance a apart along the z 
axis. A macroscopic field Hoi, is applied. 

(a) What is the local magnetic field acting on each dipole? 
(b) What is the force on each dipole? 
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m 	 aH 

HO i, 

(c) Repeat (a) and (b) if we have an infinite array of such 
dipoles. Hint: 

- 1.2 
n=1 n 

(d) If we assume that there is one such dipole within each 
volume of a , what is the permeability of the medium? 

23. An orbiting electron with magnetic moment mai, is in a 
uniform magnetic field Boi. when at t = 0 it is slightly dis­
placed so that its angular momentum L = -( 2 m,/e)m now also 
has x and y components. 

(a) Show that the torque equation can be put in terms of 
the magnetic moment 

dm 
=t-ymxB 

where y is called the gyromagnetic ratio. What is y? 
(b) Write out the three components of (a) and solve for the 

magnetic moment if at t =0 the moment is initially 

m(t = 0)= m Oi + mOi, + mOi 

(c) Show that the magnetic moment precesses about the 
applied magneticfield. What is the precessional frequency? 

24. What are the B, H, and M fields and the resulting 
magnetization currents for the following cases: 

(a) 	 A uniformly distributed volume current Joi, through a 
cylinder of radius a and permeability A surrounded by 
free space. 

(b) 	 A current sheet Koi, centered within a permeable slab 
of thickness d surrounded by free space. 
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Joiz 

IIj 

(a) 

IMER 
0MM.gIgg 

d 

(b) 

: 

Section 5.6 
25. A magnetic field with magnitude H, is incident upon the 
flat interface separating two different linearly permeable 
materials at an angle 01 from the normal. There is no surface 

N2 

H, 

current on the interface. What is the magnitude and angle of 
the magnetic field in region 2? 

26. A cylinder of radius a and length L is permanently 
magnetized as Moi. 

(a) What are the B and H fields everywhere along its axis? 
(b) What are the fields far from the magnet (r w> a, r >>L)? 
(c) Use the results of (a) to find the B and H fields every­

where due to a permanently magnetized slab Moi, of infinite 
xy extent and thickness L. 

(d) Repeat (a) and (b) if the. cylinder has magnetization 
MO(I -r/a)i,. Hint: 

=) (rr 



L 
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2 

M0 1 

... :y 

Section 5.7 
27. A z-directed line current I is a distance d above the 
interface separating two different magnetic materials with 
permeabilities 11 and 142 

...........
 

(a) Find the image currents I' at position x =-d and I" at 
x=d that satisfy all the boundary conditions. The field in 
region 1 is due to I and I' while the field in region 2 is due to 
I". (Hint: See the analogous dielectric problem in Section 
3-3-3.) 

(b) What is the force per unit length on the line current I? 

28. An infinitely long line current I is parallel to and a 
distance D from the axis of a perfectly conducting cylinder of 
radius a carrying a total surface current 1o. 

(a) Find suitable image currents and verify that the bound­
ary conditions are satisfied. (Hint: xi,-vi.=ri#; i,= 
sin Oir+cos 414; x = rcos4.) 
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KO 0 2va 

y 

@1 x 

D 

(a) 

I 

t I r 
(d) 

(b) What is the surface current distribution on the cylin­
der? What total current flows on the cylinder? Hint: 

f d4 2 _an([a 2 - b2]"/ 2 tan (t4) 
Ja + b cos 4 [a2 - b" \ (a+ b) 

(c) What is the force per unit length on the cylinder? 
(d) A perfectly conducting cylinder of radius a carrying a 

total current I has its center a distance d above a perfectly 
conducting plane. What image currents satisfy the boundary 
conditions? 

(e) What is the force per unit length on the cylinder? 

29. A current sheet KO cos ayi is placed at x =0. Because 
there are no volume currents for x #0, a scalar magnetic 
potential can be defined H = VX. 
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KO cosayi, (a) What is the general form of solution for x? (Hint: See 
Section 4-2-3.) 

(b) What boundary conditions must be satisfied? 
(c) What is the magnetic field and vector potential every­

where?
 
-Z-

(d) What is the equation of the magnetic field lines?
 

30. A slab of thickness d carries a volume current distribution 
Jo sin axi, and is placed upon a perfectly conducting ground 
plane. 

y 

MO 

d ".4. 

(a) Find a particular solution for the vector potential. Are 
all the boundary conditions satisfied? 

(b) Show that additional solutions to Laplace's equations 
can be added to the vector potential to satisfy the boundary 
conditions. What is the magnetic field everywhere? 

(c) What is the surface current distribution on the ground 
plane? 

(d) What is the force per unit length on a section of ground 
plane of width 21r/a? What is the body force per unit length 
on a section of the current carrying slab of width 2ir/a? 

(e) What is the magnetic field if the slab carries no current 
but is permanently magnetized as MO sin axiy Repeat (c) and 
(d). 

31. A line current of length L stands perpendicularly upon a 
perfectly conducting ground plane. 

LIt ..
I 
Z 
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(a) Find a suitable image current that is equivalent to the 
induced current on the z =0 plane. Does the direction of the 
image current surprise you? 

(b) What is the magnetic field everywhere? (Hint: See 
Section 5-4-3a.) 

(c) What is the surface current distribution on the 
conducting plane? 

32. A cylinder of radius a is placed within a uniform 
magnetic field Hoi.. Find the magnetic field for each of the 
following cases: 

.I 

(a) 

(a) Cylinder has permeability s42 and surrounding medium 
has permeability jp . 

(b) Perfectly conducting cylinder in free space. 
(c) Uniformly magnetized cylinder M2 i, in a uniformly 

magnetized medium Mji.. 

33. A current sheet Koi, is placed along the y axis. at x =0 
between two parallel perfectly conducting planes a distance d 
apart. 

d 
Kois 

........ 
(a) Write the constant current at x =0 as an infinite Fourier 

series of fundamental period 2d. (Hint: See Section 4-2-5.) 
(b) What general form of a scalar potential x, where H= 

Vx, will satisfy the boundary conditions? 
(c) What is the magnetic field everywhere? 



0 

Problems 391 

(d) What is the surface current distribution and the total 
current on the conducting planes? Hint: 

1 r2 

n=1 n 8 
(n odd) 

Section 5.8 
34. An infinitely long cylinder of radius a is permanently mag­
netized as Mi. 

b 

Moxa 

Y 

b 

(a) Find the magnetic field everywhere. 
(b) An infinitely long line current I is placed either at 

y = -b or at x = b (b > a). For each of these cases, what is 
the force per unit length on the line current? (Hint: See 
problem 32c.) 

35. Parallel plate electrodes are separated by a rectangular 
conducting slab that has a permeability A. The system is 
driven by a dc current source. 

Depth D 

/0 

:x0 
d 

y 

(a) Neglecting fringing field effects assume the magnetic 
field is H,(x)i,. If the current is uniformly distributed 
throughout the slab, find the magnetic field everywhere. 

(b) What is the total force on the slab? Does the force 
change with different slab permeability? Why not? 
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36. A permeable slab is partially inserted into the air gap 
of a magnetic circuit with uniform field Ho. There is a 
nonuniform fringing field right outside the magnetic circuit 
near the edges. 

Depth D y 

x 

(a) What is the total force on the slab in the x direction? 
(b) Repeat (a) if the slab is permanently magnetized M = 

Moi,. (Hint: What is H,(x = -no)? See Example 5-2a.) 



chapter 6
 

electromagnetic 
induction 
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In our development thus far, we have found the electric 
and magnetic fields to be uncoupled. A net charge generates 
an electric field while a current is the source of a magnetic 
field. In 1831 Michael Faraday experimentally discovered 
that a time varying magnetic flux through a conducting loop 
also generated a voltage and thus an electric field, proving 
that electric and magnetic fields are coupled. 

6-1 FARADAY'S LAW OF INDUCTION 

6-1-1 The Electromotive Force (EMF) 

Faraday's original experiments consisted of a conducting 
loop through which he could impose a dc current via a switch. 
Another short circuited loop with no source attached was 
nearby, as shown in Figure 6-1. When a dc current flowed in 
loop 1, no current flowed in loop 2. However, when the 
voltage was first applied to loop 1 by closing the switch, a 
transient current flowed in the opposite direction in loop 2. 

~ji1 (t) 

+ A Ammeter i2(t) 	 Dies off because of Ohmic 
V 	 losses with time constant 

" = L/R 

Positive current is induced 
to try to keep magnetic flux 
equal to a non-zero constant 

Negative current is induced 
to try to keep magnetic flux 

equal to zero 

Figure 6-1 Faraday's experiments showed that a time varying magnetic flux through 
a closed conducting loop induced a current in the direction so as to keep the flux 
through the loop constant. 
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When the switch was later opened, another transient current 
flowed in loop 2, this time in the same direction as the original 
current in loop 1. Currents are induced in loop 2 whenever a 
time varying magnetic flux due to loop I passes through it. 

In general, a time varying magnetic flux can pass through a 
circuit due to its own or nearby time varying current or by the 
motion of the circuit through a magnetic field. For any loop, 
as in Figure 6-2, Faraday's law is 

dlb d
EMF= E-dl=---=_ -- B-dS (1)

fL dt dt 

where EMF is the electromotive force defined as the line 
integral of the electric field. The minus sign is introduced on 
the right-hand side of (1) as we take the convention that 
positive flux flows in the direction perpendicular to the direc­
tion of the contour by the right-hand rule. 

6-1-2 Lenz's Law 

The direction of induced currents is always such as to 
oppose any changes in the magnetic flux already present. 
Thus in Faraday's experiment, illustrated in Figure 6-1, when 
the switch in loop 1 is first closed there is no magnetic flux in 
loop 2 so that the induced current flows in the opposite 
direction with its self-magnetic field opposite to the imposed 
field. The induced current tries to keep a zero flux through 

- dS'b=fBs 

ndS dS 

f E - di = -fB - dS 
L 

Figure 6-2 Faraday's law states that the line integral of the electric field around a 
closed loop equals the time rate of change of magnetic flux through the loop. The 
positive convention for flux is determined by the right-hand rule of curling the fingers 
on the right hand in the direction of traversal around the loop. The thumb then points 
in the direction of positive magnetic flux. 
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loop 2. If the loop is perfectly conducting, the induced cur­
rent flows as long as current flows in loop 1, with zero net flux 
through the loop. However, in a real loop, resistive losses 
cause the current to exponentially decay with an LIR time 
constant, where L is the self-inductance of the loop and R is 
its resistance. Thus, in the dc steady state the induced current 
has decayed to zero so that a constant magnetic flux passes 
through loop 2 due to the current in loop 1. 

When the switch is later opened so that the current in loop 
1 goes to zero, the second loop tries to maintain the constant 
flux already present by inducing a current flow in the same 
direction as the original current in loop 1. Ohmic losses again 
make this induced current die off with time. 

If a circuit or any part of a circuit is made to move through 
a magnetic field, currents will be induced in the direction 
such as to try to keep the magnetic flux through the loop 
constant. The force on the moving current will always be 
opposite to the direction of motion. 

Lenz's law is clearly demonstrated by the experiments 
shown in Figure 6-3. When a conducting ax is moved into a 
magnetic field, eddy currents are induced in the direction 
where their self-flux is opposite to the applied magnetic field. 
The Lorentz force is then in the direction opposite to the 
motion of the ax. This force decreases with time as the cur­
rents decay with time due to Ohmic dissipation. If the ax was 
slotted, effectively creating a very high resistance to the eddy 
currents, the reaction force becomes very small as the 
induced current is small. 

f, = 2rR IB, 
t = JJ x BdV 

V R 
Opposition magnetic 
field due to 
induced current Insulating i(t) 

) 
N B 

VO 
V 

Conducting 

(a) (b) 

Figure 6-3 Lenz's law. (a) Currents induced in a conductor moving into a magnetic 
field exert a force opposite to the motion. The induced currents can be made small by 
slotting the ax. (b) A conducting ring on top of a coll is flipped off when a current is 
suddenly applied, as the induced currents try to keep a zero flux through the ring. 
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When the current is first turned on in the coil in Figure 6-3b, 
the conducting ring that sits on top has zero flux through it. 
Lenz's law requires that a current be induced opposite to that 
in the coil. Instantaneously there is no z component of 
magnetic field through the ring so the flux must return radi­
ally. This creates an upwards force: 

f = 27RI X B= 2rRI4Bri. (2) 

which flips the ring off the coil. If the ring is cut radially so 
that no circulating current can flow, the force is zero and the 
ring does not move. 

(a) Short Circuited Loop 
To be quantitative, consider the infinitely long time varying 

line current I(t) in Figure 6-4, a distance r from a rectangular 
loop of wire with Ohmic conductivity o-, cross-sectional area 
A, and total length I = 2(D+ d). The magnetic flux through 
the loop due to I(t) is 

rD2 r+d 

cDb,. = LoH,(r') dr' dz 
z--D/2 r 

jtoID r+dr' joID r+d (3) 
2 1r r r' 2v r 

H,(r')= ,21rr' 

cross sectional area A 
Ohmic conductivity a 

D 

Par 

pr­
-Ed-­

Figure 6-4 A rectangular loop near a time varying line current. When the terminals 
are short circuited the electromotive force induces a current due to the time varying 
mutual flux and/or because of the motion of the circuit through the imposed nonuni­
form magnetic field of the line current. If the loop terminals are open circuited there is 
no induced current but a voltage develops. 
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The mutual inductance M is defined as the flux to current 
ratio where the flux through the loop is due to an external 
current. Then (3) becomes 

D,. = M(r)I, M(r) = In r+d (4)
21r r 

When the loop is short circuited (v = 0), the induced Ohmic 
current i gives rise to an electric field [E = J/o = i/(Ao)] so that 
Faraday's law applied to a contour within the wire yields an 
electromotive force just equal to the Ohmic voltage drop: 

il d(D
E - dI=-= iR = --- (5)

fL oA dt 

where R = L/(crA) is the resistance, of the loop. By convention, 
the current is taken as positive in the direction of the line 
integral. 

The flux in (5) has contributions both from the imposed 
current as given in (3) and from the induced current pro­
portional to the loop's self-inductance L, which for example is 
given in Section 5-4-3c for a square loop (D = d): 

(D = M(r)I+ Li (6) 

If the loop is also moving radially outward with velocity 
vr = dr/dt, the electromotively induced Ohmic voltage is 

-iR =­
dt 

dI dM(r) di 
d= di d 

dI dMdr di 
= M(r)-+I +L-d(7)

dt dr dt dt 

where L is not a function of the loop's radial position. 
If the loop is stationary, only the first and third terms on 

the right-hand side contribute. They are nonzero only if the 
currents change with time. The second term is due to the 
motion and it has a contribution even for dc currents. 
Turn-on Transient. If the loop is stationary (drldt=0) at 
r = ro, (7) reduces to 

di dl 8 
L-+ iR = -M(ro) (8)

di dt 

If the applied current I is a dc step turned on at t =0, the 
solution to (8) is 

M(ro)I Lti(t) = (/~.t>O (9) 
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where the impulse term on the right-hand side of (8) imposes 
the initial condition i(t=0)=-M(ro)I/L. The current is 
negative, as Lenz's law requires the self-flux to oppose the 
applied flux. 
Turn-off Transient. If after a long time T the current I is 
instantaneously turned off, the solution is 

i(S)= M(ro)IeLaT t> T (10)
L 

where now the step decrease in current I at t = T reverses the 
direction of the initial current. 
Motion with a dc Current. With a dc current, the first term 
on the right-hand side in (7) is zero yielding 

di 0oIDd dr 1)
L-+iR (_____)

dt 27rr(r+d)dt 

To continue, we must specify the motion so that we know how 
r changes with time. Let's consider the simplest case when the 
loop has no resistance (R = 0). Then (11) can be directly 
integrated as 

Li 'oIDIn l+d/rL 2=- lIn r (12)21r I+ d/ro 

where we specify that the current is zero when r =ro. This 
solution for a lossless loop only requires that the total flux of 
(6) remain constant. The current is positive when r> ro as the 
self-flux must aid the decreasing imposed flux. The current is 
similarly negative when r < ro as the self-flux must cancel the 
increasing imposed flux. 

The force on the loop for all these cases is only due to the 
force on the z-directed current legs at r and r+d: 

SAODiI I 
21 r+d r) 

yLoDiId 
21rr(r+d) 

being attractive if iI> 0 and repulsive if iI <0. 

(b) Open Circuited Loop 
If the loop is open circuited, no induced current can flow 

and thus the electric field within the wire is zero (J = rE =0). 
The electromotive force then only has a contribution from 
the gap between terminals equal to the negative of the 
voltage: 

d4 d4
 
fE-dl= E-dl=-v -- :v- (14)
JL bdt d 
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Note in Figure 6-4 that our convention is such that the cur­
rent i is always defined positive flowing out of the positive 
voltage terminal into the loop. The flux (D in (14) is now only 
due to the mutual flux given by (3), as with i =0 there is no 
self-flux. The voltage on the moving open circuited loop is 
then 

dl dMdr 
v=M(r) + I (15)

dt dr dt 

(c) Reaction Force 
The magnetic force on a short circuited moving loop is 

always in the direction opposite to its motion. Consider the 
short circuited loop in Figure 6-5, where one side of the loop 
moves with velocity v,. With a uniform magnetic field applied 
normal to the loop pointing out of the page, an expansion of 
the loop tends to' link more magnetic flux requiring the 
induced current to flow clockwise so that its self-flux is in the 
direction given by the right-hand rule, opposite to the applied 
field. From (1) we have 

il dCI dx 
E - dl=-= iR -- BoD- = BoDv. (16)

L o-A ' dt dt 

where I 2(D+x) also changes with time. The current is then 

.BoDv.Z=B (17)
R 

y 

D '' B : eB B= Boi. 
F p 

0 Expanding loop 

A 
F e B 

Contracting loop 

Figure 6-5 If a conductor moves perpendicular to a magnetic field a current is 
induced in the direction to cause the Lorentz force to be opposite to the motion. The 
total flux through the closed loop, due to both the imposed field and the self-field 
generated by the induced current, tries to remain constant. 

I 
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where we neglected the self-flux generated by i, assuming it to 
be much smaller than the applied flux due to Bo. Note also 
that the applied flux is negative, as the right-hand rule 
applied to the direction of the current defines positive flux 
into the page, while the applied flux points outwards. 

The force on the moving side is then to the left, 
2 2 

f = -iDi, x Boi. = -iDB i= = - i (18) 
R 

opposite to the velocity. 
However if the side moves to the left (v, <0), decreasing 

the loop's area thereby linking less flux, the current reverses 
direction as does the force. 

6-1-3 Laminations 

The induced eddy currents in Ohmic conductors results in 
Ohmic heating. This is useful in induction furnaces that 
melt metals, but is undesired in many iron core devices. To 
reduce this power loss, the cores are often sliced into many 
thin sheets electrically insulated from each other by thin oxide 
coatings. The current flow is then confined to lie within a thin 
sheet and cannot cross over between sheets. The insulating 
laminations serve the same purpose as the cuts in the slotted 
ax in Figure 6-3a. 

The rectangular conductor in Figure 6-6a has a time vary­
ing magnetic field B(t) passing through it. We approximate 
the current path as following the rectangular shape so that 

dx w
 
- -dy L
 

L dy 3 x L 

B() (a) B(t) (b) 

Figure 6-6 (a) A time varying magnetic field through a conductor induces eddy 
currents that cause Ohmic heating. (b) If the conductor is laminated so that the 
induced currents are confined to thin strips, the dissipated power decreases. 
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the flux through the loop of incremental width dx and dy of 
area 4xy is 

D= -4xyB(t) (19) 

where we neglect the reaction field of the induced current 
assuming it to be much smaller than the imposed field. The 
minus sign arises because, by the right-hand rule illustrated in 
Figure 6-2, positive flux flows in the direction opposite to 
B(t). The resistance of the loop is 

4I x 4 LXF+ IE\ 21 
RL= + = (20) 

The electromotive force around the loop then just results in 
an Ohmic current: 

ftd 
-d(D dBEdl= iR== =4xy-=-x --

dt 
4L 2 dB(21) 
w dt 

with dissipated power 

i2R. = 4Dx 3 oL(dB/dt) 2 dx 
w[1+(w/L)(] 

The total power dissipated over the whole sheet is then 
found by adding the powers dissipated in each incremental 
loop: 

w/2 

P= dp 

4D(dB/dt)2o-L w12 x3 dx 
w[ l+(w/L)2 o 
LDw~o-(dB/dt)2 

16[1+(w/L)2 ] 

If the sheet is laminated into N smaller ones, as in Figure 
6-6b, each section has the same solution as (23) if we replace w 
by wIN. The total power dissipated is then N times the power 
dissipated in a single section: 

_ LD(wIN)3r(dB/dt)2 N crLDw3(dBldt) 2 

16[1+(w/NL) 2] 16N2[l+(wINL)2] 

As N becomes large so that w/NL < 1, the dissipated power 
decreases as 1/N2 

6-1-4 Betatron 

The cyclotron, discussed in Section 5-1-4, is not used to 
accelerate electrons because their small mass allows them to 
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reach relativistic speeds, thereby increasing their mass and 
decreasing their angular speed. This puts them out of phase 
with the applied voltage. The betatron in Figure 6-7 uses the 
transformer principle where the electrons circulating about 
the evacuated toroid act like a secondary winding. The 
imposed time varying magnetic flux generates an electric field 
that accelerates the electrons. 

Faraday's law applied to a contour following the charge's 
trajectory at radius R yields 

fE - dl= E02rR = -- (25)
di 

which accelerates the electrons as 

dv, e dcl e (6
m-ds= -eEs = e Q=v#= e ( (26)

dt 27rR dt 27rmR 

The electrons move in the direction so that their self-
magnetic flux is opposite to the applied flux. The resulting 
Lorentz force is radially inward. A stable orbit of constant 
radius R is achieved if this force balances the centrifugal 
force: 

dv, my,2 

M-=--ev.B(R) = 0 (27)
di R 

which from (26) requires the flux and magnetic field to be 
related as 

0=21rR2B,(R) (28) 

This condition cannot be met by a uniform field (as then 
0 = 1rR2B ) so in practice the imposed field is made to 
approximately vary with radial position as 

B.(r)=Bo(- Q>Q=21rJ B,(r)rdr=2,rR2 Bo (29) 

R 

Figure 6-7 "thebetatron accelerates electrons to high speeds using the electric field 
generated by a time varying magnetic field. 



404 Electromagnetic Induction 

where R is the equilibrium orbit radius, so that (28) is 
satisfied. 

The magnetic field must remain curl free where there is no 
current so that the spatial variation in (29) requires a radial 
magnetic field component: 

(aB, _ B) BoR 
VxB= 14=0>B= 2z (30)

( z ar r 

Then any z-directed perturbation displacements 

d2 z ev!t, eB\ 2 
-, = - - (R)= - - z 
t _M In 

z =A 1 sin wt+A 2 cos w0 t, wo= (31) 

have sinusoidal solutions at the cyclotron frequency wo= 
eBo/m, known as betatron oscillations. 

6-1-5 Faraday's Law and Stokes' Theorem 

The integral form of Faraday's law in (1) shows that with 
magnetic induction the electric field is no longer conservative 
as its line integral around a closed path is non-zero. We may 
convert (1) to its equivalent differential form by considering a 
stationary contour whose shape does not vary with time. 
Because the area for the surface integral does not change 
with time, the time derivative on the right-hand side in (1) 
may be brought inside the integral but becomes a partial 
derivative because B is also a function of position: 

E - dl=- -B- dS (32)
at 

Using Stokes' theorem, the left-hand side of (32) can be 
converted to a surface integral, 

E.dl= VxE.dS- -dS (33) 
, fS s at 

which is equivalent to 

B 
j(VxE+- -dS=0 (34) 

Since this last relation is true for any surface, the integrand 
itself must be zero, which yields Faraday's law of induction in 
differential form as 

BB
VxE- (35)

at 
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6-2 MAGNETIC CIRCUITS 

Various alloys of iron having very high values of relative 
permeability are typically used in relays and machines to 
constrain the magnetic flux to mostly lie within the permeable 
material. 

6-2-1 Self-Inductance 

The simple magnetic circuit in Figure 6-8 has an N turn 
coil wrapped around a core with very high relative 
permeability idealized to be infinite. There is a small air gap 
of length s in the core. In the core, the magnetic flux density 
B is proportional to the magnetic field intensity H by an 
infinite permeability g. The B field must remain finite to keep 
the flux and coil voltage finite so that the H field in the core 
must be zero: 

H=O 
lim B=AH-> (1) 

B finite 

Contour of integration of 
Ampere's law 

D 

PO 

p * 00 
Nturns _-------­

di 

H = -S s+ 

Flux leaving 

Closed surface S 
has zero net flux 

through it 

Flux entering SL_ 

Current i passes perpendicularly 
through contour N times 

' 
Faraday s law evaluated for dashed contour o ow ngN

turn coil in the direction of the current 

Figure 6-8 The magnetic field is zero within an infinitely permeable magnetic core 
and is constant in the air gap if we neglect fringing. The flux through the air gap is 
constant at every cross section of the magnetic circuit and links the N turn coil N times. 
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The H field can then only be nonzero in the air gap. This 
field emanates perpendicularly from the pole faces as no 
surface currents are present so that the tangential component 
of H is continuous and thus zero. If we neglect fringing field 
effects, assuming the gap s to be much smaller than the width 
d or depth D, the H field is uniform throughout the gap. 
Using Ampere's circuital law with the contour shown, the 
only nonzero contribution is in the air gap, 

H - d= Hs = Itotal encosed = Ni (2) 

where we realize that the coil current crosses perpendicularly 
through our contour N times. The total flux in the air gap is 
then 

Db= ioHDd= uoNDd (3)
S 

Because the total flux through any closed surface is zero, 

5SB - dS =0 (4) 

all the flux leaving S in Figure 6-8 on the air gap side enters 
the surface through the iron core, as we neglect leakage flux 
in the fringing field. The flux at any cross section in the iron 
core is thus constant, given by (3). 

If the coil current i varies with time, the flux in (3) also 
varies with time so that a voltage is induced across the coil. We 
use the integral form of Faraday's law for a contour that lies 
within the winding with Ohmic conductivity o-, cross sectional 
area A, and total length 1. Then the current density and 
electric field within the wire is 

11 J 
J=-, E=-=-- (5)A a- oA 

so that the electromotive force has an Ohmic part as well as a 
contribution due to the voltage-across the terminals: 

C 
E-d= -- d1+J E-dI=---- fB-dS (6) 

-L f A bdt 

iR across 
in wire terminals 

The surface S on the right-hand side is quite complicated 
because of the spiral nature of the contour. If the coil only 
had one turn, the right-hand side of (6) would just be the time 
derivative of the flux of (3). For two turns, as in Figure 6-9, 
the flux links the coil twice, while for N turns the total flux 
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I
 
fB - dS 

c = 
Spiral surface S 

9 Flux linked by a 
N turn coil is 

t 0 
Flux 0 through
 
a single loop
 4 

Flux linked 
by a two turn 
loop is 20 4 

Figure 6-9 The complicated spiral surface for computation of the linked flux by an N 
turn coil can be considered as N single loops each linking the same flux 4,. 

linked by the coil is NM. Then (6) reduces to 

di 
v=iR+L­(7)dt 

where the self-inductance is defined as 

B dS = 1N2Dd henry [kg-m 2-A -s2] (8) L =N= N = 
S fL H - dl s 

For linearly permeable materials, the inductance is always 
independent of the excitations and only depends on the 
geometry. Because of the fixed geometry, the inductance is a 
constant and thus was taken outside the time derivative in (7). 
In geometries that change with time, the inductance will also 
be a function of time and must remain under the derivative. 
The inductance is always proportional to the square of the 
number of coil turns. This is because the flux 4, in the air gap 
is itself proportional to N and it links the coil N times. 

EXAMPLE 6-1 SELF-INDUCTANCES 

Find the self-inductances for the coils shown in Figure 
6-10. 

(a) Solenoid 
An N turn coil is tightly wound upon a cylindrical core of 

radius a, length 1, and permeability A. 
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Contour o 
of Am 
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4 
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4 
4 
4 
4 

4 

qN turns 

(a) 

f integration 
pere's law 
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de coil) 

No net current cuts 
contour (equal but opposite 
Contributions from upward 

and downward currents) 

.-- -No current 
-cuts contour 

N turns 

Net current cutting 
contour = Ni 

Wb 

Figure 6-10 Inductances. (a) Solenoidal coil; (b) toroidal coil. 

SOLUTION 

A current i flowing in the wire approximates a surface 
current 

K6 = Ni/l 

If the length I is much larger than the radius a, we can neglect 
fringing field effects at the ends and the internal magnetic 
field is approximately uniform and equal to the surface cur­
rent, 

Ni 
H.= K0= 

as we assume the exterior magnetic field is negligible. The 
same result is obtained using Ampere's circuital law for the 
contour shown in Figure 6-10a. The flux links the coil N 
times: 

NID NAH. ra2 N2 
1A'ra

2 

L= 

(b) Toroid 
AnN turn coil is tightly wound around a donut-shaped core 

of permeability 1A with a rectangular cross section and inner 
and outer radii R, and R 2. 
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SOLUTION 

Applying Ampere's 	 circuital law to the three contours 
shown in Figure 6-10b, only the contour within the core has a 
net current passing through it: 

0, r<R1 

fH-dl=H027rr= 	 Ni, R><r<R2 
0, r>R2 

The inner contour has no current through it while the outer 
contour enclosing the whole toroid has equal but opposite 
contributions from upward and downward currents. 

The flux through any single loop is 
R2 

(1) yD Ho Hdr 

piDNi R2 dr 

21r fRr r 

yDNi R 2 = In-­
27r R1 

so that the self-inductance is 

N'F pgDN 2R
L= = -D In-	 2 

i 27r R1 

6-2-2 Reluctance 

Magnetic circuits are analogous to resistive electronic 
circuits if we define the magnetomotive force (MMF) 9 
analogous to the voltage (EMF) as 

Ni 	 (9) 

The flux then plays the same role as the current in electronic 
circuits so that we define the magnetic analog to resistance as 
the reluctance: 

N 29 (length) 
(D L (permeability)(cross-sectional area) 

which is proportional to the reciprocal of the inductance. 
The advantage to this analogy is that the rules of adding 

reluctances in series and parallel obey the same rules as resist­
ances. 
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(a) Reluctances in Series 
For the iron core of infinite permeability in Figure 6-11 a, 

with two finitely permeable gaps the reluctance of each gap is 
found from (8) and (10) as 

= 2 22 1= iai s2 (11)
pjajD' ApaD 

so that the flux is 

_ Ni NO N2 

(D= = - =>L=-= (12) 

The iron core with infinite permeability has zero reluctance. 
If the permeable gaps were also iron with infinite permeabil­
ity, the reluctances of (11) would also be zero so that the flux 

p-+4 o 

i + 

Nturns 

U1a,D 

L----a2 -

. evaluating Ampere's lawS2 

Depth D (a) 

)- - M 

i 

C 
P N turns- :r_-_-_-_-_-_-_-_-P- _ 02 =afaq

C S Jr= Ni 
C 

pA a,D 

L- Paths for evaluation 
of Ampere's circuital 

Depth D law which give us 
that H, = H2 = Ni/s 

(b) 

Figure 6-11 Magnetic circuits are most easily analyzed from a circuit approach where 
(a) reluctances in series add and (b) permeances in parallel add. 
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in (12) becomes infinite. This is analogous to applying a 
voltage across a short circuit resulting in an infinite current. 
Then the small resistance in the wires determines the large 
but finite current. Similarly, in magnetic circuits the small 
reluctance of a closed iron core of high permeability with no 
gaps limits the large but finite flux determined by the satura­
tion value of magnetization. 

The H field is nonzero only in the permeable gaps so that 
Ampere's law yields 

Hls1+H2s2 =Ni (13) 

Since the flux must be continuous at every cross section, 

= s1iHia 1D = A2Ha2D (14) 

we solve for the H fields as 

.=lals2a2Ni H 2 = .LaiNi 
H1 a1s2+A2a2S iaIs2 +A 2a2sI 

(b) Reluctances in Parallel 
If a gap in the iron core is filled with two permeable materials, 
as in Figure 6-1 lb, the reluctance of each material is still given 
by (11). Since each material sees the same magnetomotive 
force, as shown by applying Ampere's circuital law to 
contours passing through each material, 

Ni 
His = H2s = Ni ->Hi= H 2 =- (16) 

s 

the H fields in each material are equal. The flux is then 

Ni(Mt1 +22)
0 = (giHlaa +A2H2a2)D = Ni91+R)= Ni(91 +92) 

(17) 

where the permeances 01 and -2 are just the reciprocal 
reluctances analogous to conductance. 

6-2-3 Transformer Action 

(a) Voltages are not Unique 
Consider two small resistors R, and R 2 forming a loop 

enclosing one leg of a closed magnetic circuit with permeabil­
ity A, as in Figure 6-12. An N turn coil excited on one leg with 
a time varying current generates a time varying flux that is 
approximately 

'D(t)=pNAiI/ (18) 

where I is the average length around the core. 
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Cross sectional R2 d4 area A =-iRV 2 2 RI + R 2 dt 

R2 

-N turns 

Li 

R 1 df
V, = iRl = R 1 + R2 dt 

del 
V1 - V2 = dt 

Figure 6-12 Voltages are not unique in the presence of a time varying magnetic field. 
A resistive loop encircling a magnetic circuit has different neasured voltages across the 
same node pair. The voltage difference is equal to the time rate of magnetic flux 
through the loop. 

Applying Faraday's law to the resistive loop we have 

d4(Q) 1 dQi
f E-dl=i(Rs+R2)=+ =>i= - (19)

L dt R1 +R 2 dt 

where we neglect the self-flux produced by the induced cur­
rent i and reverse the sign on the magnetic flux term because 
D penetrates the loop in Figure 6-12 in the direction opposite 
to the positive convention given by the right-hand rule illus­
trated in Figure 6-2. 

If we now measured the voltage across each resistor, we 
would find different values and opposite polarities even 
though our voltmeter was connected to the same nodes: 

R, dot-(v, =iR,=+ R 1 
R 1 +R2 di 

-R 2 d1 (20) 

V= -iR 2 ­R 1 +R2 dt 

This nonuniqueness of the voltage arises because the elec­
tric field is no longer curl free. The voltage difference 
between two points depends on the path of the connecting 
wires. If any time varying magnetic flux passes through the 
contour defined by the measurement, an additional contri­
bution results. 
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(b) Ideal Transformers 
Two coils tightly wound on a highly permeable core, so that 

all the flux of one coil links the other, forms an ideal trans­
former, as in Figure 6-13. Because the iron core has an 
infinite permeability, all the flux is confined within the core. 
The currents flowing in each coil, it and i2 , are defined so 
that when they are positive the fluxes generated by each coil 
are in the opposite direction. The total flux in the core is then 

Nji, -N 2 i I 
(21)@= 

where 92 is the reluctance of the core and I is the average 
length of the core. 

The flux linked by each coil is then 

yEA 2i 
A 1=-(Niii-NN2 i2)=N 

(22)
yA

A2 =N2)= -(NN 2ii-Nii2)I 

Cross sectional
 
area A
 

7 

+ 

i 2 
turns 


turns _
 
N1 N2V1 (1) + onV2RL 

-F. 

Secondary winding 
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winding 
I, 

vrg core eng 
N,v1 

v 2 N 2 

=V2ii N2N 

I2 N, 

(a) 

Figure 6-13 (a) An ideal transformer relates primary and secondary voltages by the 
ratio of turns while the currents are in the inverse ratio so that the input power equals 
the output power. The H field is zero within the infinitely permeable core. (b) In a real 
transformer the nonlinear B-H hysteresis loop causes a nonlinear primary current i 
with an open circuited secondary (i2 =0) even though the imposed sinusoidal voltage 
v, = VO cos wt fixes the flux to be sinusoidal. (c) A more complete transformer equivalent 
circuit. 
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Figure 6.13. 

which can be written as 

A I Llij-Mi2 (23) 
A 2 =Mil-L 2i 2 

where LI and L2 are the self-inductances of each coil alone 
and M is the mutual inductance between coils: 

LI=NIL, L2 = N2L0 , M =N,N2Lo, Lo =pAl 
(24) 

In general, the mutual inductance obeys the equality: 
2M=k(LIL2) , 0 ks1 (25) 
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where k is called the coefficient of coupling. For a noninfinite 
core permeability, k is less than unity because some of the flux 
of each coil goes into the free space region and does not link 
the other coil. In an ideal transformer, where the permeabil­
ity is infinite, there is no leakage flux so that k = 1. 

From (23), the voltage across each coil is 

dA, di, di2 
=-~=L1 -M­

di dt dt 
(26) 

dA 2 di, di2 v= -- =M--L2­
di di di 

Because with no leakage, the mutual inductance is related 
to the self-inductances as 

N2 N1
M=-L =-L 2 (27)
N1 N2 

the ratio of coil voltages is the same as the turns ratio: 

v, dA,/dt N1 

v 2 dA 2/dt N2 

In the ideal transformer of infinite core permeability, the 
inductances of (24) are also infinite. To keep the voltages and 
fluxes in (26) finite, the currents must be in the inverse turns 
ratio 

-=- N(29)
N,i2 


The electrical power delivered by the source to coil 1, called 
the primary winding, just equals the power delivered to the 
load across coil 2, called the secondary winding: 

v~iI=V2 i2 	 (30) 

If N 2>Nl, the voltage on winding 2 is greater than the 
voltage on winding I but current i2 is less than iI keeping the 
powers equal. 

If primary winding 1 is excited by a time varying voltage 
vI(t) with secondary winding 2 loaded by a resistor RL so that 

V2= i2 RL 	 (31) 

the effective resistance seen by the primary winding is 

R= 	 v= - 2 .V - RL (32)
ii N2 (N2/Ni)i 2 N2 
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A transformer is used in this way as an impedance trans­
former where the effective resistance seen at the primary 
winding is increased by the square of the turns ratio. 

(c) Real Transformers 
When the secondary is open circuited (i 2 = 0), (29) shows 

that the primary current of an ideal transformer is also zero. 
In practice, applying a primary sinusoidal voltage VO cos wt 
will result in a small current due to the finite self-inductance 
of the primary coil. Even though this self-inductance is large 
if the core permeability y is large, we must consider its effect 
because there is no opposing flux as a result of the open 
circuited secondary coil. Furthermore, the nonlinear 
hysteresis curve of the iron as discussed in Section 5-5-3c will 
result in a nonsinusoidal current even though the voltage is 
sinusoidal. In the magnetic circuit of Figure 6.13a with i 2 =0, 
the magnetic field is 

H= (33) 

while the imposed sinusoidal voltage also fixes the magnetic 
flux to be sinusoidal 

d'F V0 .v1=---= Vocos wt |> b= BA =--sin wt (34)
dtW 

Thus the upper half of the nonlinear B-H magnetization 
characteristic in Figure 6-13b has the same shape as the flux-
current characteristic with proportionality factors related to 
the geometry. Note that in saturation the B-H curve 
approaches a straight line with slope .Lo. For a half-cycle of 
flux given by (34), the nonlinear open circuit magnetizing 
current is found graphically as a function of time in Figure 
6-13b. The current is symmetric over the negative half of the 
flux cycle. Fourier analysis shows that this nonlinear current is 
composed of all the odd harmonics of the driving frequency 
dominated by the third and fifth harmonics. This causes 
problems in power systems and requires extra transformer 
windings to trap the higher harmonic currents, thus prevent­
ing their transmission. 

A more realistic transformer equivalent circuit is shown in 
Figure 6-13c where the leakage reactances X, and X2 

represent the fact that all the flux produced by one coil does 
not link the other. Some small amount of flux is in the free 
space region surrounding the windings. The nonlinear 
inductive reactance X, represents the nonlinear magnetiza­
tion characteristic illustrated in Figure 6-13b, while R, 
represents the power dissipated in traversing the hysteresis 
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loop over a cycle. This dissipated power per cycle equals the 
area enclosed by the hysteresis loop. The winding resistances 
are R, and R 2. 

6-3 FARADAY'S LAW FOR MOVING MEDIA 

6-3-1 The Electric Field Transformation 

If a point charge q travels with a velocity v through a region 
with electric field E and magnetic field B, it experiences the 
combined Coulomb-Lorentz force 

F= q(E+vX B) (1) 

Now consider another observer who is travelling at the same 
velocity v as the charge carrier so that their relative velocity is 
zero. This moving observer will then say that there is no 
Lorentz force, only a'Coulombic force 

F'= qE' (2) 

where we indicate quantities measured by the moving obser­
ver with a prime. A fundamental postulate of mechanics is 
that all physical laws are the same in every inertial coordinate 
system (systems that travel at constant relative velocity). This 
requires that the force measured by two inertial observers be 
the same so that F'= F: 

E'= E+vX B (3) 

The electric field measured by the two observers in relative 
motion will be different. This result is correct for material 
velocities much less than the speed of light and is called a 
Galilean field transformation. The complete relativistically 
correct transformation slightly modifies (3) and is called a 
Lorentzian transformation but will not be considered here. 

In using Faraday's law of Section 6-1-1, the question 
remains as to which electric field should be used if the 
contour L and surface S are moving. One uses the electric 
field that is measured by an observer moving at the same 
velocity as the convecting contour. The time derivative of the 
flux term cannot be brought inside the integral if the surface 
S is itself a function of time. 

6-3-2 Ohm's Law for Moving Conductors 

The electric field transformation of (3) is especially 
important in modifying Ohm's law for moving conductors. 
For nonrelativistic velocities, an observer moving along at the 
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same velocity as an Ohmic conductor measures the usual 
Ohm's law in his reference frame, 

Jf= a-E' 	 (4) 

where we assume the conduction process is unaffected by the 
motion. Then in Galilean relativity for systems with no free 
charge, the current density in all inertial frames is the same so 
that (3) in (4) gives us the generalized Ohm's law as 

J'=J1 = o-(E+vx B) 	 (5) 

where v is the velocity of the conductor. 
The effects of material motion are illustrated by the parallel 

plate geometry shown in Figure 6-14. A current source is 
applied at the left-hand side that distributes itself uniformly 
as a surface current K. = *I/D on the planes. The electrodes 
are connected by a conducting slab that moves to the right with 
constant velocity U. The voltage across the current source can 
be compu-ted using Faraday's law with the contour shown. Let 
us have the contour continually expanding with the 2-3 leg 
moving with the conductor. Applying Faraday's law we have 

14 03f2 PE' - dl / dl+ E'- dl+ -dl+ E- di 

iR 	 -V 

=--d B-dS 	 (6)
dt 

Surface current 

K.=I I 

it	 II D 

4' 	 _ _.3. 

----	 d+­

H. 	 =-Return surface
 
D current K, -1
 

Figure 6-14 A moving, current-carrying Ohmic conductor generates a speed voltage 
as well as the usual resistive voltage drop. 
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where the electric field used along each leg is that measured 
by an observer in the frame of reference of the contour. 
Along the 1-2 and 3-4 legs, the electric field is zero within the 
stationary perfect conductors. The second integral within the 
moving Ohmic conductor uses the electric field E', as 
measured by a moving observer because the contour is also 
expanding at the same velocity, and from (4) and (5) is related 
to the terminal current as 

J' I
E'= i (7)

o- o-Dd ( 

In (6), the last line integral across the terminals defines the 
voltage. 

Is d Cd 
is -v=--- B-dS=- d (oHexs) (8)o-Dd dt sdt 

The first term is just the resistive voltage drop across the 
conductor, present even if there is no motion. The term on 
the right-hand side in (8) only has a contribution due to the 
linearly increasing area (dxldt = U) in the free space region 
with constant magnetic field, 

H,=I/D (9) 

The terminal voltage is then 

v = IfR +AoUsI, R = (10)
\ DI oDd 

We see that the speed voltage contribution arose from the 
flux term in Faraday's law. We can obtain the same solution 
using a contour that is stationary and does not expand with 
the conductor. We pick the contour to just lie within the 
conductor at the time of interest. Because the contour does 
not expand with time so that both the magnetic field and the 
contour area does not change with time, the right-hand side 
of (6) is zero. The only difference now is that along the 2-3 leg 
we use the electric field as measured by a stationary observer, 

E=E'-vxB (11) 

so that (6) becomes 

IR+ IS- V=0 (12)
D 

which agrees with (10) but with the speed voltage term now 
arising from the electric field side of Faraday's law. 

This speed voltage contribution is the principle of electric 
generators converting mechanical work to electric power 
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when moving a current-carrying conductor through a 
magnetic field. The resistance term accounts for the electric 
power dissipated. Note in (10) that the speed voltage contri­
bution just adds with the conductor's resistance so that the 
effective terminal resistance is v/I = R +(yt.Us/D). If the slab 
moves in the opposite direction such that U is negative, the 
terminal resistance can also become negative for sufficiently 
large U (U<-RD/os).Such systems are unstable where the 
natural modes grow rather than decay with time with any 
small perturbation, as illustrated in Section 6-3-3b. 

6-3-3 Faraday's Disk (Homopolar Generator)* 

(a) Imposed Magnetic Field 
A disk of conductivity o- rotating at angular velocity w 

transverse to a uniform magnetic field Boi,, illustrates the 
basic principles of electromechanical energy conversion. In 
Figure 6-15a we assume that the magnetic field is generated 
by an N turn coil wound on the surrounding magnetic circuit, 

BO=ILoNif (13) 

The disk and shaft have a permeability of free space yo, so 
that the applied field is not disturbed by the assembly. The 
shaft and outside surface at r = RO are highly conducting and 
make electrical connection to the terminals via sliding 
contacts. 

We evaluate Faraday's law using the contour shown in 
Figure 6-15a where the 1-2 leg within the disk is stationary so 
the appropriate electric field to be used is given by (11): 

E,=r wrBo -wrBo (14)
" 2 7rodr 

where the electric field and current density are radial and i, is 
the total rotor terminal current. For the stationary contour 
with a constant magnetic field, there is no time varying flux 
through the contour: 

24 

E - dl= E, dr + E - dl= 0 (15) 

* Some of the treatment in this section is similarto that developed in: H. H. Woodson andJ. R. 
Melcher, Electromechanical Dynamics, Part I, Wiley, N. Y., 1968, Ch. 6. 
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Figure 6-15 (a) A conducting disk rotating in an axial magnetic field is called a 
homopolar generator. (b) In addition to Ohmic and inductive voltages there is a speed 
voltage contribution proportional to the speed of the disk and the magnetic field. 

Using (14) in (15) yields the terminal voltage as 

vr= RO -wrBo dr 
Ri 27rTo-d 

= R o wBo(R -R ) 

2,ro-d Ri 2 

=irRr-GWif (16) 

where R, is the internal rotor resistance of the disk and G is 
called the speed coefficient: 

In (Ro/Ri) ~ -~ 2 2 
R,= ( G= ON(R 0 -R,) (17)

27ro-d 2s 

We neglected the self-magnetic field due to the rotor current, 
assuming it to be much smaller than the applied field Bo, but 
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it is represented in the equivalent rotor circuit in Figure 6-15b 
as the self-inductance L, in series with a resistor and a speed 
voltage source linearly dependent on the field current. The 
stationary field coil is represented by its self-inductance and 
resistance. 

For a copper disk (o= 6 x 107 siemen/m) of thickness 1mm 
rotating at 3600 rpm (w = 1207r radian/sec) with outer and 
inner radii RO = 10 cm and Ri = 1cm in a magnetic field of 
Bo = 1 tesla, the open circuit voltage is 

vc= >Bo(R2-R) - -1.9 V (18)
2 

while the short circuit current is 

i.= VoC 2Iro-d - 3 X 105 amp (19)In (RolRi) 

Homopolar generators are typically high current, low voltage 
devices. The electromagnetic torque on the disk due to the 
Lorentz force is 

2vr d Ro 

T=f riX(JXB)rdrd46 dz 
-
L 
o = f-

RO 

=-i,Boi. rdr 

=--- (R2 -R )i,
2 

=-Gii,i. (20) 

The negative sign indicates that the Lorentz force acts on 
the disk in the direction opposite to the motion. An external 
torque equal in magnitude but opposite in direction to (20) is 
necessary to turn the shaft. 

This device can also be operated as a motor if a rotor 
current into the disk (i,<0) is imposed. Then the electrical 
torque causes the disk to turn. 

(b) Self-Excited Generator 
For generator operation it is necessary to turn the shaft and 

supply a field current to generate the magnetic field. 
However, if the field coil is connected to the rotor terminals, 
as in Figure 6-16a, the generator can supply its own field 
current. The equivalent circuit for self-excited operation is 
shown in Figure 6-16b where the series connection has i,= ir. 
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Figure 6-16 A homopolar generator can be self-excited where the generated rotor 
current is fed back to the field winding to generate its own magnetic field. 

Kirchoff's voltage law around the loop is 

di 
L +i(R -G>)=0, R = R,+ Rf, L = L,+ Lf 

dt 
(21) 

where R and L are the series resistance and inductance of the 
coil and disk. The solution to (21) is 

i = Io e -[(R-C ILl (22 

where Io is the initial current at t = 0. If the exponential factor 
is positive 

Gw>R (23) 
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the current grows with time no matter how small Io is. In 
practice, Io is generated by random fluctuations (noise) due to 
residual magnetism in the iron core. The exponential growth 
is limited by magnetic core saturation so that the current 
reaches a steady-state value. If the disk is rotating in the 
opposite direction (w <0), the condition of (23) cannot be 
satisfied. It is then necessary for the field coil connection to be 
reversed so that i,= -if. Such a dynamo model has been used 
as a model of the origin of the earth's magnetic field. 

(c) Self-Excited ac Operation 
Two such coupled generators can spontaneously generate 

two phase ac power if two independent field windings are 
connected, as in Figure 6-17. The field windings are con­
nected so that if the flux through the two windings on one 
machine add, they subtract on the other machine. This 
accounts for the sign difference in the speed voltages in the 
equivalent circuits, 

di1L--+(R - GOw)ii + G0i2 = 0
dt 

di2 (24) 
L-+(R-GW)i-Gwi1=0 

dt 

where L and R are the total series inductance and resistance. 
The disks are each turned at the same angular speed w. 

Since (24) are linear with constant coefficients, solutions are 
of the form 

i = Ie"', i2 =12 e" (25) 

which when substituted back into (24) yields 

(Ls + R - Gw)I + GwI2 =0 

-GfoIi+(Ls + R -Go)I 2 =0 (26) 

For nontrivial solutions, the determinant of the coefficients of 
I, and I2 must be zero, 

(Ls + R -GW)2 =-(GW)2 (27) 

which when solved for s yields the complex conjugate natural 
frequencies, 

(R-Gw) .Gw 
L L 

(28)I112=*Ej 

where the currents are 90* out of phase. If the real part of s is 
positive, the system is self-excited so that any perturbation 
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Figure 6-17 Cross-connecting two homopolar generators can result in self-excited 
two-phase alternating currents. Two independent field windings are required where 
on one machine the fluxes add while on the other they subtract. 

grows at an exponential rate: 

Gw>R (29) 

The imaginary part of s yields the oscillation frequency 

Co= Im (s)=GwIL (30) 

Again, core saturation limits the exponential growth so that 
two-phase power results. Such a model may help explain the 
periodic reversals in the earth's magnetic field every few 
hundred thousand years. 
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(d) Periodic Motor Speed Reversals 
If the field winding of a motor is excited by a dc current, as 

in Figure 6-18, with the rotor terminals connected to a 
generator whose field and rotor terminals are in series, the 
circuit equation is 

di (R - Gio,) . & if (31) 
-- + =-	 If (1
dt L L 

where L and R are the total series inductances and resis­
tances. The angular speed of the generator w is externally 

Generator 

Motor 

RI-

If= RV 

- Motor 

Rrm Lrm 

G WmIf 	 L=Lrm +Lrg+Lfg 
R =Rrm + Rig + Rrg 

R 1g 

Lfg 

Generator 
g Lrg 

Ggwgi 

Figure 6-18 Cross connecting a homopolar generator and motor can result in spon­
taneous periodic speed reversals of the motor's shaft. 
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constrained to be a constant. The angular acceleration of the 
motor's shaft is equal to the torque of (20), 

dom
J--= --GIfi (32)

dt 

where J is the moment of inertia of the shaft and If = Vf/Rm is 
the constant motor field current. 

Solutions of these coupled, linear constant coefficient 
differential equations are of the form 

i = Ie" 

West (33)& = 

which when substituted back into (31) and (32) yield 

+ R -G' G I 

I + Ws =0 (34) 

Again, for nontrivial solutions the determinant of coefficients 
of I and W must be zero, 

s(s+RZ#JG +(G1) =0 (35)
L e!L L 

which when solved for s yields 

(R-Ggw,) [(R -Gp !) 2 (G.nif) 211 (36) 
2L 2L JLI 

For self-excitation the real part of s must be positive, 

G,> R (37) 

while oscillations will occur if s has an imaginary part, 

(G.f)2> R - GgW 2 (8 
JL 2L) 

Now, both the current and shaft's angular velocity spon­
taneously oscillate with time. 

6--4 Basic Motors and Generators 

(a) ac Machines 
Alternating voltages are generated from a dc magnetic field 

by rotating a coil, as in Figure 6-19. An output voltage is 
measured via slip rings through carbon brushes. If the loop 
of area A is vertical at t = 0 linking zero flux, the imposed flux 
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Figure 6-19 A coil rotated within a constant magnetic field generates a sinusoidal 
voltage. 

through the loop at any time, varies sinusoidally with time 
due to the rotation as 

Di = (o sin wt (39) 

Faraday's law applied to a stationary contour instantaneously 
passing through the wire then gives the terminal voltage as 

dQ di 
v = iR +--= iR +L-i+(Dow cos wt (40)

dt dt 

where R and L are the resistance and inductance of the wire. 
The total flux is equal to the imposed flux of (39) as well as 
self-flux (accounted for by L) generated by the current i. The 
equivalent circuit is then similar to that of the homopolar 
generator, but the speed voltage term is now sinusoidal in 
time. 

(b) dc Machines 
DC machines have a similar configuration except that the 

slip ring is split into two sections, as in Figure 6-20a. Then 
whenever the output voltage tends to change sign, the 
terminals are also reversed yielding the waveform shown, 
which is of one polarity with periodic variations from zero to a 
peak value. 
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Figure 6-20 (a) If the slip rings are split so that when the voltage tends to change sign 
the terminals are also reversed, the resulting voltage is of one polarity. (b) The voltage 
waveform can be smoothed out by placing a second coil at right angles to the first and 
using a four-section commutator. 

The voltage waveform can be smoothed out by using a 
four-section commutator and placing a second coil perpen­
dicular to the first, as in Figure 6-20b. This second coil now 
generates its peak voltage when the first coil generates zero 
voltage. With more commutator sections and more coils, the 
dc voltage can be made as smooth as desired. 
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6-3-5 MHD Machines 

Magnetohydrodynamic machines are based on the same 
principles as rotating machines, replacing the rigid rotor by a 
conducting fluid. For the linear machine in Figure 6-21, a 
fluid with Ohmic conductivity a- flowing with velocity v, 
moves perpendicularly to an applied magnetic field Boi.. The 
terminal voltage V is related to the electric field and current 
as 

E=L -, J= o-(E+v XB)= -+VBo ix=-ix 
s 4s Dd 

(41) 

which can be rewritten as 

V = iR -vBos (42) 

which has a similar equivalent circuit as for the homopolar 
generator. 

The force on the channel is then 

f=tJxBdV 

= -iBosi, (43) 

again opposite to the fluid motion. 

6-3-6 Paradoxes 

Faraday's law is prone to misuse, which has led to 
numerous paradoxes. The confusion arises because the same 

B0 

R = d-DdI 

V 
- ~ .E 

V vBos 
+
 

S
 
D 

y d 

x 

Figure 6-21 An MHD (magnetohydrodynamic) machine replaces a rotating conduc­
tor by a moving fluid. 
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contribution can arise from either the electromotive force 
side of the law, as a speed voltage when a conductor moves 
orthogonal to a magnetic field, or as a time rate of change of 
flux through the contour. This flux term itself has two 
contributions due to a time varying magnetic field or due to a 
contour that changes its shape, size, or orientation. With all 
these potential contributions it is often easy to miss a term or 
to double count. 

(a) A Commutatorless de Machine* 
Many persons have tried to make a commutatorless dc 

machine but to no avail. One novel unsuccessful attempt is 
illustrated in Figure 6-22, where a highly conducting wire is 
vibrated within the gap of a magnetic circuit with sinusoidal 
velocity: 

v.=vo sin (at (44) 

Faraday's law applied to a 
stonary contour (dashed)

instantaneously within 
wire.

vibrating 

1+ 1-4 

34 -N 

sinwtEoint -, vx=o 
'2 sinwt 

-L 

Fcc 6-22 It is impossible to design a commutatorless dc machine. Although the speed 
voltage alone can have a dc average, it will be canceled by the transformer elec­
tromotive force due to the time rate of change of magnetic flux through the loop. The 
total terminal voltage will always have a zero time average. 

* H. Sohon, ElectricalEssays for Recreation. Electrical Engineering, May (1946), p. 294. 
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The sinusoidal current imposes the air gap flux density at the 
same frequency w: 

B. = Bo sin wt, Bo = goNIols (45) 

Applying Faraday's law to a stationary contour instan­
taneously within the open circuited wire yields 

i0 j 2 3 
4 

E-dl= ,E-dl+ E -dI + E-dl+ E-dl 

E=-vxB -v 

- B -dS (46)dts 

where the electric field within the highly conducting wire as 
measured by an observer moving with the wire is zero. The 
electric field on the 2-3 leg within the air gap is given by (11), 
where E'=0, while the 4-1 leg defines the terminal voltage. If 
we erroneously argue that the flux term on the right-hand side 
is zero because the magnetic field B is perpendicular to dS, the 
terminal voltage is 

v =v.B.l =voBol sin2 a2t (47) 

which has a dc time-average value. Unfortunately, this result 
is not complete because we forgot to include the flux that 
turns the corner in the magnetic core and passes perpen­
dicularly through our contour. Only the flux to the right of 
the wire passes through our contour, which is the fraction 
(L - x)/L of the total flux. Then the correct evaluation of (46) is 

d 
-v +v.Bl =+ [(L -x)B1l) (48) 

where x is treated as a constant because the contour is sta­
tionary. The change in sign on the right-hand side arises 
because the flux passes through the contour in the direction 
opposite to its normal defined by the right-hand rule. The 
voltage is then 

dB 
v = v,,B.l -(L - dx)lE (49)

dt 

where the wire position is obtained by integrating (44), 

x = v.dt = -V(cos wt - 1)+xo (50) 
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and xo is the wire's position at t = 0. Then (49) becomes 

v =-(xB,)-Ld 
dt dt 

=Bolvo [(+ I)cos wt -cos 2wt - LBow cos wt (51)
VO 

which has a zero time average. 

(b) Changes in Magnetic Flux Due to Switching 
Changing the configuration of a circuit using a switch does 

not result in an electromotive force unless the magnetic flux 
itself changes. 

In Figure 6-23a, the magnetic field through the loop is 
externally imposed and is independent of the switch position. 
Moving the switch does not induce an EMF because the 
magnetic flux through any surface remains unchanged. 

In Figure 6-23b, a dc current source is connected to a 
circuit through a switch S. If the switch is instantaneously 
moved from contact 1 to contact 2, the magnetic field due to 
the source current I changes. The flux through any fixed area 
has thus changed resulting in an EMF. 

(c) Time Varying Number of Turns on a Coil* 
If the number of turns on a coil is changing with time, as in 

Figure 6-24, the voltage is equal to the time rate of change of 
flux through the coil. Is the voltage then 

d(D
v1 N-- (52) 

or 
d d4 dN 

dt dt d( 

No current is induced 
by switching. 

jS IB E 7 

1 2 1 2 

(a) (b) 

Figure 6-23 (a) Changes in a circuit through the use of a switch does not by itself 
generate an EMF. (b) However, an EMF can be generated if the switch changes the 
magnetic field. 

* L. V. Bewley. Flux Linkages and Electromagnetic Induction. Macmillan, New York, 
1952. 
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Figure 6-24 (a) If the number of turns on a coil is changing with time, the induced 
voltage is v = N(t) d4'/dt. A constant flux does not generate any voltage. (b) If the flux 
itself is proportional to the number of turns, a dc current can generate a voltage. (c) 
With the tap changing coil, the number of turns per unit length remains constant so 
that a dc current generates no voltage because the flux does not change with time. 

For the first case a dc flux generates no voltage while the 
second does. 

We use Faraday's law with a stationary contour instan­
taneously within the wire. Because the contour is stationary, 
its area of NA is not changing with time and so can be taken 
outside the time derivative in the flux term of Faraday's law so 
that the voltage is given by (52) and (53) is wrong. Note that 
there is no speed voltage contribution in the electromotive 
force because the velocity of the wire is in the same direction 
as the contour (v x B -dl = 0). 
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If the flux (D itself depends on the number of turns, as in 
Figure 6-24b, there may be a contribution to the voltage even 
if the exciting current is dc. This is true for the turns being 
wound onto the cylinder in Figure 6-24b. For the tap changing 
configuration in Figure 6-24c, with uniformly wound turns, 
the ratio of turns to effective length is constant so that a dc 
current will still not generate a voltage. 

6-4 MAGNETIC DIFFUSION INTO AN OHMIC CONDUCTOR* 

If the current distribution is known, the magnetic field can 
be directly found from the Biot-Savart or Ampere's laws. 
However, when the magnetic field varies with time, the 
generated electric field within an Ohmic conductor induces 
further currents that also contribute to the magnetic field. 

6-4-1 Resistor-Inductor Model 

A thin conducting shell of radius Ri, thickness A, and depth 
I is placed within a larger conducting cylinder, as shown in 
Figure 6-25. A step current Io is applied at t =0 to the larger 
cylinder, generating a surface current K =(Io/1)i4. If the 
length I is much greater than the outer radius R0 , the 
magnetic field is zero outside the cylinder and uniform inside 
for Ri <r < Ro. Then from the boundary condition on the 
discontinuity of tangential H given in Section 5-6-1, we have 

'0
Ho=-Loi., Ri<r<Ro (1) 

The magnetic field is different inside the conducting shell 
because of the induced current, which from Lenz's law, flows 
in the opposite direction to the applied current. Because the 
shell is assumed to be very thin (A< R1 ), this induced current 
can be considered a surface current related to the volume 
current and electric field in the conductor as 

K. = JA = (o-A)E, 	 (2) 

The product (a-A) is called the surface conductivity. Then the 
magnetic fields on either side of the thin shell are also related 
by the boundary condition of Section 5-6-1: 

Hi - Ho= K. = (o-A)E4 	 (3) 

* 	Much of the treatment of this section is similar to that of H. H. Woodson andJ. R. Melcher, 
Electromechanical Dynamics, PartII, Wiley, N. Y., 1968, Ch. 7. 
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Figure 6-25 A step change in magnetic field causes the induced current within an 
Ohmic conductor to flow in the direction where its self-flux opposes the externally 
imposed flux. Ohmic dissipation causes the induced current to exponentially decay 
with time with a LIR time constant. 

Applying Faraday's law to a contour within the conducting 
shell yields 

d 2 dH.
E - di= B - dS=> E#21rRi = -povrR. (4) 

where only the magnetic flux due to H passes through the 
contour. Then using (1)-(3) in (4) yields a single equation in 
Hi: 

dHi+Hi I(t) AoRicrA (5) 
dt 7 IT' 2 

where we recognize the time constant r as just being the ratio 
of the shell's self-inductance to resistance: 

4) AoirR? 2rRi L AoRio-A
L= -- R=-, =- (6

K,0 ' R I-1A R 2 (6) 

The solution to (5) for a step current with zero initial 
magnetic field is 

Hi=L(1-e-1T) (7) 

Initially, the magnetic field is excluded from inside the 
conducting shell by the induced current. However, Ohmic 
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dissipation causes the induced current to decay with time so 
that the magnetic field may penetrate through the shell with 
characteristic time constant r. 

64-2 The Magnetic Diffusion Equation 

The transient solution for a thin conducting shell could be 
solved using the integral laws because the geometry con­
strained the induced current to flow azimuthally with no 
radial variations. If the current density is not directly known, 
it becomes necessary to self-consistently solve for the current 
density with the electric and magnetic fields: 

B
V xE = a (Faraday's law) (8)

at 

V x H = Jf (Ampere's law) (9) 

V - B=0 (Gauss's law) (10) 

For linear magnetic materials with constant permeability si 
and constant Ohmic conductivity o moving with velocity U, 
the constitutive laws are 

B =H, J=cr(E+Ux LH) (11) 

We can reduce (8)-(11) to a single equation in the magnetic 
field by taking the curl of (9), using (8) and (11) as 

V x (V x H) = V x J 

= c[V X E+tV x (U X H)] 

= +Vx(Ux H)) (12) 

The double cross product of H can be simplified using the 
vector identity 

~0 
Vx(VxH)=V(V H)-V2H 

- -V2H =--H Vx(UxH) (13)
Af at 

where H has no divergence from (10). Remember that the 
Laplacian operator on the left-hand side of (13) also 
differentiates the directionally dependent unit vectors in 
cylindrical (i, and i#) and spherical (i,,i#, and i,) coordinates. 
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6-4.3 Transient Solution with Jo Motion (U =0) 

A step current is turned on at t =0, in the parallel plate 
geometry shown in Figure 6-26. By the right-hand rule and 
with the neglect of fringing, the magnetic field is in the z 
direction and only depends on the x coordinate, B.(x, t), so 
that (13) reduces to 

2H7 aH. 
(14)

axt 
which is similar in form to the diffusion equation of a dis­
tributed resistive-capacitive cable developed in Section 3-6-4. 

In the dc steady state, the second term is zero so that the 
solution in each region is of the form 

a H. 
(15)

aX 
2 =0->H,=ax+b 

K 0 = I/D DepthD 

y s1(t) I() H 

YI
 
=-1D

101Kx 

- x
0 d 

(a) 

t = 0. (Surface current= I/D) 

-1.0 2.0 

H, (x, t)
lD 0.5 t-

Jv (x,t) -
1/(Dd) 

2.0 
.50 0.1 0.25 

0. .25 
T i 

0. 1.0 
0.5 

0 0.5 1.0 0.5 1.0 
x/d x/d 

(b) 

Figure 6-26 (a) A current source is instantaneously turned on at t =0. The resulting 
magnetic field within the Ohmic conductor remains continuous and is thus zero at t = 0 
requiring a surface current at x =0. (b) For later times the magnetic field and current 
diffuse into the conductor with longest time constant r = o-d2 /ir2 towards a steady 
state of uniform current with a linear magnetic field. 
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where a and b are found from the boundary conditions. The 
current on the electrodes immediately spreads out to a uni­
form surface distribution E (IID)i, traveling from the upper 
to lower electrode uniformly through the Ohmic conductor. 
Then, the magnetic field is uniform in the free space region, 
decreasing linearly to zero within the Ohmic conductor being 
continuous across the interface at x =0: 

- -I S x 0
D 

lim H.(x) = (16) 
sooIIt-0--I(d -x), 0:5 x - d 

Dd 

In the free space region where o-=0, the magnetic field 
remains constant for all time. Within the conducting slab, 
there is an initial charging transient as the magnetic field 
builds up to the linear steady-state distribution in (16). 
Because (14) is a linear equation, for the total solution of the 
magnetic field as a function of time and space, we use super­
position and guess a solution that is the sum of the steady-
state solution in (16) and a transient solution which dies off 
with time: 

IA 
H.(x, t)= -(d - x) + (x) e" (17) 

We follow the same procedures as for the lossy cable in 
Section 3-6-4. At this point we do not know the function H(x) 
or the parameter a. Substituting the assumed solution of (17) 
back into (14) yields the ordinary differential equation 

d2 H(x) 
(18)dx2 +0-jkaH(x)=0 

which has the trigonometric solutions 

H(x)=Aisin Vlx+A 2 cosloAax (19) 

Since the time-independent part in (17) already meets the 
boundary conditions of 

H(x = 0) = ID 

H,(x=d)= 0 
the transient part of the solution must be zero at the ends 

H(x =0)=0=>A 2 =0 

H(x = d)=0=A i sin a d =0 (21) 

which yields the allowed values of a as 

-lo,a d = nir =>a. = I (nsr)2 , n =1, 2,3,. ... (22) 
s~o- d/ 
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Since there are an infinite number of allowed values of a, the 
most general solution is the superposition of all allowed solu­
tions: 

I narx 
H.(x, 0)=--(d-x)+ Y An sin e -a (23)

Dd n=1 d 

This relation satisfies the boundary conditions but not the 
initial conditions at t = 0 when the current is first turned on. 
Before the current takes its step at t =0, the magnetic field is 
zero in the slab. Right after the current is turned on, the 
magnetic field must remain zero. Faraday's law would 
otherwise make the electric field and thus the current density 
infinite within the slab, which is nonphysical. Thus we impose 
the initial condition 

I flnTx
H,(x,t = 0)=0=-(d-x)+ An sin (24)Dd 71.1 d 

which will allow us to solve for the amplitudes An by multi­
plying (24) through by sin (m'wx/d) and then integrating over 
x from 0 to d: 

I d Mm CO d .nirx .mr
O=j (d-x)sin-mdx +_ An sin - sin -dx

d d n.1 0 d d 
(25) 

The first term on the right-hand side is easily integrable* 
while the product of sine terms integrates to zero unless 
m = n, yielding 

2I 
A. - (26)

mirD 

The total solution is thus 

I x * sin (nixld) _ni,.H (x, t)= D- - 2 E - e(7 (27)
d .=1 n*1 

where we define the fundamental continuum magnetic 
diffusion time constant T as 

1 ILc-d2 
r = -- = 2 (28) 

a, ir 

analogous to the lumped parameter time constant of (5) and 
(6). 

(d -x) sin mx dx =d
2 

d MIT 
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The magnetic field approaches the steady state in times 
long compared to r. For a perfect conductor (o ->), this time 
is infinite and the magnetic field is forever excluded from the 
slab. The current then flows only along the x = 0 surface. 
However, even for copper (o--6x 107 siemens/m) 10-cm 
thick, the time constant is r=80 msec, which is fast for many 
applications. The current then diffuses into the conductor 
where the current density is easily obtained from Ampere's law 
as 

Jf=VXH - _ , 
ax 

nirx1+2
S + Cos e"i, (29) 

The diffusion of the magnetic field and current density are 
plotted in Figure 6-26b for various times 

The force on the conducting slab is due to the Lorentz 
force tending to expand the loop and a magnetization force 
due to the difference of permeability of the slab and the 
surrounding free space as derived in Section 5-8-1: 

F= sO(M - V)H +poJf x H 

= (A - o)(H - V)H + oJfX H (30) 

For our case with H = H,(x)i,, the magnetization force density 
has no contribution so that (30) reduces to 

F= AoJf X H 

= Ao(V x H) x H 

=so(H -V)H -V(2 0oH - H) 
d1 2. 

(31)dx (bxoH )i 

Integrating (31) over the slab volume with the magnetic 
field independent of y and z, 

d d 1 
f- sD-(WoH ) dx 

dx 

= -ioHsD 

2 s (32)
D 

gives us a constant force with time that is independent of the 
permeability. Note that our approach of expressing the cur­
rent density in terms of the magnetic field in (31) was easier 
than multiplying the infinite series of (27) and (29), as the 
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result then only depended on the magnetic field at the 
boundaries that are known from the boundary conditions of 
(20). The resulting integration in (32) was easy because the 
force density in (31) was expressed as a pure derivative of x. 

6-4-4 The Sinusoidal Steady State (Skin Depth) 

We now place an infinitely thick conducting slab a distance 
d above a sinusoidally varying current sheet Ko cos ti,, which 
lies on top of a perfect conductor, as in Figure 6-27a. The 

X 

-yMo - H.= -Ko coswt 

d -n. O
YA 

Kocaswti, 
(a) 

1Wt 

0 

1.0 - Wt H. (x, t 
KO 

12 

-2 3 

44 

K0 / 

-1.0 -0 

(b) 

Figure 6-27 (a) A stationary conductor lies above a sinusoidal surface current placed 
upon a perfect conductor so that H =0 for x < - d. (b) The magnetic field and current 
density propagates and decays into the conductor with the same characteristic length 
given by the skin depth 8= 12/(wiA-). The phase speed of the wave is wo. 
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magnetic field within the conductor is then also sinusoidally 
varying with time: 

H.(x, t)=Re [A.(x) e*l] (33) 

Substituting (33) into (14) yields 

d2 A'. 
(34).2-jOs = 0 

with solution 

I.(x)= A, e(+i)x O+A2 e-(l+)xa (35) 

where the skin depth 8 is defined as 

8 = l2/(a(w-) (36) 

Since the magnetic field must remain finite far from the 
current sheet, A I must be zero.. The magnetic field is also 
continuous across the x =0 boundary because there is no 
surface current, so that the solution is 

H,(x, t) = Re [-Ko e-(I+i)xa elo ] 

= -Ko cos (wt -x/8) e 1, x-0 (37) 

where the magnetic field in the gap is uniform, determined 
by the discontinuity in tangential H at x = -d to be H, = -K, 
for -d <x - 0 since within the perfect conductor (x <-d)H = 

0. The magnetic field diffuses into the conductor as a strongly 
damped propagating wave with characteristic penetration 
depth 8. The skin depth 8 is also equal to the propagating 
wavelength, as drawn in Figure 6-27b. The current density 
within the conductor 

JfX=VxH= i,ax 

= + K " [sin (wt -- cos (Wt -)i, (38) 

is also drawn in Figure 6-27b at various times in the cycle, 
being confined near the interface to a depth on the order of 8. 
For a perfect conductor, 8 -*0, and the volume current 
becomes a surface current. 

Seawater has a conductivity of -4 siemens/m so that at a 
frequency of f =1 MHz (w = 2-rf) the skin depth is 8 
0.25 m. This is why radio communications to submarines are 
difficult. The conductivity of copper is cr 6 x 107 siemens/m 
so that at 60 Hz the skin depth is8 - 8 mm. Power cables with 
larger radii have most of the current confined near the sur­
face so that the center core carries very little current. This 
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reduces the cross-sectional area through which the current 
flows, raising the cable resistance leading to larger power 
dissipation. 

Again, the magnetization force density has no contribution 
to the force density since H only depends on x: 

F = so(M - V)H + lioJf x H 

= o(V XH) x H 

= -V(-2stoH - H) (39) 

The total force per unit area on the slab obtained by 
integrating (39) over x depends only on the magnetic field at 
x = 0: 

f(L= -- H ) dx 

1 2 2 
=ijoK0 cos Wt (40) 

because again H is independent of y and z and the x 
component of the force density of (39) was written as a pure 
derivative with respect to x. Note that this approach was easier 
than integrating the cross product of (38) with (37). 

This force can be used to levitate the conductor. Note that 
the region for x >8 is dead weight, as it contributes very little 
to the magnetic force. 

6-4-5 Effects of Convection 

A distributed dc surface current -Koi, at x =0 flows along 
parallel electrodes and returns via a conducting fluid moving 
to the right with constant velocity voi., as shown in Figure 
6-28a. The flow is not impeded by the current source at x = 0. 
With the neglect of fringing, the magnetic field is purely z 
directed and only depends on the x coordinate, so that (13) in 
the dc steady state, with U = voi. being a constant, becomes* 

d2H. dH(. 
T -Avo---= 0 (41) 

Solutions of the form 

Hx(x) =A eo" (42) 

- V)H = dH 
*V x (U x H) x =(V) - /)+ / - (U= U (V/)- H(V /1) - (]V ) ( ) =-od 
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Figure 6-28 (a) A conducting material moving through a magnetic field tends to pull 
the magnetic field and current density with it. (b) The magnetic field and current 
density are greatly disturbed by the flow when the magnetic Reynolds number is large, 
R. = oyUI > 1. 

when substituted back into (41) yield two allowed values of p, 

P-- 2rvop=0:P=0, P= pOvo (43) 

Since (41) is linear, the most general solution is just the sum 
of the two allowed solutions, 

H,(x )= A I e R-X +A2 (44) 
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where the magnetic Reynold's number is defined as 

R.= ovol 2(45) 

and represents the ratio of a representative magnetic 
diffusion time given by (28) to a fluid transport time (1/vo). 
The boundary conditions are 

H,(x =0)=Ko, H.(x=L)=0 (46) 

so that the solution is 

H.x=Ko R_1H.()KeR0 (e~n/ eR ~ (47)
1-e 

The associated current distribution is then 

Jt=VxH= H.i, 

KoR - ., (48)
_e eI1-e - (48 

The field and current distributions plotted in Figure 6-28b 
for various R., show that the magnetic field and current are 
pulled along in the direction of flow. For small R_ the 
magnetic field is hardly disturbed from the zero flow solution 
of a linear field and constant current distribution. For very 
large R. >> 1, the magnetic field approaches a uniform dis­
tribution while the current density approaches a surface cur­
rent at x = 1. 

The force on the moving fluid is independent of the flow 
velocity: 

f JJx pHsDdx 

1, m~K R____ R.XR~x11 
R d_ ilaiIAOIsDfeR-xl 

(1-e _)2 2 10K20osD R_cIL (eR3 
-1 . 2 

= ioKosDi. (49) 

6-4-6 A Linear Induction Machine 

The induced currents in a conductor due to a time varying 
magnetic field give rise to a force that can cause the conductor 
to move. This describes a motor. The inverse effect is when 
we cause a conductor to move through a time varying 
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magnetic field generating a current, which describes a 
generator. 

The linear induction machine shown in Figure 6-29a 
assumes a conductor moves to the right at constant velocity 
Ui. Directly below the conductor with no gap is a surface 
current placed on top of an infinitely permeable medium 

K(t) = -K 0 cos (wt - kz)i, = Re [-K0 e !(Wk)i,] (50) 

which is a traveling wave moving to the right at speed wk. 
For x >0, the magnetic field will then have x and z components 
of the form 

H.(x, z, t) = Re [A. (x) e'("" )] 

H.(x, z, t) = Re [A.(x) e'(" t k)] 

H, 

a, 4: U 
x 

Y ' kz) 

(a) 

1.01­

<fz> 
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j- oKo2 
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Figure 6-29 (a) A traveling wave of surface current induces currents in a conductor 
that is moving at a velocity U different from the wave speed a>k. (b) The resulting 
forces can levitate and propel the conductor as a function of the slip S, which measures 
the difference in speeds of the conductor and traveling wave. 
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where (10) (V - B= 0) requires these components to be related 
as 

--- jk,=0 (52)
dx 

The z component of the magnetic diffusion equation of 
(13) is 

-k 2 =jo-(w-AkU)H (53) 

which can also be written as 

- . 2fz = 0 (54) 

where 

2 = k2(l+jS), S (W-kU) (55) 

and S is known as the slip. Solutions of (54) are again 

exponential but complex because y is complex: 

A = A ie'+A 2 e~' (56) 

Because H. must remain finite far from the current sheet, 
A1 =0, so that using (52) the magnetic field is of the form 

H=Koe-" -k (57) 

where we use the fact that the tangential component of H is discon­
tinuous in the surface current, with H = 0 for x<0. 

The current density in the conductor is 

=V x H = ( 8 ) =-jkH 

2)(Y 
2-k 

-Kok2e-7 

Kokej--w (58) 

If the conductor and current wave travel at the same speed 
(w/k = U), no current is induced as the slip is zero. Currents 
are only induced if the conductor and wave travel at different 
velocities. This is the principle of all induction machines. 
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The force per unit area on the-conductor then has x and z 
components: 

f= IJ oHdx 

= jtoJ,(H.i.- H.i.) dx (59) 

These integrations are straightforward but lengthy because 
first the instantaneous field and current density must be 
found from (51) by taking the real parts. More important is 
the time-average force per unit area over a period of excita­
tion: 

2w/w 

<f>=f- fdt (60)
2v o 

Since the real part of a complex quantity is equal to half the 
sum of the quantity and its complex conjugate, 

tA = Re [A e "'] = 2(A e "+ A* ei"') (61)
B = e[ -]=-L, -+A e-i") 

the time-average product of two quantities is 

ABdte 
2wr 4 21r 

+A*A* e-1ivt) dt 

=:(A *+ A*) 

= IRe (AE*) (62) 

which is a formula often used for the time-average power in 
circuits where A and B are the voltage and current. 

Then using (62) in (59), the x component of the time-
average force per unit area is 

<f.>=4Re fLoffk*dx) 

=2 KokS Re ( e+* dx 

- 2Kok S R 
2 \Y(Y +-y*)/2 

=-I soK S 2 
1 2 -1+S 2 -I\zoos =; ,so 1 (63)

4 [1 +S2+(l +S2)12 I1S 

where the last equalities were evaluated in terms of the slip S 
from (55). 
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We similarly compute the time-average shear force per unit 
area as 

< f,>= -- Re 00yojH* dx) 

k 5 e=po K 

2 yy* ( I 
2=- y Re )cd) 

-2 * *Re (Re *) 

2oKS 
= jiT? (64)
4M +S2 Re (,[I+ jS) 

When the wave speed exceeds the conductor's speed (w/k > 
U), the force is positive as S >0 so that the wave pulls the 
conductor along. When S <0, the slow wave tends to pull the 
conductor back as <f.> <0. The forces of (63) and (64), 
plotted in Figure 6-29b, can be used to simultaneously lift and 
propel a conducting material. There is no force when the 
wave and conductor travel at the same speed (w/k = U) as the 
slip is zero (S = 0). For large S, the levitating force <f.> 
approaches the constant value IiyoKo while the shear force 
approaches zero. There is an optimum value of S that maxi­
mizes <f,>. For smaller S, less current is induced while for 
larger S the phase difference between the imposed and 
induced currents tend to decrease the time-average force. 

6-4-7 Superconductors 

In the limit of infinite Ohmic conductivity (o-->-oo), the 
diffusion time constant of (28) becomes infinite while the skin 
depth of (36) becomes zero. The magnetic field cannot 
penetrate a perfect conductor and currents are completely 
confined to the surface. 

However, in this limit the Ohmic conduction law is no 
longer valid and we should use the superconducting consti­
tutive law developed in Section 3-2-2d for a single charge 
carrier: 

aj= w 2E (65)
at 

Then for a stationary medium, following the same pro­
cedure as in (12) and (13) with the constitutive law of (65), 
(8)-(1 1) reduce to 

V2a 2 H =0=>V2(-Ho) Ey(-Ho)=O
t 6)t 

(66) 
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where Ho is the instantaneous magnetic field at t =0. If the 
superconducting material has no initial magnetic field when 
an excitation is first turned on, then Ho =0. 

If the conducting slab in Figure 6-27a becomes super-
conducting, (66) becomes 

d2H. w2 
-- H =0, c = (67) 

where c is the speed of light in the medium. 
The solution to (67) is 

H = A1 e'c +A 2 e'** 

=-Kocos wt e ,"'c (68) 

where we use the boundary condition of continuity of 
tangential H at x = 0. 

The current density is then 

ax 

= Kow, cos wt e (69) 

For any frequency w, including dc (w = 0), the field and 
current decay with characteristic length: 

Ic= c/W, (70) 

Since the plasma frequency w, is typically on the order of 

1 0 15 radian/sec, this characteristic length is very small, 1, ­
3 x 10/10' 5-3x 10- m. Except for this thin sheath, the 
magnetic field is excluded from the superconductor while the 
volume current is confined to this region near the interface. 

There is one experimental exception to the governing 
equation in (66), known as the Meissner effect. If an ordinary 
conductor is placed within a dc magnetic field Ho and then 
cooled through the transition temperature for superconduc­
tivity, the magnetic flux is pushed out except for a thin sheath 
of width given by (70). This is contrary to (66), which allows 
the time-independent solution H = Ho, where the magnetic 
field remains trapped within the superconductor. Although 
the reason is not well understood, superconductors behave as 
if Ho =0 no matter what the initial value of magnetic field. 

6-5 ENERGY STORED IN THE MAGNETIC FIELD 

6-5-1 A Single Current Loop 

The differential amount of work necessary to overcome 
the electric and magnetic forces on a charge q moving an 
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incremental distance ds at velocity v is 

dW, = -q(E+v X B) -ds (1) 

(a) Electrical Work 
If the charge moves solely under the action of the electrical 

and magnetic forces with no other forces of mechanical ori­
gin, the incremental displacement in a small time dt is related 
to its velocity as 

ds = v dt (2) 

Then the magnetic field cannot contribute to any work on the 
charge because the magnetic force is perpendicular to the 
charge's displacement: 

dW, = -qv - E dt (3) 

and the work required is entirely due to the electric field. 
Within a charge neutral wire, the electric field is not due to 
Coulombic forces but rather arises from Faraday's law. The 
moving charge constitutes an incremental current element, 

qv= idl>dW,=-iE -d dt (4) 

so that the total work necessary to move all the charges in the 
closed wire is just the sum of the work done on each current 
element, 

dw=fdW, =-i dt fE -dl 

d
=idt- B-dS 

dt s 

= i dt 
dt 

=idD (5) 

which through Faraday's law is proportional to the change of 
flux through the current loop. This flux may be due to other 
currents and magnets (mutual flux) as well as the self-flux due 
to the current i. Note that the third relation in (5) is just 
equivalent to the circuit definition of electrical power 
delivered to the loop: 

P dW d=V (6)
dt dt 

All of this energy supplied to accelerate the charges in the 
wire is stored as no energy is dissipated in the lossless loop 
and no mechanical work is performed if the loop is held 
stationary. 
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(b) Mechanical Work 
The magnetic field contributed no work in accelerating the 

charges. This is not true when the current-carrying wire is 
itself moved a small vector displacement ds requiring us to 
perform mechanical work, 

dW= -(idXB) -ds=i(BXdl) -ds 

= iB - (dxds) (7) 

where we were able to interchange the dot and the cross using 
the scalar triple product identity proved in Problem 1-10a. 
We define S, as the area originally bounding the loop and S2 
as the bounding area after the loop has moved the distance 
ds, as shown in Figure 6-30. The incremental area dS3 is then 
the strip joining the two positions of the loop defined by the 
bracketed quantity in (7): 

dS3 = dl x ds (8) 

The flux through each of the contours is 

I= IB - dS, ( 2 =1 B -dS (9) 

where their difference is just the flux that passes outward 
through dSs: 

dF=4 1-( 2 =B-dS3 (10) 

The incremental mechanical work of (7)-necessary to move 
the loop is then identical to (5): 

dW= iB - dS3 =id4 (11) 

Here there was no change of electrical energy input, with 
the increase of stored energy due entirely to mechanical work 
in moving the current loop. 

S2 

ds
 
dS3 di x ds
 

d \ 

idi 

fB 

Figure 6-30 The mechanical work necessary to move a current-carrying loop is 
stored as potential energy in the magnetic field. 
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6-5-2 Energy and Inductance 

If the loop is isolated and is within a linear permeable 
material, the flux is due entirely to the current, related 
through the self-inductance of the loop as 

D= Li (12) 

so that (5) or (11) can be integrated to find the total energy in 
a loop with final values of current I and flux (D: 

W= j i d4 

= -dQ 

1 D2 1=---=-_L12I-I (13)
2L 2 2 

6.5-3 Current Distributions 

The results of (13) are only true for a single current loop. 
For many interacting current loops or for current dis­
tributions, it is convenient to write the flux in terms of the 
vector potential using Stokes' theorem: 

= sB -dS= s(V x A) - dS A - dl (14) 

Then each incremental-sized current element carrying a 
current I with flux d(l has stored energy given by (13): 

dW =2I d(l=I - A di (15) 

For N current elements, (15) generalizes to 

W=2(I -A 1 dl 1+I2 -A 2 dl2 +- +IN *AN d N) 

N 

I.- A.din (16) = ,
n=1 

If the current is distributed over a line, surface, or volume, 
the summation is replaced by integration: 

j If -A dl (line current) 

W=- sKf A dS (surface current) (17) 

J, A dV (volume current) 
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Remember that in (16) and (17) the currents and vector 
potentials are all evaluated at their final values as opposed to 
(11), where the current must be expressed as a function of 
flux. 

6-5-4 Magnetic Energy Density 

This stored energy can be thought of as being stored in the 
magnetic field. Assuming that we have a free volume dis­
tribution of current Jf, we use (17) with Ampere's law to 
express Jf in terms of H, 

W=f Jf-AdV=f (VXH)-AdV (18) 

where the volume V is just the volume occupied by the 
current. Larger volumes (including all space) can be used in 
(18), for the region outside the current has Jf = 0 so that no 
additional contributions arise. 

Using the vector identity 

V - (A x H)= H - (V x A) -A - (V x H) 

=H - B-A - (V X H) (19) 

we rewrite (18) as 

W=I v[H - B-V - (A x H)] dV (20) 

The second term on the right-hand side can be converted 
to a surface integral using the divergence theorem: 

(A xH) -dS (21)V - (A x H) dV = 

It now becomes convenient to let the volume extend over all 
space so that the surface is .at infinity. If the current dis­
tribution does not extend to infinity the vector potential dies 
off at least as I/r and the magnetic field as I/r Then, even 
though the area increases as r2 , the surface integral in (21) 
decreases at least as I/r and thus is zero when S is at infinity. 
Then (20) becomes simply 

W=1jH -BdV=Ij LH2dV= -dV (22) 

where the volume V now extends over all space. The 
magnetic energy density is thus 

1 B 2 

w=HB=iH A 2 - (23) 
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These results are only true for linear materials where yA 
does not depend on the magnetic field, although it can 
depend on position. 

For a single coil, the total energy in (22) must be identical to 
(13), which gives us an alternate method to calculating the 
self-inductance from the magnetic field. 

6-5-5 The Coaxial Cable 

(a) External Inductance 
A typical cable geometry consists of two perfectly conduct­

ing cylindrical shells of radii a and b and length 1, as shown in 
Figure 6-31. An imposed current I flows axially as a surface 
current in opposite directions on each cylinder. We neglect 
fringing field effects near the ends so that the magnetic field is 
the same as if the cylinder were infinitely long. Using 
Ampere's law we find that 

I 
H4=--, a<r<b (24)

2ir 

The total magnetic flux between the two conductors is 

(D f goH.ldr 

I.oIL b 
= In a (25)
2w a 

2irb
HO 0
 

KK, a "H,(r)
 

Depth I H = 

a b r 

Figure 6-31 The magnetic field between two current-carrying cylindrical shells 
forming a coaxial cable is confined to the region between cylinders. 
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giving the self-inductance as 

) A1o b 
L = - = - In - (26)

I 2,7r a 

The same result can just as easily be found by computing 
the energy stored in the magnetic field 

W LI2 =jio H21Trldr 

p4 ln b 2W A1 In (b/a) 
= AOI n-=>L- 2 -(27)

47r a I 27r 

(b) Internal Inductance 
If the inner cylinder is now solid, as in Figure 6-32, the 

current at low enough frequencies where the skin depth is 
much larger than the radius, is uniformly distributed with 
density 

J= - (28)
Ta 

so that a linearly increasing magnetic field is present within 
the inner cylinder while the outside magnetic field is 

* Depth 

X Xdi . 21r dr 

ra2r 

** . 7aj/ * J 
_.1dr H, 21rr2HO . K a 0a b > 

Figure 6-32 At low frequencies the current in a coaxial cable is uniformly distributed 
over the solid center conductor so that the internal magnetic field increases linearly with 
radius. The external magnetic field remains unchanged. The inner cylinder can be 
thought of as many incremental cylindrical shells of thickness dr carrying a fraction of 
the total current. Each shell links its own self-flux-as well as the mutual flux of the other 
shells of smaller radius. The additional flux within the current-carrying conductor 
results in the internal inductance of the cable. 
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unchanged from (24): 

Ir 
2 , O<r<a27ra 

H, = (29) 

r',O a<r<b 
2,7r r 

The self-inductance cannot be found using the flux per 
unit current definition for a current loop since the current is 
not restricted to a thin filament. The inner cylinder can be 
thought of as many incremental cylindrical shells, as in Figure 
6-32, each linking its own self-flux as well as the mutual flux 
of the other shells of smaller radius. Note that each shell is at 
a different voltage due to the differences in enclosed flux, 
although the terminal wires that are in a region where the 
magnetic field is negligible have a well-defined unique voltage 
difference. 

The easiest way to compute the self-inductance as seen by 
the terminal wires is to use the energy definition of (22): 

W= jyo I H2rlrdr 

= rl 0[ 2 1r dr+ I r dr 
2o(7ra2 a 271rr 

A'jI2 1 b 
= -+ln - (30)

4,7r 4 a) 

which gives the self-inductance as 

2W Ayol b 
L = - = -+ln- (31)

I 2ir\4 aI 

The additional contribution of g~ol/87r is called the internal 
inductance and is due to the flux within the current-carrying 
conductor. 

6-5-6 Self-Inductance, Capacitance, and Resistance 

We can often save ourselves further calculations for the 
external self-inductance if we already know the capacitance or 
resistance for the same two-dimensional geometry composed 
of highly conducting electrodes with no internal inductance 
contribution. For the arbitrary geometry shown in Figure 
6-33 of depth d, the capacitance, resistance, and inductance 
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are defined as the ratios of line and surface integrals: 

ed is E -n, ds 

IL E - dl 

R j1 E -di (2 
cR~ -nd(32)n, dso-d fs E 

L d JL H - ni di 
Ls H - ds 

Because the homogeneous region between electrodes is 
charge and current free, both the electric and magnetic fields 
can be derived from a scalar potential that satisfies Laplace's 
equation. However, the electric field must be incident 
normally onto the electrodes while the magnetic field is 
incident tangentially so that E and H are perpendicular 
everywhere, each being along the potential lines of the other. 
This is accounted for in (32) and Figure 6-33 by having n, ds 
perpendicular to ds and ni dl perpendicular to dl. Then since 
C, R, and L are independent of the field strengths, we can 
take E and H to both have unit magnitude so that in the 
products of LC and LIR the line and surface integrals cancel: 

LC etd2 
= d2/c 2, c 1(E3 

2 (33)
LIR=wo-d2 , RC=elo-

These products are then independent of the electrode 
geometry and depend only on the material parameters and 
the depth of the electrodes. 

We recognize the LIR ratio to be proportional to the 
magnetic diffusion time of Section 6-4-3 while RC is just the 
charge relaxation time of Section 3-6-1. In Chapter 8 we see 
that the NIC product is just equal to the time it takes an 
electromagnetic wave to propagate a distance d at the speed 
of light c in the medium. 

/E
L---. 

L dl Q
-Q \ 

-ds 

ns Depth d 

Figure C-33 The electric and magnetic fields in the two-dimensional homogeneous 
charge and current-free region between hollow electrodes can be derived from a scalar 
potential that obeys Laplace's equation. The electric field lines are along the magnetic 
potential lines and vice versa so E and H are perpendicular. The inductance-capaci­
tance product is then a constant. 
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6-6 THE ENERGY METHOD FOR FORCES 

6-6-1 The Principle of Virtual Work 

In Section 6-5-1 we calculated the energy stored in a 
current-carrying loop by two methods. First we calculated the 
electric energy input to a loop with no mechanical work done. 
We then obtained the same answer by computing the 
mechanical work necessary to move a current-carrying loop 
in an external field with no further electrical inputs. In the 
most general case, an input of electrical energy can result in 
stored energy dW and mechanical work by the action of a 
force f. causing a small displacement dx: 

idO=dW+f.dx (1) 

If we knew the total energy stored in the magnetic field as a 
function of flux and position, the force is simply found as 

8W
f.= a (2) 

We can easily compute the stored energy by realizing that 
no matter by what process or order the system is assembled, if 
the final position x and flux 0 are the same, the energy is the 
same. Since the energy stored is independent of the order 
that we apply mechanical and electrical inputs, we choose to 
mechanically assemble a system first to its final position x with 
no electrical excitations so that 0 =0. This takes no work as 
with zero flux there is no force of electrical origin. Once the 
system is mechanically assembled so that its position remains 
constant, we apply the electrical excitation to bring the system 
to its final flux value. The electrical energy required is 

W=J idO (3) 
x const 

For linear materials, the flux and current are linearly 
related through the inductance that can now be a function of 
x because the inductance depends on the geometry: 

-i =/L(x) (4) 

Using (4) in (3) allows us to take the inductance outside the 
integral because x is held constant so that the inductance is 
also constant: 

W= 0 dO 
L((x) 

= =c L(x)i)
2L(x)2(5 

http:idO=dW+f.dx
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The stored energy is the same as found in Section 6-5-2 even 
when mechanical work is included and the inductance varies 
with position. 

To find the force on the moveable member, we use (2) with 
the energy expression in (5), which depends only on flux and 
position: 

aW 

8x . 
,t2 d[ IL (x)] 

2 dx 

1 D2 dL(x) 
2 L 2(x) dx 

1i 2 dL(x) 
dx 

6-6-2 Circuit Viewpoint 

This result can also be obtained using a circuit description 
with the linear flux-current relation of (4): 

di
V=­

dt 

di .dL(x) 
=x+ dt 

di .dL(x)dx (7) 
=x+ dx d7 

The last term, proportional to the speed of the moveable 
member, just adds to the usual inductive voltage term. If the 
geometry is fixed and does not change with time, there is no 
electromechanical coupling term. 

The power delivered to the system is 

d 

which can be expanded as 

d 1 .2 2 dL(x)dx 
d (9) P=-(iL(x)i )+Ai ­di )+id di 

This is in the form 

dW dx W=2L(x)i2 (10) 
p= +2dL(x)dt dt f.=-1 
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which states that the power delivered to the inductor is equal 
to the sum of the time rate of energy. stored and mechanical 
power performed on the inductor. This agrees with the 
energy method approach. If the inductance does not change 
with time because the geometry is fixed, all the input power is 
stored. as potential energy W. 

Example 6-2 MAGNETIC FIELDS AND FORCES 

(a) Relay 
Find the force on the moveable slug in the magnetic circuit 

shown in Figure 6-34. 

SOLUTION 

It is necessary to find the inductance of the system as a 
function of the slug's position so'that we can use (6). Because 
of the infinitely permeable core and slug, the H field is non­
zero only in the air gap of length x. We use Ampere's law to 
obtain 

H= NI/x 

The flux through the gap 

(= yoNIA/x 

is equal to the flux through each turn of the coil yielding the 
inductance as 

NO yAoN2 A 
L(x)=-= 

Ix 

N turns H=N 

Mo Cross-sectional area A 
-*-I 

Figure 6-34 The magnetic field exerts a force on the moveable member in the relay 
pulling it into the magnetic circuit. 
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The force is then 

f 2 dL(x) 
dx 

2 2C 

i.L0N2A12 

2 2 

The minus sign means that the force is opposite to the direc­
tion of increasing x, so that the moveable piece is attracted to 
the coil. 

(b) One Turn Loop 
Find the force on the moveable upper plate in the one turn 

loop shown in Figure 6-35. 

SOLUTION 

The current distributes itself uniformly as a surface current 
K = I/D on the moveable plate. If we neglect nonuniform 
field effects near the corners, the H field being tangent to the 
conductors just equals K: 

H = IID 

The total flux linked by the current source is then 

(D= oHxl 

= I 
D 

which gives the inductance as 

x pDoxl 
L(x)=-=­I D 

K IID 

D 

Figure 6-35 the magnetic force on a current-carrying ioop tends to expand the ioop. 
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The force is then constant 

f=,l1dL(x)
dx 

1 olI 2 

2 D 

6-6-3 Magnetization Force 

A material with permeability A is partially inserted into the 
magnetic circuit shown in Figure 6-36. With no free current 
in the moveable material, the x-directed force density from 
Section 5-8-1 is 

F. = Mo(M - V)H. 

= (; - iMo)(H - V)H. 

aHH 
=(; -'UO) H. -+ H, 11(11)~IL~o)\axY ay ) 

where we neglect variations with z. This force arises in the 
fringing field because within the gap the magnetic field is 
essentially uniform: 

H, = NI/s (12) 

Because the magnetic field in the permeable block is curl free, 

V xH =>O--- 8 (13) 

0 p.y x 

-L a 

y
t= NI N 

xo 

Depth D 

(a) 

Figure 6-36 - A permeable material tends to be pulled into regions of higher magnetic 
field. 

11 
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(11) can be rewritten as 

F.= - o)(H+ H') (14)
2 8x 

The total force is then 

f =sD F.dx 

(I - I) N I2D = 1 &)NID(15) 
2 S 

where the fields at x = -oo are zero and the field at x= x0 is 
given by (12). High permeability. material is attracted to 
regions of stronger magnetic field. It is this force that causes 
iron materials to be attracted towards a magnet. Diamagnetic 
materials (A <po) will be repelled. 

This same result can more easily be obtained using (6) 
where the flux through the gap is 

NID
4D= HD[ipx +p o(a -x)] ---- [(p - po)x+ao] (16)

S 

so that the inductance is 

NO N2D 
L=-= -[( -po)x +aizo] (17)

I S 

Then the force obtained using (6) agrees with (15) 

f 2dL(x) 
dx 

=A2s A N2,2D (18)
2s 

PROBLEMS 

Section 6-1 
1. A circular loop of radius a with Ohmic conductivity a- and 
cross-sectional area A has its center a small distance D away 
from an infinitely long time varying current. 
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I~t) aCross-sectional area A 

a i 

--	 D 

(a) Find the mutual inductance M and resistance R of the 
loop. Hint: 

dx 2 tan.., [VCb" tan (x/ 2 ) 
Sa+b cosx - L a+b 

rdr =
 

73D-r"
 

(b) This loop is stationary. and has a self-inductance L. 
What is the time dependence of the induced short circuit 
current when the line current is instantaneously stepped on 
to a dc level I at t = 0? 

(c) Repeat (b) when the line current has been on a long 
time and is suddenly turned off at t = T. 

(d) If the loop has no resistance and is moving with radial 
velocity v, = dr/dt, what is the short circuit current and open 
circuit voltage for a dc line current? 

(e) What is the force on the loop when it carries a current 
i? Hint: 

[ cos 0 do
 
J D+acos 
 = 	-- sin [cos] 

D ._,a +Dcos4+ 	 smi 
aDT-a D+acos/ 

2. A rectangular loop at the far left travels with constant 
velocity Ui. towards and through a dc surface current sheet 
Koi, at x =0. The right-hand edge of the loop first reaches 
the current sheet at t =0. 

(a) What is the loop's open circuit voltage as a function of 
time? 

(b) What is the short circuit current if the loop has self-
inductance L and resistance R? 

(c) Find the open circuit voltage if the surface current is 
replaced by a fluid with uniformly distributed volume cur­
rent. The current is undisturbed as the loop passes through. 
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+ V -. 

Ut -ba) (ca 

Specifically consider the case when d > b and then sketch the 
results when d= b and d <b. The right edge of the current 
loop reaches the volume current at t =0. 

3. A short circuited rectangular loop of mass m and self-
inductance L is dropped with initial velocity voi. between the 
pole faces of a magnet that has a concentrated uniform 
magnetic field Boi. Neglect gravity. 

0 B0 

SN S 

X V 0 

(a) What is the imposed flux through the loop as a function 
of the loop's position x (0< x <s) within the magnet? 

(b) If the wire has conductivity a- and cross-sectional area 
A, what equation relates the induced current i in the loop and 
the loop's velocity? 

(c) What is the force on the loop in terms of i? Obtain a 
single equation for the loop's velocity. (Hint: Let Wo = 
Bob2/mL, a= RIL.) 

(d) How does the loop's velocity and induced current vary 
with time? 

(e) If a--+ c, what minimum initial velocity is necessary for 
the loop to pass through the magnetic field? 

4. Find the mutual inductance between the following cur­
rents: 

(a) Toroidal coil of rectangular or circular cross section 
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''I "I 

N turns 

u rns
S 

R 

51IN a-b 

cross--section
Toroid 
cross-section 

(a) 

I I 

-7 
b 

-d a ­

(b) 

coaxially centered about an infinitely long line current. Hint: 

dx 2 -1 {Ia"-b? tan(x/2 )}t-a 
f a+bcosx a+b' 

r dr =--R -

(b) A very long rectangular current loop, considered as two 
infinitely long parallel line currents, a distance D apart, car­
rying the same current I in opposite directions near a small 
rectangular loop of width a, which is a distance d away from 
the left line current. Consider the cases d + a <D, d <D < 
d+a, and d>D. 

5. A circular loop of radius a is a distance D above a point 
magnetic dipole of area dS carrying a current Ii. 

C:'2 

D 

4 m = I1 dS 

I1 
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(a) What is the vector potential due to the dipole at all 
points on the circular loop? (Hint: See Section 5-5-1.) 

(b) How much flux of the dipole passes through the circu­
lar loop? 

(c) What is the mutual inductance between the dipole and 
the loop? 

(d) If the loop carries a current 12, what is the magnetic 
field due to 12 at the position of the point dipole? (Hint: See 
Section 5-2-4a.) 

(e) How much flux due to I2 passes through the magnetic 
dipole? 

(f) What is the mutual inductance? Does your result agree 
with (c)? 

6. A small rectangular loop with self-inductance L, Ohmic 
conductivity a-, and cross-sectional area A straddles a current 
sheet. 

,K(t) 

nK(t~i, 

T 

(a) The current sheet is instantaneously turned on to a dc 
level Koi, at t =0. What is the induced loop current? 

(b) After a long time T the sheet current is instantaneously 
set to zero. What is the induced loop current? 

(c) What is the induced loop current if the current sheet 
varies sinusoidally with time as Ko cos wti,. 
7. A point magnetic dipole with area dS lies a distance d 
below a perfectly conducting plane of infinite extent. The 
dipole current I is instantaneously turned on at t =0. 

(a) Using the method of images, find the magnetic field 
everywhere along the conducting plane. (Hint: i, - ir = sin 0, 

d 

dA = wa2
 
I
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is - ir = Cos 9.) 
(b) What is the surface current distribution? 
(c) What is the force on the plane? Hint: 

2J r3 dr (r + d/4) 

(r2 +d 2)5 6(r2 +d 2)4 

(d) If the plane has a mass M in the gravity field g, what 
current I is necessarl to just lift the conductor? Evaluate for 
M= 10-3 kg, d= 10~ m, and a = 10- m. 

8. A thin block with Ohmic conductivity o- and thickness 8 
moves with constant velocity Vi, between short circuited 
perfectly conducting parallel plates. An initial surface current 
Ko is imposed at t =0 when x = xo, but the source is then 
removed. 

-K(t) 

x 

Depth Dx 

y 

(a) The surface current on the plates K(t) will vary with 
time. What is the magnetic field in terms of K(t)? Neglect 
fringing effects. 

(b) Because the moving block is so thin, the current is 
uniformly distributed over the thickness 8. Using Faraday's 
law, find K(t) as a function of time. 

(c) What value of velocity will just keep the magnetic field 
constant with time until the moving block reaches the end? 

(d) What happens to the magnetic field for larger and 
smaller velocities? 

9. A thin circular disk of radius a, thickness d, and conduc­
tivity a- is placed in a uniform time varying magnetic field 
B(t). 

(a) Neglecting the magnetic field of the eddy currents, 
what is the current induced in a thin circular filament at 
radius r of thickness dr. 
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B(t) 

a.. 

d(a 

(a) (d) 

(b) What power is dissipated in this incremental current 
loop? 

(c) How much power is dissipated in the whole disk? 
(d) If the disk is instead cut up into N smaller circular disks 

with negligible wastage, what is the approximate radius of 
each smaller disk? 

(e) If these N smaller disks are laminated together to form 
a thin disk of closely packed cylindrical wires, what is the 
power dissipated? 

Section 6-2 
10. Find the self-inductance of an N turn toroidal coil of 
circular cross-sectional radius a and mean radius b. Hint: 

d 2 tn - b2- r2 tan (0/2) 
f b+r cos 0 bT--rT b+r 

frdr = - 2 

N turns 

b 

11. A large solenoidal coil of long length l, radius a,, and 
number of turns N, coaxially surrounds a smaller coil of long 
length 12, radius a2 , and turns N 2 . 
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+ V
1 

N, turns 
21A
 

a2 J _W~V2 

_L 

a2 

a1 

ZN2 turns 

(a) Neglecting fringing field effects find the self-
inductances and mutual inductances of each coil. 
(Hint: Assume the magnetic field is essentially uniform 
within the cylinders.) 

(b) What is the voltage across each coil in terms of iI and i2? 
(c) If the coils are connected in series so that ii = i 2 with the 

fluxes of each coil in the same direction, what is the total 
self-inductance? 

(d) Repeat (c) if the series connection is reversed so that 

iI= -i 2 and the fluxes due to each coil are in opposite direc­
tions. 

(e) What is the total self-inductance if the coils are 
connected in parallel so that v1 = v 2 or v 1 = -V2? 

12. The iron core shown with infinite permeability has three 
gaps filled with different permeable materials. 

(a) What is the equivalent magnetic circuit? 
(b) Find the magnetic flux everywhere in terms of the gap 

reluctances. 

Nj<
<1 V1 

- S3­

y 4 a3 

Depth D 
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(c) What is the total magnetic flux through each winding? 
(d) What is the self-inductance and mutual inductance of 

each winding? 

13. A cylindrical shell of infinite permeability, length I and 
inner radius b coaxially surrounds a solid cylinder also with 
infinite permeability and length I but with smaller radius a so 
that there is a small gap g = b - a. An N, turn coil carrying a 
current I, is placed within two slots on the inner surface of 
the outer cylinder. 

Depth I 

+-1 

(a) What is the magnetic field everywhere? Neglect all 
radial variations in the narrow air gap. (Hint: Separately 
consider 0< 0 <nr and ir <k <27r.) 

(b) What is the self-inductance of the coil? 
(c) A second coil with N 2 turns carrying a current 12 is 

placed in slots on the inner cylinder that is free to rotate. 
When the rotor is at angle 0, what is the total magnetic field 
due to currents I, and 12? (Hint: Separately consider 0< 
(k <0, 0 < <7r, 7r < 4 <r +6, and ir+0<q<27r.) 

(d) What is the self-inductance and mutual inductance of 
coil 2 as a function of 6? 

(e) What is the torque on the rotor coil? 

14. (a) What is the ratio of terminal voltages and currents for 
the odd twisted ideal transformer shown? 

(b) A resistor RL is placed across the secondary winding 
(v 2 , i2 ). What is the impedance as seen by the primary 
winding? 
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~1 i2 

V1 N N2 C . V2 

C+ 

15. An N turn coil is wound onto an infinitely permeable 
magnetic core. An autotransformer is formed by connecting a 
tap of N' turns. 

V1 2N 

+ 

RL V2 N' 

(a) What are the terminal voltage (V 2 /Vi) and current (i2 /iI)
ratios? 

(b) A load resistor RL is connected across the terminals 
of the tap. What is the impedance as seen by the input 
terminals? 

Section 6-3 
16. A conducting material with current density Jji. has two 
species of charge carriers with respective mobilities u+ and ;s­
and number densities n+ and n... A magnetic field Boi, is 
imposed perpendicular to the current flow. 
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Bo i, 

Vh
 
+-+
 

(a) What is the open circuit Hall voltage? (Hint: The 
transverse current of each carrier must be zero.) 

(b) What is the short circuit Hall current? 

17. A highly conducting hollow iron cylinder with 
permeability A and inner and outer radii R, and isR 2 
concentric to an infinitely long dc line current (adapted from 
L. V. Bewley, Flux Linkages and Electromagnetic Induction. 
Macmillan, New York, 1952, pp. 71-77). 

I
dt 

ty 
b b
 

a V0
V0
 

I 
R2 

/10 R1 

LE C AO 
/10 

d I 
I d 

| | 

(b) (d) 

(a) What is the magnetic flux density everywhere? Find the 
electromotive force (EMF) of the loop for each of the follow­
ing cases. 
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(b) A highly conducting circuit abcd is moving downward 
with constant velocity Vo making contact with the surfaces of 
the cylinders via sliding brushes. The circuit is completed 
from c to d via the iron cylinder. 

(c) Now the circuit remains stationary and the iron cylin­
der moves upwards at velocity Vo. 

(d) Now a thin axial slot is cut in the cylinder so that it can 
slip by the complete circuit abcd, which remains stationary as 
the cylinder moves upwards at speed Vo. The brushes are 
removed and a highly conducting wire completes the c-d 
path. 

18. A very long permanently magnetized cylinder MoIL rotates on 
a shaft at constant angular speed w. The inner and outer surfaces 
at r = aand r = b are perfectly conducting, so that brushes can 
make electrical contact. 

a G 

(a) If the cylinder is assumed very long compared to its 
radius, what are the approximate values of B and H in the 
magnet? 

(b) What is the open circuit voltage? 
(c) If the magnet has an Ohmic conductivity a-, what is the 

equivalent circuit of this generator? 
(d) What torque is required to turn the magnet if the 

terminals are short circuited? 

19. A single spoke wheel has a perfectly conducting cut rim. 
The spoke has Ohmic conductivity a- and cross-sectional area 
A. The wheel rotates at constant angular speed cvo in a 
sinusoidally varying magnetic field B. = Bo cos at. 

(a) What is the open circuit voltage and short circuit cur­
rent? 

(b) What is the equivalent circuit? 
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B, = Bocoswt 

(t)
 

0 


Ohmic conductivity y 
cross-sectional area A 

20. An MHD machine is placed within a magnetic circuit. 

+a 

Depth D 

(a) A constant dc current if = Io is applied to the N turn 
coil. How much power is delivered to the load resistor RL? 

(b) The MHD machine and load resistor RL are now 
connected in series with the N turn coil that has a resistance 
R. No current is applied. For what minimum flow speed can 
the MHD machine be self-excited? 

21. The field winding of a homopolar generator is connected 
in series with the rotor terminals through a capacitor C. The 
rotor is turned at constant speed o. 

(a) For what minimum value of rotor speed is the system 
self-excited? 

(b) For the self-excited condition of (a) what range of 
values of C will result in dc self-excitation or in ac self-
excitation? 

(c) What is the frequency for ac self-excitation? 
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II R 

L1 

C== Rr Lr 

Section 6-4 
22. An Ohmic block separates two perfectly conducting 
parallel plates. A dc current that has been applied for a long 
time is instantaneously turned off at t =0. 

Depth D 

t 	 x 

0 d 

(a) What are the initial and final magnetic field dis­
tributions? What are the boundary conditions? 

(b) What are the transient magnetic field and current dis­
tributions? 

(c) What is the force on the block as a function of time? 

23. A block of Ohmic material is placed within a magnetic 
circuit. A step current Io is applied at t =0. 

(a) What is the dc steady-state solution for the magnetic 
field distribution? 

(b) What are the boundary and initial conditions for the 
magnetic 	field in the conducting block? 

*(c) What are the transient field and current distributions? 
(d) What is the time dependence of the force on the 

conductor? 
(e) The current has been on a long time so that the system 

is in the dc steady state found in (a) when at t = T the current 
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i(t) 

o 

Io COS~st 

Itf 

A(t) 
Depth D 

4Na 
T ----- 40 Xt 

y 

is instantaneously turned off. What are the transient field and 
current distributions in the conductor? 

(f) If the applied coil current varies sinusoidally with time 
as i(t) = Io cos wt, what are the sinusoidal steady-state field 
and current distributions? (Hint: Leave your answer in 
terms of complex amplitudes.) 

(g) What is the force on the block? 

24. A - semi-infinite conducting block is placed between 
parallel perfect conductors. A sinusoidal current source is 
applied. 

PO S 

Dph 

Depth D 
BOX 

y 

(a) What are the magnetic field and current distributions 
within the conducting block? 

(b) What is the total force on the block? 
(c) Repeat (a) and (b) if the block has length d. 

25. A current sheet that is turned on at t =0 lies a distance d 
above a conductor of thickness D and conductivity a-. The 
conductor lies on top of a perfectly conducting plane. 

(a) What are the initial and steady-state solutions? What 
are the boundary conditions? 

(b) What are the transient magnetic field and current dis­
tributions? 

(c) After a long time T, so that the system has reached the 
dc steady state, the surface current is set to zero. What are the 
subsequent field and current distributions? 
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K(t)K 

d ;O, a = 0 
y 

I, ~ ~ a y..+:.~ 

(d) What are the field and current distributions if the cur­
rent sheet varies as Ko cos ot? 

26. Distributed dc currents at x =0 and x = I flow through a 
conducting fluid moving with constant velocity vOi,. 

Ko- -- ___ 

X Depth D 

(a) What are the magnetic field and current distributions? 
(b) What is the force on the fluid? 

27. A sinusoidal surface current at x =0 flows along parallel 
electrodes and returns through a conducting fluid moving to 
the right with constant velocity voi.. The flow is not impeded 
by the current source. The system extends to x =o. 

K0 

Depth D 

x 

(a) What are the magnetic field and current density dis­
tributions? 

(b) What is the time-average force on the fluid? 
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28. The surface current for the linear induction machine 
treated in Section 6-4-6 is now put a distance s below the 
conductor. 

(a) What are the magnetic field and current distributions in 
each region of space? (Hint: Check your answer with 
Section 6-4-6 when s = 0.) 

(b) Repeat (a) if s is set to zero but the conductor has a 
finite thickness d. 

29. A superconducting block with plasma frequency (o, is 
placed within a magnetic circuit with exciting current 
1Cos t. 

M 11 
sN 

7 Depth D 

(a) What are the magnetic field and current distributions in 
the superconductor? 

(b) What is the force on the block? 

Section 6.5 
30. Find the magnetic energy stored and the self-inductance 
for the geometry below where the current in each shell is 
uniformly distributed. 

swd (i: St.n 

P2, 0Depth I 

31. Find the external self-inductance of the two wire lines 
shown. (Hint: See Section 2-6-4c.) 
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Depth I 

2RIR R 

Depth I 

32. A coaxial cable with solid inner conductor is excited by a 
sinusoidally varying current Io cos wt at high enough 
frequency so that the skin depth is small compared to the 
radius a. The current is now nonuniformly distributed over 
the inner conductor. 

b 

to Cos Wt 

(a) Assuming that H = H,(r)is, what is the governing 
equation for H#(r) within the inner cylinder. (Hint: V 2H= 

0 

V(V, H) -V x (V x H).) 
(b) Solve (a) for solutions of the form 

H#(r) = Re [HI#(r) e"'] 

Hint: Bessel's equation is 

2 d y dy 2 x ;+x +(x -_ )y=0 

with solutions 

y = A iJ,(x)+A2 Y,(x) 

where Y, is singular at x = 0. 
(c) What is the current distribution? Hint: 

d 1
 
-[Ui(x)] +-J(x)= Io(x)
dx x 

Section 6-6 
33. A reluctance motor is made by placing a high permeabil­
ity material, which is free to rotate, in the air gap of a 
magnetic circuit excited by a sinusoidal current Io cos Lot. 
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The inductance of the circuit varies as 

L(O)=LO+L1 cos20 

where the maximum inductance LO+L, occurs when 6 =0 or 
6 = 1r and the minimum inductance LO--L 1 occurs when 6= 
:Er/2. 

(a) What is the torque on the slab as a function of the angle 
6? 

(b) The rotor is rotating at constant speed w, where 6= 
wt + 8 and 8 is the angle of the rotor at t = 0. At what value of 
w does the torque have a nonzero time average. The reluc­
tance motor is then a synchronous machine. Hint: 

cos2 wot sin 26 = [sin 20+cos 2ot sin 20] 

= f{sin 26 + $[sin 2(wot + 6) + sin 2(0 - wot)]} 

(c) What is the maximum torque that can be delivered by 
the shaft and at what angle 5 does it occur? 

34. A system of two coupled coils have the following flux-
current relations: 

,i 

I, 

V 1 

l2 

(c) 
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=1=Li(0)ii+M(0)i 2 

2 = M(0)ii+L2(0)i2 

(a) What is the power p delivered to the coils? 
(b) Write this power in the form 

dW dO 
p=-+T­dt dt 

What are W and T? 
(c) A small coil is free to rotate in the uniform magnetic 

field produced by another coil. The flux-current relation is 

(1=Li+MOi 2 sin 0 
02 = Moi I sin 0+ L 2i2 

The coils are excited by dc currents I, and 12. What is the 
torque on the small coil? 

(d) If the small coil has conductivity o-, cross-sectional area 
A, total length 1, and is short circuited, what differential 
equation must the current il obey if 0 is a function-of time? A 
dc current I2 is imposed in coil 2. 

(e) The small coil has moment of inertia J. Consider only 
small motions around 0 = 0 so that cos 0 1. With the torque 
and current equations linearized, try exponential solutions of 
the form e" and solve for the natural frequencies. 

(f) The coil is released from rest at 0 = Oo. What is 0(t) and 
il(t)? Under what conditions are the solutions oscillatory? 
Damped? 

35. A coaxial cable has its short circuited end free to move. 

(a) What is the inductance of the cable as a function of x? 
(b) What is the force on the end? 

36. For the following geometries, find: 
(a) The inductance; 
(b) The force on the moveable member. 
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x1 

s-. 

Depth D 

a 

X 

37. A coaxial cylinder is dipped into a magnetizable fluid with 
permeability yA and mass density p.. How high h does the fluid 
rise within the cylinder? 

4~~ bt 

AO0 

hjIA~ 
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