
Cartesian Cylindrical Spherical 

x = r cosc/ S r sin 6 cos 4 

= r sin4 S r sin 6 sin4 

z = z = rcos6 

y 

ix = Cos Oi-sin 4k 4 = sin Ocos ki,+cos 6 cos 4ie 
-sin Ois 

iY =sin 0 i,+ Cos 01i = sin 0 sin 6i, + Cos 6 sin ie 

= S il41+C541 +cos 6 io 

i
1 = cos Oi,- sin Ois 

Cylindrical Cartesian Spherical 

=~V Ix+ y7 Sr sin 6 

tan~1y/x 

= z = rcos6 

= cos (k ,, +sin i, = sin Oi,+cos 6ie 
i4 .
 = -sin ki,,+Cos 4i, = i4
 

= i, = cos i, -sin iO 

Spherical Cartesian Cylindrical 

If,- +z"r I4x +y +z 

_1 z -1 z0 = Cos = cos 

= cot-' x/y 

i, = sinG cos kix+sin 6 sin ci, = sin i, +Cos Oi, 
+cos i. 

i, = cos 6 cos oi,+cos 6 sin oi, = Cos Oi,-sin Oi, 
-sin Oi. 

i = -sin 46i, +Cos 0i, = i4, 

Geometric relations between coordinates and unit vectors for Cartesian, cylir 
drical, and spherical coordinate systems. 





CartesianCoordinates(x, y, z) 

Vf = Ofi.+Ofi,+ Ofi. ax ay Oz+-A=,++-i
V- aA,, aA, aA, 2
 

ax ay az
 

aA 	 aA)VxA ay_ a (aA,(- _)+i=i. (LAI )+ _ 8A\ -(ay az 	 ) az a.x) ay 

2fV2f+!L+f+a
Ox2 	 j Z 

CylindricalCoordinates (r, 4, z) 

Of. 1 Of. OfVf= r+ i,+ iz 

+A MA.V -A= Ia(rA,.)+ -. 
r Or r ao az 

VxA=i - +ixaz Or + OA r a4 

0/f a Of\ 1a2f a2f 
V'f= r + +

42 
r Or 	 On) r O 

SphericalCoordinates (r, 0, 4,) 

Vf=i,.+ afi+Or r aO r sin 0 a4 

V A = (r2A,)+ 1 (sin OA.) 1 oA* 
r2 ar r sin 0 aI r sin 0 a4 

VxA=i1 a(sin OAs) aA. 
'r sineL 80 a4 

I rIAM, a(rA) 1 [a(rA#) OA,. 
r sin{ 0r] rL Or aeJ 

2fV f 	 = r + r s n sin0 ) +Of I a 
rf ar' Or. r- -s i n aG ai r sin 04, 0­





MAXWELL'S EQUATIONS 

Integral Differential Boundary Conditions 

Faraday's Law 
d C B

E'-dl=-- B-dS VxE=- nx(E'-E')=0.
dtJI at 

Ampere's Law with Maxwell's Displacement Current Correction 

H-dl= Jf,-dS VXH=Jf+aD nX(H 2 -H 1 )=Kf 

+ D-dS~it-s 
Gauss's Law 

V - D=p n - (D 2 -D 1)= o-
D'-dS=t pfdV 

B-dS=0 V-B=0 

Conservation of Charge 

J,- dS+ pfdV=O V-J,+ =0 n - (J2-J)+" 0 
sVd at a 

Usual Linear Constitutive Laws 
D=eE 

B= H 

Jf= o-(E+vX B)= a-E' [Ohm's law for moving media with velocity v] 

PHYSICAL CONSTANTS 

Constant Symbol Value units 

Speed of light in vacuum c 2.9979 x 10 8 = 3 x 108 m/sec 
Elementary electron charge e 1.602 x 10~'9 coul 
Electron rest mass M, 9.11 x 10 3 kg 

Electron charge to mass ratio e 1.76 x 10" coul/kg
M, 

Proton rest mass I, 1.67 x 10-27 kg 
Boltzmann constant k 1.38 x 10-23 joule/*K 
Gravitation constant G 6.67 x 10-" nt-m2/(kg) 2 

Acceleration of gravity g 9.807 m/(sec)2 

10 * 
Permittivity of free space 60 8.854 x 10~2~36r farad/m 

Permeability of free space A0 4r X 10 henry/m 
Planck's constant h 6.6256 x 10-34 joule-sec 

Impedance of free space i1o 4 376.73- 120ir ohms 

Avogadro's number Ar 6.023 x 1023 atoms/mole 
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V Preface 

PREFACE
 

Electromagnetic field theory is often the least popular 
course in the electrical engineering curriculum. Heavy reli­
ance on vector and integral calculus can obscure physical 
phenomena so that the student becomes bogged down in the 
mathematics and loses sight of the applications. This book 
instills problem solving confidence by teaching through the 
use of a large number of worked examples. To keep the subject 
exciting, many of these problems are based on physical pro­
cesses, devices, and models. 

This text is an introductory treatment on the junior level for 
a two-semester electrical engineering course starting from the 
Coulomb-Lorentz force law on a point charge. The theory is 
extended by the continuous superposition of solutions from 
previously developed simpler problems leading to the general 
integral and differential field laws. Often the same problem is 
solved by different methods so that the advantages and limita­
tions of each approach becomes clear. Sample problems and 
their solutions are presented for each new concept with great 
emphasis placed on classical models of such physical 
phenomena as polarization, conduction, and magnetization. A 
large variety of related problems that reinforce the text 
material are included at the end of each chapter for exercise 
and homework. 

It is expected that students have had elementary courses in 
calculus that allow them to easily differentiate and integrate 
simple functions. The text tries to keep the mathematical 
development rigorous but simple by typically describing 
systems with linear, constant coefficient differential and 
difference equations. 

The text is essentially subdivided into three main subject 
areas: (1) charges as the source of the electric field coupled to 
polarizable and conducting media with negligible magnetic 
field; (2) currents as the source of the magnetic field coupled to 
magnetizable media with electromagnetic induction generat­
ing an electric field; and (3) electrodynamics where the electric 
and magnetic fields are of equal importance resulting in radi­
ating waves. Wherever possible, electrodynamic solutions are 
examined in various limits to illustrate the appropriateness of 
the previously developed quasi-static circuit theory approxi­
mations. 

Many of my students and graduate teaching assistants have 
helped in checking the text and exercise solutions and have 
assisted in preparing some of the field plots. 

Markus Zahn 





Notes to the Student Vii 
and Instructor 

A NOTE TO THE STUDENT 

In this text I have tried to make it as simple as possible for an 
interested student to learn the difficult subject of electromag­
netic field theory by presenting many worked examples 
emphasizing physical processes, devices, and models. The 
problems at the back of each chapter are grouped by chapter 
sections and extend the text material. To avoid tedium, most 
integrals needed for problem solution are supplied as hints. 
The hints also often suggest the approach needed to obtain a 
solution easily. Answers to selected problems are listed at the 
back of this book. 

A NOTE TO THE INSTRUCTOR 

An Instructor's Manual with solutions to all exercise problems 
at the end of chapters is available from the author for the cost 
of reproduction and mailing. Please address requests on Univer­
sity or Company letterhead to: 

Prof. Markus Zahn
 
Massachusetts Institute of Technology
 

Department of Electrical Engineering and Computer Science
 
Cambridge, MA 01239
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2 Review of Vector Analysis 

Electromagnetic field theory is the study of forces between 
charged particles resulting in energy conversion or signal transmis­
sion and reception. These forces vary in magnitude and direction 
with time and throughout space so that the theory is a heavy user 
of vector, differential, and integral calculus. This chapter presents 
a brief review that. highlights the essential mathematical tools 
needed throughout the text. We isolate the mathematical details 
here so that in later chapters most of our attention can be devoted 
to the applications of the mathematics rather than to its 
development. Additional mathematical material will be presented 
as needed throughout the text. 

1-1 COORDINATE SYSTEMS 

A coordinate system is a way of uniquely specifying the 
location of any position in space with respect to a reference 
origin. Any point is defined by the intersection of three 
mutually perpendicular surfaces. The coordinate axes are 
then defined by the normals to these surfaces at the point. Of 
course the solution to any Problem is always independent of 
the choice of coordinate system used, but by taking advantage 
of symmetry, computation can often be simplified by proper 
choice of coordinate description. In this text we only use the 
familiar rectangular (Cartesian), circular cylindrical, and 
spherical coordinate systems. 

1-1-1 Rectangular (Cartesian) Coordinates 

The most common and often preferred coordinate system 
is defined by the intersection of three mutually perpendicular 
planes as shown in Figure 1-la. Lines parallel to the lines of 
intersection between planes define the coordinate axes 
(x, y, z), where the x axis lies perpendicular to the plane of 
constant x, the y axis is perpendicular to the plane of constant 
y, and the z axis is perpendicular to the plane of constant z. 
Once an origin is selected with coordinate (0, 0, 0), any other 
point in the plane is found by specifying its x-directed, y-
directed, and z-directed distances from this origin as shown 
for the coordinate points located in Figure 1-lb. 
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Plane o 
j constant 

(-2,2,3) 
iY Plane of 3 
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dSy'dxdz 
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x dS , dydz dy dV = dx dydz 

(c) 

Figure 1-1 Cartesian coordinate system. (a) Intersection of three mutually perpen­
dicular planes defines the Cartesian coordinates (x, y, z). (b) A point is located in space 
by specifying its x-, y- and z-directed distances from the origin. (c) Differential volume 
and surface area elements. 

By convention, a right-handed coordinate system is always 
used whereby one curls the fingers of his or her right hand in 
the direction from x to y so that the forefinger is in the x 
direction and the middle finger is in the y direction. The 
thumb then points in the z direction. This convention is 
necessary to remove directional ambiguities in theorems to be 
derived later. 

Coordinate directions are represented by unit vectors i., i, 
and i2, each of which has a unit length and points in the 
direction along one of the coordinate axes. Rectangular 
coordinates are often the simplest to use because the unit 
vectors always point in the same direction and do not change 
direction from point to point. 

A rectangular differential volume is formed when one 
moves from a point (x, y, z) by an incremental distance dx, dy, 
and dz in each of the three coordinate directions as shown in 
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Figure 1-Ic. To distinguish surface elements we subscript the 
area element of each face with the coordinate perpendicular 
to the surface. 

1-1-2 Circular Cylindrical Coordinates 

The cylindrical coordinate system is convenient to use 
when there is a line of symmetry that is defined as the z axis. 
As shown in Figure 1-2a, any point in space is defined by the 
intersection of the three perpendicular surfaces of a circular 
cylinder of radius r, a plane at constant z, and a plane at 
constant angle 4 from the x axis. 

The unit vectors ir, i, and i. are perpendicular to each of 
these surfaces. The direction of i, is independent of position, 
but unlike the rectangular unit vectors the direction of irand i, 
change with the angle 4 as illustrated in Figure 1-2b. For 
instance, when 4 = 0 then i, = i, and i+ = i,, while if =r/2, 
then ir = i, and i+ = -i.. 

By convention, the triplet (r, 4, z) must form a right-
handed coordinate system so that curling the fingers of the 
right hand from i, to i4 puts the thumb in the z direction. 

A section of differential size cylindrical volume, shown in 
Figure 1-2c, is formed when one moves from a point at 
coordinate (r, 4, z) by an incremental distance dr, r d4, and dz 
in each of the three coordinate directions. The differential 
volume and surface areas now depend on the coordinate r as 
summarized in Table 1-1. 

Table 1-1 Differential lengths, surface area, and volume elements for 
each geometry. The surface element is subscripted by the coordinate 
perpendicular to the surface 

CARTESIAN CYLINDRICAL SPHERICAL 

dl=dx i.+dy i,+dz i, dl=dri,+rd4 i+dz i. dl=dri,+rdOis 
+ r sin 0 d4 i#
 

dS.= dy dz dS= r d4 dz dS,= r2 sin 0 dO d46
 
dS,=dx dz dS#=drdz dS@ =r sin 0 dr d4
 
dS2 =dxdy dS.=rdrd4 dS#=rdrd
 
dV=dxdydz dV=rdrd44dz dV=r2 sin8drdOd4
 

1-1-3 Spherical Coordinates 

A spherical coordinate system is useful when there is a 
point of symmetry that. is taken as the origin. In Figure 1-3a 
we see that the spherical coordinate (r, 0, 4) is obtained by the 
intersection of a sphere with radius r, a plane at constant 
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Plane of constant z 

r( 0, Z); 

ir 
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constant r 

(a) 

dSz = rdodr 

S =dr dA 

. 1 \ 

-* -..------- Tr r-

a 

(b) d V 

= rdrdoda 
- - rd$ d 

(c) 
Figure 1-2 Circular cylindrical coordinate system. (a) Intersection of planes of 
constant z and 4 with a cylinder of constant radius r defines the coordinates (r, 4, z). 
(b) The direction of the unit vectors i, and i, vary with the angle 4. (c) Differential 
volume and surface area elements. 

angle 4 from the x axis as defined for the cylindrical coor­
dinate system, and a cone at angle 0 from the z axis. The unit 
vectors i,, i, and i# are perpendicular to each of these sur­
faces and change direction from point to point. The triplet 
(r, 8, 4) must form a right-handed set of coordinates. 

The differential-size spherical volume element formed by 
considering incremental displacements dr, rdO, r sin 8 d4 
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A 
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constant 4 
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constant 0 
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a 
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-Srdr d 

-- dO 

.r sin 
=sin 8dr do
 

dV r sin 0 dr dO AA
 

rd 4dS# dV =2si J 
(b) 

Figure 1-3 Spherical coordinate system. (a) Intersection of plane of constant angle 0 
with cone of constant angle 9 and sphere of constant radius r defines the coordinates 
(r, 9, 4). (b) Differential volume and surface area elements. 

i 
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Table 1-2 Geometric relations between coordinates and unit vectors for 
Cartesian, cylindrical, and spherical coordinate systems* 

CAR FESIAN CYLINDRICAL SPHERICAL
 
x = rcoso4 = r sin 0 cos4
 
y = rsino4 = r sin 6 sin4
 
z = z r cos 6
 
i. = coso i,-sin4i&= sin e cos 45i,+cos e cos Oio -sin 4qi, 
i, = sin 4 i,+cos 4 i, = sin 6 sin 4ki, +cos 6sin 46 io +cos 4 i 
i.1	 = cos Oi, -sin 6i, 

CYLINDRICAL CARTESIAN SPHERICAL 
r = xF+yl	 r sin 0 

= tan-'Z	 4 x 

z =- z = r cos 0 
cos 4i.+sin 0i, = sin i, +cos i, 

-sin i. +cos 0i, = i" 
11 = cos 0i, -sin ie 

SPHERICAL CARTESIAN CYLINDRICAL 
r = x +y 2 + z2 = Cro+z2 

Z0 = cos~1 	 = cos_ z 
/x+y 2 + 

4k cot-	 4 
y 

1~ sin 6 cos (Ai. +sin 6 sin 4ki, +cos 6Oi = sin i,+cos 6i, 
16 cos 6 cos 46i. +cos 8 sin 4$i, -sin 6i. = cos ir-sin 6i. 

-sin 4i.+cos Oi, =i' 

* 	Note that throughout this text a lower case roman r is used for the cylindrical radial coordinate 
while an italicized r is used for the spherical radial coordinate. 

from the coordinate (r, 0, 46) now depends on the angle G and 
the radial position r as shown in Figure 1-3b and summarized 
in Table 1-1. Table 1-2 summarizes the geometric relations 
between coordinates and unit vectors for the three coordinate 
systems considered. Using this table, it is possible to convert 
coordinate positions and unit vectors from one system to 
another. 

1-2 VECTOR ALGEBRA 

1-2-1 Scalars and Vectors 

A scalar quantity is a number completely determined by its 
magnitude, such as temperature, mass, and charge, the last 
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being especially important in our future study. Vectors, such 
as velocity and force, must-also have their direction specified 
and in this text are printed in boldface type. They are 
completely described by their components along three coor­
dinate directions as shown for rectangular coordinates in 
Figure 1-4. A vector is represented by a directed line segment 
in the direction of the vector with its length proportional to its 
magnitude. The vector 

A = A.i. +A~i,+Ai. (1) 

in Figure 1-4 has magnitude 

A =JAI =[A i+A' +A, ]"' (2) 

Note that each of the components in (1) (A., A,, and A.) are 
themselves scalars. The direction of each of the components 
is given by the unit vectors. We could describe a vector in any 
of the coordinate systems replacing the subscripts (x, y, z) by 
(r, 0, z) or (r, 0, 4); however, for conciseness we often use 
rectangular coordinates for general discussion. 

1-2-2 Multiplication of a Vector by a Scalar 

If a vector is multiplied by a positive scalar, its direction 
remains unchanged but its magnitude is multiplied by the 

Al 

A|t 

I 

I 

I 
I 
I 

A 

Figure 1-4 
directions. 

A = At i,+ Ayiy+ Ai, 

A I= A = {A2 + A 2 + A.2 

A vector is described by its components along the three coordinate 
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scalar. If the scalar is negative, the direction of the vector is 
reversed: 

aA = aA.i. +aA,i,+aAzi (3) 

1-2-3 Addition and Subtraction 

The sum of two vectors is obtained by adding their 
components while their difference is obtained by subtracting 
their components. If the vector B 

B = B.i. +B,i,+Bzi, (4) 

is added or subtracted to the vector A of (1), the result is a 
new vector C: 

C =A +-B= (A.*B.)i. +(A, B,)i, +(A, B.)i,, (5) 
Geometrically, the vector sum is obtained from the 

diagonal of the resulting parallelogram formed from A and B 
as shown in Figure 1-5a. The difference is found by first 

y 

A + By, --- - - - AB A +
A + 8, - - ------. , AI 

A, A 

By ­

A, B- A. +B 

y 

A 

-BBA + 
xo 

(b) 

Figure 1-5 The sum and difference of two vectors (a) by finding the diagonal of the 
parallelogram formed by the two vectors, and (b) by placing the tail of a vector at the 
head of the other. 
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drawing -B and then finding the diagonal of the paral­
lelogram formed from the sum of A and -B. The sum of the 
two vectors is equivalently found by placing the tail of a vector 
at the head of the other as -in Figure 1-5b. 

Subtraction is the same as addition of the negative of a 
vector. 

EXAMPLE 1-1 VECTOR ADDITION AND SUBTRACTION 

Given the vectors 

A=4i.+4i,, B=i.+8i, 

find the vectors B*A and their magnitudes. For the 
geometric solution, see Figure 1-6. 

y 

-S= A+ B12
 
/= 5i, + 2iy
 

/'I 
/ I
 

/ I
10
 

-

8
 

-- A I x
 
6
 

q/ / "X
 

4
 

2
 

X
-4 I - 2e 4 6
 

-2 I­

-A -4 

Figure 1-6 The sum and difference of vectors A and B given in Example 1-1. 
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SOLUTION 

Sum 

S= A + B = (4+1)i, +(4+8)i, = 5i, + 12i, 

S=[5 2+12]12= 13 
Difference 

D= B-A = (1 -4)i, +(8-4)i, = -3, +4i, 

D = [(-3) 2+42 ]1 = 5 

1-2-4 The Dot (Scalar) Product 

The dot product between two vectors results in a scalar and 
is defined as 

A - B=AB cos 0 (6) 

where 0 is the smaller angle between the two vectors. The 
term A cos 0 is the component of the vector A in the direction 
of B shown in Figure 1-7. One application of the dot product 
arises in computing the incremental work dW necessary to 
move an object a differential vector distance dl by a force F. 
Only the component of force in the direction of displacement 
contributes to the work 

dW=F-dl (7) 

The dot product has maximum value when the two vectors 
are colinear (0 =0) so that the dot product of a vector with 
itself is just the square of its magnitude. The dot product is 
zero if the vectors are perpendicular (0 = 7r/2). These prop­
erties mean that the dot product between different orthog­
onal unit vectors at the same point is zero, while the dot 

Y A 

B 

A B =AB cos 0
 
COsa
 

Figure 1-7 The dot product between two vectors. 
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product between a unit vector and itself is unity 

i. - i.= 1, i. - i,=0
 

i,-i,=1, i.-i2 =0 (8)
 

i. - i= 1, i, - i =0 

Then the dot product can also be written as 

A -B=(A.i.,+A,i,+Ai) -(B.i.+B,i,+Bai ). 

= A.B. + AB, + A1B. (9) 

From (6) and (9) we see that the dot product does not 
depend on the order of the vectors 

A-B=B-A (10) 

By equating (6) to (9) we can find the angle between vectors as 

Cs0=A B. + AB, + A.B,11cos= ABAB 

Similar relations to (8) also hold in cylindrical and spherical 
coordinates if we replace (x, y, z) by (r, 4, z) or (r, 0, 4). Then 
(9) to (11) are also true with these coordinate substitutions. 

EXAMPLE 1-2 DOT PRODUCT 

Find the angle between the vectors shown in Figure 1-8, 

A = 3 i.+i, B= 2i. 

,,A -,f3i. + i, 

S=30- B - 2i. 

___ ___ ___ ___ 2 X 

A - B = 2r3 

Figure 1-8 The angle between the two vectors A and B in Example 1-2 can be found 
using the dot product. 
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SOLUTION 

From (11) 

cos8= =­
A,+A'] B. 2 

0 = cos-I -= 30* 
2 

1-2-5 The Cross (Vector) Product 

The cross product between two vectors A x B is defined as a 
vector perpendicular to both A and B, which is in the direc­
tion of the thumb when using the right-hand rule of curling 
the fingers of the right hand from A to B as shown in Figure 
1-9. The magnitude of the cross product is 

JAXB =AB sin 6 (12) 

where 0 is the enclosed angle between A and B. Geometric­
ally, (12) gives the area of the parallelogram formed with A 
and B as adjacent sides. Interchanging the order of A and B 
reverses the sign of the cross product: 

AXB= -BXA (13) 

A x 8 

A 

AS 

A 

Positive
 
0 sense
 

from A to B
 

B x A = -A x B 

(a) (b) 

Figure 1-9 (a) The cross product between two vectors results in a vector perpendic­
ular to both vectors in the direction given by the right-hand rule. (b) Changing the 
order of vectors in the cross product reverses the direction of the resultant vector. 
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The cross product is zero for colinear vectors (0 =0) so that 
the cross product between a vector and itself is zero and is 
maximum for perpendicular vectors (0 = ir/2). For rectan­
gular unit vectors we have 

i. X i.= 0, i. X i, = i', i, Xi. = -i. 

i, xi, =0, i,X i=i", i, xi,= -i. (14) 

i, X i,= 0, i" X i.= i,, i, xi"= -i, 

These relations allow us to simply define a right-handed 
coordinate system as one where 

i.Xi,(15) 

Similarly, for cylindrical and spherical coordinates, right-
handed coordinate systems have 

irX i$ =ih, i,. x i = i, (16) 

The relations of (14) allow us to write the cross product 
between A and B as 

Ax B = (A.i. +A,i, +Ai) X (Bji1 +B,i, +B i) 

= i. (AB.-A.B,) +i,(A.B.-A.B ) +i.(A.B, - AB:). 

(17) 

which can be compactly expressed as the determinantal 
expansion 

Ix i, iz 

AXB=det A. A, A. 

B. B, B. 

=i,(AB. - AB,) +i,(AB. - A.B) +i(A.B,-AB.) 

(18) 

The cyclical and orderly permutation of (x, y, z) allows easy 
recall of (17) and (18). If we think of xyz as a three-day week 
where the last day z is followed by the first day x, the days 
progress as 

xyzxyzxyzxyz .-- (19) 

where the three possible positive permutations are under­
lined. Such permutations of xyz in the subscripts of (18) have 
positive coefficients while the odd permutations, where xyz do 
not follow sequentially 

xzy, yxz, zyx (20) 

have negative coefficients in the cross product. 
In (14)-(20) we used Cartesian coordinates, but the results 

remain unchanged if we sequentially replace (x, y, z) by the 
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cylindrical coordinates (r, 0, z) or the spherical coordinates 
(r, 0, 4). 

EXAMPLE 1-3 CROSS PRODUCT 

Find the unit vector i,, perpendicular in the right-hand 
sense to the vectors shown in Figure 1-10. 

A =-i.+i,+i., B=i. -i,+i 

What is the angle between A and B? 

SOLUTION 

The cross product A x B is perpendicular to both A and B 

i, i, i ( 
AXB=det -1 1 1 =2(i.+i,) 

-1 -1 1 

The unit vector i. is in this direction but it must have a 
magnitude of unity 

in=AxBA.= =-(i +i, 
|AXBJ '_ ' 

z 

A -- i + iV + i, 

12 
B~i2 -BxA--AxB-i,,+ 

B i , + ­

2-- ~-~-- ­ - ~A = 2 i + ) 
x - ­

x .1 0 v 

Figure .1-10 The cross product between the two vectors in Example 1-3. 

-2 
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The angle between A and B is found using (12) as 

2%/sin 0= =AXBI 
AB %/i%/ 

-2,r * =70.5* or 109.5* 

The ambiguity in solutions can be resolved by using the dot 
product of (11) 

AB ­

1-3 THE GRADIENT AND THE DEL OPERATOR 

1-3-1 The Gradient 

Often we are concerned with the properties of a scalar field 
f(x, y, z) around a particular point. The chain rule of differ­
entiation then gives us the incremental change df in f for a 
small change in position from (x, y, z) to (x + dx, y + dy, z + dz): 

Of Of Of
df=-dx+-dy+-dz (1)ax ay Oz 

If the general differential distance vector dl is defined as 

dl= dx i.+dy i,+dz ih (2) 

(1) can be written as the dot product: 

( Of Of Of 
df = - - i.+ f- i, +- - i) -dl 

ax ay az 

= grad f - dl (3) 

where the spatial derivative terms in brackets are defined as 
the gradient of f: 

grad f = Vf =-- i.+- i,+ f i. (4)
Ox ay az 

The symbol V with the gradient term is introduced as a 
general vector operator, termed the del operator: 

V=i a-+i,-a +i -a(5) 
ax ay az 

By itself the del operator is meaningless, but when it premul­
tiplies a scalar function, the gradient operation is defined. We 
will soon see that the dot and cross products between the del 
operator and a vector also define useful operations. 
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With these definitions, the change in f of (3) can be written 
as 

df = Vf - dl=IVfj dl cos 0 (6) 

where 6 is the angle between Vf and the position vector dl. 
The direction that maximizes the change in the function f is 
when dl is colinear with Vf(8 = 0). The gradient thus has the 
direction of maximum change in f. Motions in the direction 
along lines of constant f have 6 = ir/2 and thus by definition 
df=0. 

1-3-2 Curvilinear Coordinates 

(a) Cylindrical 

The gradient of a scalar function is defined for any coor­
dinate system as that vector function that when dotted with dl 
gives df. In cylindrical coordinates the differential change in 
f(r,o, z) is 

df dr+- do+ dz (7)ar do az 

The differential distance vector is 

dl= dri,+rdo i6 +dz i. (8) 

so that the gradient in cylindrical coordinates is 

Of l af Of
df = Vf - dl>Vf =+- i, + I i +- (9)Or r 4 az 

(b) Spherical 
Similarly in spherical coordinates the distance vector is 

dl=dri,+rdO i,+rsinOdd i (10) 

with the differential change of f(r, 8, 46) as 

df= dr+ d+ d4o=Vf-dl (11)
Or 0o d4 

Using (10) in (11) gives the gradient in spherical coordinates 
as 

Of. 101. 1 f.Vf = -- ,+IOf ,+ I O(12)Or r aO r sin 8o 
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EXAMPLE 1-4 GRADIENT 

Find the gradient of each of the following functions where 
a and b are constants: 

(a) f = ax2 y + by3z 

SOLUTION 

af. af. a . 

= 2axyi. + (ax2 + 3by 2z)i, + by~i2 

(b) f= ar2 sin4+brz cos 24, 

SOLUTION 

Vf=-a,+ I +-f. 
ar r 4, az 

=(2ar sin 4+ bz cos 24)% 

+(ar cos 4 -2bz sin 24)i, + br cos 24i. 

(c) f =a+brsin 0 cos 4 
r 

SOLUTION 

af lf. 1 f. 
ar r O rsin084 

=(-+b sin 0 cos 4)i,+bcos 0 cos 'e-b sini 

1-3-3 The Line Integral 

In Section 1-2-4 we motivated the use of the dot product 
through the definition of incremental work as depending 
only on the component pf force F in the direction of an 
object's differential displacement dl. If the object moves along 
a path, the total work is obtained by adding up the incremen­
tal works along each small displacement on the path as in 
Figure 1-11. If we break the path into N small displacements 
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F, 

= F7*dl,dW,di, 

dd6 F =F4-d1dW=3 
dW3 = F3 ' d 3 

FC dIF2 


dW2 = F2- d12
 

d F 

L di1CdF,I dW, = F, -di, 

N N 
w ~ dw, F - di,
 

,,=1 n = 1
 
urn

lim
 
dl, 0 W = F-dl
 

f~N 
L 

Figure 1-11 The total work in moving a body over a path is approximately equal to 
the sum of incremental works in moving the body each small incremental distance dl. 
As the differential distances approach zero length, the summation becomes a line 
integral and the result is exact. 

d1i, dA2 , . . . , dIN, the work performed is approximately 

W- F 1 -dl +F 2 - d12 +F 3 -dI3+ +FN * dIN 
N 

Y_ F - dl (13) 
n-1 

The result becomes exact in the limit as N becomes large with 
each displacement dl. becoming infinitesimally small: 

N 

W = Jim Y_ Fn - dl, F - dI (14)
N-c n=1 L 
dl,-+0 

In particular, let us integrate (3) over a path between the 
two points a and b in Figure 1-12a: 

(15)Vf - dlfab df=fi-flab 

Because df is an exact differential, its line integral depends 
only on the end points and not on the shape of the contour 
itself. Thus, all of the paths between a and b in Figure 1-12a 
have the same line integral of Vf, no matter what the function 
f may be. If the contour is a closed path so that a = b, as in 
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iV 

y
2 

b -b 

- = f(b)2j 431Vf- di -- )Ta) b 
LVf -di =0 332 

2~~~~-X Ix 31 f Xd ~)fa4 

a, b
 

2 2 

(a) (b) (c) 

Figure 1-12 The component of the gradient of a function integrated along a line 
contour depends only on the end points and not on the contour itself. (a) Each of the 
contours have the same starting and ending points at a and b so that they all have the 
same line integral of Vf. (b) When all the contours are closed with the same beginning 
and ending point at a, the line integral of Vf is zero. (c) The line integral of the 
gradient of the function in Example (1-5) from the origin to the point P is the same for 
all paths. 

EXAMPLE 

Figure 1-12b, then (15) is zero: 

vf - d1=fi.-fi.=0 (16) 

where we indicate that the path is closed by the small circle in 
the integral sign f. The line integral of the gradient of a 
function around a closed path is zero. 

1-5 LINE INTEGRAL 

2For f =x y, verify (15) for the paths shown in Figure 1-12c 
between the origin and the point P at (xo, yo). 

SOLUTION 

The total change in f between 0 and P is 

I df fA, -fi 0 = x2yo 

From the line integral along path I we find 

Vf - dl= X-o dy+ __dx =xoyo'
Y=702c 



Flux and Divergence 21 

Similarly, along path 2 we also obtain 

P' 0" af~ 73 af 2Vf-dI= - &x+ - -dy xoyo 

while along path 3 we must relate x and y along the straight 
line as 

y =- x z dy =L dx 
xo xo 

to yield 

PfPf 3oyox2 2 

Vf - dl= :-(-dx+--dy = f - dx=xOyo 

1-4 FLUX AND DIVERGENCE 

If we measure the total mass of fluid entering the volume in 
Figure 1-13 and find it to be less than the mass leaving, we 
know that there must be an additional source of fluid within 
the pipe. If the mass leaving is less than that entering, then 

Flux in Flux out 

Flux in < Flux out 

Source 

Flux in > Flux out 

Sink 

Figure 1-13 The net flux through a closed surface tells us whether there is a source or 
sink within an enclosed volume. 
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there is a sink (or drain) within the volume. In the absence of 
sources or sinks, the mass-of fluid leaving equals that entering 
so the flow lines are continuous. Flow lines originate at a 
source and terminate at a sink. 

1-4.1 Flux 

We are illustrating with a fluid analogy what is called the 
flux (D of a vector A through a closed surface: 

= fA - dS (1) 

The differential surface element dS is a vector that has 
magnitude equal to an incremental area on the surface but 
points in the direction of the outgoing unit normal n to the 
surface S, as in Figure 1-14. Only the component of A 
perpendicular to the surface contributes to the flux, as the 
tangential component only results in flow of the vector A 
along the surface and not through it. A positive contribution 
to the flux occurs if A has a component in the direction of dS 
out from the surface. If the normal component of A points 
into the volume, we have a negative contribution to the flux. 

If there is no source for A within the volume V enclosed by 
the surface S, all the flux entering the volume equals that 
leaving and the net flux is zero. A source of A within the 
volume generates more flux leaving than entering so that the 
flux is positive (4D>0) while a sink has more flux entering than 
leaving so that (D < 0. 

dS - n dS 

A 
A n 

sT j
 

- 4
 

Figure 1-14 The flux of a vector A through the closed surface S is given by the 
surface integral of the component of A perpendicular to the surface S. The differential 
vector surface area element dS is in the direction of the unit normal n. 
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Thus we see that the sign and magnitude of the net flux 
relates the quantity of a field through a surface to the sources 
or sinks of the vector field within the enclosed volume. 

1-4-2 Divergence 

We can be more explicit about the relationship between the 
rate of change of a vector field and its sources by applying (1) 
to a volume of differential size, which for simplicity we take to 
be rectangular in Figure 1-15. There are three pairs of plane 
parallel surfaces perpendicular to the coordinate axes so that 
(1) gives the flux as 

(1) = A. (x) dy dz - A. (x-Ax) dydz 

+ JA,(y + Ay) dx dz - A,(y) dx dz 

+ A,(z+Az)dxdy- A,(z)dxdy (2) 

where the primed surfaces are differential distances behind 
the corresponding unprimed surfaces. The minus signs arise 
because the outgoing normals on the primed surfaces point in 
the negative coordinate directions. 

Because the surfaces are of differential size, the 
components of A are approximately constant along each 
surface so that the surface integrals in (2) become pure 

dS, = Ax Ly 

dS -- y A 

3 

dS' -Ax A dS, =Ax Az 

dS' = -aA y 

Figure 1-15 Infinitesimal rectangular volume used to define the divergence of a 
vector. 
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multiplications of the component of A perpendicular to the 
surface and the surface area. The flux then reduces to the form 

+ [A,(y +Ay)-A,(y)]D(A.(x)-Ax(x-Ax)]
AX Ay 

+[A. (z + Az) -A. (z)]A yA 3+Ax Ay Az (3)
AZ 

We have written (3) in this form so that in the limit as the 
volume becomes infinitesimally small, each of the bracketed 
terms defines a partial derivative

(A, 3A, Az 
lim (D= + + V (4)

Ax-O ax ayaz 

where AV = Ax Ay Az is the volume enclosed by the surface S. 
The coefficient of AV in (4) is a scalar and is called the 

divergence of A. It can be recognized as the dot product 
between the vector del operator of Section 1-3-1 and the 
vector A: 

aAx 8,A, aA,
div A = V -A =--+ + (5) 

ax ay az 

1-4-3 Curvilinear Coordinates 

In cylindrical and spherical coordinates, the divergence 
operation is not simply the dot product between a vector and 
the del operator because the directions of the unit vectors are 
a function of the coordinates. Thus, derivatives of the unit 
vectors have nonzero contributions. It is easiest to use the 
generalized definition of the divergence independent of the 
coordinate system, obtained from (1)-(5) as 

V- A= lim J5A-dS (6)
AV-0o AV 

(a) Cylindrical Coordinates 
In cylindrical coordinates we use the small volume shown in 

Figure 1-16a to evaluate the net flux as 

= A - dS =f (r+Ar)A , dO dz - rArir d dz 

+ I A dr dz - f A dr dz 

J"" fj rA,,I+A, dr doS - rA,,,drdo (7) 
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S 

dS, = r dr do 

dS, = dr ds 
As 

dS, =V( + Ar) do As 

(a) 

dS = (r + Ar) 2 sin 0 dO do 

= r dr dO
) <dSd 

3 

o2 

7' = r sin(O + AO) dr do 

x/ 

(b) 
Figure 1-16 Infinitesimal volumes used to define the divergence of a vector in 
(a) cylindrical and (b) spherical geometries. \ r 7r 

Again, because the volume is small, we can treat it as approx­
imately rectangular with the components of A approximately 
constant along each face. Then factoring out the volume 
A V =rAr AO Az in (7), 

I [(r + Ar)A,,,-rA , 

[I A ] [A -A. rAr 4 Az (8)r AO Az 

M M 
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lets each of the bracketed terms become a partial derivative as 
the differential lengths approach zero and (8) becomes an 
exact relation. The divergence is then 

* sA-dS 1 8 1BA, 8A.
V -A= lim -= (rA,)+I +- (9)A,+o A V rOr r a4 8z 

(b) Spherical Coordinates 
Similar operations on the spherical volume element AV= 

r2 sin 0 Ar AO A4 in Figure 1-16b defines the net flux through 
the surfaces: 

4= A -dS 

[(r + &r)2Ar,+, - r2A,,] 
\ r2 Ar 

[AA,, sin (0 +A#)-Ae,, sin 8] 
r sin 8 AG 

+ [A... A1.r 2 sin OAr AOAO (10) 

The divergence in spherical coordinates is then 

5 A -dS
 

V- A= lim
 
Ar-.O AV 

=- - (r'A,) + .1 8-(Ae 1 BA, (1sin 0) + -- (11) 
r ar r sin 80 r sinG ao 

1-4-4 The Divergence Theorem 

If we now take many adjoining incremental volumes of any 
shape, we form a macroscopic volume V with enclosing sur­
face S as shown in Figure 1-17a. However, each interior 
common surface between incremental volumes has the flux 
leaving one volume (positive flux contribution) just entering 
the adjacent volume (negative flux contribution) as in Figure 
1-17b. The net contribution to the flux for the surface integral 
of (1) is zero for all interior surfaces. Nonzero contributions 
to the flux are obtained only for those surfaces which bound 
the outer surface S of V. Although the surface contributions 
to the flux using (1) cancel for all interior volumes, the flux 
obtained from (4) in terms of the divergence operation for 
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S
 

S, 
0 S2 

(a) 
152 

n, -- n2 

(b) 

Figure 1-17 Nonzero contributions to the flux of a vector are only obtained across 
those surfaces that bound the outside of a volume. (a) Within the volume the flux 
leaving one incremental volume just enters the adjacent volume where (b) the out­
going normals to the common surface separating the volumes are in opposite direc­
tions. 

each incremental volume add. By adding all contributions 
from each differential volume, we obtain the divergence 
theorem: 

cI=fA-dS= lim I (V-A)AV I=fV-AdV (12) 
A V.-_O 

where the volume V may be of macroscopic size and is 
enclosed by the outer surface S. This powerful theorem con­
verts a surface integral into an equivalent volume integral and 
will be used many times in our development of electromag­
netic field theory. 

EXAMPLE 1-6 THE DIVERGENCE THEOREM 

Verify the divergence theorem for the vector 

A=xi.+yi,+zi. =ri, 

by evaluating both sides of (12) for the rectangular volume 
shown in Figure 1-18. 

SOLUTION 

The volume integral is easier to evaluate as the divergence 
of A is a constant 

e3Ax 8A, 3A.
V - A = +---+--= 3 

ax ay az 
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z A =ri xix + YiY + Ai, 

ZA0 
v, 

/3/c S, 2 

I /J 

b 

Figure 1-18 The divergence theorem is verified in Example 1-6 for the radial vector 
through a rectangular volume. 

(In spherical coordinates V -A= (1/r2 )(/ar)(r3 ) = 3) so that 
the volume integral in (12) is 

-AAVdV=3abc 

The flux passes through the six plane surfaces shown: 

qD=fA-dS= jj(a dydz- AJO)dydz 
a 0 

+A, (b)dxdz- A,10 dx dz 

b 0 

+jA dxdy- A dxdy=3abc 

C )0 

which verifies the divergence theorem. 

1.5 THE CURL AND STOKES' THEOREM 

1-5-1 Curl 

We have used the example of work a few times previously 
to motivate particular vector and integral relations. Let us do 
so once again by considering the line integral of a vector 
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around a closed path called the circulation: 

C= A - dl (1) 

where if C is the work, A would be the force. We evaluate (1) 
for the infinitesimal rectangular contour in Figure 1-19a: 

C=f A.(y)dx+ A,(x+Ax)dy+ A.(y+Ay)dx 

I 3 

+ A,(x) dy (2) 

4 

The components of A are approximately constant over each 
differential sized contour leg so that (2) is approximated as 

C_ ([A.(y)-A.(y +Ay)] + [A,(x +Ax)-A,(x)])A (3)C==Y +AXy 3 

y 

(x. y) 

(a)
 

n
 

(b) 

Figure 1-19 (a) Infinitesimal rectangular contour used to define the circulation. 
(b) The right-hand rule determines the positive direction perpendicular to a contour. 
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where terms are factored so that in the limit as Ax and Ay 
become infinitesimally small, (3) becomes exact and the 
bracketed terms define partial derivatives: 

lim C= ( A A) AS. (4) 
Ax-O ax ay 

AS-AxAy 

The contour in Figure 1-19a could just have as easily been 
in the xz or yz planes where (4) would equivalently become 

C= --- 'AS. (yz plane) 
a 8a. 

C AS, (xz plane) (5)
az ax 

by simple positive permutations of x, y, and z. 
The partial derivatives in (4) and (5) are just components of 

the cross product between the vector del operator of Section 
1-3-1 and the vector A. This operation is called the curl of A 
and it is also a vector: 

i, i, 'z 

curlA=VXA=det a 
ax ay az 
A. A, A. 

=i. 7+i,ay az ) (az ax 
zAax+i.ax~ ay3 (6)+aA,8x ay 

The cyclical permutation of (x, y, z) allows easy recall of (6) as 
described in Section 1-2-5. 

In terms of the curl operation, the circulation for any 
differential sized contour can be compactly written as 

C=(Vx A) -dS (7) 

where dS = n dS is the area element in the direction of the 
normal vector n perpendicular to the plane of the contour in 
the sense given by the right-hand rule in traversing the 
contour, illustrated in Figure 1-19b. Curling the fingers on 
the right hand in the direction of traversal around the 
contour puts the thumb in the direction of the normal n. 

For a physical interpretation of the curl it is convenient to 
continue to use a fluid velocity field as a model although the 
general results and theorems are valid for any vector field. If 
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No circulation Nonzero circulation 

Figure 1-20 A fluid with a velocity field that has a curl tends to turn the paddle wheel. 
The curl component found is in the same direction as the thumb when the fingers of 
the right hand are curled in the direction of rotation. 

a small paddle wheel is imagined to be placed without dis­
turbance in a fluid flow, the velocity field is said to have 
circulation, that is, a nonzero curl, if the paddle wheel rotates 
as illustrated in Figure 1-20. The curl component found is in 
the direction of the axis of the paddle wheel. 

1-5-2 The Curl for Curvilinear Coordinates 

A coordinate independent definition of the curl is obtained 
using (7) in (1) as 

~A -dl 
(V x A),= lim (8)

dS.-+O dn 

where the subscript n indicates the component of the curl 
perpendicular to the contour. The derivation of the curl 
operation (8) in cylindrical and spherical. coordinates is 
straightforward but lengthy. 

(a) Cylindrical Coordinates 
To express each of the components of the curl in cylindrical 

coordinates, we use the three orthogonal contours in Figure 
1-21. We evaluate the line integral around contour a: 

fA - d= A() dz + A A.(z-- Az) r d4 

+ 1zA.(0+A) dz + A#(z) r d46 

([A.(O+A4)-A.(O)] [A#(z)-A#(z-Az)] rAOAz
rAO AZ 

(9) 

M M 
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(r - Ar, o + AO, ) 
- Ar) A$

((r 

C 

A 
(r ,r, ) 

x- r) A-**r, a#,s AAz(r, , 

) (r 0r,z, r AO 3 A ,z 

(V x A)x 

(r,,- I r, - ­
(rr + A, - Az 

(V x A), 

Figure 1-21 Incremental contours along cylindrical surface area elements used to 
calculate each component of the curl of a vector in cylindrical coordinates. 

to find the radial component of the curl as 

fA -dI 
(V x A)r = liM 1 aA= aA (10) 

_-o rOA4Az r a4 az 
Az-.O 

We evaluate the line integral around contour b: 
r Z-Az r-Ar 

A -dl Ar(z)drr)dz+ Ar(z-Az)dr 

+ A.(r -,Ar) dz 

([Ar(z)-Ar(Z -Az)] [A.(r)-A.(r- Ar)]) A Az 
AZ Ar(11) 
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to find the 4 component of the curl, 

A - dl OA aA 

(V x A), = ur z = (12)
A&r-0 Ar Az az ar/
Az -. 

The z component of the curl is found using contour c: 

r +A4 rr-1 dr 
A-dl= Arldr+ rA jd4+ A,,,, dr 

Sr-Ar r 

+ (r-Ar)A4,.,d 

S[rAp,-(r -Ar)A4,_-,] [Arl4..A.- A rl r &rA]
rAr rA4 

(13) 

to yield 

A - dl 
__ _1 / 8 t3Ar\

(V x A).= n =-- (rAO) -- (14)
Ar-O r 

C
Ar AO r Or 84 

A.0 -0 

The curl of a vector in cylindrical coordinates is thus 

(I MA, dA aA, aA 
_XA'r A)Vx A= )ir+(=- ,r a4 Oz az Or 

1 aA,
+-( (rA#) ;i, (15)

r ar 

(b) Spherical Coordinates 
Similar operations on the three incremental contours for 

the spherical element in Figure 1-22 give the curl in spherical 
coordinates. We use contour a for the radial component of 
the curl: 

+ &0 e-A e 
A - dl= , A4,r sin 0 dO + rA ,.. dO 

+ r sin (0 -A)A 4 .. d+ rA,. dO 
.+"4 -As 

[A,. sin - A4,.-,. sin (0 - AG)) 
r sin e AO 

[Ae,.. -A _+ r2 sin 0 AO A4 (16) 
r sin 0 AO 
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r sin (0- AO) A# 

'r, - A8, +AO)Ir, 0 - AO, #) 

a r AO 

(r, 0,#) 
rsin 0AO (r,0, + AO) 

raG ( V x A),
 
(r,-AO. (r,6,#)
 

-~ \~.rsin 6A#~
 
(r, 0,#0

C	 (r, 01,0 + AO) 

4r (Vx A),
 
(r-Ar,6-AO, r)
 

(r - Ar) AO / 

(V x A),
 (r - Ar) sin 0 AO 
(r-Ar, 0, )	 Y 

,' ---I 
X: 

Figure 1-22 Incremental contours along spherical surface area elements used to 
calculate each component of the curl of a vector in spherical coordinates. 

to obtain 

A - dl 
(V X A),= 	 lim = (A. sin 6)

A:-: r sin 0 AO AO r sin 0 1 O 

(17) 

The 0 component is found using contour b: 

A -dl= A, dr+ (r- Ar)A,,, sin e doJ 
+ A....dr+ rA, sin 6d4S 

sr sin Ar 46 
r Ar / 

(18) 

I 
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as 

fA - di , 
(V x A),= lim )(rAo)

Ar-o r sin Ar A4 r sin e a4 4rA4-0O 
(19) 

The 4 component of the curl is found using contour c: 

8 r--Ar 

A-dl= e-, rA1d+ A,[.dr 

9-A6 
+1 (r-Ar)A _ dG+ J A,,,_,,,dr 

([rA,, -(r-Ar)A 1 ,,] [Al, - ArI,,] r Ar AG 
\ rAr r AO 

(20) 
as 

I1 a A,
(V X.A),O = lim =- -(rA,) - (21)Ar-o r Ar AO r r 81 

The curl of a vector in spherical coordinates is thus given 
from (17), (19), and (21) as 

1 
(A. sin 6) 

aA 
i,VxA = I 

r sin 0 80 

+A 10 ' OrnGO4B,A (rA.4,))i.
r sin 0 a4 ar 

+- -(rAe)- a (22)r ar 

Theorem 

We now piece together many incremental line contours of 
the type used in Figures 1-19-1-21 to form a macroscopic 
surface S like those shown in Figure 1-23. Then each small 
contour generates a contribution to the circulation 

dC = (V x A) - dS (23) 

so that the total circulation is obtained by the sum of all the 
small surface elements 

C= f(V x A) - dS (24) 
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0( QdC Q 

n 

dc 

Figure 1-23 Many incremental line contours distributed over any surface, have 
nonzero contribution to the circulation only along those parts of the surface on the 
boundary contour L. 

Each of the terms of (23) are equivalent to the line integral 
around each small contour. However, all interior contours 
share common sides with adjacent contours but which are 
twice traversed in opposite directions yielding no net line 
integral contribution, as illustrated in Figure 1-23. Only those 
contours with a side on the open boundary L have a nonzero 
contribution. The total result of adding the contributions for 
all the contours is Stokes' theorem, which converts the line 
integral over the bounding contour L of the outer edge to a 
surface integral over any area S bounded by the contour 

A - dl= J(V x A) - dS (25) 

Note that there are an infinite number of surfaces that are 
bounded by the same contour L. Stokes' theorem of (25) is 
satisfied for all these surfaces. 

EXAMPLE 1-7 STOKES' THEOREM 

Verify Stokes' theorem of (25) for the circular bounding 
contour in the xy plane shown in Figure 1-24 with a vector 
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C-R 

A = -yi. + xi. - ziz = rio - zi,
 
a
 

Figure 1-24 Stokes' theorem for the vector given in Example 1-7 can be applied to 
any surface that is bounded by the same contour L. 

field 

A = -yi., +xi, -zi. = ri6 -zi, 

Check the result for the (a) flat circular surface in the xy 
plane, (b) for the hemispherical surface bounded by the 
contour, and (c) for the cylindrical surface bounded by the 
contour. 

SOLUTION 

For the contour shown 

dl = R dO i" 

so that 

A -di= R 2 d4 

where on L, r = R. Then the circulation is 

C= A-dl= R2do=27rR 2 

The z component of A had no contribution because dl was 
entirely in the xy plane. 

The curl of A is (8A, 8A1 
VxA=ix =2i, 

ax ay 
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(a) For the circular area in the plane of the contour, we 
have that 

f (Vx A) - dS = 2 dS. =2rR2 

which agrees with the line integral result. 
(b) For the hemispherical surface 

v/2 2. 

(V X A) - dS= = 0 2 - iR2 sin 0dOdO 

From Table 1-2 we use the dot product relation 

i - i,= cos e 
which again gives the circulation as 

w/2 2w 2/wco 
= o 0v2 21rR2 C=w22 R 2sin 20 dO d= -21rR 

= 11o 2 e-o 

(c) Similarly, for th-e cylindrical surface, we only obtain 
nonzero contributions to the surface integral at the upper 
circular area that is perpendicular to V X A. The integral is 
then the same as part (a) as V X A is independent of z. 

1-5-4 Some Useful Vector Identities 

The curl, divergence, and gradient operations have some 
simple but useful properties that are used throughout the 
text. 

(a) The Curl of the Gradient is Zero [V x (Vf)= 0] 
We integrate the normal component of the vector V X (Vf) 

over a surface and use Stokes' theorem 

JV x (Vf) - dS= Vf - dl= 0 (26) 

where the zero result is obtained from Section 1-3-3, that the 
line integral of the gradient of a function around a closed 
path is zero. Since the equality is true for any surface, the 
vector coefficient of dS in (26) must be zero 

V X(Vf)=0 

The identity is also easily proved by direct computation 
using the determinantal relation in Section 1-5-1 defining the 
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curl operation: 

i. i, i" 

a aVx(Vf)det 
a 

ax ay az 

af af af 
ax ay az 

ix2(L - .) +~, a~f ;a-f)I +i,(AY -~af).0.
ayaz azay azax axaz axay ayax 

(28) 

Each bracketed term in (28) is zero because the order of 
differentiation does not matter. 

(b) The Divergence of the Curl of a Vector is Zero 
[V -(Vx A)=0] 

One might be tempted to apply the divergence theorem to 
the surface integral in Stokes' theorem of (25). However, the 
divergence theorem requires a closed surface while Stokes' 
theorem is true in general for an open surface. Stokes' 
theorem for a closed surface requires the contour L to shrink 
to zero giving a zero result for the line integral. The diver­
gence theorem applied to the closed surface with vector V x A 
is then 

SV xA -dS =0=V-(VxA)dV=0>V-(VxA)=0 
s v (29) 

which proves the identity because the volume is arbitrary. 
More directly we can perform the required differentiations 

V- (VxA) 

a, aIA.2 aA, 
 a faA2 aA.\ a ,aA aA2\ax\ay az axa ay /ay\ az z\ax

(a2A. a2A a2A2 a2A 2A, a
 

x)+(!-x x - -)= 0 (30)axay ayx ayaz ay azax 0x(z 

where again the order of differentiation does not matter. 

PROBLEMS 

Section 1-1 
1. Find the area of a circle in the xy plane centered at the 
origin using: 

(a) rectangular coordinates x + y2 = a2 (Hint: 
2J - _2 dx = [x a ,x 2 + a2 sin~'(x/a)]) 
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(b) cylindrical coordinates r= a. 
Which coordinate system is easier to use? 

2. Find the volume of a sphere of radius R centered at the 
origin using: 

(a) 	rectangular coordinates x2+y+z2 = R (Hint: 

J 2 	 (xla)])1Ia -x dx =[xV/'-x +a'sin-

(b) cylindrical coordinates r2+Z2= R ; 
(c) spherical coordinates r = R. 

Which coordinate system is easiest? 

Section 1-2 
3. Given the three vectors 

A= 3i.+2i,-i. 

B= 3i. -4i, -5i, 

C= i. -i,+i,, 

find the following: 

(a) 	 A-EB,B C,A C 
(b) 	 A -B, B -C, A -C 
(c) 	 AXB,BXC,AXC 
(d) 	 (A x B) - C, A - (B x C) [Are they equal?] 
(e) 	 A x (B x C), B(A - C) - C(A - B) [Are they equal?] 
(f) 	 What is the angle between A and C and between B and 

A xC? 

4. Given the sum and difference between two vectors, 

A+B= -i.+5i, -4i 

A -	 B = 3i. -i, - 2i, 

find the individual vectors A and B. 
5. (a) Given two vectors A and B, show that the component 
of B parallel to A is 

B -A
B11 = A 

A -A 

(Hint: Bi = a A. What is a?) 
(b) 	 If the vectors are 

A = i. - 2i,+i" 

B = 3L + 5i, - 5i, 

what are the components of B parallel and perpendicular to 
A? 
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6. What are the angles between each of the following vectors: 

A = 4i. - 2i, + 2i. 

B = -6iL+ 3i,- 3i. 

C=i.+3iy,+1. 

7. Given the two vectors 

A=3i.+4i, and B=7i-24i, 

(a) What is their dot product? 
(b) What is their cross product? 
(c) What is the angle 0 between the two vectors? 

8. Given the vector 

A = Ai. +A,i, + Aji 

the directional cosines are defined as the cosines of the angles 
between A and each of the Cartesian coordinate axes. Find 
each of these directional cosines and show that 

2cos a +cos/3+cos 2 

A 

9. A triangle is formed by the three vectors A, B, and C 
B-A. 

A 66 C = B - A 

oc 6. 

B 

(a) Find the length of the vector C in terms of the lengths 
of A and B and the enclosed angle Oc. The result is known as 
the law of cosines. (Hint: C- C = (B - A) - (B - A).) 

(b) For the same triangle, prove the law of sines: 

sin 0. sin 66 sin 0, 

(Hint: BXA = (C+A)XA.) 

M M 
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10. (a) Prove that the dot and cross can be interchanged in 
the scalar triple product 

(AXB) -C=(BXC) - A= (CxA) - B 

(b) Show that this product gives the volume of a parallele­
piped whose base is defined by the vectors A and B and whose 
height is given by C. 

(c) If 

A=i.+2i,, B= -i.+2i,, C=i.+i, 

verify the identities of (a) and find the volume of the paral­
lelepiped formed by the vectors. 

(d) Prove the vector triple product identity 

A x (B x C)=B(A C)-C(A - B) 

z 

4 
SA x B 

3 ­

I(A x B) - Cl 
2 -IAx B 

A Volume 	= (A x B) C
 
= (B x C) -A
 
= (C x A) - B
 

11. (a) Write the vectors A and B using Cartesian coordinates 
in terms of their angles 0 and 4 from the x axis. 

(b) Using the results of (a) derive the trigonometric 
expansions 

sin(9+4) sin 0 cos 0 +sin 4 cos 0 

cos (0+4) cos 0 cos 4 -sin 6 sin 4 
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y 

A 

>x 

B 

Section 1-3 
12. Find the gradient of each of the following functions 
where a and b are constants: 

(a) f=axz+bx-y 
(b) f = (a/r) sin 4 + brz cos 34 
(c) f = ar cos 0 +(b/r 2) sin 0 

13. 	 Evaluate the line integral of the gradient of the function 

f=rsin 

over each of the contours 	shown. 
Y 

2 

2a 

a 

2 -3 

-a4 

Section 1-4 
14. Find the divergence 	of the following vectors: 

(a) A=xi.+ i,+zi. = ri, 
(b) A=(xy 2z")i.+i,+ij 
(c) A = r cos Oi,+[(z/r) sin 0)]i, 
(d) A= r 2 sin e cos 4 [i,+i.+i-] 

15. Using the divergence theorem prove the following 
integral identities: 

(a) JVfdV= fdS 

M 
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(Hint: Let A = if, where i is any constant unit vector.) 

(b) VxFdV=-fFxdS 

(Hint: Let A = iX F.) 

(c) 	 Using the results of (a) show that the normal vector 
integrated over a surface is zero: 

~dS=0 

(d) 	Verify (c) for the case of a sphere of radius R. 
(Hint: i, = sin 0 cos i, +sin 0 sin Oi, +cos 8i.. 

16. 	 Using the divergence theorem prove Green's theorem 

f[fVg -gVf] - dS= Jv[fv2g gV2f] dV 

(Hint: V . (fVg) = fV2 g + Vf Vg.) 

17. (a) Find the area element dS (magnitude and direction) 
on each of the four surfaces of the pyramidal figure shown. 

(b) 	 Find the flux of the vector 

A = ri,.=xi,+yi,+zi, 

through the surface of (a). 
(c) Verify the divergence theorem by also evaluating the 

flux as 

b= JV A dV 

. 3 

a 

Section 1-5 
18. 	 Find the curl of the following vectors: 

(a) 	A=x2 yi,+y 2zi,+xyi 
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A = r cos 0i.+z sin1(b) 
r 

cos sin4 
(c) A=r2 sin cos46i,+ 2 16 r 

19. Using Stokes' theorem prove that 

dl= Vf XdS 

(Hint: Let A = if, where i is any constant unit vector.) 

20. Verify Stokes' theorem for the rectangular bounding 
contour in the xy plane with a vector field 

A = (x+a)(y+b)(z +c)i. 

2 

!21 

x 
Y2Z 

L 

Check the result for (a) a flat rectangular surface in the xy 
plane, and (b) for the rectangular cylinder. 

21. Show that the order of differentiation for the mixed 
second derivative 

a (af\ a af\ 

does not matter for the function 

2 myx 

y 

22. Some of the unit vectors in cylindrical and spherical 
coordinates change direction in space and thus, unlike 
Cartesian unit vectors, are not constant vectors. This means 
that spatial derivatives of these unit vectors are generally 
nonzero. Find the divergence and curl of all the unit vectors. 

M 
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23. A general right-handed orthogonal curvilinear coordinate 
system is described by variables (u, v, w), where 

i. x i, = i. 

dSW = h h dudv 

3 

dV = huh hwdudvdw 

u vd2 SdS, =Ahj&dudw 
(u,V, W) hd 

dS, = hvhI dvdw 

Since the incremental coordinate quantities du, dv, and dw do 
not necessarily have units of length, the differential length 
elements must be multiplied by coefficients that generally are 
a function of u, v, and w: 

dL.=h.du, dL.=h.dv, dLw=h.dw 

(a) What are the h coefficients for the Cartesian, cylindri­
cal, and spherical coordinate systems? 

(b) What is the gradient of any function f(u, v, w)? 
(c) What is the area of each surface and the volume of a 

differential size volume element in the (u, v, w) space? 
(d) What are the curl and divergence of the vector 

A =Aui, + Ai,+ A.i.? 

(e) What is the scalar Laplacian V 2f = V (Vf)? 
(f) Check your results of (b)-(e) for the three basic coor­

dinate systems. 

24. Prove the following vector identities: 

(a) V(fg)=fVg+gVf 
(b) V(A-B)=(A-V)B+(B -V)A+Ax(VxB)+Bx(VxA) 
(c) V-(fA)=fV-A+(A-V)f 
(d) V-(AxB)=B-(VXA)-A-(VXB) 
(e) VX(AXB)=A(V -B)-B(V -A)+(B-V)A-(A V)B 

http:dLw=h.dw
http:dL.=h.dv
http:dL.=h.du
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(f) Vx(fA)=VfxA+fVxA 
(g) (VXA)XA=(A-V)A--AV(A-A) 
(h) Vx(VxA)=V(V-A)-V 2 A 

25. Two points have Cartesian coordinates (1, 2, -1) and (2, 
-3, 1). 

(a) What is the distance between these two points? 
(b) What is the unit vector along the line joining the two 

points? 
(c) Find a unit vector in the xy plane perpendicular to the 

unit vector found in (b). 

Miscellaneous 
26. A series RLC circuit offers a good review in solving linear, 
constant coefficient ordinary differential equations. A step 
voltage Vo is applied to the initially unexcited circuit at t =0. 

- R L 

t=0 

VO C 

(a) Write a single differential equation for the current. 
(b) Guess an exponential solution of the form 

i(t)= fe 

and find the natural frequencies of the circuit. 
(c) What are the initial conditions? What are the steady-

state voltages across each element? 
(d) Write and sketch the solution for i(t) when 

R)2 1 R 2 1 , R 2 1 

2LT LC' 2L) LC' 2L LC 

(e) What is the voltage across each element? 
(f) After the circuit has reached the steady state, the 

terminal voltage is instantly short circuited. What is the short 
circuit current? 

27. Many times in this text we consider systems composed of 
repetitive sequences of a basic building block. Such discrete 
element systems are described by difference equations. 
Consider a distributed series inductance-shunt capacitance 
system excited by a sinusoidal frequency w so that the voltage 
and current in the nth loop vary as 

i,=Re(I.e"); v.=Re(V.e") 
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__ T cT CT cT c ­
(a) By writing Kirchoff's voltage law for the nth loop, show 

that the current obeys the difference equation 

W2 

I.+I- 2 2 ).+I.-'=0
WO 

What is W2? 
(b) Just as exponential solutions satisfy linear constant 

coefficient differential equations, power-law solutions satisfy 
linear constant coefficient difference equations 

I= fAn 

What values of A satisfy (a)? 
(c) The general solution to (a) is a linear combination of all 

the possible solutions. The circuit ladder that has N nodes is 
excited in the zeroth loop by a current source 

io= Re (Io e ' t ) 

Find the general expression for current i, and voltage v. for 
any loop when the last loop N is either open (IN = 0) or short 
circuited (VN = 0). (Hint: a+4 - = 1/(a-Va-1) 

(d) What are the natural frequencies of the system when 
the last loop is either open or short circuited? 
(Hint: (1)1/( 2N)e j2r/2N, r = 1, 2, 3,... ,2N.) 
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The ancient Greeks observed that when the fossil resin 
amber was rubbed, small light-weight objects were attracted. 
Yet, upon contact with the amber, they were then repelled. 
No further significant advances in the understanding of this 
mysterious phenomenon were made until the eighteenth 
century when more quantitative electrification experiments 
showed that these effects were due to electric charges, the 
source of all effects we will study in this text. 

2-1 ELECTRIC CHARGE 

2-1-1 Charging by Contact 

We now know that all matter is held together by the attrac­
tive force between equal numbers of negatively charged elec­
trons and positively charged protons. The early researchers 
in the 1700s discovered the existence of these two species of 
charges by performing experiments like those in Figures 2-1 
to 2-4. When a glass rod is rubbed by a dry cloth, as in Figure 
2-1, some of the electrons in the glass are rubbed off onto the 
cloth. The cloth then becomes negatively charged because it 
now has more electrons than protons. The glass rod becomes 

4 
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4 
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4
4 

;ii 
(a) (b) 

Figure 2-1 A glass rod rubbed with a dry cloth loses some of its electrons to the cloth. 
The glass rod then has a net positive charge while the cloth has acquired an equal 
amount of negative charge. The total charge in the system remains zero. 
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positively charged as it has lost electrons leaving behind a 
surplus number of protons. If the positively charged glass rod 
is brought near a metal ball that is free to move as in Figure 
2-2a, the electrons in the ball near the rod are attracted to the 
surface leaving uncovered positive charge on the other side of 
the ball. This is called electrostatic induction. There is then an 
attractive force of the ball to the rod. Upon contact with the 
rod, the negative charges are neutralized by some of the 
positive charges on the rod, the whole combination still 
retaining a net positive charge as in Figure 2-2b. This transfer 
of charge is called conduction. It is then found that the now 
positively charged ball is repelled from the similarly charged 
rod. The metal ball is said to be conducting as charges are 
easily induced and conducted. It is important that the 
supporting string not be conducting, that is, insulating, 
otherwise charge would also distribute itself over the whole 
structure and not just on the ball. 

If two such positively charged balls are brought near each 
other, they will also repel as in Figure 2-3a. Similarly, these 
balls could be negatively charged if brought into contact with 
the negatively charged cloth. Then it is also found that two 
negatively charged balls repel each other. On the other hand, 
if one ball is charged positively while the other is charged 
negatively, they will attract. These circumstances are sum­
marized by the simple rules: 

Opposite Charges Attract. Like Charges Repel. 

+ 

AK 

3ravity x x 

x 

(a) (b) (c) 

Figure 2-2 (a) A charged rod near a neutral ball will induce an opposite charge on 
the near surface. Since the ball is initially neutral, an equal amount of positive charge 
remains on the far surface. Because the negative charge is closer to the rod, it feels a 
stronger attractive force than the repelling force due to the like charges. (b) Upon 
contact with the rod the negative charge is neutralized leaving the ball positively 
charged. (c) The like charges then repel causing the ball to deflect away. 
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4­

4. .x­

4­

(b) 

(a) 

Figure 2-3 (a) Like charged bodies repel while (b) oppositely charged bodies attract. 

In Figure 2-2a, the positively charged rod attracts the 
negative induced charge but repels the uncovered positive 
charge on the far end of the ball. The net force is attractive 
because the positive charge on the ball is farther away from 
the glass rod so that the repulsive force is less than the 
attractive force. 

We often experience nuisance frictional electrification 
when we walk across a carpet or pull clothes out of a dryer. 
When we comb our hair with a plastic comb, our hair often 
becomes charged. When the comb is removed our hair still 
stands up, as like charged hairs repel one another. Often 
these effects result in sparks because the presence of large 
amounts of charge actually pulls electrons from air molecules. 

2-1-2 Electrostatic Induction 

Even without direct contact net charge can also be placed 
on a body by electrostatic induction. In Figure 2-4a we see 
two initially neutral suspended balls in contact acquiring 
opposite charges on each end because of the presence of a 
charged rod. If the balls are now separated, each half retains 
its net charge even if the inducing rod is removed. The net 
charge on the two balls is zero, but we have been able to 
isolate net positive and negative charges on each ball. 
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+ 

(a) (b) 

Figure 2-4 A net charge can be placed on a body without contact by electrostatic 
induction. (a) When a charged body is brought near a neutral body, the near side 
acquires the opposite charge. Being neutral, the far side takes on an equal but opposite 
charge. (b) If the initially neutral body is separated, each half retains its charge. 

2-1-3 Faraday's "Ice-Pail" Experiment 

These experiments showed that when a charged conductor 
contacted another conductor, whether charged or not, the 
total charge on both bodies was shared. The presence of 
charge was first qualitatively measured by an electroscope 
that consisted of two attached metal foil leaves. When 
charged, the mutual repulsion caused the leaves to diverge. 

In 1843 Michael Faraday used an electroscope to perform 
the simple but illuminating "ice-pail" experiment illustrated 
in Figure 2-5. When a charged body is inside a closed isolated 
conductor, an equal amount of charge appears on the outside 
of the conductor as evidenced by the divergence of the elec­
troscope leaves. This is true whether or not the charged body 
has contacted the inside walls of the surrounding conductor. 
If it has not, opposite charges are induced on the inside wall 
leaving unbalanced charge on the outside. If the charged 
body is removed, the charge on the inside and outside of the 
conductor drops to zero. However, if the charged body does 
contact an inside wall, as in Figure 2-5c, all the charge.on the 
inside wall and ball is neutralized leaving the outside charged. 
Removing the initially charged body as in Figure 2-5d will 
find it uncharged, while the ice-pail now holds the original 
charge. 

If the process shown in Figure 2-5 is repeated, the charge 
on the pail can be built up indefinitely. This is the principle of 
electrostatic generators where large amounts of charge are 
stored by continuous deposition of small amounts of charge. 

http:charge.on
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Figure 2-5 Faraday first demonstrated the principles of charge conservation by 
attaching an electroscope to an initially uncharged metal ice pail. (a) When all charges 
are far away from the pail, there is no charge on the pail nor on the flexible gold leaves 
of the electroscope attached to the outside of the can, which thus hang limply. (b) As a 
charged ball comes within the pail, opposite charges are induced on the inner surface. 
Since the pail and electroscope were originally neutral, unbalanced charge appears on 
the outside of which some is on the electroscope leaves. The leaves being like charged 
repel each other and thus diverge. (c) Once the charged ball is within a closed 
conducting body, the charge on the outside of the pail is independent of the position 
of the charged ball. If the charged ball contacts the inner surface of the pail, the inner 
charges neutralize each other. The outside charges remain unchanged. (d) As the now 
uncharged ball leaves the pail, the distributed charge on the outside of the pail and 
electroscope remains unchanged. 

This large accumulation of charge gives rise to a large force 
on any other nearby charge, which is why electrostatic 
generators have been used to accelerate charged particles to 

very high speeds in atomic studies. 

2-2 THE COULOMB FORCE LAW BETWEEN STATIONARY 
CHARGES 

2-2-1 Coulomb's Law 

It remained for Charles Coulomb in 1785 to express these 
experimental observations in a quantitative form. He used a 
very sensitive torsional balance to measure the force between 
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two stationary charged balls as a function of their distance 
apart. He discovered that the force between two small charges 
q, and q2 (idealized as point charges of zero size) is pro­
portional to their magnitudes and inversely proportional to 
the square of the distance r 12 between them, as illustrated in 
Figure 2-6. The force acts along the line joining the charges 
in the same or opposite direction of the unit vector i 12 and is 
attractive if the-charges are of opposite sign and repulsive if 
like charged. The force F2 on charge q2 due to charge qi is 
equal in magnitude but opposite in direction to the force F, 
on q1, the net force on the pair of charges being zero. 

1 i2 2nt[kg­
4-rso r 12 

2-2-2 Units 

The value of the proportionality constant 1/4irsE depends 
on the system of units used. Throughout this book we use SI 
units (Systeme International d'Unit6s) for which the base 
units are taken from the rationalized MKSA system of units 
where distances are measured in meters (m), mass in kilo­
grams (kg), time in seconds (s), and electric current in 
amperes (A). The unit of charge is a coulomb where 1 
coulomb= 1 ampere-second. The adjective "rationalized" is 
used because the factor of 47r is arbitrarily introduced into 
the proportionality factor in Coulomb's law of (1). It is done 
this way so as to cancel a 41r that will arise from other more 
often used laws we will introduce shortly. Other derived units 
are formed by combining base units. 

qlq2 
q2 F2 4 '12 

r12 

F1 =-F 
2 

Figure 2-6 The Coulomb force between two point charges is proportional to the 
magnitude of the charges and inversely proportional to the square of the distance 
between them. The force on each charge is equal in magnitude but opposite in 
direction. The force vectors are drawn as if q, and q 2 are of the same sign so that the 
charges repel. If q, and q2 are of opposite sign, both force vectors would point in the 
opposite directions, as opposite charges attract. 
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The parameter Eo is called the permittivity of free space 
and has a value 

2eo= (47r X 10- 7c ­

10;: 8.8542 X 12 farad/m [A 2 _S 4-- kg' - m 3 ] (2)
367r 

where c is the speed of light in vacuum (c -3 X 10" m/sec). 
This relationship between the speed of light and a physical 

constant was an important result of the early electromagnetic 
theory in the late nineteenth century, and showed that light is 
an electromagnetic wave; see the discussion in Chapter 7. 

To obtain a feel of how large the force in (1) is, we compare 
it with the gravitational force that is also an inverse square law 
with distance. The smallest unit of charge known is that of an 
electron with charge e and mass m, 

e - 1.60X 10- 19 Coul, m, =9.11 X 10-3' kg 

Then, the ratio of electric to gravitational force magnitudes 
for two electrons is independent of their separation: 

F, e'/(47reor2 ) e2 1 42 -= - 2 -4.16 x 10 (3)
F9 GM/r m, 47reoG 

where G = 6.67 x 101 [m 3 -s~ 2-kg'] is the gravitational 
constant. This ratio is so huge that it exemplifies why elec­
trical forces often dominate physical phenomena. The minus 
sign is used in (3) because the gravitational force between two 
masses is always attractive while for two like charges the 
electrical force is repulsive. 

2-2-3 The Electric Field 

If the charge qi exists alone, it feels no force. If we now 
bring charge q2 within the vicinity of qi, then q2 feels a force 
that varies in magnitude and direction as it is moved about in 
space and is thus a way of mapping out the vector force field 
due to qi. A charge other than q2 would feel a different force 
from q2 proportional to its own magnitude and sign. It 
becomes convenient to work with the quantity of force per 
unit charge that is called the electric field, because this quan­
tity is independent of the particular value of charge used in 
mapping the force field. Considering q2 as the test charge, the 
electric field due to qi at the position of q2 is defined as 

E2 = lim F= q2 112 volts/m [kg-m-s 3 - A ] (4) 
2-o. q2 4ireor12 
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In the definition of (4) the charge qi must remain stationary. 
This requires that the test charge q2 be negligibly small so that 
its force on qi does not cause qi to move. In the presence of 
nearby materials, the test charge q2 could also induce or cause 
redistribution of the charges in the material. To avoid these 
effects in our definition of the electric field, we make the test 
charge infinitely small so its effects on nearby materials and 
charges are also negligibly small. Then (4) will also be a valid 
definition of the electric field when we consider the effects of 
materials. To correctly map the electric field, the test charge 
must not alter the charge distribution from what it is in the 
absence of the test charge. 

2-2-4 Superposition 

If our system only consists of two charges, Coulomb's law 
(1) completely describes their interaction and the definition of 
an electric field is unnecessary. The electric field concept is 
only useful when there are large numbers of charge present 
as each charge exerts a force on all the others. Since the forces 
on a particular charge are linear, we can use superposition, 
whereby if a charge qi alone sets up an electric field El, and 
another charge q2 alone gives rise to an electric field E2 , then 
the resultant electric field with both charges present is the 
vector sum E1 +E 2. This means that if a test charge q, is 
placed at point P in Figure 2-7, in the vicinity of N charges it 
will feel a force 

F,= qEp (5) 

E2 

/rNP 

. . .... ..N E = E,+E2 + .... +EN 

Figure 2-7 The electric field due to a collection of point charges is equal to the vector 
sum of electric fields from each charge alone. 
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where Ep is the vector sum of the electric fields due to all the 
N-point charges, 

Ep= -2 + 2__2P + S1P + Np)+ 24 eo rip r2P rp rNp 

= N -, 	 (6) 

Note that Ep has no contribution due to q, since a charge 
cannot exert a force upon itself. 

EXAMPLE 2-1 TWO-POINT CHARGES 

Two-point charges are a distance a apart along the z axis as 
shown in Figure 2-8. Find the electric field at any point in the 
z =0 plane when the charges are: 

(a) 	 both equal to q 
(b) 	 of opposite polarity but equal magnitude * q. This 

configuration is called an electric dipole. 

SOLUTION 

(a) In the z =0 plane, each point charge alone gives rise to 
field components in the ir and i, directions. When both 
charges are equal, the superposition of field components due 
to both charges cancel in the z direction but add radially: 

Er(Z=0)= q 2r 
47ET	 0 [r + (a/2)23I 2 

As a check, note that far away from the point charges (r >> a) 
the field approaches that of a point charge of value 2q: 

lim Er(z = 0)= 2 r. 4ireor 

(b) When the charges have opposite polarity, the total 
electric field due to both charges now cancel in the radial 
direction but add in the z direction: 

-q aE.(z = 0)=-q 2 )214 1TEo [r +(a/2) 2 

Far away from the point charges the electric field dies off as 
the inverse cube of distance: 

limE,(z =O)= -qa 
ra 4w7or 
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Figure 2-8 Two equal magnitude point charges are a distance a apart along the z 
axis. (a) When the charges are of the same polarity, the electric field due to each is 
radially directed away. In the z = 0 symmetry plane, the net field component is radial. 
(b) When the charges are of opposite polarity, the electric field due to the negative 
charge is directed radially inwards. In the z = 0 symmetry plane, the net field is now -z 
directed. 

The faster rate of decay of a dipole field is because the net 
charge is zero so that the fields due to each charge tend to 
cancel each other out. 

2-3 CHARGE DISTRIBUTIONS 

The method of superposition used in Section 2.2.4 will be 
used throughout the text in relating fields to their sources. 
We first find the field due to a single-point source. Because 
the field equations are linear, the net field due to many point 
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sources is just the superposition of the fields from each source 
alone. Thus, knowing the electric field for a single-point 
charge-at an arbitrary position immediately gives us the total 
field for any distribution of point charges. 

In typical situations, one coulomb of total charge may be 
present requiring 6.25 x 10' elementary charges (e -=1.60 x 
10-'9 coul). When dealing with such a large number of par­
ticles, the discrete nature of the charges is often not 
important and we can consider them as a continuum. We can 
then describe the charge distribution by its density. The same 
model is used in the classical treatment of matter. When we 
talk about mass we do not go to the molecular scale and count 
the number of molecules, but describe the material by its mass 
density that is the product of the local average number of 
molecules in a unit volume and the mass per molecule. 

2-3-1 Line, Surface, and Volume Charge Distributions 

We similarly speak of charge densities. Charges can dis­
tribute themselves on a line with line charge density 
A (coul/m), on a surface with surface charge density 
a- (coul/m2 ) or throughout a volume with volume charge 
density p (coul/m3 ). 

Consider a distribution of free charge dq of differential size 
within a macroscopic distribution of line, surface, or volume 
charge as shown in Figure 2-9. Then, the total charge q within 
each distribution is obtained by summing up all the differen­
tial elements. This requires an integration over the line, sur­
face, or volume occupied by the charge. 

A di J Adi (line charge) 

dq= o-dS ->q =< a-dS (surface charge) (1) 

p dV J p dV (volume charge) 

EXAMPLE 2-2 CHARGE DISTRIBUTIONS 

Find the total charge within each of the following dis­
tributions illustrated in Figure 2-10. 

(a) Line charge A 0 uniformly distributed in a circular hoop 
of radius a. 
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+ P 

rQp + rQp 

+ di 
+dq= X diPoint charge q

+ q=J'dl
(a) + L 

+ Line charge 
+ L (b) 

dq = a dS 

q =fadS 

S 

P 
a dS 

r ~ ~ . +~~- rQP 

A' -4-4-q Ifpd V 
rAp 

PQ 
pd X ,4' ' 

- d = pdV + dV g 

S's.$x V
S ~ x 

Surface charge Volume charge 

(c) (d) 

Figure 2-9 Charge distributions. (a) Point charge; (b) Line charge; (c) Surface 
charge; (d) Volume charge. 

SOLUTION 

A dl= jAoad0=21raAoq= 

(b) Surface charge o0 uniformly distributed on a circular 
disk of radius a. 

SOLUTION 

a 2w 

q=Jo-dS= oor dr do = 1ra200 

(c) Volume charge po uniformly distributed throughout a 
sphere of radius R. 
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Figure 2-10 Charge distributions of Example 2-2. (a) Uniformly distributed line 
charge on a circular hoop. (b) Uniformly distributed surface charge on a circular disk. 
(c) Uniformly distributed volume charge throughout a sphere. (d) Nonuniform line 
charge distribution. (e) Smooth radially dependent volume charge distribution 
throughout all space, as a simple model of the electron cloud around the positively 
charged nucleus of the hydrogen atom. 

SOLUTION 

2s4= r q= pdV= f ' ' por sin drdO do = 37TR P0 
S= =0 =0 

(d) A line charge of infinite extent in the z direction with 
charge density distribution 

A 0A =jl(l)
[I +(z/a) 2 

1 

SOLUTION 

q A dl=2 = A 0a tan - Aoira 
q j -cj [1+(z/a)2] a 
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(e) The electron cloud around the positively charged 
nucleus Q in the hydrogen atom is simply modeled as the 
spherically symmetric distribution 

p(r)=- Q3e 2r/a
Tra 

where a is called the Bohr radius. 

SOLUTION 

The total charge in the cloud is 

q= JvpdV 

=- f -e -2r/'r 2 sin 0 drdO do 
,.=, 1=0 f,"- ira 

= -- : ~e2T/r2 dr 
=- -oae -2'' r 2 

-3 (~ e~' [r2 -- ) 1)] 1_0 

= -Q 

2-3-2 The Electric Field Due to a Charge Distribution 

Each differential charge element dq as a source at point Q 
contributes to the electric field at. a point P as 

dq
dE= 2 iQp (2)

41rEorQ' 

where rQp is the distance between Q and P with iQp the unit 
vector directed from Q to P. To find the total electric field, it 
is necessary to sum up the contributions from each charge 
element. This is equivalent to integrating (2) over the entire 
charge distribution, remembering that both the distance rQp 
and direction iQp vary for each differential element 
throughout the distribution 

dq
E = q Q2 (3)

111, 417rEor Qp 

where (3) is a line integral for line charges (dq = A dl), a 
surface integral for surface charges (dq = o-dS), a volume 
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integral for a volume charge distribution (dq = p dV), or in 
general, a combination of all three. 

If the total charge distribution is known, the electric field is 
obtained by performing the integration of (3). Some general 
rules and hints in using (3) are: 

1. 	 It is necessary to distinguish between the coordinates of 
the field points and the charge source points. Always 
integrate over the coordinates of the charges. 

2. 	 Equation (3) is a vector equation and so generally has 
three components requiring three integrations. Sym­
metry arguments can often be used to show that partic­
ular field components are zero. 

3. 	 The distance rQp is always positive. In taking square 
roots, always make sure that the positive square root is 
taken. 

4. 	 The solution to a particular problem can often be 
obtained by integrating the contributions from simpler 
differential size structures. 

2-3-3 Field Due to an Infinitely Long Line Charge 

An infinitely long uniformly distributed line charge Ao 
along the z axis is shown in Figure 2-11. Consider the two 
symmetrically located charge elements dq1 and dq2 a distance z 
above and below the point P, a radial distance r away. Each 
charge element alone contributes radial and z components to 
the electric field. However, just as we found in Example 2-la, 
the two charge elements together cause equal magnitude but 
oppositely directed z field components that thus cancel leav­
ing only additive radial components: 

Aodz Aordz 
dEr= 4eo(z2 + r2 cos e = 4reo(z2 + r2) (4) 

To find the total electric field we integrate over the length 
of the line charge: 

-Aor *( dz 
Er I~+0 2 23/2
4 reo (z +r ) 

Aor z +G 
241weo r2(z 2 +r 2)1 

Ao (5)
2virr 
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2 

X0
 

dq, = X0 dz 

V (r 2 )1/2 dE2+Z2 
N, 
Of" 

N 
Ad=dE +dE 2r 

COSO (r 2 
+22)1/2 dE, 

dq2 = XO dz 

Figure 2-11 An infinitely long uniform distribution of line charge only has a radially 
directed electric field because the z components of the electric field are canceled out by 
symmetrically located incremental charge elements as also shown in Figure 2-8a. 

2-3-4 Field Due to Infinite Sheets of Surface Charge 

(a) Single Sheet 
A surface charge sheet of infinite extent in the y =0 plane 

has a uniform surface charge density cro as in Figure 2-12a. 
We break the sheet into many incremental line charges of 
thickness dx with dA = O-o dx. We could equivalently break the 
surface into incremental horizontal line charges of thickness 
dz. Each incremental line charge alone has a radial field 
component as given by (5) that in Cartesian coordinates 
results in x and y components. Consider the line charge dA 1, a 
distance x to the left of P, and the symmetrically placed line 
charge dA 2 the same distance x to the right of P. The x 
components of the resultant fields cancel while the y 
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z ** 
d2 = aodx 

dx / 
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Figure 2-12 (a) The electric field from a uniformly surface charged sheet of infinite 
extent is found by summing the contributions from each incremental line charge 
element. Symmetrically placed line charge elements have x field components that 
cancel, but y field components that add. (b) Two parallel but oppositely charged sheets 
of surface charge have fields that add in the region between the sheets but cancel 
outside. (c) The electric field from a volume charge distribution is obtained by sum­
ming the contributions from each incremental surface charge element. 
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Fig. 2-12(c) 

Po III 

dy, dE = 2e0j I, 
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E 

poa 
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p0a-A 
'o 

(c) 
1' 

components add: 

(O dx Cooy dxdE (6)
21reo(x 2 

+y2)/2 2cro(x2+y2) 

The total field is then obtained by integration over all line 
charge elements: 

r'"
EOY dx
E = 2 2

21reo L x +y 

0 y 1 tan-I+co 
= - tan ­2 ITeoYy 1 x=-wo 

o-o/2eo, y>O 
(7)

-o-o/2eo, y <0 

where we realized that the inverse tangent term takes the sign 
of the ratio x/y so that the field reverses direction on each side 
of the sheet. The field strength does not decrease with dis­
tance from the infinite sheet. 

(b) Parallel Sheets of Opposite Sign 
A capacitor is formed by two oppositely charged sheets of 

surface charge a distance 2a apart as shown in Figure 2-12b. 
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The fields due to each charged sheet alone are obtained from 
(7) as 

0., 

2Eo 
y > -a i,,

2EO 
y>a 

E1=< E2= (8) 

- i,,2EO y <-a 
2EO 

,, y<a 

Thus, outside the sheets in regions I and III the fields cancel 
while they add in the enclosed region II. The nonzero field is 
confined to the region between the charged sheets and is 
independent of the spacing: 

E=E1 +E 2 = 0 
O jyj>a 

(9) 

(c) Uniformly Charged Volume 
A uniformly charged volume with charge density po of 

infinite extent in the x and z directions and of width 2a is 
centered about the y axis, as shown in Figure 2-12c. We break 
the volume distribution into incremental sheets of surface 
charge of width dy' with differential surface charge density 
do- = po dy'. It is necessary to distinguish the position y' of the 
differential sheet of surface charge from the field point y. The 
total electric field is the sum of all the fields due to each 
differentially charged sheet. The problem breaks up into 
three regions. In region I, where y 5 -a, each surface charge 
element causes a field in the negative y direction: 

E,= -
-a 

dy'= ­
2E0 

poa,
6o 

y:5 -a (10) 

Similarly, in region III, where y a, each charged sheet gives 
rise to a field in the positive y direction: 

E,= 
_-a 2EO 

poa,
EO 

y>a (11) 

f dy'_P0Y, -a 5y 5a (12) 

For any position y in region II, where -a 5 y a, the charge 
to the right of y gives rise to a negatively directed field while 
the charge to the left of y causes a positively directed field: 

I 
E,= +2y _ 

2 2EO EO 

The field is thus constant outside of the volume of charge and 
in opposite directions on either side being the same as for a 
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surface charged sheet with the same total charge per unit 
area, aO = po2a. At the boundaries y = a, the field is 
continuous, changing linearly with position between the 
boundaries: 

-- oa, y!-a 

E,= , -a 5y5 a (13)
So 

-oa 
, y a6 0 

2-3-5 Superposition of Hoops of Line Charge 

(a) Single Hoop 
Using superposition, we can similarly build up solutions 

starting from a circular hoop of radius a with uniform line 
charge density Ao centered about the origin in the z = 0 plane 
as shown in Figure 2-13a. Along the z axis, the distance to the 
hoop perimeter (a 2+Z2112 is the same for all incremental 

point charge elements dq=Aoad4. Each charge element 
alone contributes z- and r-directed electric field components. 
However, along the z axis symmetrically placed elements 180* 
apart have z components that add but radial components that 
cancel. The z-directed electric field along the z axis is then 

E.f2 Aoa d4cos 0 Aoaz
E = = 2(14)

0 47rEo(z + a ) 2Eo(a +Z )s/ 
The electric field is in the -z direction along the z axis below the 
hoop. 

The total charge on the hoop is q = 2waXo so that (14) can 
also be written as 

qz
E 4areo(a2 +z2 )3 2  (15) 

When we get far away from the hoop (I z I > a), the field 
approaches that of a point charge: 

q Jz >0

lim E. = * q 2 Iz<0 (16)

1%1,.a 47rEoz z <O 

(b) Disk of Surface Charge 
The solution for a circular disk of uniformly distributed 

surface charge o- is obtained by breaking the disk into 
incremental hoops of radius r with line charge dA = -o dr as in 
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Figure 2-13 (a) The electric field along the symmetry z axis of a uniformly dis­
tributed hoop of line charge is z directed. (b) The axial field from a circular disk of 
surface charge is obtained by radially summing the contributions of incremental hoops 
of line charge. (c) The axial field from a hollow cylinder of surface charge is obtained 
by axially summing the contributions of incremental hoops of line charge. (d) The axial 
field from a cylinder of volume charge is found by summing the contributions of axial 
incremental disks or of radial hollow cylinders of surface charge. 

Figure 2-13b. Then the incremental z-directed electric field 
along the z axis due to a hoop of radius r is found from (14) as 

arrz dr (127)dE.= (17)dE.~ r 
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where we replace a with r, the radius of the incremental 
hoop. The total electric field is then 

a rdr 
O-oz 2 2 1/2 
2EE Jo (r +z ) 

oJoz 
2eo(r2 +Z2V1 2 o 
_ ( _ z z 

2E (2eo '(a 2 +z2) )u1/2 I+z Izi/ 
_roz 

(18)z >0 
2eo 2eo(a 2+z2) 1z<0 (1 

where care was taken at the lower limit (r = 0), as the magni­
tude of the square root must always be used. 

As the radius of the disk gets very large, this result 
approaches that of the uniform field due to an infinite sheet 
of surface charge: 

lim E = z>0(19) 
a-00 2co 1 z <0 

(c) Hollow Cylinder of Surface Charge 
A hollow cylinder of length 2L and radius a has its axis 

along the z direction and is centered about the z =0 plane as 
in Figure 2-13c. Its outer surface at r=a has a uniform 
distribution of surface charge ao. It is necessary to distinguish 
between the coordinate of the field point z and the source 
point at z'(-L sz':5L). The hollow cylinder is broken up 
into incremental hoops of line charge dA = ordz'. Then, the 
axial distance from the field point at z to any incremental 
hoop of line charge is (z -z'). The contribution to the axial 
electric field at z due to the incremental hoop at z' is found 
from (14) as 

dE = aoa(z - z') dz' (20)- z') 2]31 2 
2Eo[a 2 +(z 

which when integrated over the length of the cylinder yields 

ooa [L (z - z') dz'
 
Ez 2eO .L [a2 +(z - z') 23 1 2
 

o-oa *1 
2eo [a2 +(z -z') 2 

'L 

[a L) 2 [a2+( +L)211/2) (21)2 +(z 1/2 
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(d) Cylinder of Volume Charge 
If this same cylinder is uniformly charged throughout the 

volume with charge density po, we break the volume into 
differential-size hollow cylinders of thickness dr with incre­
mental surface charge do-=po dr as in Figure 2-13d. Then, the 
z-directed electric field along the z axis is obtained by integra­
tion of (21) replacing a by r: 

E. =-LO- f r( 2 -2122 2 12 dr 
2E 0 Jo \[r +(z -L) [r +(z+L) I / 

[r2+(Z+L)2]1/21 = {[r2+(Z -L)1/2 2 

2eo 

=-- -{[a2+(z -L)2 ]1-Iz -LI -[a 2 +(z +L) 2 1/2 

2Eo 

+Iz+LL} (22) 

where at the lower r=0 limit we always take the positive 
square root. 

This problem could have equally well been solved by 
breaking the volume charge distribution into many differen­
tial-sized surface charged disks at position z'(-L z':L), 
thickness dz', and effective surface charge density do =po dz'. 
The field is then obtained by integrating (18). 

2-4 GAUSS'S LAW 

We could continue to build up solutions for given charge 
distributions using the coulomb superposition integral of 
Section 2.3.2. However, for geometries with spatial sym­
metry, there is often a simpler way using some vector prop­
erties of the inverse square law dependence of the electric 
field. 

2-4-1 Properties of the Vector Distance Between Two Points, rop 

(a) rop 
In Cartesian coordinates the vector distance rQp between a 

source point at Q and a field point at P directed from Q to P 
as illustrated in Figure 2-14 is 

r2p= (x -XQ)i + (y - yQ)i, +(z - Z()I (1) 

with magnitude 

rQp=[(x xQ)2+(y yQ)2 +(z -ZQ)2 ]1 (2) 

The unit vector in the direction of rQp is 

IQP = rQP (3) 
rQP 
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Figure 2-14 The vector distance rQp between two points Q and P. 

(b) Gradient of the Reciprocal Distance, V(l/rQp) 
Taking the gradient of the reciprocal of (2) yields 

aV(I = ij- . a I I 
rQP) ax (QP Oy aY QP) +%i.- QP) 

= -r3 [(x -XQ)i. +(Y -YQ)i + (z -ZQ)i-I
rQP 

= -iQP/rQp (4) 

which is the negative of the spatially dependent term that we 
integrate to find the electric field in Section 2.3.2. 

(c) Laplacian of the Reciprocal Distance 
Another useful identity is obtained by taking the diver­

gence of the gradient of the reciprocal distance. This opera­
tion is called the Laplacian of the reciprocal distance. Taking 
the divergence of (4) yields 

=v (7QP 

IQP 
rQp 

x xQ ) y -Q )lz QP) 

3 535 

rQp rQP 
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Using (2) we see that (5) reduces to 

s( 1_) 0,dre T # 0 (6)
r/ =I undefined rQp=0 

Thus, the Laplacian of the inverse distance is zero for all 
nonzero distances but is undefined when the field point is 
coincident with the source point. 

2-4-2 Gauss's Law In Integral Form 

(a) Point Charge Inside or Outside a Closed Volume 
Now consider the two cases illustrated in Figure 2-15 where 

an arbitrarily shaped closed volune V either surrounds a 
point charge q or is near a point charge q outside the surface 
S. For either case the electric field emanates radially from the 
point charge with the spatial inverse square law. We wish to 
calculate the flux of electric field through the surface S sur­
rounding the volume V: 

(D= E -dS 

=f s2 i -dS
.41reorop 

-.dS	 (7)oV= 

dS 
f eoE -dS=0	 # eoE -dS=# eoE dS=q 

S S. 

SS 
dS 

F lux ofE nrn r
surf.c 

Flux of E leaving 
surface 

(a)	 (b) 

Figure 2-15 (a) The net flux of electric field through a closed surface S due to an 
outside point charge is zero because as much flux enters the near side of the surface as 
leaves on the far side. (b) All the flux of electric field emanating from an enclosed point 
charge passes through the surface. 
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where we used (4). We can now use the divergence theorem 
to convert the surface integral to a volume integral: 

fE -dS= q V -[V( -- dV (8)
S 41rE0 IV rP 

When the point charge q is outside the surface every point in 
the volume has a nonzero value of rQp. Then, using (6) with 
rQp #0, we see that the net flux of E through the surface is 
zero. 

This result can be understood by examining Figure 2-15a. 
The electric field emanating from q on that part of the sur­
face S nearest q has its normal component oppositely directed 
to dS giving a negative contribution to the flux. However, on 
the opposite side of S the electric field exits with its normal 
component in the same direction as dS giving a positive 
contribution to the flux. We have shown that these flux 
contributions are equal in magnitude but opposite in sign so 
that the net flux is zero. 

As 3llustrated in Figure 2-15b, assuming q to be positive, we 
see that when S surrounds the charge the electric field points 
outwards with normal component in the direction of dS 
everywhere on S so that the flux must be positive. If q were 
negative, E and dS would be oppositely directed everywhere 
so that the flux is also negative. For either polarity with 
nonzero q, the flux cannot be zero. To evaluate the value of 
this flux we realize that (8) is zero everywhere except where 
rQp =0 so that the surface S in (8) can be shrunk down to a 
small spherical surface S' of infinitesimal radius Ar sur­
rounding the point charge; the rest of the volume has rqp 0 0 
so that V -V(l/rQp) = 0. On this incremental surface we know 
the electric field is purely radial in the same direction as dS' 
with the field due to a point charge: 

E -2dS=f E-dS' q 4ir(&r)2 q (g) 
S s 41reo(Ar)2 E ( 

If we had many point charges within the surface S, each 
charge qi gives rise to a flux qsEo so that Gauss's law states that 
the net flux of eoE through a closed surface is equal to the net 
charge enclosed by the surface: 

eoE - dS )q.' (10)
fS all qj 

inside S 

Any charges outside S do not contribute to the flux. 

(b) 	 Charge Distributions 
For continuous charge distributions, the right-hand side of 

(10) includes the sum of all enclosed incremental charge 
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elements so that the total charge enclosed may be a line, 
surface, and/or volume integral in addition to the sum of 
point charges: 

feoE -dS= _ q + dq 
S all qi all q 

inside S inside S 

~~QqtfdIJ~s= q+f Adl+f jd) (11)-dS+tpdV) 
all charge 
inside S 

Charges outside the volume give no contribution to the total 
flux through the enclosing surface. 

Gauss's law of (11) can be used to great advantage in 
simplifying computations for those charges distributed with 
spatial symmetry. The trick is to find a surface S that has 
sections tangent to the electric field so that the dot product is 
zero, or has surfaces perpendicular to the electric field and 
upon which the field is constant so that the dot product and 
integration become pure multiplications. If the appropriate 
surface is found, the surface integral becomes very simple to 
evaluate. 

Coulomb's superposition integral derived in Section 2.3.2 is 
often used with symmetric charge distributions to determine 
if any field components are zero. Knowing the direction of 
the electric field often suggests the appropriate Gaussian sur­
face upon which to integrate (11). This integration is usually 
much simpler than using Coulomb's law for each charge 
element. 

2-4-3 Spherical Symmetry 

(a) Surface Charge 
A sphere of radius R has a uniform distribution of surface 

charge o-o as in Figure 2-16a. Measure the angle 0 from the 
line joining any point P at radial distance r to the sphere 
center. Then, the distance from P to any surface charge 
element on the sphere is independent of the angle 4. Each 
differential surface charge element at angle 0 contributes 
field components in the radial and 0 directions, but sym­
metrically located charge elements at -4 have equal field 
magnitude components that add radially but cancel in the 0 
direction. 

Realizing from the symmetry that the electric field is purely 
radial and only depends on r and not on 0 or 4, we draw 
Gaussian spheres of radius r as in Figure 2-16b both inside 
(r < R) and outside (r>R) the charged sphere. The Gaussian 
sphere inside encloses no charge while the outside sphere 
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Figure 2-16 A sphere of radius R with uniformly distributed surface charge o-,. (a) 
Symmetrically located charge elements show that the electric field is purely radial. (b) 
Gauss's law, applied to concentric spherical surfaces inside (r < R) and outside (r > R) 
the charged sphere, easily shows that the electric field within the sphere is zero and 
outside is the same as if all the charge Q = 47rR Oro were concentrated as a point charge 
at the origin. 

encloses all the charge Q = o-o4-irR 2 

}ro47rR 2 = Q, r>R 

EOE - dS = EOE,47r2 = (12) 

0, r<R 

so that the electric field is 

o-oR2 
2= ] 2, r>R 

E= eor 47eor (13) 
0, r<R 

The integration in (12) amounts to just a multiplication of 
eoE, and the surface area of the Gaussian sphere because on 
the sphere the electric field is constant and in the same direc­
tion as the normal ir. The electric field outside the sphere is 
the same as if all the surface charge were concentrated as a 
point charge at the origin. 

The zero field solution for r <R is what really proved 
Coulomb's law. After all, Coulomb's small spheres were not 
really point charges and his measurements did have small 
sources of errors. Perhaps the electric force only varied 
inversely with distance by some power close to two, r-2 
where 8 is very small. However, only the inverse square law 
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gives a zero electric field within a uniformly surface charged 
sphere. This zero field result-is true for any closed conducting 
body of arbitrary shape charged on its surface with no 
enclosed charge. Extremely precise measurements were made 
inside such conducting surface charged bodies and the 
electric field was always found to be zero. Such a closed 
conducting body is used for shielding so that a zero field 
environment can be isolated and is often called a Faraday 
cage, after Faraday's measurements of actually climbing into 
a closed hollow conducting body charged on its surface to 
verify the zero field results. 

To appreciate the ease of solution using Gauss's law, let us 
redo the problem using the superposition integral of Section 
2.3.2. From Figure 2-16a the incremental radial component 
of electric field due to a differential charge element is 

c-oR2 sin eded
dE,- 42sn cos a (14) 

From the law of cosines the angles and distances are related as 
2 2 2rQp r +R -2rR cos 0 

2 2 2 (5
R =r +rQP-2rrQpcosa 

so that a is related to 0 as 

r-R cos 0 
[r +R -2rR cos9] 2 (16) 

Then the superposition integral of Section 2.3.2 requires us 
to integrate (14) as 

r. f 2 o-oR2 sin 8(r-R cos 0) d0d4 
E 6=0 = 41reo[r +R-2rR cos 01 (' 

After performing the easy integration over 4 that yields the 
factor of 21r, we introduce the change of variable: 

u =r2 +R 2-2rR cos 6 

du = 2rR sin dG (18) 

which allows us to rewrite the electric field integral as 
(r+R)2 2 2 dU

Er oR[u+r -R]d 
= 2 3/2 

2 -R2 ) (r+R)2OR U1/2 _(r

4eUr 2 112 I I(r-R)2 

o-oR (r+R)-|r-RI -(r 2 -R) (rR_ 12)
\ R -RI) 

(19) 
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where we must be very careful to take the positive square root 
in evaluating the lower limit of the integral for r <R. Evalu­
ating (19) for r greater and less than R gives us (13), but with 
a lot more effort. 

(b) Volume Charge Distribution 
If the sphere is uniformly charged throughout with density 

po, then the Gaussian surface in Figure 2-17a for r>R still 
encloses the total charge Q =l rR 3po. However, now the 
smaller Gaussian surface with r <R encloses a fraction of the 
total charge: 

Po irr3=Q(r/R) 3 , r<R 

f eoE - dS= eoE,42rr2 3 (20) 
S poirR 3 Q, r>R 

E, = 
2 

(r>R) 

Total
 
volume
 
charge \
 

Q + r - Enclosed 

S+g+ + \RI+ R2~) 

Q R31 ++/r + \+ 47reR= PO(1)
 
Enclosed + + + +
 

P+ 

R 
Er r (r3 < R)

47ref)R3 

(a) 

R do podr' 

dr'2 

dE, = p r 2 r>r' 
Eeor 

0 r < r' 

(b) 

Figure 2-17 (a) Gaussian spheres for a uniformly charged sphere show that the 
electric field outside the sphere is again the same as if all the charge Q =irRspowere 
concentrated as a point charge at r =0. (b) The solution is also obtained by summing 
the contributions from incremental spherical shells of surface charge. 
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so that the electric field is 

rpor =Qr 
Er [SeO 47reOR3 'R'21 

poR3 (21)
-

2 
= - , r>R 

3e0 r 47rEor2 

This result could also have been obtained using the results 
of (13) by breaking the spherical volume into incremental 
shells of radius r', thickness dr', carrying differential surface 
charge do- = po dr'as in Figure 2-17b. Then the contribution to 
the field is zero inside each shell but nonzero outside: 

0, r < r' 
(22)

dE,r= por2 dr', 
2 , r>r' 

Eor 

The total field outside the sphere is due to all the differential 
shells, while the field inside is due only to the enclosed shells: 

r12odr' p0r Qr1 2 = - 3, r<R 
eor 3 =4ire0R

E,= p dr' poR3 Q (23) 

- 2' r>R
E 0r2 3eor2 lreor 

which agrees with (21). 

2-4-4 Cylindrical Symmetry 

(a) Hollow Cylinder of Surface Charge 
An infinitely long cylinder of radius a has a uniform dis­

tribution of surface charge a-0, as shown in Figure 2-18a. The 
angle 0 is measured from the line joining the field point P to 
the center of the cylinder. Each incremental line charge ele­
ment dA = a0a do contributes to the electric field at P as given 
by the solution for an infinitely long line charge in Section 
2.3.3. However, the symmetrically located element at -4 
gives rise to equal magnitude field components that add 
radially as measured from the cylinder center but cancel in 
the 4 direction. 

Because of the symmetry, the electric field is purely radial 
so that we use Gauss's law with a concentric cylinder of radius 
r and height L, as in Figure 2-18b where L is arbitrary. There 
is no contribution to Gauss's law from the upper and lower 
surfaces because the electric field is purely tangential. Along 
the cylindrical wall at radius r, the electric field is constant and 
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dE1 dET = dE1 + dE 2 

2 =OadO -	 dE E= 0 (r < a) 

S-- + 00 
+ r 

Er = r>a 	 + + + 
+ + 

A = acadp	 -" I 

S r 

I
L

IG	 Gaussian
 
surfaces
 

(a) 

+U + 

do = po dr'	 (b)
PO 

+ ++ + 
+ dr' dE, eo r '{por'dr'r>

0 r<r' 

(C) 

Figure 2-18 (a) Symmetrically located line charge elements on a cylinder with uni­
formly distributed surface charge show that the electric field is purely radial. (b) 
Gauss's law applied to concentric cylindrical -surfaces shows that the field inside the 
surface charged cylinder is zero while outside it is the same as if all the charge per unit 
length a-0o 27ra were concentrated at the origin as a line charge. (c) In addition to using 
the surfaces of (b) with Gauss's law for a cylinder of volume charge, we can also sum 
the contributions from incremental hollow cylinders of surface charge. 

purely normal so that Gauss's law simply yields 

127raL, r > a 

eoE - dS= eoL27rrL =	 (24) 

0 r<a 

where for r <a no charge is enclosed, while for r> a all the 
charge within a height L is enclosed. The electric field outside 
the cylinder is then the same as if all the charge per unit 
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length A = o-o27ra were concentrated along the axis of the 
cylinder: 

o-oa A 
_ r>a 

Er= -Eor 21Teor (25) 
0, r<a 

Note in (24) that the arbitrary height L canceled out. 

(b) Cylinder of Volume Charge 
If the cylinder is uniformly charged with density po, both 

Gaussian surfaces in Figure 2-18b enclose charge 

~E~d=E2-Ip 0 ra2L, r~a 
Eo E - dS = EOE, 21rrL =or L~ (26)

poirr2L, r<a 

so that the electric field is 

poa A 
= , r>a 

2eor 21reor (27) 
por _ Ar 2 r<a 
2e0 27reoa 

where A =poira2 is the total charge per unit length on the 
cylinder. 

Of course, this result could also have been obtained by 
integrating (25) for all differential cylindrical shells of radius 
r' with thickness dr' carrying incremental surface charge do-= 
po dr', as in Figure 2-18c. 

por' dr'= pa= , r>a 

Er= r 2eor 27reor'ArJor eor 2r ~ (28) 
por' dr'=o = 2,A r r<a 

fo Eor 2eO 2reoa 

2-4-5 Gauss's Law and the Divergence Theorem 

If a volume distribution of charge p is completely sur­
rounded by a closed Gaussian surface S, Gauss's law of (11) is 

fEoE -dS= tpdV (29) 

The left-hand side of (29) can be changed to a volume 
integral using the divergence theorem: 

fEoE-dS= V-(EoE)dV= pdV (30) 
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Since (30) must hold for any volume, the volume integrands 
in (30) must be equal, yielding the point form of Gauss's law: 

V - (-oE)= p (31) 

Since the permittivity of free space Eo is a constant, it can 
freely move outside the divergence operator. 

2-4-6 Electric Field Discontinuity Across a Sheet of Surface Charge 

In Section 2.3.4a we found that the electric field changes 
direction discontinuously on either side of a straight sheet of 
surface charge. We can be more general by applying the 
surface integral form of Gauss's law in (30) to the differential-
sized pill-box surface shown in Figure 2-19 surrounding a 
small area dS of surface charge: 

fEoE.dS= o-dS >o(E 2.- E1.)dS=o-dS (32) 

where E2 . and El. are the perpendicular components of 
electric field on each side of the interface. Only the upper and 
lower surfaces of the pill-box contribute in (32) because the 
surface charge is assumed to have zero thickness so that the 
short cylindrical surface has zero area. We thus see that the 
surface charge density is proportional to the discontinuity in 
the normal component of electric field across the sheet: 

so(E2, - E.) = o-n - Eo(E 2 - Ei) = o- (33) 

where n is perpendicular to the interface directed from 
region 1 to region 2. 

1E2 

dS= n dS 

1I 

E h n-- co ( E2-- E) =I 

"dS = -ndS 

Figure 2-19 Gauss's law applied to a differential sized pill-box surface enclosing some 
surface charge shows that the normal component of EOE is discontinuous in the surface 
charge density. 
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2-5 THE ELECTRIC POTENTIAL 

If we have two charges of opposite sign, work must be done 
to separate them in opposition to the attractive coulomb 
force. This work can be regained if the charges are allowed to 
come together. Similarly, if the charges have the same sign, 
work must be done to push them together; this work can be 
regained if the charges are allowed to separate. A charge 
gains energy when moved in a direction opposite to a force. 
This is called potential energy because the amount of energy 
depends on the position of the charge in a force field. 

2-5-1 Work Required to Move a Point Charge 

The work W required to move a test charge q, along any 
path from the radial distance r. to the distance rb with a force 
that just overcomes the coulombic force from a point charge 
q, as shown in Figure 2-20, is 

rb 
W=- F-dI 

r. 

4 ,.- (1) 

No work to move
 
charge along spherical
 

paths because F - dl = 0
 

41reo rb ra 
rb 

q 

Spherical 
equipotential 
surfaces
 

Figure 2-20 It takes no work to move a test charge q, along the spherical surfaces 
perpendicular to the electric field due to a point charge q. Such surfaces are called 
equipotential surfaces. 
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The minus sign in front of the integral is necessary because 
the quantity W represents the work we must exert on the test 
charge in opposition to the coulombic force between charges. 
The dot product in (1) tells us that it takes no work to move 
the test charge perpendicular to the electric field, which in 
this case is along spheres of constant radius. Such surfaces are 
called equipotential surfaces. Nonzero work is necessary to 
move q to a different radius for which dl = dr i,. Then, the 
work of (1) depends only on the starting and ending positions 
(r. and rb) of the path and not on the shape of the path itself: 

qq, f'6 dr 
41reo r 

qqt (1 1 (2)
4ireo \rb r. 

We can convince ourselves that the sign is correct by examin­
ing the case when rb is bigger than r, and the charges q and q, 
are of opposite sign and so attract each other. To separate the 
charges further requires us to do work on q, so that W is 
positive in (2). If q and q, are the same sign, the repulsive 
coulomb force would tend to separate the charges further 
and perform work on q,. For force equilibrium, we would 
have to exert a force opposite to the direction of motion so 
that W is negative. 

If the path is closed so that we begin and end at the same 
point with ra = rb, the net work required for the motion is 
zero. If the charges are of the opposite sign, it requires 
positive work to separate them, but on the return, equal but 
opposite work is performed on us as the charges attract each 
other. 

If there was a distribution of charges with net field E, the 
work in moving the test charge against the total field E is just 
the sum of the works necessary to move the test charge 
against the field from each charge alone. Over a closed path 
this work remains zero: 

W= -qE -dl=0- E- d=0 (3) 

which requires that the line integral of the electric field 
around the closed path also be zero. 

2-5-2 The Electric Field and Stokes' Theorem 

Using Stokes' theorem of Section 1.5.3, we can convert the 
line integral of the electric field to a surface integral of the 
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curl of the electric field: 

E -dl= (V XE) -dS (4) 

From Section 1.3.3, we remember that the gradient of a scalar 
function also has the property that its line integral around a 
closed path is zero. This means that the electric field can be 
determined from the gradient of a scalar function V called 
the potential having units of volts [kg-m 2-s-3-A-]: 

E = -V V (5) 

The minus sign is introduced by convention so that the elec­
tric field points in the direction of decreasing potential. From 
the properties of the gradient discussed in Section 1.3.1 we 
see that the electric field is always perpendicular to surfaces of 
constant potential. 

By applying the right-hand side of (4) to an area of 
differential size or by simply taking the curl of (5) and using 
the vector identity of Section 1.5.4a that the curl of the 
gradient is zero, we reach the conclusion that the electric field 
has zero curl: 

VxE=O (6) 

2-5-3 The Potential and the Electric Field 

The potential difference between the two points at ra and rb 

is the work per unit charge necessary to move from ra to rb: 

w 
V(rb)- V(ra)=-

Jrb fS 7 

=f E - dl= + E - dl (7) 

Note that (3), (6), and (7) are the fields version of Kirchoff's 
circuit voltage law that the algebraic sum of voltage drops 
around a closed loop is zero. 

The advantage to introducing the potential is that it is a 
scalar from which the electric field can be easily calculated. 
The electric field must be specified by its three components, 
while if the single potential function V is known, taking its 
negative gradient immediately yields the three field 
components. This is often a simpler task than solving for each 
field component separately. Note in (5) that adding a constant 
to the potential does not change the electric field, so the 
potential is only uniquely defined to within a constant. It is 
necessary to specify a reference zero potential that is often 
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taken at infinity. In actual practice zero potential is often 
assigned to the earth's surface so that common usage calls the 
reference point "ground." 

The potential due to a single point charge q is 

' qdr 2 q
V(rb)- V(r.)= - = 

J,47rer 47rEor,. 

= ( I _ 1 (8)
47reo \rb r./ 

If we pick our reference zero potential at r. = 00, V(r.) =0 so 
that rb = r is just the radial distance from the point charge. 
The scalar potential V is then interpreted as the work per 
unit charge necessary to bring a charge from infinity to some 
distance r from the point charge q: 

V(r) 4 (9)
A1reor 

The net potential from many point charges is obtained by 
the sum of the potentials from each charge alone. If there is a 
continuous distribution of charge, the summation becomes an 
integration over all the differential charge elements dq: 

V= d (10)
II q4 reorQp 

where the integration is a line integral for line charges, a 
surface integral for surface charges, and a volume integral 
for volume charges. 

The electric field formula of Section 2.3.2 obtained by 
superposition of coulomb's law is easily re-obtained by taking 
the negative gradient of (10), recognizing that derivatives are 
to be taken with respect to field positions (x, y, z) while the 
integration is over source positions (xQ, yQ, zQ). The del 
operator can thus be brought inside the integral and operates 
only on the quantity rQp: 

dq ( I
E=-VV 

JaIIq 4 reo rQp 

dq 

ai QP (I 

where we use the results of Section 2.4. 1b for the gradient of 
the reciprocal distance. 

M M 
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2-5-4 Finite Length Line Charge 

To demonstrate the usefulness of the potential function, 
consider the uniform distribution of line charge Ao of finite 
length 2L centered on the z axis in Figure 2-21. Distinguish­
ing between the position of the charge element dq = Ao dz' at 
z' and the field point at coordinate z, the distance between 
source and field point is 

rQp=[r2+(z -z) )1/2 (12) 

Substituting into (10) yields 

L Ao dz'
V=JL 47reo[r2+(z- z')2 1/2 

2 1/2 
L +[r2 +(zZ -L)Ao z ­

+ L ) /41rco (z + L + [r+( 

AO -z-L . 1z+L 
= sinh -- -smh- (13)

47rEo\ r r 

-L 
dq X0dz' 

[r
2 

+ - 12(z' 1)2 

r\\ 2odz'd 
Vp 4veo [r2 

+ (z' - 21Y11/
P(r, ., z) 

xe 

Figure 2-21 The potential from a finite length of line charge is obtained by adding 
the potentials due to each incremental line charge element. 
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The field components are obtained from (13) by taking the 
negative gradient of the potential: 

aV Ao 1 1 
E. = --- = -- 2 (Z + L )21/2z 4E [r2+(Z - L )21/2 

aVBr 4wreo\[rAor +(z -L)2 ]sz- I +[r+(zL)2 
Er=- = 2+ Z )11[ +Z 2l2 

ar 47reo \[r +(-L) 2 "[-L+[r (-)]] 

[r2+(z+L)2 2[z+L+[r +(z+L)2]/2 

SAo( z-L z+L\
 

47reor \[r2 +(z -L) 2]1 2 [r2+(+L)2]1 2) (14) 

As L becomes large, the field and potential approaches that 
of an infinitely long line charge: 

E= 0

=A
oE, =k (15) 
lim 27reor 

-V= (In r -ln 2L)
21rso 

The potential has a constant term that becomes infinite 
when L is infinite. This is because the zero potential reference 
of (10) is at infinity, but when the line charge is infinitely long 
the charge at infinity is nonzero. However, this infinite 
constant is of no concern because it offers no contribution to 
the electric field. 

Far from the line charge the potential of (13) approaches 
that of a point charge 2AoL: 

lim V=Ao(2L) (16)2 2>L2 r +z 47rEor 
Other interesting limits of (14) are 

E. =0 

lim AL 

rE 27reor(r2+L2)2 

AoL z>L 
A 2reo(z2 -L 2)' z<-L 

~E =A-( 1 ___ ­

lim 47rEo L |z+L| z -LIL|
r= rE(L2 Z2), -LzsL 

Er=0 (17) 

M
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2-5-5 	 Charged Spheres 

(a) Surface Charge 
A sphere of radius R supports a uniform distribution of 

surface charge ao with total charge Q = ao4wR2, as shown in 
Figure 2-22a. Each incremental surface charge element 
contributes to the potential as 

sin 6 ded4dV=-OR 4	 
(18) 

reorp 

where from the law of cosines 

rQP=R +r -2rR cose (19) 

so that the differential change in rQp about the sphere is 

2rQpdrQp= 2rR. sin 0d	 (20) 

r>r' 
dV= 	 Cor 

de r <r' 

dq =ooR
2 sin-dOd- 2Rco*l 

+ + + t 2	 d =podr' 

+ + r R dr' 
R 

+ r' + PO 

(a) 

Figure 2-22 (a) A sphere of radius R supports a uniform distribution of surface 
charge a-0o. (b) The potential due to a uniformly volume charged sphere is found by 
summing the potentials due to differential sized shells. 
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Therefore, the total potential due to the whole charged 
sphere is 

r+R 2w gyR 
aV= drop d4 

v =Pr-R=I 6==o4veor 

toR r+R 

2eor jr-RI 

a-oR2 Q 
eor 41reor' r>R 

a-OR Q(21) 
so 41reoR' 

Then, as found in Section 2.4.3a the electric field is 

c-oR 2 Q
E aV_ 6 = 2, r>R
 
Er eor 4ireor (22) 

0 r<R 

Outside the sphere, the potential of (21) is the same as if all 
the charge Q were concentrated at the origin as a point 
charge, while inside the sphere the potential is constant and 
equal to the surface potential. 

(b) Volume Charge 
If the sphere is uniformly charged with density po and total 

charge Q = 'PrR~po, the potential can be found by breaking 
the sphere into differential size shells of thickness dr' and 
incremental surface charge de = po dr'. Then, integrating (21) 
yields 

R-rdr'=- = , r>R 
e or 3eOr 4ireor 

= ,o R pr' o ( 2 2 (23) 
Por dr'+ dr'= ""{R L) (3 
Eor , 0s 2Eo\ 3/ 

3Q / 22 
= R ) r<R 

81reoRS 3 

where we realized from (21) that for r < R the interior shells 
have a different potential contribution than exterior shells. 

Then, the electric field again agrees with Section 2.4.3b: 

poR3 Q
=2' r>R 

E, = =- Sor 4irEor (24) 

r pr Qr r<R
3eo 4ireoR5 ' 
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(c) Two Spheres 
Two conducting spheres with respective radii R1 and R 2 

have their centers a long distance D apart as shown in Figure 
2-23. Different charges Q, and Q2 are put on each sphere. 
Because D w R1+ R2 , each sphere can be treated as isolated. 
The potential on each sphere is then 

V= eOR1 , V2 47rOR2 (25) 

If a wire is connected between the spheres, they are forced 
to be at the same potential: 

VO = q, = q2 (26)
41reOR, 41reoR2 

causing a redistribution of charge. Since the total charge in 
the system must be conserved, 

q+ q2 = Q1+Q2 (27) 

Eq. (26) requires that the charges on each sphere be 

R 1(Q 1 +Q 2) R 2(Q 1+Q 2) (28) 
qi= , 42 (8

R,+R2 Rj+R2 

so that the system potential is 

VO= Q1+Q2(29)
41r.eo(R1 + R2) 

Even though the smaller sphere carries less total charge, from 
(22) at r = R, where E,(R)= oo/eo, we see that the surface 
electric field is stronger as the surface charge density is larger: 

q Q1+Q2 VO 
41reoRI 41reoRj(Rj+R2) R1 (30) 

q2 Q1+Q2 Vo 
41rEoR2 41reoR2(RI +R 2) R2 

For this reason, the electric field is always largest near 
corners and edges of equipotential surfaces, which is why 

q1 V1 -g,
47reoRI 

R, 2 22 

R2 V2 41reoR 2 

OE, (r) =Er E2()2E( V 2 R 2 
r2 

D 

Figure 2-23 The charges on two spheres a long distance apart (D >> RI + R 2) must 
redistribute themselves when connected by a wire so that each sphere is at the same 
potential. The surface electric field is then larger at the smaller sphere. 
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sharp points must be avoided in high-voltage equipment. 
When the electric field exceeds a critical amount Eb, called the 
breakdown strength, spark discharges occur as electrons are 
pulled out of the surrounding medium. Air has a breakdown 
strength of E 3 X 106 volts/M. If the two spheres had the 
same radius of I cm (10-2 M), the breakdown strength is 
reached when VO-30,000 volts. This corresponds to a total 
system charge of Q, + Q2 6.7 x 10~" coul. 

2-5-6 Poisson's and Laplace's Equations 

The general governing equations for the free space electric 
field in integral and differential form are thus summarized as 

feoE - dS= tp dV>V - E =p/Eo (31) 

E -dl=0=VxE=0>E= -VV (32) 

The integral laws are particularly useful for geometries 
with great symmetry and with one-dimensional fields where 
the charge distribution is known. Often, the electrical poten­
tial of conducting surfaces are constrained by external 
sources so that the surface charge distributions, themselves 
sources of electric field are not directly known and are in part 
due to other charges by induction and conduction. Because of 
the coulombic force between charges, the charge distribution 
throughout space itself depends on the electric field and it is 
necessary to self-consistently solve for the equilibrium 
between the electric field and the charge distribution. These 
complications often make the integral laws difficult to use, 
and it becomes easier to use the differential form of the field 
equations. Using the last relation of (32) in Gauss's law of (31) 
yields a single equation relating the Laplacian of the potential 
to the charge density: 

V - (V V)= V 2 V = -p/eo 	 (33) 

which is called Poisson's equation. In regions of zero charge 
(p = 0) this equation reduces to Laplace's equation, V 2 

V =0. 

2-6 	 THE METHOD OF IMAGES WITH LINE CHARGES AND 
CYLINDERS 

2-6-1 Two Parallel Line Charges 

The potential of an infinitely long line charge A is given in 
Section 2.5.4 when the length of the line L is made very large. 
More directly, knowing the electric field of an infinitely long 
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line charge from Section 2.3.3 allows us to obtain the poten­
tial by direct integration: 

av A A r 
Er= - >V=- In- (1)

ar 21Teor 27reo ro 

where ro is the arbitrary reference position of zero potential. 
If we have two line charges of opposite polarity A a 

distance 2a apart, we choose our origin halfway between, as 
in Figure 2-24a, so that the potential due to both charges is 
just the superposition of potentials of (1): 

A y2+(x+ a)212 (2)
V= - 2ireo In y 2 +(xa)(2) 

where the reference potential point ro cancels out and we use 
Cartesian coordinates. Equipotential lines are then 

y +(x+a) -4, V/=K (3)0 

y +(xa)2e 

where K1 is a constant on an equipotential line. This relation is 
rewritten by completing the squares as 

a(+K) 2 2= 4Ka2(4)
Ki1(I-K')2 

which we recognize as circles of radius r=2a/ Ki I-Kd 
with centers at y=0,x=a(1+K1)/(Ki-1), as drawn by 
dashed lines in Figure 2-24b. The value of K1 = 1 is a circle of 
infinite radius with center at x = 0 and thus represents the 
x=0 plane. For values of K 1 in the interval OsK11 1 the 
equipotential circles are in the left half-plane, while for 1:5 
K1 ! oo the circles are in the right half-plane. 

The electric field is found from (2) as 

A (-4axyi+2a(y2 +a2_ 2
E=-VV= 221 (5)

27rEn [y2+(x+a)2 ][Y2 +(x-a)2 

One way to plot the electric field distribution graphically is 
by drawing lines that are everywhere tangent to the electric 
field, called field lines or lines of force. These lines are 
everywhere perpendicular to the equipotential surfaces and 
tell us the direction of the electric field. The magnitude is 
proportional to the density of lines. For a single line charge, 
the field lines emanate radially. The situation is more compli­
cated for the two line charges of opposite polarity in Figure 
2-24 with the field lines always starting on the positive charge 
and terminating on the negative charge. 
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Figure 2-24 (a) Two parallel line charges of opposite polarity a distance 2a apart. (b) 
The equipotential (dashed) and field (solid) lines form a set of orthogonal circles. 
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For the field given by (5), the equation for the lines tangent 
to the electric field is 

dy E 2xy d(x2 +y) 
= E 2+a2 2> 2 2 2 + d(Iny)=O (6)dx E. y+a-x a -(x +y") 

where the last equality is written this way so the expression 
can be directly integrated to 

2 

x2 +(y -acotK) 2 a 
sin2 K2 (7) 

where K2 is a constant determined by specifying a single 
coordinate (xo, yo) along the field line of interest. The field 
lines are also circles of radius a/sin K2 with centers at x 
0, y = a cot K2 as drawn by the solid lines in Figure 2-24b. 

2-6-2 The Method of Images 

(a) General properties 
When a conductor is in the vicinity of some charge, a 

surface charge distribution is induced on the conductor in 
order to terminate the electric field, as the field within the 
equipotential surface is zero. This induced charge dis­
tribution itself then contributes to the external electric field 
subject to the boundary condition that the conductor is an 
equipotential surface so that the electric field terminates 
perpendicularly to the surface. In general, the solution is 
difficult to obtain because the surface charge distribution 
cannot be known until the field is known so that we can use 
the boundary condition of Section 2.4.6. However, the field 
solution cannot be found until the surface charge distribution 
is known. 

However, for a few simple geometries, the field solution 
can be found by replacing the conducting surface by 
equivalent charges within the conducting body, called images, 
that guarantee that all boundary conditions are satisfied. 
Once the image charges are known, the problem is solved as if 
the conductor were not present but with a charge distribution 
composed of the original charges plus the image charges. 

(b) Line Charge Near a Conducting Plane 
The method of images can adapt a known solution to a new 

problem by replacing conducting bodies with an equivalent 
charge. For instance, we see in Figure 2-24b that the field 
lines are all perpendicular to the x =0 plane. If a conductor 
were placed along the x =0 plane with a single line charge A 
at x = -a, the potential and electric field for x <0 is the same 
as given by (2) and (5). 
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A surface charge distribution is induced on the conducting 
plane in order to terminate the incident electric field as the 
field must be zero inside the conductor. This induced surface 
charge distribution itself then contributes to the external 
electric field for x <0 in exactly the same way as for a single 
image line charge -A at x =+a. 

The force per unit length on the line charge A is due only to 
the field from the image charge - A; 

22 

f= AE(-a, 0)= i. . (8)
2ireo(2a) 41rEoa 

From Section 2.4.6 we know that the surface charge dis­
tribution on the plane is given by the discontinuity in normal 
component of electric field: 

-Aa 
Or(x=0)=-EoE (x=0)= i(y2 +a 2 (9) 

where we recognize that the field within the conductor is zero. 
The total charge per unit length on the plane is obtained by 
integrating (9) over the whole plane: 

AT= a(x =0) dy 

Aa +* dy 

ir J, y 
2 

+a 
2 

Aa I -' y +* 
=----tan -- I

ir a a 1_ 

=-A (10) 

and just equals the image charge. 

2-6-3 Line Charge and Cylinder 

Because the equipotential surfaces of (4) are cylinders, the 
method of images also works with a line charge A a distance D 
from the center of a conducting cylinder of radius R as in 
Figure 2-25. Then the radius R and distance a must fit (4) as 

2a,/KI a(1+KI)
I-l' La+KI1= D (11) R = , 

where the upper positive sign is used when the line charge is 
outside the cylinder, as in Figure 2-25a, while the lower 
negative sign is used when the line charge is within the cylin­
der, as in Figure 2-25b. Because the cylinder is chosen to be in 
the right half-plane, 1 : K1 :5 oo, the unknown parameters K, 

M 
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Figure 2-25 The electric field surrounding a line charge A a distance D from the 
center of a conducting cylinder of radius R is the same as if the cylinder were replaced 
by an image charge -A, a distance b = R 2ID from the center. (a) Line charge outside 
cylinder. (b) Line charge inside cylinder. 

and a are expressed in terms of the given values R and D 
from (11) as 

D2-R2
K1 = (D 2 *, (12)a= 2D 

For either case, the image line charge then lies a distance b 
from the center of the cylinder: 

R 2
a(1-+ K1) 

(13)
K=-F= D 

being inside the cylinder when the inducing charge is outside 
(R < D), and vice versa, being outside the cylinder when the 
inducing charge is inside (R >D). 
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The force per unit length on the cylinder is then just due to 
the force on the image charge: 

A2 A 2D 
(14)2feo(D-b) 27reo(D 2 -R 2 ) 

2-6-4 Two Wire Line 

(a) Image Charges 
We can continue to use the method of images for the case 

of two parallel equipotential cylinders of differing radii R, 
and R 2 having their centers a distance D apart as in Figure 
2-26. We place a line charge A a distance b, from the center of 
cylinder 1 and a line charge -A a distance b 2 from the center 
of cylinder 2, both line charges along the line joining the 
centers of the cylinders. We simultaneously treat the cases 
where the cylinders are adjacent, as in Figure 2-26a, or where 
the smaller cylinder is inside the larger one, as in Figure 
2-26b. 

The position of the image charges can be found using (13) 
realizing that the distance from each image charge to the 
center of the opposite cylinder is D - b so that 

R 2 

bi= ,2 b2= i (15)
D-F b2 D-b 

where the upper signs are used when the cylinders are 
adjacent and lower signs are used when the smaller cylinder is 
inside the larger one. We separate the two coupled equations 
in (15) into two quadratic equations in b, and b 2: 

bi - b,+R =0 

b2- D b2+R2 0 

with resulting solutions 

2 2 2 2 2 112[D -R +R 2 ] D -R +R2 2
b2= 2D 2D )-)R2 

S2 2 2(17) 

b=[D +R 1 -R 2 ] D +R -R(17)
2D L\ 2D / i 

We were careful to pick the roots that lay outside the region 
between cylinders. If the equal magnitude but opposite 
polarity image line charges are located at these positions, the 
cylindrical surfaces are at a constant potential. 
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b,= b2 A2 D-b 

Figure 2-26 The solution for the electric field between two parallel conducting 
cylinders is found by replacing the cylinders by their image charges. The surface 
charge density is largest where the cylinder surfaces are closest together. This is called 
the proximity effect. (a) Adjacent cylinders. (b) Smaller cylinder inside the larger one. 

(b) Force of Attraction 
The attractive force per unit length on cylinder 1 is the 

force on the image charge A due to the field from the 
opposite image charge -A: 

A 2 

27reo[ (D - bi)- b2] 

A 2 

D2 -R2+R 2 1 2 

417Eo 2D R 

A 2 

22 2 2 - ~ 2]1/ (18)
D -R2+Rl 2 v 

ITEoR 2D R 
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IA 

\ 

Fig. 2-26(b) 

R12 

-D=b1b2/b, 2D 

D 2 

A I l 

(c) Capacitance Per Unit Length 
The potential of (2) in the region between the two cylinders 

depends on the distances from any point to the line charges: 

V= In-n (19) 
27rEO S2 

To find the voltage difference between the cylinders we pick 
the most convenient points labeled A and B in Figure 2-26: 

A B 

sV(R-bIn) S = (D-bITR2) (20) 

S2 =(DFb 2 -R 1) s2 =R 2 -b 2 

although any two points on the surfaces could have been 
used. The voltage difference is then 

A I (R 1-b,)(R 2-b 2) (
V-V 2 -ln ( (21)

2ireo (D~b2 --R1)(D-b1 TR2 )/ 1 



D 2- 2R 
(24)
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This expression can be greatly reduced using the relations 

DFb 2 = , D-b =:- (22)
bI 1

b2 

to 

A bib2 
Vi- V2=- In i 

21reo R1R 2 
2 2 2A I [D -R 1 -R 2 1 

2	 reo1 2R 1R 2
[(D 2 -R 2 2 2 1/2 

+ 	 D R )-1]} (23)
R2RIR2 

The potential difference V1 - V2 is linearly related to the 
line charge A through a factor that only depends on the 
geometry of the conductors. This factor is defined as the 
capacitance per unit length and is the ratio of charge per unit 
length to potential difference: 

'r-
2
t 2reo1/2 C A 222 2 

I - V2n E [D -R1-R + D-R, -Ri 1* 
2R1R 2 2R1R 2 

21reo 

cosh~ 1 
2 

\2RIR2 

where we use the identity* 

_ 	1)1 2
In [y+(y 2 ]= cosh~1 y (25) 

We can examine this result in various simple limits. 
Consider first the case for adjacent cylinders (D > R1 + R2 ). 

1. 	 If the distance D is much larger than the radii, 

lim C In 2reo 2ro (26)
Dm(RA+RO In [D2/(RIR 2)] cosh-' [D2/(2RIR2)] 

2. 	 The capacitance between a cylinder and an infinite plane 
can be obtained by letting one cylinder have infinite 
radius but keeping finite the closest distance s = 

*y =cosh x= ex + e 
2
 

(e')2 -2ye"+ 1= 0 

e' = y / 
2n(y2) 1 

x =cosh-'y =In [y: (y 2- 1)"12] 
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D-RI-R 2 between cylinders. If we let R1 become 
infinite, the capacitance becomes 

lim C = 2 s+R 2 1/2 

D-R,-R 
2 = (finite) In sR 

2 + R 2 

27TEo (27) 

coshW ( +R )2 

3. 	 If the cylinders are identical so that R 1 =R2 =R, the 
capacitance per unit length reduces to 

lim C= 2 1 = (28) 
R,=R 2 =R D sDh _ D

In T+1- 1- cosh' D 28 
2R L\2R) 2R 

4. 	 When the cylinders are concentric so that D=0, the 
capacitance per unit length is 

21m)o 27rE o
lim 	C= = 2 2 (29)
D O In (R]/R2) cosh- [(RI + R2)/(2R, R2)] 

2-7 THE METHOD OF IMAGES WITH POINT CHARGES AND 
SPHERES 

2-7-1 Point Charge and a Grounded Sphere 

A point charge q is a distance D from the center of the 
conducting sphere of radius R at zero potential as shown in 
Figure 2-27a. We try to use the method of images by placing a 
single image charge q' a distance b from the sphere center 
along the line joining the center to the point charge q. 

We 	need to find values of q' and b that satisfy the zero 
potential boundary condition at r = R. The potential at any 
point P outside the sphere is 

(1 	 !+ 
4,reo s s 

where the distance from P to the point charges are obtained 
from the law of cosines: 

s =[r2+ 2 -2rD cos 6]0 2 ( 

s'= [b 2 +r 2 -2rb cos 011/2 
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Figure 2-27 (a) The field due to a point charge q, a distance D outside a conducting 
sphere of radius R, can be found by placing a single image charge -qRID at a distance 
b = R'ID from the center of the sphere. (b) The same relations hold true if the charge 
q is inside the sphere but now the image charge is outside the sphere, since D < R. 

At r = R, the potential in (1) must be zero so that q and q' 
must be of opposite polarity: 

+S) = > 9) = (3) 

where we square the equalities in (3) to remove the square 
roots when substituting (2), 

q 2 [b 2 + R 2-2Rb cos 6] = q'2 [R 2+D2 -2RD cos 0] (4) 
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Since (4) must be true for all values of 0, we obtain the 
following two equalities: 

q2 (b 2+R 2 ) q 2(R 2 +D 2) 

qub=q'2D(5 

Eliminating q and q' yields a quadratic equation in b: 

b2-bD 1+ R +R 2 =0 (6) 

with solution 

Db 2 ] + -2
b=- - [1+-1-

2 L R\2/2 

-{1+( )I1(R (7) 

We take the lower negative root so that the image charge is 
inside the sphere with value obtained from using (7) in (5): 

R2 R
b= , q= -q (8)

DD 

remembering from (3) that q and q' have opposite sign. We 
ignore the b = D solution with q'= -q since the image charge 
must always be outside the region of interest. If we allowed 
this solution, the net charge at the position of the inducing 
charge is zero, contrary to our statement that the net charge 
is q. 

The image charge distance b obeys a similar relation as was 
found for line charges and cylinders in Section 2.6.3. Now, 
however, the image charge magnitude does not equal the 
magnitude of the inducing charge because not all the lines of 
force terminate on the sphere. Some of the field lines 
emanating from q go around the sphere and terminate at 
infinity. 

The force on the grounded sphere is then just the force on 
the image charge -q' due to the field from q: 

qq _ q2 R _ q2RD 
2 2)24vreo(D - b) 2 

- 41reoD(D-b) 4irEo(D2 -R (9) 
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The electric field outside the sphere is found from (1) using 
(2) as 

E= -V V= (![(r-D cos 0)i,+Dsin i,]
4vreos 

+- [(r - b cos 6)i, +b sin ie]) (10) 

On the sphere where s'= (RID)s, the surface charge dis­
tribution is found from the discontinuity in normal electric 
field as given in Section 2.4.6: 

q(D2 - R2)
o-(r = R)= eoE,(r = R)= 41rR[R2 +D 2 -2RD cos 013/2 

(11) 
The total charge on the sphere 

qT= o-(r=R)2rR2 sin 0dG 

= -R (D2- R 2) 22 sin 0 d 2 (12)
2 0 [R +D -2RD cos 

can be evaluated by introducing the change of variable 

u=R2+D -2RD cos 0, du = 2RD sin 0 d6 (13) 

so that (12) integrates to 

q(D 2 -R 2 ) (D+R9 du 
24D (D-R) U 

2q(D 2 -R 2 ) 2 (D+R) qR 
4D u / 1(D-R) 

2 D (14) 

which just equals the image charge q'. 
If the point charge q is inside the grounded sphere, the 

image charge and its position are still given by (8), as illus­
trated in Figure 2-27b. Since D < R, the image charge is now 
outside the sphere. 

2-7-2 Point Charge Near a Grounded Plane 

If the point charge is a distance a from a grounded plane, 
as in Figure 2-28a, we consider the plane to be a sphere of 
infinite radius R so that D = R + a. In the limit as R becomes 
infinite, (8) becomes 

R
lim q'= -q, b R =R-a (15) 
R00 (1+a/R) 

D=R+a 
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.­ Eo.i. 
q 

image charge 

image charge 
(a) (b) 

Figure 2-28 (a) A point charge q near a conducting plane has its image charge --q 
symmetrically located behind the plane. (b) An applied uniform electric field causes a 
uniform surface charge distribution on the conducting plane. Any injected charge 
must overcome the restoring force due to its image in order to leave the electrode. 

so that the image charge is of equal magnitude but opposite 
polarity and symmetrically located on the opposite side of the 
plane. 

The potential at any point (x, y, z) outside the conductor is 
given in Cartesian coordinates as 

IV=q I 
47rEo ([(x + a)2 +y2 + Z2112 [(x -- a)2+y2 + z2 112) (6 

with associated electric field 

E=-VV= q (x +a)i.+ yi, +zi, (x-a)i,+yi,+zi*., 
47reo \[(x + a )2+y2 + Z2]s12- _( +zZ 29-a)2 +y2 

(17) 

Note that as required the field is purely normal to the 
grounded plane 

E,(x = 0) =0, E,(x = 0) = 0 (18) 

The surface charge density on the conductor is given by the 
discontinuity of normal E: 

or(x = 0)=-eoE.(x= 0) 

_q 2a 

41r [y 2+ z 2+a2]3/2 

(19)27rr4qa 23/2; r2=2+ Z2 

where the minus sign arises because the surface normal 
points in the negative x direction. 
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The total charge on the conducting surface is obtained by 
integrating (19) over the whole surface: 

q-= o-(x = 0)2vr dr 

rdr(""qaI (r 2+a) 

(20)= (r+a)12 =-q 

As is always the case, the total charge on a conducting surface 
must equal the image charge. 

The force on the conductor is then due only to the field 
from the image charge: 

2 
q 

x (21)= irsoa21 

This attractive force prevents charges from escaping from 
an electrode surface when an electric field is applied. Assume 
that an electric field -Eoi. is applied perpendicular to the 
electrode shown in Figure (2-28b). A uniform negative sur­
face charge distribution a = - 0 E as given in (2.4.6) arises to 
terminate the electric field as there is no electric field within 
the conductor. There is then an upwards Coulombic force on 
the surface charge, so why aren't the electrons pulled out of 
the electrode? Imagine an ejected charge -q a distance x 
from the conductor. From (15) we know that an image charge 
+q then appears at -x which tends to pull the charge -q back 
to the electrode with a force given by (21) with a = x in 
opposition to the imposed field that tends to pull the charge 
away from the electrode. The total force on the charge -q is 
then 

2 

S= qEo- q (22)
4reo(2x) 

The force is zero at position x, 

0=>x, = [ E 1
/
2 (23)

1161eoEol 

For an electron (q= 1.6 X 10- 1 coulombs) in a field of Eo= 
10 v/m, x,~ 1.9X 10- 8 m. For smaller values of x the net 
force is negative tending to pull the charge back to the elec­
trode. If the charge can be propelled past x, by external 
forces, the imposed field will then carry the charge away from 
the electrode. If this external force is due to heating of the 
electrode, the process is called thermionic emission. High 
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field emission even with a cold electrode occurs when the 
electric field Eo becomes sufficiently large (on the order of 
10 v/m) that the coulombic force overcomes the quantum 
mechanical binding forces holding the electrons within the 
electrode. 

2-7-3 Sphere With Constant Charge 

If the point charge q is outside a conducting sphere (D > R) 
that now carries a constant total charge Qo, the induced 
charge is still q'= -qRID. Since the total charge on the sphere 
is Qo, we must find another image charge that keeps the 
sphere an equipotential surface and has value Qo+qR/D. 
This other image charge must be placed at the center of the 
sphere, as in Figure 2-29a. The original charge q plus the 
image charge q'= -qRID puts the sphere at zero potential. 
The additional image charge at the center of the sphere raises 
the potential of the sphere to 

V = oqRD(24)
41reoR 

The force on the sphere is now due to the field from the point 
charge q acting on the two image charges: 

q /Df q qR (Q 

4ireo D(D-b)2+ (Qo+ RID) 

q qRD (Qo+ qRD)) (25) 
D'241rEo\ (D2 - R2)2+ 

V = V, 

Do + Qo = 4xEORV 
q -qR/D q -qR/D 

Sphere with constant Sphere at constant 
charge Qo voltage Vo 

(a) (b) 

Figure 2-29 (a) If a conducting sphere carries a constant charge Qo or (b) is at a 
constant voltage Vo, an additional image charge is needed at the sphere center when a 
charge q is nearby. 
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2-7-4 Constant Voltage Sphere 

If the sphere is kept at constant voltage V0 , the image 
charge q'= -qRID at distance b = R 2/D from the sphere 
center still keeps the sphere at zero potential. To raise the 
potential of the sphere to Vo, another image charge, 

Qo=41reoRVo 	 (26) 

must be placed at the sphere center, as in Figure 2-29b. The 
force on the sphere is then 

S qR +(27) (74vreo\ D(D-b)2 D2 

PROBLEMS 

Section 2.1 
1. Faraday's "ice-pail" experiment is repeated with the 
following sequence of steps: 

(i) 	 A ball with total charge Q is brought inside an 
insulated metal ice-pail without touching. 

(ii) 	 The outside of the pail is momentarily connected to 
the ground and then disconnected so that once again 
the pail is insulated. 

(iii) 	Without touching the pail, the charged ball is removed. 

(a) Sketch the charge distribution on the inside and outside 
of the pail during each step. 

(b) What is the net charge on the pail after the charged ball 
is removed? 

2. A sphere initially carrying a total charge Q is brought into 
momentary contact with an uncharged identical sphere. 

(a) How much charge is on each sphere? 
(b) This process is repeated for N identical initially 

uncharged spheres. How much charge is on each of the 
spheres including the original charged sphere? 

(c) What is the total charge in the system after the N 
contacts? 

Section 2.2 
3. The charge of an electron was first measured by Robert A. 
Millikan in 1909 by measuring the electric field necessary to 
levitate a small charged oil drop against its weight. The oil 
droplets were sprayed and became charged by frictional 
electrification. 
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A spherical droplet of radius R and effective mass density 
p., carries a total charge q in a gravity field g. What electric 
field Eoi, will suspend the charged droplet? Millikan found by 
this method that all droplets carried integer multiples of 
negative charge e = -1.6 x 10' coul. 

4. Two small conducting balls, each of mass m, are at the end 
of insulating strings of length I joined at a point. Charges are 

Q1 Q2 

g 

placed on the balls so that they are a distance d apart. A 
charge Q, is placed on ball 1. What is the charge Q2 on ball 2? 

5. A point charge -Qi of mass m travels in a circular orbit of 
radius R about a charge of opposite sign Q2. 

R?-Q1 
Q2 

\ / 

(a) What is the equilibrium angular speed of the charge 
-Qi? 

(b) This problem describes Bohr's one electron model of 
the atom if the charge -Q1 is that of an electron and Q2 = Ze 
is the nuclear charge, where Z is the number of protons. 
According to the postulates of quantum mechanics the 
angular momentum L of the electron must be quantized, 

L = mvR = nh/2r, n = 1, 2, 3, - - ­

where h = 6.63 x 10-34 joule-sec is Planck's constant. What are 
the allowed values of R? 
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(c) For the hydrogen atom (Z = 1) what is the radius of the 
smallest allowed orbit and what is the electron's orbital veloc­
ity? 

6. An electroscope measures charge by the angular deflection 
of two identical conducting balls suspended by an essentially 
weightless insulating string of length 1. Each ball has mass M 
in the gravity field g and when charged can be considered a 
point charge. 

01 

Q/2 Q12 

+ 
A total charge Q is deposited on the two balls of the elec­

troscope. The angle 0 from the normal obeys a relation of the 
form 

tan 6 sin2 0 = const 

What is the constant? 

7. Two point charges q, and q2 in vacuum with respective 
masses mi and m 2 attract (or repel) each other via the 
coulomb force. 

m1, q1 M2, q2 
* 0 

<- r-> 

(a) Write a single differential equation for the distance 
between the charges r = r2 - ri. What is the effective mass of 
the charges? (Hint: Write Newton's law for each charge and 
take a mass-weighted difference.) 

(b) If the two charges are released from rest at t = 0 when a 
distance ro from one another, what is their relative velocity 
v = dr/dt as a function of r? Hint: 

dv dvdr dv d 12 
- /V

dt dr dt dr dr 
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(c) What is their position as a function of time? Separately 
consider the cases when the charges have the same or 
opposite polarity. Hint: 

Let U=/ 

2 2 2 aJU dU U_su- + in u~ u -sa 2 
u2-du 

(d) If the charges are of opposite polarity, at what time will 
they collide? (Hint: If you get a negative value of time, 
check your signs of square roots in (b).) 

(e) If the charges are taken out of the vacuum and placed 
in a viscous medium, the velocity rather than the acceleration 
is proportional to the force 

31v1= fI, 9 2 v2 = f 

where 11 and 02 are the friction coefficients for each charge. 
Repeat parts (a)-(d) for this viscous dominated motion. 

8. A charge q of mass m with initial velocity v= voi, is 
injected at x =0 into a region of uniform electric field E = 
Eoi,. A screen is placed at the position x = L. At what height h 
does the charge hit the screen? Neglect gravity. 

9. A pendulum with a weightless string of length I has on its 
end a small sphere with charge q and mass m. A distance D 

10 

Q 
-- -q--­

-<-D 

Q 
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away on either side of the pendulum mass are two fixed 
spheres each carrying a charge Q. The three spheres are of 
sufficiently small size that they can be considered as point 
charges and masses. 

(a) Assuming the pendulum displacement f to be small 
(6 D), show that Newton's law can be approximately written 
as 

d2c+W26 0= 
dt2 

What is 0? Hint: 

S 1 1 24
sin 0 ~ (

1' (D: )2 D D:­

(b) At t =0 the pendulum is released from rest with f = 6o. 
What is the subsequent pendulum motion? 

(c) For what values of qQ is the motion unbounded with 
time? 

10. Charges Q, Q, and q lie on the corners of an equilateral 
triangle with sides of length a. 

(a) What is the force on the charge q? 
(b) What must q be for E to be zero half-way up the altitude 

at P? 

Q Q 
a4'a-­

11. Find the electric field along the z axis due to four equal 
magnitude point charges q placed on the vertices of a square 
with sides of length a in the xy plane centered at the origin 

Z 

q2 q3 

a i­
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when: 

(a) the charges have the same polarity, q, = q2 q3= q4= q; 
(b) the charges alternate in polarity, qI = q3 q, q2 = q4 

-q; 
(c) the charges are q, =q2q, q3=q4-q. 

Section 2.3 
12. Find the total charge in each of the following dis­
tributions where a is a constant parameter: 

(a) An infinitely long line charge with density 

,k(z) Ao e-IZI /a 

(b) A spherically symmetric volume charge distributed 
over all space 

p(r)=­ P 4[1 +r/a]4 

(Hint: Let u = 1+ r/a.) 
(c) An infinite sheet of surface charge with density 

o~oe-I x1 /a 

[I+(y/b) 2] 

13. A point charge q with mass M in a gravity field g is 
released from rest a distance xO above a sheet of surface 
charge with uniform density 0-0. 
* q 

(a) What is the position of the charge as a function of time? 
(b) For what value of o-o will the charge remain stationary? 
(c) If o-o is less than the value of (b), at what time and with 

what velocity will the charge reach the sheet? 

14. A point charge q at z = 0 is a distance D away from an 
infinitely long line charge with uniform density Ao. 

+ (a) What is the force on the point charge q? 
+ (b) What is the force on the line charge? 
+ (c) Repeat (a) and (b) if the line charge has a distribution 
+ Ao1I 
+ 

+0q 
_A(z)=~ Y a 

D : 
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15. A small sphere of mass M in a gravity field g carrying a 
charge Q is connected by a massless string to a sheet of 
surface charge of the same polarity with density c-o. What is 
the angle 0 between the sheet and charge? 

16. A line charge A along the z axis extends over the interval 
-L tz sL. 

z 
A 

-L 

x 
(a) 

L 

I 
.......... Y ......
 

I-L 

(h) 

(a) Find the electric field in the z = 0 plane. 
(b) Using the results of (a) find the electric field in the z = 0 

plane due to an infinite strip (-oo szyscoc) of height 2L with 

x 
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surface charge density o-o. Check your results with the text for 
L -)co. Hint: Let ux 2 +y 2 

2du - . _n (L2_X 2)u-2L2x 

fdU(-xN VL+-u Lx u(L 2+X2) 

17. An infinitely long hollow semi-cylinder of radius R car­
ries a uniform surface charge distribution 0-o. 

(a) What is the electric field along the axis of the cylinder? 
(b) Use the results of (a) to find the electric field along the 

axis due to a semi-cylinder of volume charge po. 
(c) Repeat (a) and (b) to find the electric field at the center 

of a uniformly surface or volume charged hemisphere. 

18. (a) Find the electric field along the z axis of a circular loop 
centered in the xy plane of radius a carrying a uniform line charge 
Xo for y > 0 and -X for y < 0. 

(b) Use the results of (a) to find the electric field along the z 
axis of a circular disk of radius a carrying a uniform surface charge 
uo for y > 0 and -ao for y < 0. 

19. (a) Find the electric field along the z axis due to a square 
loop with sides of length a centered about the z axis in the xy 
plane carrying a uniform line charge A. What should your 
result approach for z > a? 

(b) Use the results of (a) to find the electric field along the z 
axis due to a square of uniform surface charge a-o. What 
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z 

X + 

aa 

should your result approach as a +O ? Hint: Let 

du 2 a 2u-z22 X2~z+-= - tan 
4'J uV2u -z" Jz z2 

20. A circular loop of radius a in the xy plane has a uniform 
line charge distribution AO for y >0 and -AO for y <0. 

P 

rQp= -a[COS~ia + siniy J + zi, 

cou cul/ * + 

(a) What is the electric field along the z axis? 
(b) Use the results of (a) to find the electric field along the z 

axis due to a surface charged disk, whose density is o- for y > 0 
and -o-o for y <0. Hint: 

r 2dr r 
)2 23/2=- +ln(r+vr2 +z 2 

(r +z ) 2 
2r + z 

(c) Repeat (a) if the line charge has distribution A = AO sin 4. 
(d) Repeat (b) if the surface charge has distribution o-

a-o sin 4. 

21. An infinitely long line charge with density AO is folded in 
half with both halves joined by a half-circle of radius a. What 
is the electric field along the z axis passing through the center 
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+ + + + + 

+ + + + + +a /­

+ + + + + ++ 
+ 

+z 

x 

of the circle. Hint: 

xdx -1
J [x+2 23/2 2 +a21/2 

dx _ _ 

=2[X2 21/122J [x2 +a2 ] a [x +a ] 
i, = cos 4 i. + sin 4 i, 

Section 2.4 
22. Find the total charge enclosed within each of the follow­
ing volumes for the given electric fields: 

(a) E = Ar2 i, for a sphere of radius R; 
(b) E= A r2 i, for a cylinder of radius a and length L; 
(c) E = A (xi, +yi,) for a cube with sides of length a having 

a corner at the origin. 

23. Find the electric field everywhere for the following 
planar volume charge distributions: 

(a) p(x)=poe*, -00: x5 00 
P(X) 

-b s x 5--a-O -P (b) p () -po, 

- po IP0, a &x - bb 

p(x) 

PO 

-d pox
d (c) p(x)-, -d x d
d d 

~~PO 

M M 
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pIx) 

Po 

x (d) (x) po(1+xld), -d sx O0
 
-d d Ipo(I - xd), 0:5x:5
 

24. Find the electric field everywhere for the following 
spherically symmetric volume charge distributions: 

(a) p(r)=poe~'", Osr5oo 

Hint: J r2 e"a dr = -a e -""[r 2 +2a 2(r/a +1)].) 

(b p(r =pi, Osr<Rl 
P2, R 1<r<R2 

(c) 	 p(r)=por/R, O<r<R 

25. Find the electric field everywhere for the following 
cylindrically symmetric volume charge distributions: 

(a) 	 p(r)=poer"/, O<r<oo 

[Hint: J re radr=-a 2-ra(r/a+ 1). 

O<r<a(b) 	 p(r)= pi, 
IP2, a<r<b 

(c) 	 p(r)=por/a, O<r<a 

y 

... ..... '..p 

rir =Xi, + yiY 

S r b r'i,.={x-di,+yiy
X 

...... ............ 
if 	 . .....*... *. 

26. An infinitely long cylinder of radius R with uniform 
volume charge density po has an off-axis hole of radius b with 
center a distance d away from the center of the cylinder. 
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What is the electric field within the hole? (Hint: Replace the 
hole by the superposition of volume charge distributions of 
density po and -po and use the results of (27). Convert the 
cylindrical coordinates to Cartesian coordinates for ease of 
vector addition.) 

Section 2.5 
27. A line charge A of length I lies parallel to an infinite sheet 
of surface charge o. How much work is required to rotate 
the line charge so that it is vertical? 

00 

28. A point charge q of mass m is injected at infinity with-
initial velocity voi, towards the center of a uniformly charged 
sphere of radius R. The total charge on the sphere Q is the 
same sign as q. 

+ + + 

R 
+ + - * 

q VO x 

+Q + 

(a) What is the minimum initial velocity necessary for the 
point charge to collide with the sphere? 

(b) If the initial velocity is half of the result in (a), how close 
does the charge get to the sphere? 

29. Find the electric field and volume charge distributions 
for the following potential distributions: 

(a) V=Ax 2 

(b) V = Axyz 

(c) V=Ar2 sin0+ Brz 

(d) V=Ar sin cos46 
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30. Which of the following vectors can be an electric field? If 
so, what is the volume charge density? 

2(a) E=ax 2y . 

(b) E = a(i, cos 0 -ie sin 6) 

(c) E=a(yi.-xi,) 

(d) E= (a/r2)[ir(1 +cos 4)+i sin 41 

31. Find the potential difference V between the following 
surface charge distributions: 

0O -00 

-A0-qo ­
+ + R 2 + + 

+ a + + + 
- + + - - + R, + ­

b + + + + 

(a) (b) (c) 

(a) Two parallel sheets of surface charge of opposite 
polarity iEo0 and spacing a. 

(b) Two coaxial cylinders of surface charge having infinite 
length and respective radii a and b. The total charge per unit 
length on the inner cylinder is A 0 while on the outer cylinder 
is -Ao. 

(c) Two concentric spheres of surface charge with respec­
tive radii R, and R 2. The inner sphere carries a uniformly 
distributed surface charge with total charge qo. The outer 
sphere has total charge -qo. 

32. A hemisphere of radius R has a uniformly distributed 
surface charge with total charge Q. 

RsinOdO 

RdO 

Q 6'e 

(a) Break the spherical surface into hoops of line charge of 
thickness R de. What is the radius of the hoop, its height z', 
and its total incremental charge dq? 
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(b) What is the potential along the z axis due to this incre­
mental charged hoop? Eliminate the dependence on 8 and 
express all variables in terms of z', the height of the differen­
tial hoop of line charge. 

(c) What is the potential at any position along the z axis 
due to the entire hemisphere of surface charge? Hint: 

dz' 2,a+bz' 

f [a+bz'] 2s= b 

(d) What is the electric field along the z axis? 
(e) If the hemisphere is uniformly charged throughout its 

volume with total charge Q, find the potential and electric 
field at all points along the z axis. (Hint: JrvIz"+r dr= 
} (z2+r 2)3 /2.) 

33. Two point charges qi and q2 lie along the z axis a distance 
a apart. 

((. 0 t) 

ri 

qE 

ay 

q2 

x 

(a) Find the potential at the coordinate (r, 0,th 
(Hint: r2 = r + (a/2)2 Har cos 0.) 

(b) What is the electric field? 
(c) An electric dipole is formed if q2 =-ql. Find an 

approximate expression for the potential and electric field for 
points far from the dipole, r a. 

(d) What is the equation of the. field lines in this far field 
limit that is everywhere tangent to the electric field 

dr Er 
r dG Ea 

Find the equation of the field line that passes through the 
point (r = ro, 0 = 7r/2). (Hint: I cot 0 dO = In sin 0.) 

34. (a) Find the potentials V1, V2, and V3 at the location of 
each of the three-point charges shown. 
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qi 

q2 

r IV3r3 ++e 
q3q 

(a)......
 

d0d 

(g) 

(b) Now consider another set of point charges qi, q2, and q3 
at the same positions and calculate the potentials V', V2, and 
V3. Verify by direct substitution that 

q' 1+q'V2 +q'sVs=q1 V'j +q 2 V2+qV' 

The generalized result for any number of charges is called 
Green's reciprocity theorem, 

N 

S(qj V'%- q'2Vj) = 0 
t=1 

(c) Show that Green's reciprocity theorem remains 
unchanged for perfect conductors as the potential on the 
conductor is constant. The qj is then the total charge on the 
conductor. 

(d) A charge q at the point P is in the vicinity of a zero 
potential conductor. It is known that if the conductor is 
charged to a voltage V, the potential at the point P in the 
absence of the point charge is V,. Find the total charge q, 
induced on the grounded conductor. (Hint: Let ql= q, q2 = 
qc, V2 =0, q =0, V' = V,, V2 = V.) 

(e) If the conductor is a sphere of radius R and the point P 
is a distance D from the center of the sphere, what is q,? Is 
this result related to the method of images? 

(f) A line charge A is a distance D from the center of a 
grounded cylinder of radius a. What is the total charge per 
unit length induced on the cylinder? 

(g) A point charge q is between two zero potential perfect 
conductors. What is the total charge induced on each 
conducting surface? (Hint: Try q= q, q2 = q(y = 0), q3 = 
q(y = d), V2 = 0, Vs=0, q' =0, V2 = Vo, V3 =0.) 

(h) A point charge q travels at constant velocity vo between 
shorted parallel plate electrodes of spacing d. What is the 
short circuit current as a function of time? 
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Section 2.6 
35. An infinitely long line charge A is a distance D from the 
center of a conducting cylinder of radius R that carries a total 
charge per unit length A,. What is the force per unit length on 

xC 

R 

D 

the cylinder? (Hint: Where can another image charge be 
placed with the cylinder remaining an equipotential surface?) 

36. An infinitely long sheet of surface charge of width d and 
uniform charge density c-o is placed in the yz plane. 

y 

d 

a30 

0 3 

(a) 

y 

00 

d uO dy' 

+ ) 
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(a) Find the electric field everywhere in the yz plane. 
(Hint: Break the sheet into differential line charge elements 
dA = aody'.) 

(b) An infinitely long conducting cylinder of radius a sur­
rounds the charged sheet that has one side along the axis of 
the cylinder. Find the image charge and its location due to an 
incremental line charge element uo dy' at distance y'. 

(c) What is the force per unit length on the cylinder? 
Hint: 

In (I -cy') dy'= - ccy [In (I -cy')- 1] 

37. A line charge A is located at coordinate (a, b) near a 
right-angled conducting corner. 

y 

7Y 

(aS~b) * a,b)x 

(a) (d) 

(a) Verify that the use of the three image line charges 
shown satisfy all boundary conditions. 

(b) What is the force per unit length on A? 
(c) What charge per unit length is induced on the surfaces 

x=0 and y =0? 
(d) Now consider the inverse case when three line charges 

of alternating polarity tA are outside a conducting corner. 
What is the force on the conductor? 

(e) Repeat (a)-(d) with point charges. 

Section 2.7 
38. A positive point charge q within a uniform electric field 
Eoi2 is a distance x from a grounded conducting plane. 

(a) At what value of x is the force on the charge equal to 
zero? 

(b) If the charge is initially at a position equal to half the 
value found in (a), what minimum initial velocity is necessary 
for the charge to continue on to x = +o? (Hint: E.= 
-dVdx.) 
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t Eoi 

e q 

(c) If EO=0, how much work is necessary to move the 
point charge from x = d to x =+00? 

39. A sphere of radius R2 having a uniformly distributed 
surface charge Q surrounds a grounded sphere of radius R1 . 

R2 

+ Q 

(a) What is the total charge induced on the grounded 
sphere? (Hint: Consider the image charge due to an 
incremental charge dq = (Q/47r) sin 0 dO d4> at r = R2 -) 

(b) What are the potential and electric field distributions 
everywhere? 

40. A point charge q located a distance D (D < R) from the 
center is within a conducting sphere of radius R that is at 
constant potential VO. What is the force on q? 

V= VO 

R 

41. A line charge of length L with uniform density AO is 
orientated the two ways shown with respect to a grounded 
sphere of radius R. For both cases: 
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I; 

4QP 

R R 

L 

(a) Consider the incremental charge element Ao dz' a dis­
tance rQp from the sphere center. What is its image charge 
and where is it located? 

(b) What is the total charge induced on the sphere? Hint: 

=In (z'+vR7+z'Y) 

42. A conducting hemispherical projection of radius R is 
placed upon a ground plane of infinite extent. A point 
charge q is placed a distance d (d > R) above the center of the 
hemisphere. 

i 

qI 

d 

if R 
-*7Y 

(a) What is the force on q? (Hint: Try placing three 
image charges along the z axis to make the plane and hemi­
sphere have zero potential.) 

(b) What is the total charge induced on the hemisphere at 
r = R and on the ground plane Iy I > R? Hint: 

rdr -1 
2[r2 +d2] 1 /2 vr+d
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43. A point charge q is placed between two parallel grounded 
conducting planes a distance d apart. 

t b 
d 

e q 

(a) 

R2 

RI 

q2, b2 

RO 

(c) 

(a) The point charge q a distance a above the lower plane 
and a distance b below the upper conductor has symmetric­
ally located image charges. However, each image charge itself 
has an image in the opposite conductor. Show that an infinite 
number of image charges are necessary. What are the loca­
tions of these image charges? 

(b) Show that the total charge on each conductor cannot be 
found by this method as the resulting series is divergent. 

(c) Now consider a point charge q, a radial distance RO 
from the center of two concentric grounded conducting 
spheres of radii R1 and R2 . Show that an infinite number of 
image charges in each sphere are necessary where, if we 
denote the nth image charge in the smaller sphere as q. a 
distance b. from the center and the nth image charge in the 
outer sphere as q' a distance b' from the center, then 

4 -- , njR R24I b 
2b .2b?+ R2' 
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(d) Show that the equations in (c) can be simplified to 

q..l -q.-I (R-1 \ ==2R2_
 

R 2 

(e) Try power-law solutions 

q= b=Ba" 

and find the characteristic values of A and a that satisfy the 
equations in (d). 

(f) Taking a linear combination of the solutions in (e), 
evaluate the unknown amplitude coefficients by substituting 
in values for n = 1 and n =2. What are all the q, and bn? 

(g) What is the total charge induced on the inner sphere? 

(Hint: a"= a/(1-a) for a < 1) 

(h) Using the solutions of (f) with the difference relations of 
(c), find q, and b'. 

(i) Show that Y q. is not a convergent series so that the 

total charge on the outer sphere cannot be found by this 
method. 

(j) Why must the total induced charge on both spheres be 
-q? What then is the total induced charge on the outer 
sphere? 

(k) .Returning to our original problem in (a) and (b) of a 
point charge between parallel planes, let the radii of the 
spheres approach infinity such that the distances 

d=R2 -R 1 , a=R2 -Ro, b=Ro-R1 

remains finite. What is the total charge induced on each plane 
conductor? 

44. A point charge Q is a distance D above a ground plane. 
Directly below is the center of a small conducting sphere of 
radius R that rests on the plane. 

(a) Find the first image charges and their positions in the 
sphere and in the plane. 

(b) Now find the next image of each induced in the other. 
Show that two sets of image charges are induced on the 
sphere where each obey the difference equations 

R 2
q.R b = 

=2R - b.,' b 2R -b, 
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SQ 

D 

®R 

(c) Eliminating the b., show that the governing difference 
equation is 

1 2 1 
--- -+-= 0 
q.+, q. q.-I 

Guess solutions of the form 

P = l/q = AA' 

and find the allowed values of A that satisfy the difference 
equation. (Hint: For double roots of A the total solutidn is of 
the form P. = (A1 + A 2n)A".) 

(d) Find all the image charges and their positions in the 
sphere and in the plane. 

(e). Write the total charge induced on the sphere in the 
form 

* A 
qT= Y 2n=1[1-an ] 

What are A and a? 
(f) We wish to generalize this problem to that of a sphere 

resting on the ground plane with an applied field E = -Eoi. at 
infinity. What must the ratio QID 2 be, such that as Q and D 
become infinite the field far from the sphere in the 6 = vr/2 
plane is -Eoi.? 

(g) In this limit what is the total charge induced on the 

sphere? (Hint: Y - Vr/6.) 

45. A conducting sphere of radius R at potential Vo has its 
center a distance D from an infinite grounded plane. 
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V = VO 

R 

sees 6 0 

V =0 
40) 

R2 
V = V0 

q, b" q , ,b. 

-­ VO 

D a 

(I) 

(a) Show that an infinite number of image charges in the 
plane and in the sphere are necessary to satsify the boundary 
conditions 

q.-IR b. = qu 2D -b.-j' 2D-b.-1 

What are q, and q2? 
(b) Show that the governing difference equation is 

1I--- c + --- 1 
=0 

q.-I q. q.+l 

What is c? 
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V= VO 
R2 

R1 

D - -

Yf) 

(c) Solve the difference equation in (b) assuming Solutions 
of the form 

P,,= l1q. = A k' 

What values of A satisfy (b)? Hint: 

C/2 + ~/)-= I 
c/2 - (/2)7-1 

(d) What is the position of each image charge? What is the 
limiting position of the image charges as n -+ oo? 

(e) Show that the capacitance (the ratio of the total charge 
on the sphere to the voltage VO) can be written as an infinite 
series 

2 1 A 2 A3
 

C=CO(A 2 -1) 2A+4 + +
 

What are Co and A? 
(f) Show that the image charges and their positions for two 

spheres obey the difference equations 

q'R, R2 
..=D-b., b.=D-b. 

, Rlq. b., RI 
R2q, R2 

q.=- b=
D :Fbn' D:Fbn 

where we use the upper signs for adjacent spheres and the 
lower signs when the smaller sphere of radius R1 is inside the 
larger one. 
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(g) Show that the governing difference equation is of the 
form 

P.., -F cP.+ P .- 1 = 0 

What are P. and c? 
(h) Solve (g) assuming solutions of the form 

Pn= AA" 

(i) Show that the capacitance is of the form 

A A'C O~ f) 1 
C=Co(-f") 2+ 1_e2 2+ 4 0 

What are Co, 6, and A? 
(j) What is the capacitance when the two spheres are 

concentric so that D = 0. (Hint: n = 1/(1 - a) for a <1.) 
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The presence of matter modifies the electric field because 
even though the material is usually charge neutral, the field 
within the material can cause charge motion, called conduc­
tion, or small charge displacements, called polarization. 
Because of the large number of atoms present, 6.02 x 1023 per 
gram molecular weight (Avogadro's number), slight 
imbalances in the distribution have large effects on the fields 
inside and outside the materials. We must then self-
consistently solve for the electric field with its effect on charge 
motion and redistribution in materials, with the charges. 
resultant effect back as another source of electric field. 

3-1 POLARIZATION 

In many electrically insulating materials, called dielectrics, 
electrons are tightly bound to the nucleus. They are not 
mobile, but if an electric field is applied, the negative cloud of 
electrons can be slightly displaced from the positive nucleus, 
as illustrated in Figure 3-la. The material is then said to have 
an electronic polarization. Orientational polarizability as in 
Figure 3-lb occurs in polar molecules that do not share their 

No field 
Electric field E 

-0--.
/ 

-O- l-q/ 
_E :F =qE 

/ 
\ , d Torque= d x qE
 

=p x E
 

F = -qE 
p = qd 

Electronic polarization Orientation and ionic polarization 

(a) (b) 

Figure 3-1 An electric dipole consists of two charges of equal magnitude but opposite 
sign, separated by a small vector distance d. (a) Electronic polarization arises when the 
average motion of the electron cloud about its nucleus is slightly displaced. (b) Orien­
tation polarization arises when an asymmetric polar molecule tends to line up with an 
applied electric field. If the spacing d also changes, the molecule has ionic polarization. 
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electrons symmetrically so that the net positive and negative 
charges are separated. An applied electric field then exerts a 
torque on the molecule that tends to align it with the field. 
The ions in a molecule can also undergo slight relative dis­
placements that gives rise to ionic polarizability. 

The slightly separated charges for these cases form electric 
dipoles. Dielectric materials have a distribution of such 
dipoles. Even though these materials are charge neutral 
because each dipole contains an equal amount of positive and 
negative charges, a net charge can accumulate in a region if 
there is a local imbalance of positive or negative dipole ends. 
The net polarization charge in such a region is also a source 
of the electric field in addition to any other free charges. 

3-1-1 The Electric Dipole 

The simplest rpodel of an electric dipole, shown in Figure 
3-2a, has a positive and negative charge of equal magnitude q 
separated by a small vector displacement d directed from the 
negative to positive charge along the z axis. The electric 
potential is easily found at any point P as the superposition of 
potentials from each point charge alone: 

V= q - _ (1)41reor+ 4r8or­

The general potential and electric field distribution for any 
displacement d can be easily obtained from the geometry 
relating the distances r, and r- to the spherical coordinates r 
and 0. By symmetry, these distances are independent of the 
angle 4. However, in dielectric materials the separation 
between charges are of atomic dimensions and so are very 
small compared to distances of interest far from the dipole. 
So, with r, and r- much greater than the dipole spacing d, we 
approximate them as 

d 
r~r---cos8 

2 

Then the potential of (1) is approximately 

V qdcos0 p-i 
41reor 4reor 

where the vector p is called the dipole moment and is defined 
as 

p = qd (coul-m) (4) 
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P
 

cosO (os 

a p qd Co2 

-- 0. 

- -0 

0 2 0 

--0.7 

-.-- r = sFn 20r0 

-- = P Cos 
(b) 

Figure 3-2 (a) The potential at any point P due to the electric dipole is equal to the 
sum of potentials of each charge alone. (b) The equi-potential (dashed) and field lines 
(solid) for a point electric dipole calibrated for 4vreo/p = 100. 
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Because the separation of atomic charges is on the order of 
1 A(10 10 m) with a charge magnitude equal to an integer 
multiple of the electron charge (q = 1.6 X 10-19 coul), it is 
convenient to express dipole moments in units of debyes 
defined as I debye = 3.33 X 1030 coul-m so that dipole 
moments are of order p = 1.6 x 10-29 coul-m - 4.8 debyes. 
The electric field for the point dipole is then 

P 3(p-i,),- p ()E= -V V= 3 [2 cos Oi,+sin Gbi]= 3 (5)
47rEor 47rEor 

the last expressions in (3) and (5) being coordinate indepen­
dent. The potential and electric field drop off as a single 
higher power in r over that of a point charge because the net 
charge of the dipole is zero. As one gets far away from the 
dipole, the fields due to each charge tend to cancel. The point 
dipole equipotential and field lines are sketched in Figure 
3-2b. The lines tangent to the electric field are 

dr =-=2cot->r=rosin2 
(6)

rd6 EO 

where ro is the position of the field line when 6 = 7r/2. All field 
lines start on the positive charge and terminate on the nega­
tive charge. 

If there is more than one pair of charges, the definition of 
dipole moment in (4) is generalized to a sum over all charges, 

p= Y qiri (7) 
all charges 

where ri is the vector distance from an origin to the charge qj 
as in Figure 3-3. When the net charge in the system is zero 
(_ qj =0), the dipole moment is independent of the choice of 
origins for if we replace ri in (7) by ri +ro, where ro is the 
constant vector distance between two origins: 

p= qi(ri + ro) 
0 

=_ q qigri +ro 

=Y_qiri (8) 

The result is unchanged from (7) as the constant ro could be 
taken outside the summation. 

If we have a continuous distribution of charge (7) is further 
generalized to 

(9)P all qr dq 
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Figure 3-3 The dipole moment can be defined for any distribution of charge. If the 
net charge in the system is zero, the dipole moment is independent of the location of 
the origin. 

Then the potential and electric field far away from any 
dipole distribution is given by the coordinate independent 
expressions in (3) and (5) where the dipole moment p is given 
by (7) and (9). 

3-1-2 Polarization Charge 

We enclose a large number of dipoles within a dielectric 
medium with the differential-sized rectangular volume 
Ax Ay Az shown in Figure 3-4a. All totally enclosed dipoles, 
being charge neutral, contribute no net charge within the 
volume. Only those dipoles within a distance d - n of each 
surface are cut by the volume and thus contribute a net 
charge where n is the unit normal to the surface at each face, 
as in Figure 3-4b. If the number of dipoles per unit volume is 
N, it is convenient to define the number density of dipoles as 
the polarization vector P: 

P=Np=Nqd (10) 

The net charge enclosed near surface 1 is 

dql = (Nqd )I. Ay Az = P.(x) Ay Az (11). 

while near the opposite surface 2 

dq 2 = -(Nd.)I.5 +. Ay Az = -P.(x + Ax) Ay Az (12) 
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-- d -n 
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p = qd 

(b) 

Figure 3-4 (a) The net charge enclosed within a differential-sized volume of dipoles 
has contributions only from the dipoles that are cut by the surfaces. All totally enclosed 
dipoles contribute no net charge. (b) Only those dipoles within a distance d - n of the 
surface are cut by the volume. 

where we assume that Ay and Az are small enough that the 
polarization P is essentially constant over the surface. The 
polarization can differ at surface 1 at coordinate x from that 
at surface 2. at coordinate x + Ax if either the number density 



142 Polarizationand Conduction 

N, the charge.q,or the displacement d is a function of x. The 
difference in sign between (11) and (12) is because near S, the 
positive charge is within the volume, while near S2 negative 
charge remains in the volume. Note also that only the 
component of d normal to the surface contributes to the 
volume of net charge. 

Similarly, near the surfaces Ss and the net chargeS4 
enclosed is 

dq3 = (Nqd,)I, Ax Az = P,(y) Ax Az 

dq4 = -(Nd,)I,A, Ax Az = -P,(y + Ay) Ax Az 

while near the surfaces S5 and S6 with normal in the z direc­
tion the net charge enclosed is 

de5 = (Nd. )I. Ax Ay = P.(z) Ax Ay 
(14)

dq6 = -(Nqd) 2 +&. AX AY = -P (Z + AZ) AX AY 

The total charge enclosed within the volume is the sum of 
(11)-(14): 

dqdq 1 +dq 2 +dq+dq 4 +dq 5 +dq 

= P.(x )-P.(x + Ax )4 P,(y)-P,(y + Ay) 
Ax Ay 

+ A (z)-PA(z+AU) Ax Ay Az (15)
Az 

As the volume shrinks to zero size, the polarization terms in 
(15) define partial derivatives so that the polarization volume 
charge density is 

P,= lim dqT = - + + = -V - P (16)
A.- x AY Az x aV (6 

This volume charge is also a source of the electric field and 
needs to be included in Gauss's law 

V - (soE)= pf +p, = pf -V - P (17) 

where we subscript the free charge pf with the letter f to 
distinguish it from the polarization charge p,,. The total 
polarization charge within a region is obtained by integrating 
(16) over the volume, 

q= fpidV= JV-PdV=- fP-dS (18) 

where we used the divergence theorem to relate the polariza­
tion charge to a surface integral of the polarization vector. 
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3-1-3 The Displacement Field 

Since we have no direct way of controlling the polarization 
charge, it is convenient to cast Gauss's law only in terms of 
free charge by defining a new vector D as 

D=eoE+P (19) 

This vector D is called the displacement field because it differs 
from eoE due to the slight charge displacements in electric 
dipoles. Using (19), (17) can be rewritten as 

V - (EoE+P)=V - D=p (20) 

where pf only includes the free charge and not the bound 
polarization charge. By integrating both sides of (20) over a 
volume and using the divergence theorem, the new integral 
form of Gauss's law is 

JV .DdV= D - dS= p dV (21) 

In free space, the polarization P is zero so that D = soE and 
(20)-(21) reduce to the free space laws used in Chapter 2. 

3-1-4 Linear Dielectrics 

It is now necessary to find the constitutive law relating the 
polarization P to the applied electric field E. An accurate 
discussion would require the use of quantum mechanics, 
which is beyond the scope of this text. However, a simplified 
classical model can be used to help us qualitatively under­
stand the most interesting case of a linear dielectric. 

(a) Polarizability 
We model the atom as a fixed positive nucleus with a sur­

rounding uniform spherical negative electron cloud, as 
shown in Figure 3-5a. In the absence of an applied electric 
field, the dipole moment is zero because the center of charge 
for the electron cloud is coincident with the nucleus. More 
formally, we can show this using (9), picking our origin at the 
position of the nucleus: 

0 2w R 

p=Q(0) -I I I irpor 3 sin6drdOd4 (22) 
- J-o/ -o 9 0 

Since the radial unit vector i, changes direction in space, it is 
necessary to use Table 1-2 to write i, in terms of the constant 
Cartesian unit vectors: 

i, = sin 0 cos oi.+sin 0 sin Oi,+cos Oi. (23) 
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Figure 3-5 (a) A simple atomic classical model has a negative spherical electron cloud 
of small radius Ro centered about a positive nucleus when no external electric field is 
present. An applied electric field tends to move the positive charge in the direction of 
the field and the negative charge in the opposite direction creating an electric dipole. 
(b) The average electric field within a large sphere of radius R (R > RO) enclosing many 
point dipoles is found by superposing the average fields due to each point charge. 

When (23) is used in (22) the x and y components integrate to 
zero when integrated over 0, while the z component is zero 
when integrated over 0 so that p = 0. 

An applied electric field tends to push the positive charge 
in the direction of the field and the negative charge in the 
opposite direction causing a slight shift d between the center 
of the spherical cloud and the positive nucleus, as in Figure 
3-5a. Opposing this movement is the attractive coulombic 
force. Considering the center of the spherical cloud as our 
origin, the self-electric field within the cloud is found from 
Section 2.4.3b as 

Qr (24)
4-rEoR 

In equilibrium the net force F on the positive charge is zero, 

F=Q Eo- =d)0 (25)
47rEoRo 

where we evaluate (24) at r = d and EL is the local polarizing 
electric field acting on the dipole. From (25) the equilibrium 
dipole spacing is 

d = 4TreOR.EL	 (26)
Q 

so that the dipole moment is written as 

p= Qd=aEL, a = 4ireoR (27) 

where a is called the polarizability. 
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(b) The Local Electric Field 
If this dipole were isolated, the local electric field would 

equal the applied macroscopic field. However, a large 
number density N of neighboring dipoles also contributes to 
the polarizing electric field. The electric field changes dras­
tically from point to point within a small volume containing 
many dipoles, being equal to the superposition of fields due 
to each dipole given by (5). The macroscopic field is then the 
average field over this small volume. 

We calculate this average field by first finding the average 
field due to a single point charge Q a distance a along the z 
axis from the center of a spherical volume with radius R 
much larger than the radius of the electron cloud (R >> Ro) as 
in Figure 3-5b. The average field due to this charge over the 
spherical volume is 

f Q(ri,-ai )r'sin Odrd d,<( 3E >* 2 2 -2aCS]312
=rRo . -0 41rEo[a +r -2ra cos 9] 

(28) 

where we used the relationships 

2 2 2r 
rQp=a +r2-2racos0, rQp=ri,-ai. (29) 

Using (23) in (28) again results in the x and y components 
being zero when integrated over 4. Only the z component is 
now nonzero: 

E RQ 27r f V f r 3 (cos 0-a/r) sin 0drd0 
rRS (47rEO) 0=0 , [0La-+r -2ra cos 0]s12 

(30) 

We introduce the change of variable from 0 to u 

u = r +a2-2arcos 0, du = 2ar sin0 d6 (31) 

so that (30) can be integrated over u and r. Performing the u 
integration first we have 

<E.> 3Q 2 2_U 2t2 dr du 
8irR3o JroJ(,-.)2 4a 

2
8rReo = 0 4a\ U u=(r-a) 

3Q R 2 r­
=-_ Jdr r2(a (32)1 

We were careful to be sure to take the positive square root 
in the lower limit of u. Then for r >a, the integral is zero so 
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that the integral limits over r range from 0 to a: 

SQ ( -Qa
<E,>=- 3Q 2r2 dr= (33)

8rRsoa1 ..o 4rEoR 

To form a dipole we add a negative charge -Q, a small 
distance d below the original charge. The average electric 
field due to the dipole is then the superposition of (33) for 
both charges: 

<E.> - sa-(a-d)]- Qd P 
4wsoR 4soR3 41rsoR 

(34) 

If we have a number density N of such dipoles within the 
sphere, the total number of dipoles enclosed is -1TrR N so that 
superposition of (34) gives us the average electric field due to 
all the dipoles in-terms of the polarization vector P = Np: 

NwR Np P = (35) <E>=- 3 
4vrEOR 3Uo 

The total macroscopic field is then the sum of the local field 
seen by each dipole and the average resulting field due to all 
the dipoles 

P
E= <E> +(36) 

360 

so that the polarization P is related to the macroscopic electric 
field from (27) as 

P=Np=NaE.o=NaE+ P (37)
eo) 

which can be solved for P as 

Na Na/so
P= E= XeoE, ,= Na/ (38)

1-Na/3EO -Na/3eo 

where we introduce the electric susceptibility X, as the pro­
portionality constant between P and soE. Then, use of (38) in 
(19) relates the displacement field D linearly to the electric 
field: 

D=eoE+P=eo(1+X,)E=EoE,E=EE (39) 

where E, = I +x, is called the relative dielectric constant and 
E = se~o is the permittivity of the dielectric, also simply called 
the dielectric constant. In free space the susceptibility is zero 
(x,=0) so that e, = 1 and the permittivity is that of free space, 
E = so. The last relation in (39) is usually the most convenient 
to use as all the results of Chapter 2 are also correct within 
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linear dielectrics if we replace eo by e. Typical values of 
relative permittivity are listed in Table 3-1 for various com­
mon substances. High dielectric constant materials are usually 
composed of highly polar molecules. 

Table 3-1 The relative permittivity for various common substances at room 
temperature 

E, = E/8o 

Carbon Tetrachloridea 2.2 
Ethanola 24 
Methanol" 33 
n-Hexane' 1.9 
Nitrobenzene" 35 
Pure Water' 80 
Barium Titanateb(with 20% Strontium Titanate) >2100 
Borosilicate Glass 4.0 
Ruby Mica (Muscovite)b 5.4 
Polyethyleneb 2.2 
Polyvinyl Chloride 6.1 
Teflonsb Polytetrafluorethylene) 2.1 
Plexiglas 3.4 
Paraffin Waxb 2.2 

'From Lange's Handbook of Chemistry, 10th ed., McGraw-Hill, New York, 1961, pp. 
1234-37. 

bFrom A. R. von Hippel (Ed.) DielectricMaterialsandApplications, M.I.T., Cambridge, 
Mass., 1966, pp. 301-370 

The polarizability and local electric field were only intro­
duced so that we could relate microscopic and macroscopic 
fields. For most future problems we will describe materials by 
their permittivity e because this constant is most easily 
measured. The polarizability is then easily found as 

Na Na e-E0 
1-Na/3Eo 3eO E+2eo 

It then becomes simplest to work with the field vectors D and 
E. The polarization can always be obtained if needed from 
the definition 

P = D-eoE = (e -eo)E (41) 

EXAMPLE 3-1 POINT CHARGE WITHIN A DIELECTRIC SPHERE 

Find all the fields and charges due to a point charge q 
within a linear dielectric sphere of radius R and permittivity 6 
surrounded by free space, as in Figure 3-6. 
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Figure 3-6 The electric field due to a point charge within a dielectric sphere is less 

than the free space field because of the partial neutralization of the point charge by the 

accumulation of dipole ends of opposite charge. The total polarization charge on the 

sphere remains zero as an equal magnitude but opposite sign polarization charge 

appears at the spherical interface. 

SOLUTION
 

Applying Gauss's law of (2 1) to a sphere of any radius r 

whether inside or outside the sphere, the enclosed free 

charge is always q: 

D- dS = D,47rr2= q > D, = all r 

1 41rr 

The electric field is then discontinuous at r = R, 

,= 
2 r<R 

E, E 47rEr 

-,= q2, r>R 
Eo 47rEor 

due to the abrupt change of permittivities. The polarization 

field is 

(E - Eo)q 

,47rEr2EE,=P,=D,-

0, r>R 
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The volume polarization charge pp is zero everywhere, 

p,=-V -P=- 2 a(r2P,)=0, O<r<R 
r 7r 

except at r =0 where a point polarization charge is present, 
and at r = R where we have a surface polarization charge 
found by using (18) for concentric Gaussian spheres of radius 
r inside and outside the dielectric sphere: 

r< R 
eo)q/E,qJ,=- PP-dS=-P,4rr=2{ (e - r<R 

0, r>R 

We know that for r <R this polarization charge must be a 
point charge at the origin as there is no volume charge 
contribution yielding a total point charge at the origin: 

80 
qT =q,+q =-q 

This reduction of net charge is why the electric field within 
the sphere is less than the free space value. The opposite 
polarity ends of the dipoles are attracted to the point charge, 
partially neutralizing it. The total polarization charge 
enclosed by the sphere with r> R is zero as there is an 
opposite polarity surface polarization charge at r = R with 
density, 

(e - eo)q 

The total surface charge a-,4rR2 
= (E-eo)q/e is equal in 

magnitude but opposite in sign to the polarization point 
charge at the origin. The total p6larization charge always 
sums to zero. 

3-1-5 Spontaneous Polarization 

(a) Ferro-electrics 
Examining (38) we see that when Na/3eo = 1 the polariza­

tion can be nonzero even if the electric field is zero. We can 
just meet this condition using the value of polariza'bility in 
(27) for electronic polarization if the whole volume is filled 
with contacting dipole spheres of the type in Figure 3-5a so 
that we have one dipole for every volume of 13rRO. Then any 
slight fluctuation in the local electric field increases the 
polarization, which in turn increases the local field resulting 
in spontaneous polarization so that all the dipoles over a 
region are aligned. In a real material dipoles are not so 
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densely packed. Furthermore, more realistic statistical models 
including thermally induced motions have shown that most 
molecules cannot meet the conditions for spontaneous 
polarization. 

However, some materials have sufficient additional contri­
butions to the polarizabilities due to ionic and orientational 
polarization that the condition for spontaneous polarization is 
met. Such materials are called ferro-electrics, even though 
they are not iron compounds, because of their similarity in 
behavior to iron compound ferro-magnetic materials, which 
we discuss in Section 5.5.3c. Ferro-electrics are composed of 
permanently polarized regions, called domains, as illustrated 
in Figure 3-7a. In the absence of an electric field, these 
domains are randomly distributed so that the net macroscopic 
polarization field is zero. When an electric field is applied, the 
dipoles tend to align with the field so that domains with a 
polarization component along the field grow at the expense of 
nonaligned domains. Ferro-electrics typically have very high 
permittivities such as barium titanate listed in Table 3-1. 

The domains do not respond directly with the electric field 
as domain orientation and growth is not a reversible process 
but involves losses. The polarization P is then nonlinearly 
related to the electric field E by the hysteresis curve shown in 
Figure 3-8. The polarization of an initially unpolarized 
sample increases with electric field in a nonlinear way until 
the saturation value P.., is reached when all the domains are 
completely aligned with the field. A further increase in E does 
not increase P as all the dipoles are completely aligned. 

As the field decreases, the polarization does not retrace its 
path but follows a new path as the dipoles tend to stick to their 
previous positions. Even when the electric field is zero, a 

) E 

No applied field Electric field applied 

(a) (b) 

Figure 3-7 (a) In the absence of an applied electric field, a ferro-electric material 
generally has randomly distributed permanently polarized domains. Over a macro­
scopic volume, the net polarization due to all the domains is zero. (b) When an electric 
field is applied, domains with a polarization component in the direction of the field 
grow at the expense of nonaligned domains so that a net polarization can result. 
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Figure 3-8 A typical ferro-electric hysteresis curve shows a saturation value P., when 
all the domains align with the field, a remanent polarization P, when the electric field is 
removed, and a negative coercive electric field - E,, necessary to bring the polarization 
back to zero. 

remanent polarization P, remains. To bring the polarization 
to zero requires a negative coercive field -E,. Further magni­
tude increases in negative electric field continues the sym­
metric hysteresis loop until a negative saturation is reached 
where all the dipoles have flipped over. If the field is now 
brought to zero and continued to positive field values, the 
whole hysteresis curve is traversed. 

(b) Electrets 
There are a class of materials called electrets that also 

exhibit a permanent polarization even in the absence of an 
applied electric field. Electrets are typically made using 
certain waxes or plastics that are heated until they become 
soft. They are placed within an electric field, tending to align 
the dipoles in the same direction as the electric field, and then 
allowed to harden. The dipoles are then frozen in place so 
that even when the electric field is removed a permanent 
polarization remains. 

Other interesting polarization phenomena are: 

Electrostriction-slightchange in size of a dielectric due to the 
electrical force on the dipoles. 

Piezo-electricity-when the electrostrictive effect is reversible 
so that a mechanical strain also creates a field. 

Pyro-electricity-induced polarization due to heating or 
cooling. 
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3-2 CONDUCTION 

3-2-1 Conservation of Charge 

In contrast to dielectrics, most metals have their outermost 
band of electrons only weakly bound to the nucleus and are 
free to move in an applied electric field. In electrolytic solu­
tions, ions of both sign are free to move. The flow of charge, 
called a current, is defined as the total charge flowing through 
a surface per unit time. In Figure 3-9a a single species of free 
charge with density pfi and velocity vi flows through a small 
differential sized surface dS. The total charge flowing through 
this surface in a time At depends only on the velocity 
component perpendicular to the surface: 

AQ = p1 Atv. - dS (1) 

The tangential component of the velocity parallel to the sur­
face dS only results in charge flow along the surface but not 
through it. The total differential current through dS is then 
defined as 

AQ,
AI =- v dS=J, -dS ampere (2)= -V's

At 

All the charge in 
dotted region has 

All the chars V in aSleft
All the charge within shaded regio nha time At 

= P Ii Vi "nasthis volume will pass through entered V i " a V: AtdS in a time At 
AQ P At vi dS time At 

V 

VAt 

dS
 

Vni At 

AQ =-; Atv- dS= -#JAt dSp1S a S 
(a) (b) 

Figure 3-9 The current through a surface is defined as the number of charges per 
second passing through the surface. (a) The current is proportional to the component 
of charge velocity perpendicular to the surface. (b) The net change of total charge 
within a volume is equal to the difference of the charge entering to that leaving in a 
small time At. 
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where the free current density of these charges Jf, is a vector 
and is defined as 

Jf = pfivi amp/M 2 (3) 

If there is more than one type of charge carrier, the net 
charge density is equal to the algebraic sum of all the charge 
densities, while the net current density equals the vector sum 
of the current densities due to each carrier: 

Pf=lpf, JF=Xpfiv (4) 

Thus, even if we have charge neutrality so that p =0, a net 
current can flow if the charges move with different velocities. 
For example, two oppositely charged carriers with densities 
Pi = -P2 Po moving with respective velocities vl .and v2 have 

P1 =PI+P2=0, J1 =pIvi+p 2 v2 =pO(vI-v 2) (5) 

With vI 0 V2 a net current flows with zero net charge. This is 
typical in metals where the electrons are free to flow while the 
oppositely charged nuclei remain stationary. 

The total current I, a scalar, flowing through a macroscopic 
surface S, is then just the sum of the total differential currents 
of all the charge carriers through each incremental size surface 
element: 

I=f J -dS (6) 

Now consider the charge flow through the closed volume V 
with surface S shown in Figure 3-9b. A time At later, that 
charge within the volume near the surface with the velocity 
component outward will leave the volume, while that charge 
just outside the volume with a velocity component inward will 
just enter the volume. The difference in total charge is 
transported by the current: 

AQ = fv [pf(t + At) -p(t)] dV 

= pjiviAt - dS= - JAt - dS (7) 

The minus sign on the right is necessary because when vi is in 
the direction of dS, charge has left the volume so that the 
enclosed charge decreases. Dividing (7) through by At and 
taking the limit as At ->0, we use (3) to derive the integral 
conservation of charge equation: 

Jf j-dS+ LpdV = (8) 

M 
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Using the divergence theorem, the surface integral can be 
converted to a volume integral: 

[v[ j,+ p-] dV =0=>V - Jf+ =0 (9)
at at 

where the differential point form is obtained since the 
integral must be true for any volume so that the bracketed 
term must be zero at each point. From Gauss's law (V - D =pr) 
(8) and (9) can also be written as 

Jf+L- dS=0, V - (jf + =La10=at(a) (10) 

where j is termed the conduction current density and aD/at 
is called the displacement current density. 

This is the field form of Kirchoff's cirtuit current law that 
the algebraic sum of currents at a node sum to zero. Equation 
(10) equivalently tells us that the net flux of total current, 
conduction plus displacement, is zero so that all the current 
that enters a surface must leave it. The displacement current 
does not involve any charge transport so that time-varying 
current .can be transmitted through space without charge 
carriers. Under static conditions, the displacement current is 
zero. 

3-2-2 Charged Gas Conduction Models 

(a) Governing Equations. 
In many materials, including good conductors like metals, 

ionized gases, and electrolytic solutions as well as poorer 
conductors like lossy insulators and semiconductors, the 
charge carriers can be classically modeled as an ideal gas 
within the medium, called a plasma. We assume that we have 
two carriers of equal magnitude but opposite sign q with 
respective masses m, and number densities n,. These charges 
may be holes and electrons in a semiconductor, oppositely 
charged ions in an electrolytic solution, or electrons and 
nuclei in a metal. When an electric field is applied, the posi­
tive charges move in the direction of the field while the 
negative charges move in the opposite direction. These 
charges collide with the host medium at respective frequen­
cies v. and v-, which then act as a viscous or frictional dis­
sipation opposing the motion. In addition to electrical and 
frictional forces, the particles exert a force on themselves 
through a pressure term due to thermal agitation that would 
be present even if the particles were uncharged. For an ideal 
gas the partial pressure p is 

p = nkT Pascals [kg-s 2 -m'] (11) 
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where n is the number density of charges, T is the absolute 
temperature, and k = 1.38 X 10-2 joule/*K is called Boltz­
mann's constant. 

The net pressure force on the small rectangular volume 
shown in Figure 3-10 is 

p(x-Ax)-p(x). p(y)-p(y+Ay). 
f,= i + A 1, 

+ Az1~ A Az~i~ ~ Ay)-~ (12) 

where we see that the pressure only exerts a net force on the 
volume if it is different on each opposite surface. As the 
volume shrinks to infinitesimal size, the pressure terms in (12) 
define partial derivatives so that the volume force density 
becomes 

m = -A A 0-+-1,+--) =-Vp (13) 
A~-0AxA L 9 ay a 

A -. o
AZ-0 

Then using (1 1)-(13), Newton's force law for each charge 
carrier within the small volume is 

av, 1 
m.--= qE- m,,ve-- V(nkT) (14)

at n. 

p(p +AZ) 

ppx - Ax) 

p~(D+ 

SE 

Sp(s 
y 

Figure 3-10 Newton's force law, applied to a small rectangular volume Ax Ay Az 
moving with velocity v, enclosing positive charges with number density vr. The pressure 
is the force per unit area acting normally inward on each surface and only contributes 
to the net force if it is different on opposite faces. 

x 
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where the electric field E is due to the imposed field plus the 
field generated by the charges, as given by Gauss's law. 

(b) Drift-Diffusion Conduction 
Because in many materials the collision frequencies are 

typically on the order of x - 1013 Hz, the inertia terms in (14) 
are often negligible. In this limit we can easily solve (14) for 
the velocity of each carrier as 

1 1 
lim v,= qE--V(nkT)) (15)

av*I8MC. mVve n/ 

The charge and current density for each carrier are simply 
given as 

p* =qn,,, J =p'*= qnav* (16) 

Multiplying (15) by the charge densities then gives us the 
constitutive law for each current as 

J,=*qnsv,= pyE- DVp, (17) 

where A, are called the particle mobilities and D. are their 
diffusion coefficients 

A* = q [A-kg I_-s 
2 ], D.= kT [m2 -s-'] (18) 

assuming that the system is at constant temperature. We see 
that the ratio D/s,: for each carrier is the same having units 
of voltage, thus called the thermal voltage: 

- -= volts [kg-m2-A 1-s ] (19)
IA q 

This equality is known as Einstein's relation. 
In equilibrium when the net current of each carrier is zero, 

(17) can be written in terms of the potential as (E = -V V) 

J+= J_.= 0 = -p siV V F D:Vps (20) 

which can be rewritten as 

V[ V+lnp] =0 (21) 

The bracketed term can then only be a constant, so the charge 
density is related to the potential by the Boltzmann dis­
tribution: 

p.= po eVIAT (22) 

where we use the Einstein relation of (19) and po is the 
equilibrium charge density of each carrier when V=0 and 
are of equal magnitude because the system is initially neutral. 
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To find the spatial dependence of p and V we use (22) in 
Poisson's equation derived in Section 2.5.6: 

2 _ (p++p-) Po -qVIT - sVTPioh 

iT e e A 
(23) 

This equation is known as the Poisson-Boltzmann equation 
because the charge densities obey Boltzmann distributions. 

Consider an electrode placed at x = 0 raised to the potential 
Vo with respect to a zero potential at x = co, as in Figure 
3-11 a. Because the electrode is long, the potential only varies 

V= Vo 
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00GG-+-00G 2qE)(D E) - D0( 12 o0 0G 
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V= Vo 0 00 0)G 0G 
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0 E E)0 
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V IVd VVor 0 
-IA .kT k.T 5 = 5.0tanh =. 

tanh tanh 

'd tanhq 

kT 5.0
 
-4.0 -2.0 4.0 ' XI1d
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(a) (b) 

Figure 3-11 Opposite polarity mobile charges accumulate around any net charge 
inserted into a conductor described by the drift-diffusion equations, and tend to shield 
out its field for distances larger than the Debye length. (a) Electrode at potential Vo 
with respect to a zero potential at x = oo. The spatial decay is faster for larger values 
of Vo. (b) Point charge. 
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with the x coordinate so that (23) becomes 

d2
fl I qV 2 ekT 
--2 2-sinh V=0, V= -, l - (24)

dx lT kT 2poq 

where we normalize the voltage to the thermal voltage k T/q 
and ld is called the Debye length. 

If (24) is multiplied by dVldx, it can be written as an exact 
differential: 

d 1d~ 2 hosh 
d2[(d) cosV]=0 (25)dx 2dx da 

The bracketed term must then be a constant that is evaluated 
far from the electrode where the potential and electric field 
E= -dV/dx are zero: 

d2 V x>0 
= - - (cosh F- sinh- (26)

dx LT Id 2 x<O 

The different signs taken with the square root are necessary 
because the electric field points in opposite directions on each 
side of the electrode. The potential is then implicitly found by 
direct integration as 

tanh(V/4) e x>0 
tanh(Vo/4) x< 

The Debye length thus describes the characteristic length 
over which the applied potential exerts influence. In many 
materials the number density of carriers is easily of the order 
of no= 102 0/m 3 , so that at room temperature (T - 293*K), l is 
typically 10 m. 

Often the potentials are very small so that qV/k T< 1. Then, 
the hyperbolic terms in (27), as well as in the governing 
equation of (23), can be approximated by their arguments: 

V2 V_- =0 (28) 

This approximation is only valid when the potentials are 
much less than the thermal voltage kT/q, which, at room 
temperature is about 25 mv. In this limit the solution of (27) 
shows that the voltage distribution decreases exponentially. 
At higher values of Vo, the decay is faster, as shown in Figure 
3-1 a. 

If a point charge Q is inserted into the plasma medium, as 
in Figure 3-11 b, the potential only depends on the radial 
distance r. In the small potential limit, (28) in spherical coor­
dinates is 

I a ( 2 aV V
 

r2r Or 2=0 (29)
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Realizing that this equation can be rewritten as 

02 (rV) 
- (rV) - )=1 (30) 

we have a linear constant coefficient differential equation in 
the variable (rV) for which solutions are 

rV= A1 e~/ld+ A2 e+ld (31) 

Because the potential must decay and not grow far from 
the charge, A 2 =0 and the solution is 

V= -d' (32)
47rer 

where we evaluated A I by realizing that as r ->0 the potential 
must approach that of an isolated point charge. Note that for 
small r the potential becomes very large and the small poten­
tial approximation is violated. 

(c) Ohm's Law 
We have seen that the mobile charges in a system described 

by the drift-diffusion equations accumulate near opposite 
polarity charge and tend to shield out its effect for distances 
larger than the Debye length. Because this distance is usually 
so much smaller than the characteristic system dimensions, 
most regions of space outside the Debye sheath are charge 
neutral with equal amounts of positive and negative charge 
density *po. In this region, the diffusion term in (17) is negli­
gible because there are no charge density gradients. Then the 
total current density is proportional to the electric field: 

J = J+ +J_= po(v+-v-) = qno(iz++s-)E = -E (33) 

where o [siemans/m (m-3 -kg~ -s3 -A 2)] is called the Ohmic 
conductivity and (33) is the point form of Ohm's law. Some­
times it is more convenient to work with the reciprocal 
conductivity p, =(1/a-) (ohm-m) called the resistivity. We will 
predominantly use Ohm's law to describe most media in this 
text, but it is important to remember that it is often not valid 
within the small Debye distances near charges. When Ohm's 
law is valid, the net charge is zero, thus giving no contribution 
to Gauss's law. Table 3-2 lists the Ohmic conductivities for 
various materials. We see that different materials vary over 
wide ranges in their ability to conduct charges. 

The Ohmic conductivity of "perfect conductors" is large 
and is idealized to be infinite. Since all physical currents in 
(33) must remain finite, the electric field within the conductor 
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is zero so that it imposes an equipotential surface: 

E=o 

limJ=o-E=> V=const (34) 
J = finite 

Table 3-2 The Ohmic conductivity 
for various common substances at 
room temperature 

o- [siemen/m] 

Silver" 6.3 x 107 
Copper" 5.9 X 107 
Gold' 4.2 x 107 
Lead" 0.5 X 107 

Tin' 0.9X 107 
Zinc" 1.7 x 107 
Carbon" 7.3 x 10-4 
Mercuryb 1.06 X 106 
Pure Water 4 x 10~ 
Nitrobenzeneb 5 x 10~ 
Methanolb 4 x 105 
Ethanolb 1.3 x 10­
Hexane <Ix10 

'From Handbook of Chemistry and Phy­
sics, 49th ed., The Chemical Rubber Co., 
1968, p. E80. 

b	From Lange's Handbook of Chemistry, 
10th ed., McGraw-Hill, New York, 1961, 
pp. 1220-21. 

Throughout this text electrodes are generally assumed to 
be perfectly conducting and thus are at a constant potential. 
The external electric field must then be incident perpendic­
ularly to the surface. 

(d) Superconductors 
One notable exception to Ohm's law is for superconducting 

materials at cryogenic temperatures. Then, with collisions 
negligible (v, =0) and the absolute temperature low (T - 0), 
the electrical force on the charges is only balanced by their 
inertia so that (14) becomes simply 

-=* E 	 (35)
at m* 

We multiply (35) by the charge densities that we assume to be 
constant so that the constitutive law relating the current 
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density to the electric field is 

a(qnv+) _J sq n* E=W2eE, =q2 (36)
at at m* m*e 

where w,, is called the plasma frequency for each carrier. 
For electrons (q = -1.6 x 10~' 9 coul, m_ = 9.1 X 10~3' kg) of 

density n- 102 0 /mS within a material with the permittivity 
of free space, E = eo -8.854 X 10-12 farad/m, the plasma 
frequency is 

,_ = v'qyn/me -5.6 X 10"1 radian/sec 

>f,_ = w,_/27r -9 x 1010 Hz (37) 

If such a material is placed between parallel plate elec­
trodes that are open circuited, the electric field and current 
density J = J+J_ must be perpendicular to the electrodes, 
which we take as the x direction. If the electrode spacing is 
small compared to the width, the interelectrode fields far 
from the ends must then be x directed and be only a function 
of x. Then the time derivative of the charge conservation 
equation in (10) is 

J++J_)+E at = (38) 

The bracketed term is just the time derivative of the total 
current density, which is zero because the electrodes are open 
circuited so that using (36) in (38) yields 

a2E2 2 2 2 

t+ pE = 0, wp = wp,+wp_ (39)at 

which has solutions 

E = A1 sin wt +A 2 cos Wot (40) 

Any initial perturbation causes an oscillatory electric field at 
the composite plasma frequency w,. The charges then execute 
simple harmonic motion about their equilibrium position. 

3-3 FIELD BOUNDARY CONDITIONS 

In many problems there is a surface of discontinuity 
separating dissimilar materials, such as between a conductor 
and a dielectric, or between different dielectrics. We must 
determine how the fields change as we cross the interface 
where the material properties change abruptly. 
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3-3-1 Tangential Component of E 

We apply the line integral of the electric field around a 
contour of differential size enclosing the interface between 
dissimilar materials, as shown in Figure 3-12a. The long 
sections a and c of length dI are tangential to the surface and 
the short joining sections b and d are of zero length as the 
interface is assumed to have zero thickness. Applying the line 
integral of the electric field around this contour, from Section 
2.5.6 we obtain 

E - dl= (Ei -E28) di=0 (1) 

where Ei, and E2 , are the components of the electric field 
tangential to the interface. We get no contribution from the 
normal components of field along sections b and d because 
the contour lengths are zero. The minus sign arises along c 
because the electric field is in the opposite direction of the 
contour traversal. We thus have that the tangential 

n E 22 L - ,5 -4 

L E EV
d 

di 

nx(E2 -E 11=0 

(a) 

dS D2 

Y.D2. 2 - '+ + + + +Gf0 

+ + n-(D2 -D1)=af 

DI. 

dS 

(b) 

Figure 3-12 (a) Stokes' law applied to a line integral about an interface of dis­
continuity shows that the tangential component of electric field is continuous across 
the boundary. (b) Gauss's law applied to a pill-box volume straddling the interface 
shows that the normal component of displacement vector is discontinuous in the free 
surface charge density o-. 
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components of the electric field are continuous across the 
interface 

Ei=E2 =>n X (E2 -EI)=0 (2) 

where n is the interfacial normal shown in Figure 3-12a. 
Within a perfect conductor the electric field is zero. There­

fore, from (2) we know that the tangential component of E 
outside the conductor is also zero. Thus the electric field must 
always terminate perpendicularly to a perfect conductor. 

3-3-2 Normal Component of D 

We generalize the results of Section 2.4.6 to include dielec­
tric media by again choosing a small Gaussian surface whose 
upper and lower surfaces of area dS are parallel to a surface 
charged interface and are joined by an infinitely thin cylin­
drical surface with zero area, as shown in Figure 3-12b. Then 
only faces a and b contribute to Gauss's law: 

D -dS= (D . -D.) dS= dS (3)2 

where the interface supports a free surface charge density af 
and D2,. and D1, are the components of the displacement 
vector on either side of the interface in the direction of the 
normal n shown, pointing from region I to region 2. Reduc­
ing (3) and using more compact notation we have 

D2.- DI.=af, n-(D 2 -D)=of (4) 

where the minus sign in front of D, arises because the normal 
on the lower surface b is -n. The normal components of the 
displacement vector are discontinuous if the interface has a 
surface charge density. If there is no surface charge (o- =0), 
the normal components of D are continuous. If each medium 
has no polarization, (4) reduces to the free space results of 
Section 2.4.6. 

At the interface between two different lossless dielectrics, 
there is usually no surface charge (f =0), unless it was 
deliberately placed, because with no conductivity there is no 
current to transport charge. Then, even though the normal 
component of the D field is continuous, the normal 
component of the electric field is discontinuous because the 
dielectric constant in each region is different. 

At the interface between different conducting materials, 
free surface charge may exist as the current may transport 
charge to the surface discontinuity. Generally for such cases, 
the surface charge density is nonzero. In particular, if one 
region is a perfect conductor with zero internal electric field, 
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the surface charge density on the surface is just equal to the 
normal component of D field at the conductor's surface, 

oy = n - D (5) 

where n is the outgoing normal from the perfect conductor. 

3-3-3 Point Charge Above a Dielectric Boundary 

If a point charge q within a region of permittivity el is a 
distance d above a planar boundary separating region I from 
region II with permittivity 62, as in Figure 3-13, the tangential 
component of E and in the absence of free surface charge the 
normal component of D, must be continuous across the 
interface. Let us try to use the method of images by placing an 
image charge q' at y = -d so that the solution in region I is 
due to this image charge plus the original point charge q. The 
solution for the field in region II will be due to an image 
charge q" at y = d, the position of the original point charge. 
Note that the appropriate image charge is always outside the 
region where the solution is desired. At this point we do not 
know if it is possible to satisfy the boundary conditions with 
these image charges, but we will try to find values of q' and q" 
to do so. 

Region I *q 

62 
Region I1 

Region I eq * q" = q 

S q(E2 61i Region i 

(b) 

Figure 3-13 (a) A point charge q above a flat dielectric boundary requires different 
sets of image charges to solve for the fields in each region. (b) The field in region I is 
due to the original charge and the image charge q' while the field in region II is due 
only to image charge q". 
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The potential in each region is 

2 y OV,2+(y d)2+z 2+(y+d)2+z2 II2), 

I q (6) 
24wE2 [x2+(y -d) 2+z 2 , y 

with resultant electric field 

E= -V V1 

I (q~xi.+(y-d)i,+zi,] q'[xi +(y+d)i,+zi.I 
4,rsE (\ +(y -- d)2+z2]3/2+ [2 +(y id) 2 +z2i3/2 ) (7) 

q" (xi, +(y -d)i,+z i!EI =-V VI = - 2 -Z9
4we 2 [x 2 +(y-d)2 +z2 I2) 

To satisfy the continuity of tangential electric field at y =0 we 
have 

E., =E.11 , ,,q 
___ g- (8) 

i 82E 11E. = 

With no surface charge, the normal component of D must be 
continuous at y = 0, 

EIEj = e2 Ey1 => -q +q'= -q" (9) 

Solving (8) and (9) for the unknown charges we find 

(62-81) 

81+82 
21 2 ( 1 0) 

(81+82) 

The force on the point charge q is due only to the field 
from image charge q': 

qq I q 2(62-E1) 
4 xle (2d)2 'L 16rE I(e I+ 92)d 2-, 

3-3-4 Normal Component of P and soE 

By integrating the flux of polarization over the same Gaus­
sian pillbox surface, shown in Figure 3-12b, we relate the 
discontinuity in normal component of polarization to the 
surface polarization charge density o-, using the relations 

M M 
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from Section 3.1.2: 

P-dS= - adS$P 2 -PIfl = -o-,n -(P 2 -P 1 )=-O-, 

(12) 

The minus sign in front of o-, results because of the minus sign 
relating the volume polarization charge density to the diver­
gence of P. 

To summarize, polarization charge is the source of P, free 
charge is the source of D, and the total charge is the source of 
6oE. Using (4) and (12), the electric field interfacial dis­
continuity is 

n - (E2 -E i) - [(D2 -Di)-(P 2 -P)] af+o -, (13)
60 So 

For linear dielectrics it is often convenient to lump polariza­
tion effects into the permittivity e and never use the vector P, 
only D and E. 

For permanently polarized materials, it is usually con­
venient to replace the polarization P by the equivalent 
polarization volume charge density and surface charge 
density of (12) and solve for E using the coulombic super­
position integral of Section 2.3.2. In many dielectric prob­
lems, there is no volume polarization charge, but at surfaces 
of discontinuity a surface polarization charge is present as 
given by (12). 

EXAMPLE 3-2 CYLINDER PERMANENTLY POLARIZED ALONG ITS 
AXIS 

A cylinder of radius a and height L is centered about the z 
axis and has a uniform polarization along its axis, P = Poi., as 
shown in Figure 3-14. Find the electric field E and displace­
ment vector D everywhere on its axis. 

SOLUTION 

With a constant polarization P, the volume polarization 
charge density is zero: 

P. = -V - P =0 

Since P =0 outside the cylinder, the normal component of P 
is discontinuous at the upper and lower surfaces yielding 
uniform surface polarization charges: 

o-,(z=L/2)=Po, o-p(z=-L12)=-Po 
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Figure 3-14 (a) The electric field due to a uniformly polarized cylinder of length L is 
the same as for two disks of surface charge of opposite polarity * Po at z = L/2. (b) The 
perpendicular displacement field D, is continuous across the interfaces at z= L12 
while the electric field E. is discontinuous. 
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The solution for a single disk of surface charge was obtained 
in Section 2.3.5b. We superpose the results for the two 
disks taking care to shift the axial distance appropriately by 

L/2 yielding the concise solution for the displacement field: 

Po( (z+L/2) (z-L/2) 
D 2 + L/2)2V'2 [a2 +(z - L/2)2 1 )2\[a+ 2

The electric field is then 

IzI > L/2
E.=fDjso,

(D.-Po)/Eo \zI<L/2 

These results can be examined in various limits. If the 
radius a becomes very large, the electric field should 
approach that of two parallel sheets of surface charge *Po, as 
in Section 2.3.4b: 

1zj >L/2
lim E,= 0, 
. . -Po/eo, Iz| <L/2 

with a zero displacement field everywhere. 
In the opposite limit, for large z (z > a, z *L) far from the 

cylinder, the axial electric field dies off as the dipole field with 
9=0 

liE2 2lim E,= ,P=Pora L 

with effective dipole moment p given by the product of the 
total polarization charge at z = L/2, (Poira ), and the length L. 

3-3-5 Normal Component of J 

Applying the conservation of total current equation in 
Section 3.2.1 to the same Gaussian pillbox surface in Figure 
3-12b results in contributions again only from the upper and 
lower surfaces labeled "a" and "b": 

n - (J2 -j1 + (D2 --Di) =0 (14) 

where we assume that no surface currents flow along the 
interface. From (4), relating the surface charge density to the 
discontinuity in normal D, this boundary condition can also 
be written as 

(U2-JO)+ (15)=0at 
which tells us that if the current entering a surface is different 
from the current leaving, charge has accumulated at the 
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interface. In the dc steady state the normal component of J is 
continuous across a boundary. 

3-4 RESISTANCE 

3-4-1 Resistance Between Two Electrodes 

Two conductors maintained at a potential difference V 
within a conducting medium will each pass a total current I, 
as shown in Figure 3-15. By applying the surface integral 
form of charge conservation in Section 3.2.1 to a surface S' 
which surrounds both electrodes but is far enough away so 
that J and D are negligibly small, we see that the only nonzero 
current contributions are from the terminal wires that pass 
through the surface. These must sum to zero so that the 

J, E a -L far from the electrodes
r3 

J JdS 0 
S. 

+ Electrode +' 
- - +d. . J = E 

II 

\ _ Electrode _ 

Figure 3-15 A voltage applied across two electrodes within an ohmic medium causes 
a current to flow into one electrode and out the other. The electrodes have equal 
magnitude but opposite polarity charges so that far away the fields die off as a dipole 
oc(1/r3). Then, even though the surface S' is increasing as r', the flux of current goes 
to zero as I/r. 
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currents have equal magnitudes but flow in opposite direc­
tions. Similarly, applying charge conservation to a surface S 
just enclosing the upper electrode shows that the current I 
entering the electrode via the wire must just equal the total 
current (conduction plus displacement) leaving the electrode. 
This total current travels to the opposite electrode and leaves 
via the connecting wire. 

The dc steady-state ratio of voltage to current between the 
two electrodes in Figure 3-15 is defined as the resistance: 

R = -
V 

ohm [kg-m2_,-s-A-2 (1)
I 

For an arbitrary geometry, (1) can be expressed in terms of 
the fields as 

1, E - dI E - dI 

f,J - dS T.,oE - dS 

where S is a surface completely surrounding an electrode and 
L is any path joining the two electrodes. Note that the field 
line integral is taken along the line from the high to low 
potential electrode so that the voltage difference V is equal to 
the positive line integral. From (2), we see that the resistance 
only depends on the geometry and conductivity a, and not on 
the magnitude of the electric field itself. If we were to 
increase the voltage by any factor, the field would also 
increase by this same factor everywhere so that this factor 
would cancel out in the ratio of (2). The conductivity a- may 
itself be a function of position. 

3-4-2 Parallel Plate Resistor 

Two perfectly conducting parallel plate electrodes of arbi­
trarily shaped area A and spacing I enclose a cylinder of 
material with Ohmic conductivity a-, as in Figure 3-16a. The 
current must flow tangential to the outer surface as the 
outside medium being free space has zero conductivity so that 
no current can pass through the interface. Because the 
tangential component of electric field is continuous, a field 
does exist in the free space region that decreases with 
increasing distance from the resistor. This three-dimensional 
field is difficult to calculate because it depends on three coor­
dinates. 

The electric field within the resistor is much simpler to 
calculate because it is perpendicular to the electrodes in the x 
direction. Gauss's law with no volume charge then tells us that 
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Figure 3-16 Simple resistor electrode geometries. (a) Parallel plates. (b) Coaxial 
cylinders. (c) Concentric spheres. 

this field is constant: 

dE
V- (sE)=0 -=0 E.=Eo (3)dx 

However, the line integral of E between the electrodes must 
be the applied voltage v: 

Eo=v/1 E. dx = v = (4) 

The current density is then 

J = o-Eoi. = (t-v/1)i (5) 

so that the total current through the electrodes is 

I= J - dS= (o-v/l)A (6) 

where the surface integral is reduced to a pure product 
because the constant current density is incident perpendic­
ularly on the electrodes. The resistance is then 

v i spacing 
(7)

I oA (conductivity) (electrode area) 

Typical resistance values can vary over many orders of 
magnitude. If the electrodes have an area A = 1 cm2 (10-4 m2) 
with spacing I = 1 mm (10~3 m) a material like copper has a 
resistance R -0.17 X 10~ ohm while carbon would have a 
resistance R -1.4X 10 ohm. Because of this large range of 
resistance values sub-units often used are micro-ohms 
(1 11= 10-6 f), milli-ohms (1 mfl= 10-3 [), kilohm (1 kfl= 
10 [)), and megohms (1 Mfl= 106 fl), where the symbol 0 is 
used to represent the unit of ohms. 
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Although the field outside the resistor is difficult to find, we 
do know that for distances far from the resistor the field 
approaches that of a point dipole due to the oppositely 
charged electrodes with charge density 

a-f(x =0)=-y(x = 1) =Eo = evil (8) 

and thus dipole moment 

p = -ofy(x = O)Ali. = -EAvi. (9) 

The minus sign arises because the dipole moment points 
from negative to positive charge. Note that (8) is only 
approximate because all of the external field lines in the free 
space region must terminate on the side and back of the 
electrodes giving further contributions to the surface charge 
density. Generally, if the electrode spacing I is much less than 
any of the electrode dimensions, this extra contribution is 
very small. 

3-4-3 Coaxial Resistor 

Two perfectly conducting coaxial cylinders of length 1, 
inner radius a, and outer radius b are maintained at a poten­
tial difference v and enclose a material with Ohmic conduc­
tivity or, as in Figure 3-16b. The electric field must then be 
perpendicular to the electrodes so that with no free charge 
Gauss's law requires 

-(6 E) = 0=> (rEr) = 0=4 E, =- (10) 
r 8r r 

where c is an integration constant found from the voltage 
condition 

(11)v >c = 
SErdr=c lnr 

a In (b/a) 

The current density is then 

J= -E (12)
r In (b/a) 

with the total current at any radius r being a constant 

1 2w v2r 
I=r Jrd4 dz = av2(13) 

. 0 J r In (b/a) 

so that the resistance is 

R In (b/a)
I 2vro­
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34-4 Spherical Resistor 

We proceed in the same way for two perfectly conducting 
concentric spheres at a potential difference v with inner 
radius R, and outer radius R2 , as in Figure 3-16c. With no 
free charge, symmetry requires the electric field to be purely 
radial so that Gauss's law yields 

V -(eE)0 -- (2E,)= 0*E, =, (1 
r2 r r 

where c is a constant found from the voltage condition as 

JE,dr=-- =C= (16) 
r R, (1/R,-/R2) 

The electric field and current density are inversely pro­
portional to the square of the radius 

J, = -E,= 2 al(17)
( /RI- /2) 

so that the current density is constant at any radius r 

I= 2 r Jr 2 sin dO d4 = (l R a- (18)
CO 1-0 (1/R, - /R2) 

with resistance 

Rv (1/RI-1/RO) 
I 41r 

3-5 CAPACITANCE 

3-5-1 Parallel Plate Electrodes 

Parallel plate electrodes of finite size constrained to poten­
tial difference v enclose a dielectric medium with permittivity 
E. The surface charge density does not distribute itself uni­
formly, as illustrated by the fringing field lines for infinitely 
thin parallel plate electrodes in Figure 3-17a. Near the edges 
the electric field is highly nonuniform decreasing in magni­
tude on the back side of the electrodes. Between the elec­
trodes, far from the edges the electric field is uniform, being 
the same as if the electrodes were infinitely long. Fringing 
field effects can be made negligible if the electrode spacing I is 
much less than the depth d or width w. For more accurate 
work, end effects can be made even more negligible by using a 
guard ring encircling the upper electrode, as in Figure 3-17b. 
The guard ring is maintained at the same potential as the 
electrode, thus except for the very tiny gap, the field between 

M l 
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Figure 3-17 (a) Two infinitely thin parallel plate electrodes of finite area at potential 
difference v have highly nonuniform fields outside the interelectrode region. (b) A 
guard ring around one electrode removes end effects so that the field between the 
electrodes is uniform. The end effects now arise at the edge of the guard ring, which is 
far from the region of interest. 



Capacitance 175 

the electrodes is as if the end effects were very far away and 
not just near the electrode edges. 

We often use the phrase "neglect fringing" to mean that the 
nonuniform field effects near corners and edges are negli­
gible. 

With the neglect of fringing field effects near the electrode 
ends, the electric field is perpendicular to the electrodes and 
related to the voltage as 

E. dx = v ->E. = v1 (1) 

The displacement vector is then proportional to the electric 
field terminating on each electrode with an equal magnitude 
but opposite polarity surface charge density given by 

D= eE= or(x = 0) = -of(x = 1) = evl (2) 

The charge is positive where the voltage polarity is positive, 
and vice versa, with the electric field directed from the posi­
tive to negative electrode. The magnitude of total free charge 
on each electrode is 

qf= f(x =0)A =---v (3) 

The capacitance C is defined as the magnitude of the ratio 
of total free charge on either electrode to the voltage 
difference between electrodes: 

eAC If 
V I 

(permittivity) (electrode area) farad [A 2 S4 -kg- -2] 
spacing 

(4) 

Even though the system remains neutral, mobile electrons on 
the lower electrode are transported through the voltage 
source to the upper electrode in order to terminate the dis­
placement field at the electrode surfaces, thus keeping the 
fields zero inside the conductors. Note that no charge is 
transported through free space. The charge transport 
between electrodes is due to work by the voltage source and 
results in energy stored in the electric field. 

In SI units, typical capacitance values are very small. If the 
2electrodes have an area of A = 1cm2 (10- iM ) with spacing of 

1 = 1 mm (10- im), the free space capacitance is C-
0.9x 10-12 farad. For this reason usual capacitance values are 
expressed in microfarads (1 U f = 10-6 farad), nanofarads 
(1 nf = 10-9 farad), and picofarads (1 pf = 10-' farad). 
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(a) 

Dipoles 

Free charge
E 

With a linear dielectric of permittivity E as in Figure 3-18a, 
the field of (1) remains unchanged for a given voltage but the 
charge on the electrodes and thus the capacitance increases 
with the permittivity, as given by (3). However, if the total 
free charge on each electrode were constrained, the voltage 
difference would decrease by the same factor. 

These results arise because of the presence of polarization 
charges on the electrodes that partially cancel the free charge. 
The polarization vector within the dielectric-filled parallel 
plate capacitor is a constant 

P. = D. - soE. = (E - so)E.= (E - eo)v/ (5) 

so that the volume polarization charge density is zero. 
However, with zero polarization in the electrodes, there is a 
discontinuity in the normal component of polarization at the 
electrode surfaces. The boundary condition of Section 3.3.4 
results in an equal magnitude but opposite polarity surface 
polarization charge density on each electrode, as illustrated in 

P=eel1~~0 e n 

t 0 

Depth d 

R2 V 

V
E,= r In (b/a) 

22 
Depth I 

q(R 1 ) =eE,(r =RI)4R1 =-q(R 2 = 

q(a) = eEr(r =a)2al=-q(b) 2 4revEEr(r = R 2 )4wR 2 =
 

eER,(r = b)2rbl = InE/v
 

(b) (c) 

Figure 3-18 The presence of a dielectric between the electrodes increases the capaci­
tance because for a given voltage additional free charge is needed on each electrode to 
overcome the partial neutralization of the attracted opposite polarity dipole ends. (a) 
Parallel plate electrodes. (b) Coaxial cylinders. (c) Concentric spheres. 

V 
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Figure 3-18a: 

00(X = 0)= -ap(x =)=-P. = -(6 -EO)VI (6) 

Note that negative polarization charge appears on the posi­
tive polarity electrode and vice versa. This is because opposite 
charges attract so that the oppositely charged ends of the 
dipoles line up along the electrode surface partially neu­
tralizing the free charge. 

3-5-2 Capacitance for any Geometry 

We have based our discussion around a parallel plate 
capacitor. Similar results hold for any shape electrodes in a 
dielectric medium with the capacitance defined as the magni­
tude of the ratio of total free charge on an electrode to 
potential difference. The capacitance is always positive by 
definition and for linear dielectrics is only a function of the 
geometry and dielectric permittivity and not on the voltage 
levels, 

C=-=D (7)= 
v 1,E-dl 1, E -dl 

as multiplying the voltage by a constant factor also increases 
the electric field by the same factor so that the ratio remains 
unchanged. 

The integrals in (7) are similar to those in Section 3.4.1 for 
an Ohmic conductor. For the same geometry filled with a 
homogenous Ohmic conductor or a linear dielectric, the 
resistance-capacitance product is a constant independent of 
the geometry: 

RC= IEd1 =s-E-dS (8) 
-o-fsE-dS ILE-dI 

Thus, for a given geometry, if either the resistance or capaci­
tance is known, the other quantity is known immediately from 
(8). We can thus immediately write down the capacitance of 
the geometries shown in Figure 3-18 assuming the medium 
between electrodes is a linear dielectric with permittivity e 
using the results of Sections 3.4.2-3.4.4: 

SeA 
Parallel Plate R =I C = ­

o-A I 

In (b/a) 2'rel 
Coaxial R!= I C = (9)2Srel In (b/a) 

Spherical R = I RI-I/2_>C = 4 

41ro- (I /R - I /R2) 
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3-5-3 Current Flow Through a Capacitor 

From the definition of capacitance in (7), the current to an 
electrode is 

. q = d (C)=Cdv+dCa=-=-Cv)=C +v--(10) (0 
dt dt dt dt 

where the last term only arises if the geometry or dielectric 
permittivity changes with time. For most circuit applications, 
the capacitance is independent of time and (10) reduces to the 
usual voltage-current circuit relation. 

In the capacitor of arbitrary geometry, shown in Figure 
3-19, a conduction current i flows through the wires into the 
upper electrode and out of the lower electrode changing the 
amount of charge on each electrode, as given by (10). There is 
no conduction current flowing in the dielectric between the 
electrodes. As discussed in Section 3.2.1 the total current, 
displacement plus conduction, is continuous. Between the 
electrodes in a lossless capacitor, this current is entirely dis­
placement current. The displacement field is itself related to 
the time-varying surface charge distribution on each elec­
trode as given by the boundary condition of Section 3.3.2. 

3-5-4 Capacitance of Two Contacting Spheres 

If the outer radius R 2 of the spherical capacitor in (9) is put 
at infinity, we have the capacitance of an isolated sphere of 
radius R as 

C=4reR (11) 

------------------- +­

tV 

dqj 

Figure 3-19 The conduction current i that travels through the connecting wire to an 
electrode in a lossless capacitor is transmitted through the dielectric medium to the 
opposite electrode via displacement current. No charge carriers travel through the 
lossless dielectric. 
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If the surrounding medium is free space (e = 6o) for R = 1 m, 
we have that C- x 10-9 farad - 111 pf. 

We wish to find the self-capacitance of two such contacting 
spheres raised to a potential Vo, as shown in Figure 3-20. The 
capacitance is found by first finding the total charge on the 
two spheres. We can use the method of images by first placing 
an image charge qj=Q=41reRVo at the center of each 
sphere to bring each surface to potential Vo. However, each 
of these charges will induce an image charge q2 in the other 
sphere at distance b 2 from the center, 

Q R R 
q2 =j, b2=--=- (12)2 D 2 

where we realize that the distance from inducing charge to 
the opposite sphere center is D = 2R. This image charge does 
not raise the potential of either sphere. Similarly, each of 
these image charges induces another image charge qs in the 
other sphere at disance b3 , 

q2R Q R 2 

q3=- -=-, b= =31R (13)D-b2 3 D-b 2 

which will induce a further image charge q 4, ad infinitum. An 
infinite number of image charges will be necessary, but with 
the use of difference equations we will be able to add all the 
image charges to find the total charge and thus the capaci­
tance. 

The nth image charge q, and its distance from the center b. 
are related to the (n - 1)th images as 

q.-_R__ R 2 

q.= , b=(14)D - b -- D--bn--1 

At potential Vo 

q1 q2 q3 q3 q2 q1 _n_ R R2 

R 

Figure 3-20 Two identical contacting spheres raised to a potential VO with respect to 
infinity are each described by an infinite number of image charges q. each a distance b. 
from the sphere center. 

= M 
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where D = 2R. We solve the first relation for b.-I as 

D-b. 1 -, R 
(15) 

b,= qn R+D 

where the second relation is found by incrementing n in the 
first relation by 1. Substituting (15) into the second relation of 
(14) gives us a single equation in the q.'s: 

q.R Rq. 1 2 1
+D= -- +-+ -=0 (16)

q.+, qn-1 q.+, q. q.-I 
If we define the reciprocal charges as 

pn= I/q. (17) 

then (16) becomes a homogeneous linear constant coefficient 
difference equation 

p.+i+2pn+P.-i = 0 (18) 

Just as linear constant coefficient differential equations have 
exponential solutions, (18) has power law solutions of the 
form 

p,=AA" (19) 

where the characteristic roots A, analogous to characteristic 
frequencies, are found by substitution back into (18), 

A"* +2A"+A"~-=0>A2 +2A+1=(A+1) 2 =0 (20) 

to yield a double root with A = -1. Because of the double root, 
the superposition of both solutions is of the form 

P = A I(- )"+A2n(- )" (21) 

similar to the behavior found in differential equations with 
double characteristic frequencies. The correctness of (21) can 
be verified by direct substitution back into (18). The constants 
A I and A 2 are determined from q1 and q 2 as 

p,=1Q=-A-A A 1=0 
1 2 2A 1 (22) 

P2 =--=---=+AI+2A2 A2=-­
q2 Q Q 

so that the nth image charge is 

.=-=_ I = n (23)
P. -(-)nn/Q n 
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The capacitance is then given as the ratio of the total charge 
on the two spheres to the voltage, 

2 1 q. _~
.C "= 2Q * -1) 2Q , 

Vo Vo n-1 n Vo 

=8reR In 2 (24) 

where we recognize the infinite series to be the Taylor series 
expansion of In (1 + x) with x = 1. The capacitance of two 
contacting spheres is thus 2 In 2 1.39 times the capacitance 
of a single sphere given by (11). 

The distance from the center to each image charge is 
obtained from (23) substituted into (15) as 

=((- 1)" (n + 1)(n-) 
bn= ( )R+ 1 2R = (-i)R (25)

n(-1) n 

We find the force of attraction between the spheres by 
taking the sum of the forces on each image charge on one of 
the spheres due to all the image charges on the other sphere. 
The force on the nth image charge on one sphere due to the 
mth image charge in the other sphere is 

-qq. -Q_(-_)"_'" nm 
fn= -7- -n (26)

41re[2R bbM]2 4weR (m+n) 

where we used (23) and (25). The total force on the left 
sphere is then found by summing over all values of m and n, 

0 *o -Q 00 * (_-I)"+'nm 
f = I Y_ fnm= _2 + M)s

m=1n=1 4reR m=, n=- (n+m) 

-QE 1 

6 [ln 2 - - (27)SR4 

where the double series can be explicitly expressed.* The 
force is negative because the like charge spheres repel each 
other. If Qo = 1 coul with R = 1 m, in free space this force is 
f-6.6x 108 nt, which can lift a mass in the earth's gravity 
field of 6.8 x 107 kg (-3 x 107 lb). 

3-6 LOSSY MEDIA 

Many materials are described by both a constant permit­
tivity e and constant Ohmic conductivity o-. When such a 
material is placed between electrodes do we have a capacitor 

* See Albert D. Wheelon, Tables of Summable Series and Integrals Involving Bessel 
Functions, Holden Day, (1968) pp. 55, 56. 
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or a resistor? We write the governing equations of charge 
conservation and Gauss's law with linear constitutive laws: 

V-J+ =0, Jf=-E+pfU (1)
at 

V-D=pf, D=eE (2) 

We have generalized Ohm's law in (1) to include convection 
currents if the material moves with velocity U. In addition to 
the conduction charges, any free charges riding with the 
material also contribute to the current. Using (2) in (1) yields 
a single partial differential equation in pf: 

(V E)+V -(pfU)+ =0=>-+V -(pfU)+-pf=0 (3)at at 
pyle 

3-6-1 Transient Charge Relaxation 

Let us first assume that the medium is stationary so that 
U =0. Then the solution to (3) for any initial possibly spatially 
varying charge distribution po(x, y, z, t = 0) is 

pf = po(x, y, z, t = 0) e ", r= El/ (4) 

where r is the relaxation time. This solution is the continuum 
version of the resistance-capacitance (RC) decay time in 
circuits. 

The solution of (4) tells us that at all positions within a 
conductor, any initial charge density dies off exponentially 
with time. It does not spread out in space. This is our 
justification of not considering any net volume charge in 
conducting media. If a system has no volume charge at t =0 

(po = 0), it remains uncharged for all further time. Charge is 
transported through the region by the Ohmic current, but the 
net charge remains zero. Even if there happens to be an initial 
volume charge distribution, for times much longer than the 
relaxation time the volume charge density becomes negligibly 
small. In metals, T is on the order of 10-'9 sec, which is the 
justification of assuming the fields are zero within an elec­
trode. Even though their large conductivity is not infinite, for 
times longer than the relaxation time T, the field solutions are 
the same as if a conductor were perfectly conducting. 

The question remains as to where the relaxed charge goes. 
The answer is that it is carried by the conduction current to 
surfaces of discontinuity where the conductivity abruptly 
changes. 
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3-6-2 Uniformly Charged Sphere 

A sphere of radius R2 with constant permittivity e and 
Ohmic conductivity a- is uniformly charged up to the radius 
R1 with charge density po at time t = 0, as in Figure 3-21. 
From R, to R 2 the sphere is initially uncharged so that it 
remains uncharged for all time. The sphere is surrounded by 
free space with permittivity E0 and zero conductivity. 

From (4) we can immediately write down the volume 
charge distribution for all time, 

r<R1P,= (poe_'1, (5)0, r>Rl 

where r= eo. The total charge on the sphere remains 
constant, Q = 1irR po, but the volume charge is transported 
by the Ohmic current to the interface at r = R2 where it 
becomes a surface charge. Enclosing the system by a Gaussian 
surface with r> R 2 shows that the external electric field is 
time independent, 

QE, =r 2, r>R2 (6)
41,reor 

Similarly, applying Gaussian surfaces for r < R I and R I < r< 
R 2 yields 

pore 4Qre-"1 
O<r<Rl= ,,3e 4rER1E, =' (7)

Qer2 ' Rl<r<R24m2, 

Pt= Poe d-o 

E 
2 

41reR,+ R2 +
 
4we
 

P/ =0 + + + 

4wER2
4zeR 2 2 

+ j, Er+ + r 

4rR 2 

Figure 3-21 An initial volume charge distribution within an Ohmic conductor decays 
exponentially towards zero with relaxation time 7 = /a- and appears as a surface 
charge at an interface of discontinuity. Initially uncharged regions are always un­
charged with the charge transported through by the current. 
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The surface charge density at r = R 2 builds up exponentially 
with time: 

af(r = R 2) = eoE,(r = R 2+)- sE,(r= R 2-) 

Q (1-e^) (8)
47rR 2 

The charge is carried from the charged region (r < R 1) to the 
surface at r = R2 via the conduction current with the charge 
density inbetween (RI < r < R2) remaining zero: 

oQr
I e-', 0<r<Rl 

J. = -E,= oQe ~ 
(9)r2 , Rl<r<R2 

0, r>R2 

Note that the total current, conduction plus displacement, is 
zero everywhere: 

81(Qro- e
- ,rer0< r<R

41reR31 

-Jc = Jd = E-= orQe _1'
at - _Z , Rl<r<R2 (10) 

A1rer2 

0, r>R2 

3-6-3 Series Lossy Capacitor 

(a) Charging transient 
To exemplify the difference between resistive and capaci­

tive behavior we examine the case of two different materials in 
series stressed by a step voltage first turned on at t =0, as 
shown in Figure 3-22a. Since it takes time to charge up the 
interface, the interfacial surface charge cannot instan­
taneously change at t= 0 so that it remains zero at I = 0. With 
no surface charge density, the displacement field is continu­
ous across the interface so that the solution at t= 0 is the 
same as for two lossless series capacitors independent of the 
conductivities: 

D. = e E = e2E2 (11) 

The voltage constraint requires that 
a+b 

I E.dx=Ela+E2 b=V (12) 
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t= 0+ 
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x x x 

e2 02 a. 

V a 

jig* xY Ex, D. 

+ Depth d 0102V C2J. EIJ. 

o2 a + alb 02 U1 02 01 

t = co 

t=0 (b) 

RC, Rj= a , R2= O2 

V-T R2 C 1 = 6 , 62dbC2 = 
a

C2H 

(c) 

Figure 3-22 Two different lossy dielectric materials in series between parallel plate 
electrodes have permittivities and Ohmic conductivities that change abruptly across 
the interface. (a) At t= 0, right after a step voltage is applied, the interface is 
uncharged so that the displacement field is continuous with the solution the same as 
for two lossless dielectrics in series. (b) Since the current is discontinuous across the 
boundary between the materials, the interface will charge up. In the dc steady state the 
current is continuous. (c) Each region is equivalent to a resistor and capacitor in 
parallel. 

so that the displacement field is 

D.(t =0+)= "a' (13) 
62a +e lb 

The total current from the battery is due to both conduction 
and displacement currents. At t = 0, the displacement current 

0 
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is infinite (an impulse) as the displacement field instan­
taneously changes from zero to (13) to produce the surface 
charge on each electrode: 

of(x=0)=-f(x =a+b)=D. (14) 

After the voltage has been on a long time, the fields 
approach their steady-state values, as in Figure 3-22b. 
Because there are no more time variations, the current 
density must be continuous across the interface just the same 
as for two series resistors independent of the permittivities, 

J.(t - oo) = a-IEI= o-2E 2 = 0102 V (15) 
o2a +otb 

where we again used (12). The interfacial surface charge is 
now 

oyf(x = a)= 62E2-s.EI = (E20' 1-s 10'2)V (16) 
or2a+o-1b 

What we have shown is that for early times the system is 
purely capacitive, while for long times the system is purely 
resistive. The inbetween transient interval is found by using 
(12) with charge conservation applied at the interface: 

nJ2-J,+ d(D2 -DI) =0 

d 
=o 2E2 - -EI+ d[E2E 2- 1EI]=0 (17)

dt
 

With (12) to relate E2 to El we obtain a single ordinary 
differential equation in EI, 

dE 1 E 1 cr2VdI+-= 0' (18)
dt r 92a+E1b 

where the relaxation time is a weighted average of relaxation 
times of each material: 

Ey=b+ 2a (19) 
a- b + o-2a 

Using the initial condition of (13) the solutions for the fields 
are 

EI= 0'2 V (1-e )+ V ,--1, 
-2a+o-b E2a+elb (20) 

E2= (1-e~)+ e-
o-2a+ -ib 62a+Elb 
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Note that as t ->0 the solutions approach those of (15). The 
interfacial surface charge is 

of(x =a)=e 2E2- eE1=(62i -1 '2) (1-e"')V (21)
o-2a+a-,b 

which is zero at t = 0 and agrees with (16) for t -> 0. 

The total current delivered by the voltage source is 

( dEdE1
i-E -+e-Id= 0-2E2+E2 -) Id 
di di)
 

Lo-a +u- b \ T) ' e2a+eib o-2a+o-1b) 

+ EIE2 8(t) IdV (22) 
e2 a +eib J 

where the last term is the impulse current that instan­
taneously puts charge on each electrode in zero time at t =0: 

0(,) -50> f 0 '8(t) dt = I 

100, t=01 

To reiterate, we see that for early times the capacitances 
dominate and that in the steady state the resistances dominate 
with the transition time depending on the relaxation times 
and geometry of each region. The equivalent circuit for the 
system is shown in Figure 3-22c as a series combination of a 
parallel resistor-capacitor for each region. 

(b) Open Circuit 
Once the system is in the dc steady state, we instantaneously 

open the circuit so that the terminal current is zero. Then, 
using (22) with i =0, we see that the fields decay indepen­
dently in each region with the relaxation time of each region: 

E-2V 8161 

c-2a+o-ib ­
El =2 02 +(23) 

a-2a+o1 b -2 

The open circuit voltage and interfacial charge then decay as 

V. =Ela+E2 b= [o-2ae_"I +o-ibe~"'2] 
o-2a +e-1b 

(24) 
oy e 2E2 --e 1E [20-1 e -- (= t/2 -eio2e~ 

a-2a + o 1b 
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(c) Short Circuit 
If the dc steady-state system is instead short circuited, we 

set V= 0 in (12) and (18), 

Eia +Esb=O 
El E1 0(25) 

di r 

where r is still given by (19). Since at t =0 the interfacial 
surface charge cannot instantaneously change, the initial 
fields must obey the relation 

lim (Es2E2-e 1E)= - + E,= (e2 -1 -e 1 0 2)V (26)t-o b / -2a+e-ib 

to yield the solutions 

Ei=- E2b (E2 -l eio2 )bV -e (27)
a (E 2a+elb)(cr2a+crib) 

The short circuit current and surface charge are then 

O-rIe2--10-22 Ve 
L eb+e2 a /(-r 2a+o-ib) Ea+Eb (28) 

abV , V1, 8(t) Id 

y= E2E2-EEi = (E2 r-e1 02)Ve o-2a +orb 

The impulse term in the current is due to the instantaneous 
change in displacement field from the steady-state values 
found from (15) to the initial values of (26). 

(d) Sinusoidal Steady State 
Now rather than a step voltage, we assume that the applied 

voltage is sinusoidal, 

v M)= Vo osWt (29) 

and has been on a long time. 
The fields in each region are still only functions of time and 

not position. It is convenient to use complex notation so that 
all quantities are written in the form 

v(t)= Re (Vo eA") 
Ei(t)=Re (Zi e"), E2(t)= Re (E2 e") 

Using carets above a term to designate a complex amplitude, 
the applied voltage condition of (12) requires 

Pia +Z2 b = Vo (31) 
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while the interfacial charge conservation equation of (17) 
becomes 

-2 2 - 0 1 +)( (62 4 2- e 1E1 ) = [0-2+j06 2 ]E2 

- [ 1 +jWuEi1=0 (32) 

The solutions are 

Z1 F2 VoElE2V0 -(33) 
(wE 2+o- 2) j6)1+0-1) [b(o+jwe)+a(- 2+jWe 2)] 

which gives the interfacial surface charge amplitude as 

= e 2E2-eE = (34)
[b(a1 +jw i)+a(a-2+jWs 2)] 

As the frequency becomes much larger than the reciprocal 
relaxation times, 

(0 a -, a 2 35) 
8i2 

the surface charge density goes to zero. This is because the 
surface charge cannot keep pace with the high-frequency 
alternations, and thus the capacitive component dominates. 
Thus, in experimental work charge accumulations can be 
prevented if the excitation frequencies are much faster than 
the reciprocal charge-relaxation times. 

The total current through the electrodes is 

I =(- 1 + jwEI)Eild= (o 2 +jWe 2)E2ld 

2+jWe
ld(o1+jwe 1) (o- 2)Vo 
[b(o-i +jwj)+a(o- 2+jW'2)] 

V0 
(36)

R2 

R2C2jW+1 R 1Cijw+1 

with the last result easily obtained from the equivalent circuit 
in Figure 3-22c. 

3-6-4 Distributed Systems 

(a) Governing Equations 
In all our discussions we have assumed that the electrodes 

are perfectly conducting so that they have no resistance and 
the electric field terminates perpendicularly. Consider now 
the parallel plate geometry shown in Figure 3-23a, where the 
electrodes have a large but finite conductivity a-,. The elec­
trodes are no longer equi-potential surfaces since as the cur­
rent passes along the conductor an Ohmic iR drop results. 
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Figure 3-23 Lossy parallel plate electrodes with finite Ohmic conductivity a, enclose 
a lossy dielectric with permittivity e and conductivity o. (a) This system can be modeled 
by a distributed resistor-capacitor network. (b) Kirchoff's voltage and current laws 
applied to a section of length Az allow us to describe the system by partial differential 
equations. 

The current is also shunted through the lossy dielectric so 
that less current flows at the far end of the conductor than 
near the source. We can find approximate solutions by break­
ing the continuous system into many small segments of length 
Az. The electrode resistance of this small section is 

Az 
R Az =--­ (37)

o,-ad 

where R = 1/(ogad) is just the resistance per unit length. 
We have shown in the previous section that the dielectric can 
be modeled as a parallel resistor-capacitor combination, 

edAz 1 s 
(38)s' Az-d-

C is the capacitance per unit length and G is the conductance 
per unit length where the conductance is the reciprocal of the 
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resistance. It is more convenient to work with the conduc­
tance because it is in parallel with the capacitance. 

We apply Kirchoff's voltage and current laws for the section 
of equivalent circuit shown in Figure 3-23b: 

v(z-Az)-v(z)=2i(z)RAz 

dv (z )
i(z)- i(z + Az)= CAz + GAzv(z)dt 

The factor of 2 in the upper equation arises from the equal 
series resistances of the upper and lower conductors. Divi­
ding through by Az and taking the limit as Az becomes 
infinitesimally small yields the partial differential equations 

-= 2iR 
az 

(40) 
-- = C-- + Gv 

az 8t 

Taking 8/8z of the upper equation allows us to substitute in 
the lower equation to eliminate i, 

a2v av 
-=2RC---+2RGv 	 (41) 

which is called a transient diffusion equation. Equations (40) 
and (41) are also valid for any geometry whose cross sectional 
area remains constant over its length. The 2R represents the 
series resistance per unit length of both electrodes, while C 
and G are the capacitance and conductance per unit length of 
the dielectric medium. 

(b) 	Steady State 
If a dc voltage Vo is applied, the steady-state voltage is 

2d v 
P-2RGv ==>v= Asinh/2RGz +A2cosh/2RGz (42)dz 

where the constants are found by the boundary conditions at 
z =0 and z = 1, 

v(z =0)= Vo, i(z =1)=0 (43) 

We take the z = I end to be open circuited. Solutions are 

v(z) V cosh _G (z -1) 
cosh -A2RGI 

(44) 
1 dv O G sinh V2RG(z -1) 

-- R(z)2R dz 2R -­2Rcosh -f2RG 1 
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(c) Transient Solution 
If this dc voltage is applied as a step at t = 0, it takes time for 

the voltage and current to reach these steady-state dis­
tributions. Because (41) is linear, we can use superposition 
and guess a solution for the voltage that is the sum of the 
steady-state solution in (44) and a transient solution that dies 
off with time: 

Vo cosh 12RG (z -1) ,v(z, t)= +(z) eaa (45) 
cosh ,2RGI 

At this point we do not know the function i6(z) or a. Substi­
tuting the assumed solution of (45) back into (41) yields the 
ordinary differential equation 

if -+p2=0, p2 =2RCa-2RG (46) 

which has the trigonometric solutions 

^(z)=a, sin pz +a 2 cos pz (47) 

Since the time-independent'part of (45) already satisfies the 
boundary conditions at z =0, the transient part must be zero 
there so that a2 =0. The transient contribution to the current 
i, found from (40), 

i(Z t)=O fGsinh -12RG(z - 1)+2-Ze 
2R cosh2RGlI 

i 1)diO(z) pal O Z(8 

2R dz 2R 

must still be zero at z = 1, which means that pt must be an odd 
integer multiple of ir/2, 

Ir 2+ G1pl=(2n+1) ->a. (2n+ 1) - n=0, 1,2,--­
2 2RC 21 C' 

(49) 

Since the boundary conditions allow an infinite number of 
values of a, the most general solution is the superposition of 
all allowed solutions: 

cosh %/2RG(z - 1) *D 7rZ_,V(z, 1) = VO - + Y A. sin (2n +1) - e 
cosh2RGI .- 0 21 

(50) 

This solution satisfies the boundary conditions but not the 
initial conditions at t = 0 when the voltage is first turned on. 
Before the voltage source is applied, the voltage distribution 
throughout the system is zero. It must remain zero right after 
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being turned on otherwise the time derivative in (40) would 
be infinite, which requires nonphysical infinite currents. Thus 
we impose the initial condition 

cosh - 2_RG(z - 1) -wz
v(z, t = 0)=hl= VO+ Y An sin (2n+1) ­

cosh,/lIR1 '.o 21 
(51) 

We can solve for the amplitudes A. by multiplying (51) 
through by sin (2m+1) rz/21 and then integrating over z 
from 0 to 1: 

cosh f2iRG(z-1)sin (2m+1)"dz 
cosh %/2RG o 21 

1 0 7Z iTz
+J Asin(2n+1) sin(2m+1) -dz (52)1) jsin(21 21 

The first term is easily integrated by writing the hyperbolic 
cosine in terms of exponentials,* while the last term integrates 
to zero for all values of m not equal to n so that the ampli­
tudes are 

An = rVO(2n+1) 2 (53)
7 2RG +[(2n +1) w/2] 

The total solutions are then 

v(z' t) Vo cosh l2iER (z -1) 

cosh %Iv'- I 

(2n + 1) sin [(2n + 1) (lrz/21)]e-*-' 

12 V,=o 2RG+[(2n+1)(r/2)] 2 

i(z, t)= 1 av 
2R az 

Vo G/2R sinhV' (z-1) (54) 

cosh N/IER I 

r2 Vo (2n + 1)2 cos [(2n + 1) (irz/2I)] e--' 
4lR .=1 2RG+[(2n + 1) (1r21)]2 

*Jcosh a(z - 1) sin bz dz 

=a2+b,[a sin bz sinh a(z -L)- b cos bz cosh a(z - 1)] 

)bz sin (2m+ 1)bz dz = 0 m n
Ssin (2n + 

11/2 m=n 
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The fundamental time constant corresponds to the smallest 
value of a, which is when n = 0: 

1 C 
To=-= 2 (55) 

ato G + 

For times long compared to 7o the system is approximately in 
the steady state. Because of the fast exponential decrease for 
times greater than zero, the infinite series in (54) can often be 
approximated by the first term. These solutions are plotted in 
Figure 3-24 for the special case where G =0. Then the 
voltage distribution builds up from zero to a constant value 
diffusing in from the left. The current near z =0 is initially 
very large. As time increases, with G =0, the current every­
where decreases towards a zero steady state. 

3-6-5 Effects of Convection 

We have seen that in a stationary medium any initial charge 
density decays away to a surface of discontinuity. We now 
wish to focus attention on a dc steady-state system of a 
conducting medium moving at constant velocity Ui., as in 
Figure 3-25. A source at x =0 maintains a constant charge 
density po. Then (3) in the dc steady state with constant 

8RC 2 

1.T 1.0 

.25 1 tI?0 

z~z, t) RhW:z, t) 
VO Vo .5 

.5 . 

.01 

.2 .4 

X/I 
.6 

-I1.25 

.8 1 
10 

.2 .4 
t'70 

.6 

Xfl 
.8 1 

Figure 3-24 The transient voltage and current spatial distributions for various times 
for the lossy line in Figure 3-23a with G = 0 for a step voltage excitation at z = 0 with 
the z = I end open circuited. The diffusion effects arise because of the lossy electrodes 
where the longest time constant is To = 8RC 2 /r 2 . 
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Figure 3-25 A moving conducting material with velocity Ui. tends to take charge 
injected at x =0 with it. The steady-state charge density decreases exponentially from 
the source. 

velocity becomes 

dpf 0­--- +--,p =0 (56)
dx eU 

which has exponentially decaying solutions 

pf = po e "l,, =- (57) 

where 4, represents a characteristic spatial decay length. If 
the system has cross-sectional area A, the total charge q in the 
system is 

q pfA dx = polmA (58) 

3-6-6 The Earth and its Atmosphere as a Leaky Spherical Capacitor* 

In fair weather, at the earth's surface exists a dc electric 
field with approximate strength of 100 V/m directed radially 
toward the earth's center. The magnitude of the electric field 
decreases with height above the earth's surface because of the 
nonuniform electrical conductivity o-(r) of the atmosphere 
approximated as 

cr(r)= o-o+a(r-R )2 siemen/m (59) 

where measurements have shown that 

c-o~ 3x 10-14 

-. 5X 10- 20 (60)a 

* M. A. Uman, "The EarthandIts Atmosphere asa Leaky SphericalCapacitor,"Am. J. Phys. 
V. 42, Nov. 1974, pp. 1033-1035. 
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and R ~6 x 106 meter is the earth's radius. The conductivity 
increases with height because of cosmic radiation in the lower 
atmosphere. Because of solar radiation the atmosphere acts 
as a perfect conductor above 50 km. 

In the dc steady state, charge conservation of Section 3-2-1 
with spherical symmetry requires 

182 C
V-J= I (r*j,.)= 0 =>J, = o-(r)E, =- (61) 

r 8r r 

where the constant of integration C is found by specifying the 
surface electric field E,(R)~ -100 V/m 

O(R)E,(R)R2 ( 
J,.(r)= 2 (62) 

At the earth's surface the current density is then 

J,r(R) = o(R)E,(R)= oE,(R) -3 x 10-12 amp/M 2 (63) 

The total current directed radially inwards over the whole 
earth is then 

I=IJ,.(R)47rR2 1 - 1350 amp (64) 

The electric field distribution throughout the atmosphere 
is found from (62) as 

J,.(r) 2o-(R)E,.(R)R2
E,(r) =-- -= 2r (65)

o-(r) r o(r) 

The surface charge density on the earth's surface is 

of (r = R) = EoE,(R) -8.85 x 10~1" Coul/m2 (66) 

This negative surface charge distribution (remember: E,(r) < 
0) is balanced by positive volume charge distribution 
throughout the atmosphere 

EO a 2 soo-(R)E,.(R)R2 d I1\ 
pf(r)= eoV -E =ry-(r E,.)=r 2(67) 2e d o() 

-soo-(R)E,.(R)R 2a(r-R) 
r2(o-(r))2 

The potential difference between the upper atmosphere 
and the earth's surface is 

V=- tE,(r)dr 

Sr[ dr 
=-o-(R)E,.(R)R'2 L oa~~)2 



Field-dependentSpace ChargeDistributions 197 

a-2 + !10 
-(R)E,.(R)R R- In1 2a 

a R 2+0-o - r 

(R2_0' 
ao) _a-'(r-R) 

_ + (R 

r(aa a aR
R 22+

+Oi r 

o-(R)E,(R) R 2 R In -++ a +2 a (68) 
aR 2 R

a(R2+ 002 
aa) 2 Va 

Using the parameters of (60), we see that aola <R2 so that 
(68) approximately reduces to 

V ooE,(R) R(In +1)+ rR2 (69) 
aR2 aR2 2 

I a 

~384,000 volts 

If the earth's charge were not replenished, the current flow 
would neutralize the charge at the earth's surface with a time 
constant of order 

-r=L=300 seconds (70)
00 

It is thought that localized stormy regions simultaneously 
active all over the world serve as "batteries" to keep the earth 
charged via negatively chariged lightning to ground and 
corona at ground level, producing charge that moves from 
ground to cloud. This thunderstorm current must be 
upwards and balances the downwards fair weather current of 
(64). 

3.7 FIELD-DEPENDENT SPACE CHARGE DISTRIBUTIONS 

A stationary Ohmic conductor with constant conductivity 
was shown in Section 3-6-1 to not support a steady-state 
volume charge distribution. This occurs because in our.clas­
sical Ohmic model in Section 3-2-2c one species of charge 
(e.g., electrons in metals) move relative to a stationary back­
ground species of charge with opposite polarity so that charge 
neutrality is maintained. However, if only one species of 
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charge is injected into a medium, a net steady-state volume 
charge distribution can result. 

Because of the electric force, this distribution of volume 
charge py contributes to and also in turn depends on the 
electric field. It now becomes necessary to simultaneously 
satisfy the coupled electrical and mechanical equations. 

3-7-1 Space Charge Limited Vacuum Tube Diode 

In vacuum tube diodes, electrons with charge - e and mass 
m are boiled off the heated cathode, which we take as our zero 
potential reference. This process is called thermionic emis­
sion. A positive potential Vo applied to the anode at x = I 
accelerates the electrons, as in Figure 3-26. Newton's law for a 
particular electron is 

m -= -eE = e (1)
dt dx 

In tjie dc steady state the velocity of the electron depends only 
on its position x so that 

dv dv dx dv d 2 d 
m = m = m ->- (m )=-(eV) (2)

dt dx dt dx dx dx 

VO 

+ .5-­
+ JOA 

-e +
 
-+ 0.
 

12eV E +­

+ Are_ 1 

+ Ar5A .i V/ 

Cathode Anode 

(x/I) 

(a) (b) 

Figure 3-26 Space charge limited vacuum tube diode. (a) Thermionic injection of 
electrons from the heated cathode into vacuum with zero initial velocity. The positive 
anode potential attracts the lectron whe acceleration is proportional t the local 
electric field. (b) Steady-state potential, electric field, and volume charge distributions. 
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With this last equality, we have derived the energy conser­
vation theorem 

[x -eV=const (3)DMV-eV]=0>bM 

where we say that the kinetic energy 2mv 
2 plus the potential 

energy -eV is the constant total energy. We limit ourselves 
here to the simplest case where the injected charge at the 
cathode starts out with zero velocity. Since the potential is also 
chosen to be zero at the cathode, the constant in (3) is zero. 
The velocity is then related to the electric potential as 

= (2e V)" 2 (4) 

In the time-independent steady state the current density is 
constant, 

-g=0=>J= -JOi. (5)
dx 

and is related to the charge density and velocity as 

In1/2 
2Jo= -pfj Jp'f= -Joy) V 1 (6) 

Note that the current flows from anode to cathode, and 
thus is in the negative x direction. This minus sign is 
incorporated in (5) and (6) so that Jo is positive. Poisson's 
equation then requires that 

V 1 V-f > 2V=Jo 'n1/2v-/(7= 6' (Fe) V-E 

Power law solutions to this nonlinear differential equation are 
guessed of the form 

V = Bxt' (8) 

which when substituted into (7) yields 

Bp(p - )x0-2=J (;1) B -12-02 (9)6 e) 

For this assumed solution to hold for all x we require that 

p 4P -2= -- >p =- 4(10)
2 3 

which then gives us the amplitude B as 

B= - - )- (11) 
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so that the potential is 

V(x)= ( 2 2/3x41 (12) 

The potential is zero at the cathode, as required, while the 
anode potential Vo requires the current density to be 

V(x=L)= Vo= 9 - 1 4 

Jo = e V3/ (13) 

which is called the Langmuir-Child law. 
The potential, electric field, and charge distributions are 

then concisely written as 

V(x)= Vo 

dV(x) 4 Vo Ix\-3 

E(x) = - (14) 

Pf(X) =6dEd~x) 46Vo (xy-
2 /3 

and are plotted in Figure 3-26b. We see that the charge 
density at the cathode is infinite but that the total charge 
between the electrodes is finite, 

q-T =Ip(x)A dx = - e A (15) 

being equal in magnitude but opposite in sign to the total 
surface charge on the anode: 

4 V0 
qA =o(x=l)A=-eE(x=)A=+4 A (16)

3 1 

There is no surface charge on the cathode because the electric 
field is zero there. 

This displacement x of each electron can be found by 
substituting the potential distribution of (14) into (4), 

Ax (2eVO1/ 2 (x)2/ dx 22e (1
V = => V=p dt (17 ) 

which integrates to 

1 /2eVo 3/2x = 27 )t ((18) 



Field-dependentSpace ChargeDistributions 201 

The charge transit time r between electrodes is found by 
solving (18) with x = 1: 

( 1/2 
T=31 -(19)

2e Vo) 

For an electron (m = 9.1 X 10~3' kg, e = 1.6x 10 ' 9 coul) with 
100 volts applied across = 1cm (10~2 m) this time is r 
5 X 10-9 sec. The peak electron velocity when it reaches the 
anode is v(x = l)~6x 0 m/sec, which is approximately 50 
times less than the vacuum speed of light. 

Because of these fast response times vacuum tube diodes 
are used in alternating voltage applications for rectification as 
current only flows when the anode is positive and as 
nonlinear circuit elements because of the three-halves power 
law of (13) relating current and voltage. 

3-7-2 Space Charge Limited Conduction in Dielectrics 

Conduction properties of dielectrics are often examined by 
injecting charge. In Figure 3-27, an electron beam with cur­
rent density J = -Joi, is suddenly turned on at t = 0.* In media, 
the acceleration of the charge is no longer proportional to the 
electric field. Rather, collisions with the medium introduce a 
frictional drag so that the velocity is proportional to the elec­
tric field through the electron mobility /A: 

v =-AE (20) 

As the electrons penetrate the dielectric, the space charge 
front is a distance s from the interface where (20) gives us 

ds/dt = -- E(s) (21) 

Although the charge density is nonuniformly distributed 
behind the wavefront, the total charge Q within the dielectric 
behind the wave front at time t is related to the current 
density as 

JoA = pfpE.A = -Qlt =>Q -JoAt (22) 

Gauss's law applied to the rectangular surface enclosing all 
the charge within the dielectric then relates the fields at the 
interface and the charge front to this charge as 

SE - dS= (eE(s)-soE(0)]A = Q = -JoAt (23) 

* See P. K. Watson, J. M. Schneider, andH. R. Till, Electrohydrodynamic Stability of Space 
Charge Limited Currents In Dielectric Liquids. II. ExperimentalStudy, Phys. Fluids 13 
(1970), p. 1955. 
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Figure 3-27 (a) An electron beam carrying a current -Joi. is turned on at t = 0. The 
electrons travel through the dielectric with mobility p. (b) The space charge front, at a 
distance s in front of the space charge limited interface at x =0, travels towards the 
opposite electrode. (c) After the transit time t, = [2eLIMJo]11' the steady-state potential, 
electric field, and space charge distributions. 

The maximum current flows when E(O) =0, which is called 
space charge limited conduction. Then using (23) in (21) 
gives us the time dependence of the space charge front: 

ds yJot yLJot
2 

-=- -*s(t)= (24)
dt e 2e 

Behind the front Gauss's law requires 

dE- P= Jo dE. Jo 
(25)

dx e eE. x dx ey. 
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while ahead of the moving space charge the charge density is 
zero so that the current is carried entirely by displacement 
current and the electric field is constant in space. The spatial 
distribution of electric field is then obtained by integrating 
(25) to 

E.= I 2JOxIT, 0:!' (26) 
-f2_jos/EpA, s(t):SXs5 

while the charge distribution is 

Pf E. -Eo/(2x), 0xs(t) (27 
dx 0, S(t ): X:xI 

as indicated in Figure 3-27b. 
The time dependence of the voltage across the dielectric is 

then 

v(t)= E.dx= - dx+ dx 

jolt Aj2 3 
= 682 s(t)s (28)6 6E2 

These transient solutions are valid until the space charge 
front s, given by (24), reaches the opposite electrode with s = I 
at time 

= 12ellyo (29) 

Thereafter, the system is in the dc steady state with the 
terminal voltage Vo related to the current density as 

Jo = 8 13 0 (30) 

which is the analogous Langmuir-Child's law for collision 
dominated media. The steady-state electric field and space 
charge density are then concisely written as 

3 Vo 1 
= dE 3 EVO x\-" 2 

/' (31) =2 V 

and are plotted in Figure 3-27c. 
In liquids a typical ion mobility is of the order of 

io m2/(volt-sec) with a permittivity of E = 2eo­
1.77x101"farad/m. For a spacing of I = 1-2 m with a 
potential difference of Vo = 10 V the current density of (30) 
is jo~2x 10- amp/M2 with the transit time given by (29) 
r-0.133 sec. Charge transport times in collison dominated 
media are much larger than in vacuum. 
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3-8 ENERGY STORED IN A DIELECTRIC MEDIUM 

The work needed to assemble a charge distribution is 
stored as potential energy in the electric field because if the 
charges are allowed to move this work can be regained as 
kinetic energy or mechanical work. 

3-8-1 Work Necessary to Assemble a Distribution of Point Charges 

(a) Assembling the Charges 
Let us compute the work necessary to bring three already 

existing free charges qg, q2, and qs from infinity to any posi­
tion, as in Figure 3-28. It takes no work to bring in the first 
charge as there is no electric field present. The work neces­
sary to bring in the second charge must overcome the field 
due to the first charge, while the work needed to bring in the 
third charge must overcome the fields due to both other 
charges. Since the electric potential developed in Section 
2-5-3 is defined as the work per unit charge necessary to bring 
a point charge in from infinity, the total work necessary to 
bring in the three charges is 

qI q,___ q2
W=q+(q)+q2l +q3 + I (1)

\4 rer12 l/ \4r r15 4'rrers/ 

where the final distances between the charges are defined in 
Figure 3-28 and we use the permittivity e of the medium. We 
can rewrite (1) in the more convenient form 

W= [ q2 + q r+2___ + q 

2 L41rer2 41reris L4reri2 4'rer2 3J 

+q q + 4 2 (2)
L41rer,3 47rer231 

\ /2 

r12 r 2- 3 

Figure 3-28 Three already existing point charges are brought in from an infinite 
distance to their final positions. 
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where we recognize that each bracketed term is just the 
potential at the final position of each charge and includes 
contributions from all the other charges, except the one 
located at the position where the potential is being evaluated: 

W=2[q 1 V1 +q 2 V2 +q 3 V3 ] (3) 

Extending this result for any number N of already existing 
free point charges yields 

I IV 
W =- E, q.V (4)

2n=1 

The factor of - arises because the potential of a point charge 
at the time it is brought in from infinity is less than the final 
potential when all the charges are assembled. 

(b) Binding Energy of a Crystal 
One major application of (4) is in computing the largest 

contribution to the binding energy of ionic crystals, such as 
salt (NaCI), which is known as the Madelung electrostatic 
energy. We take a simple one-dimensional model of a crystal 
consisting of an infinitely long string of alternating polarity 
point charges q a distance a apart, as in Figure 3-29. The 
average work necessary to bring a positive charge as shown in 
Figure 3-29 from infinity to its position on the line is obtained 
from (4) as 

1 2q 2 I11 11 I 
W= -+--- ----- --- (5)

2 47rea 2 3 4 5 6 

The extra factor of 2 in the numerator is necessary because 
the string extends to infinity on each side. The infinite series 
is recognized as the Taylor series expansion of the logarithm 

2 3 4 5 

In (I+x)= x +---+ (6)
2 3 4 5
 

((6 
+q 

+q -q +q -q +q -4 -q +q -q +q -q +q 

<- a --)I 

Figure 3-29 A one-dimensional crystal with alternating polarity charges q a dis­
tance a apart. 
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where x = I so that* 

W= In 2 (7)
41rea 

This work is negative because the crystal pulls on the charge 
as it is brought in from infinity. This means that it would take 
positive work to remove the charge as it is bound to the 
crystal. A typical ion spacing is about 3 A (3 x 101' m) so that 
if q is a single proton (q= 1.6x 10- 19 coul), the bindingenergy 
is W- 5.3 x 10O' joule. Since this number is so small it is 
usually more convenient to work with units of energy per unit 
electronic charge called electron volts (ev), which are obtained 
by dividing W by the charge on an electron so that, in this 
case, W-3.3 ev. 

If the crystal was placed in a medium with higher permit­
tivity, we see from (7) that the binding energy decreases. This 
is why many crystals are soluble in water, which has a relative 
dielectric constant of about 80. 

3-8-2 Work Necessary to Form a Continuous Charge Distribution 

Not included in (4) is the self-energy of each charge itself 
or, equivalently, the work necessary to assemble each point 
charge. Since the potential V from a point charge q is pro­
portional to q, the self-energy is proportional q2 . However, 
evaluating the self-energy of a point charge is difficult 
because the potential is infinite at the point charge. 

To understand the self-energy concept better it helps to 
model a point charge as a small uniformly charged spherical 
volume of radius R with total charge Q = shrRpo. We assem­
ble the sphere of charge from spherical shells, as shown in 
Figure 3-30, each of thickness dr. and incremental charge 
dq. = 41rr. drpo. As we bring in the nth shell to be placed at 
radius r. the total charge already present and the potential 
there are 

4 3 . q. r2p
q.V=-rrpo, = r 3 (8) 

* Strictly speaking, this series is only conditionallyconvergentfor x = 1 and its sum depends on 
the groupingof individual terms. If the series in (6) for x = 1 is rewritten as 

1 1 111 1 1 1 
2 4 3 6 8 2k-1 4k-2 4k 

then its sum is 2 In 2. [See J. Pleinesand S. Mahajan,On ConditionallyDivergentSeriesand 
a PointChargeBetween Two ParallelGrounded Planes,Am. J. Phys. 45 (1977) p. 868.] 
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dra 

.IR 

dq = po 4r2 d, 

Figure 3-30 A point charge is modelled as a small uniformly charged sphere. It is 
assembled by bringing in spherical shells of differential sized surface charge elements 
from infinity. 

so that the work required to bring in the nth shell is 

pU4irr.

dW.=V.dq.= dr. (9) 

The total work necessary to assemble the sphere is obtained 
by adding the work needed for each shell: 

R 2p4 4 2rp!R5 SQ2 

W= dW. = e dr = Be 2OireR (10) 

For a finite charge Q of zero radius the work becomes 
infinite. However, Einstein's theory of relativity tells us that 
this work necessary to assemble the charge is stored as energy 
that is related to the mass as 

3Q2
2 3Q2

W=mc2 = =>Q =___(__
20ireR 207remc 

which then determines the radius of the charge. For the case 
of an electron (Q = 1.6 x 10- 19 coul, m = 9.1 x 10-3i kg) in free 
space (e = Eo = 8.854 x 10-12 farad/m), this radius is 

3(1.6 x 10 8)2 

eIetOf - 20ir(8.854 x 1012)(9.1 X 10-')(3x 10 ) 

~1.69x 1015 m (12) 

We can also obtain the result of (10) by using (4) where each 
charge becomes a differential element dq, so that the sum­
mation becomes an integration over the continuous free 
charge distribution: 

W= 2f Vdq, (13) 
.11q, 

http:dW.=V.dq
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For the case of the uniformly charged sphere, dqf = po dV, the 
final potential within the sphere is given by the results of 
Section 2-5-5b: 

V=Pj R 2_- (14) 

Then (13) agrees with (10): 

(Rs r\ dr=4'rp!R_ SQ2 W=l( poVdV=4po R 
2 J 4e \ 15e 201reR3 1 

(15) 

Thus, in general, we define (13) as the energy stored in the 
electric field, including the self-energy term. It differs from 
(4), which only includes interaction terms between different 
charges and not the infinite work necessary to assemble each 
point charge. Equation (13) is valid for line, surface, and 
volume charge distributions with the differential charge ele­
ments given in Section 2-3-1. Remember when using (4) and 
(13) that the zero reference for the potential is assumed to be 
at infinity. Adding a constant Vo to the potential will change 
the energy u'nless the total charge in the system is zero 

W= f (V+ Vo) dqf 

=f V dq,+- VoJf 

Vdqg (16) 

3-8-3 Energy Density of the Electric Field 

It is also convenient to express the energy W stored in a 
system in terms of the electric field. We assume that we have a 
volume charge distribution with density pf. Then, dqf =py dV, 
where pf is related to the displacement field from Gauss's law: 

W=1 fpf VdV=t V(V - D) dV (17) 

Let us examine the vector expansion 

V - (VD)= (D - V)V+ V(V - D)=> V(V D)= V - (VD)+D - E 
(18) 

where E= -V V. Then (17) becomes 

W=.1v D-EdV+t V-(VD)dV (19) 
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The last term on the right-hand side can be converted to a 
surface integral using the divergence theorem: 

(20)fVD-dSt V-(VD)dV= 

If we let the volume V be of infinite extent so that the enclos­
ing surface S is at infinity, the charge distribution that only 
extends over a finite volume looks like a point charge for 
which the potential decreases as 1/r and the displacement 
vector dies off as I/r2. Thus the term, VD at best dies off as 
1/re. Then, even though the surface area of S increases as r 2 

the surface integral tends to zero as r becomes infinite as /r. 
Thus, the second volume integral in (19) approaches zero: 

lim V -(VD)dV = VD-dS=0 (21) 

This conclusion is not true if the charge distribution is of 
infinite extent, since for the case of an infinitely long line or 
surface charge, the potential itself becomes infinite at infinity 
because the total charge on the line or surface is infinite. 
However, for finite size charge distributions, which is always 
the case in reality, (19) becomes 

W=2space D-EdV 

= 1eE dV (22) 
all space 

where the integration extends over all space. This result is 
true even if the permittivity e is a function of position. It is 
convenient to define the energy density as the positive-
definite quantity: 

W . 2 3 2 
w =21 E joule/m [kg-m -s ] (23) 

where the total energy is 

W= space wdV (24) 

Note that although (22) is numerically equal to (13), (22) 
implies that electric energy exists in those regions where a 
nonzero electric field exists even if no charge is present in that 
region, while (13) implies that electric energy exists only 
where the charge is nonzero. The answer as to where the 
energy is stored-in the charge distribution or in the electric 
field-is a matter of convenience since you cannot have one 
without the other. Numerically both equations yield the same 
answers but with contributions from different regions of 
space. 
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3-8-4 Energy Stored in Charged Spheres 

(a) Volume Charge 
We can also find the energy stored in a uniformly charged 

sphere using (22) since we know the electric field in each 
region from Section 2-4-3b. The energy density is then 

Q 2 
r>R22r4,

W=-E2= Er (25)
2 -Q2 r2 

r< R321r2 ERs,1 

with total stored energy 

W= wdV 

= Q2 "R 4 3 2"dr+ ­ (26)
Ir17 20 1rER 8r R 

which agrees with (10) and (15). 

(b) Surface Charge 
If the sphere is uniformly charged on its surface Q = 

4nR2 cro, the potential and electric field distributions are 

QQe 0, r<R 

V(r) E,= (27) 

, r>R
41rEr 4Irer 

Using (22) the energy stored is 

Q2 
E Q 2 0dr 

W= --
4 7rT =(82 \4ire / R r 8wER (28) 

This result is equally as easy obtained using (13): 

w=1f oo V(r=R) dS 

=}ro V(r = R)4rR 2 
= 8R (29) 

The energy stored in a uniformly charged sphere is 20% 
larger than the surface charged sphere for the same total 
charge Q. This is because of the additional energy stored 
throughout the sphere's volume. Outside the sphere (r> R) 
the fields are the same as is the stored energy. 
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(c) Binding Energy of an Atom 
In Section 3-1-4 we modeled an atom as a fixed positive 

point charge nucleus Q with a surrounding uniform spheri­
cal cloud of negative charge with total charge -Q, as in 
Figure 3-31. Potentials due to the positive point and negative 
volume charges are found from Section 2-5-5b as 

V,(r) = Q
41reor 

3Q 2r 2 
- 3 (R--, r<R

81reoRS 3 
V_(r) = 

Q , r>R (30)41reor 

The binding energy of the atom is easily found by super­
position considering first the uniformly charged negative 
sphere with self-energy given in (10), (15), and (26) and then 
adding the energy of the positive point charge: 

3Q2 
9___W= 3Q2+Q[ V-(r = 0)] = - Q2 (31)

20rsoR 40ireoR 

This is the work necessary to assemble the atom from 
charges at infinity. Once the positive nucleus is in place, it 
attracts the following negative charges so that the field does 
work on the charges and the work of assembly in (31) is 
negative. Equivalently, the magnitude of (31) is the work 
necessary for us to disassemble the atom by overcoming the 
attractive coulombic forces between the opposite polarity 
charges. 

When alternatively using (4) and (13), we only include the 
potential of the negative volume charge at r = 0 acting on the 
positive charge, while we include the total potential due to 
both in evaluating the energy of the volume charge. We do 

Total negative
 
charge - Q
 

V(r) = 3Q(R 2 
_r2/3) 

4reor BweoR 3 

~ ~ ~~E--~_r <R 

~ 4 - ,Q- 2 3
 
r 
 4veor 4reOR

Figure 3-31 An atom can be modelled as a point charge Q representing the nucleus, 
surrounded by a cloud of uniformly distributed electrons with total charge - Q within 
a sphere of radius R. 
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not consider the infinite self-energy of the point charge that 
would be included if we used (22): 

W=jQV_(r=0)-21 [V(r)+V-(r)]irk-dr 

2 3Q r -3r2+ r4)dr =- -
l6vrEoR 8reoRg 2 R 2R 

=- 4 (32)
40ireoR 

3-8-5 Energy Stored in a Capacitor 

In a capacitor all the charge resides on the electrodes as a 
surface charge. Consider two electrodes at voltage V1 and V2 

with respect to infinity, and thus at voltage difference V= 
V2 - V1, as shown in Figure 3-32. Each electrode carries 
opposite polarity charge with magnitude Q. Then (13) can be 
used to compute the total energy stored as 

W =[f Vo. dS1+ V20-2 dS2 (33) 
J2 

Since each surface is an equipotential, the voltages V, and V2 
may be taken outside the integrals. The integral then reduces 
to the total charge Q on each electrode: 

w=[VIJ1 _1 dS1+ V2 0- dS2 
-Q Q 

= (V2 - V1)Q = QV (34) 

S2 

Fiue33. Acpcto trs.nryi teeet.cfed 

WV QV= CV2 Q2C 
S-2 s2 
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Since in a capacitor the charge and voltage are linearly related 
through the capacitance 

Q=CV (35) 
the energy stored in the capacitor can also be written as 

W =_QV =_CV 2 (36) 

This energy is equivalent to (22) in terms of the electric field 
and gives us an alternate method to computing the capaci­
tance if we know the electric field distribution. 

EXAMPLE 3-3 CAPACITANCE OF AN ISOLATED SPHERE 

A sphere of radius R carries a uniformly distributed sur­
face charge Q. What is its capacitance? 

SOLUTION 

The stored energy is given by (28) or (29) so that (36) gives 
us the capacitance: 

C= Q 2/2 W = 41reR 

3.9 FIELDS AND THEIR FORCES 

3-9-1 Force Per Unit Area on a Sheet of Surface Charge 

A confusion arises in applying Coulomb's law to find the 
perpendicular force on a sheet of surface charge as the 
normal electric field is different on each side of the sheet. 
Using the over-simplified argument that half the surface 
charge resides on each side of the sheet yields the correct 
force 

f=4o-,(Ei +E 2)dS (1) 

where, as shown in Figure 3-33a, El and E2 are the electric 
fields on each side of the sheet. Thus, the correct field to use 
is the average electric field -(El + E2) across the sheet. 

For the tangential force, the tangential components of E 
are continuous across the sheet (El, = E2,= E,) so that 

A =2 oy(E,+E2,) dS= IeyEdS (2) 
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Figure 3-33 (a) The normal component of electric field is discontinuous across the 
sheet of surface charge. (b) The sheet of surface charge can be modeled as a thin layer 
of volume charge. The electric field then varies linearly across the volume. 

The normal fields are discontinuous across the sheet so that 
the perpendicular force is 

= -(E 2 . -E 1.)>f. = 2 e(E2 . -Ej.)(Ej. +E 2 .) dSJ 
= LE(E2. -EI . )dS (3) 

To be mathematically rigorous we can examine the field 
transition through the sheet more closely by assuming the 
surface charge is really a uniform volume charge distribution 
po of very narrow thickness 8, as shown in Figure 3-33b. Over 
the small surface element dS, the surface appears straight so 
that the electric field due to the volume charge can then only 
vary with the coordinate x perpendicular to the surface. Then 
the point form of Gauss's law within the volume yields 

E.= +const (4)
dx e 8 

The constant in (4) is evaluated by the boundary conditions 
on the normal components of electric field on each side of the 
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sheet 

E.(x = 0)= Ej., E.(x =8)= E2. (5) 

so that the electric field is 

x 
E.=(E2-- E,) x+El. (6) 

As the slab thickness 8 becomes very small, we approach a 
sheet charge relating the surface charge density to the dis­
continuity in electric fields as 

lim po8 = oa = e (E2. - El.) (7) 
Po-00
8-o 

Similarly the force per unit area on the slab of volume charge 
is 

F.= poE. dx 

= po[(E2n-E2 .) +E. dx 

= p(E2-Ei) -+E,,x 

Pa8 
=--(Ei+E2.)(8)

2 

In the limit of (7), the force per unit area on the sheet of 
surface charge agrees with (3): 

lim F.= (Eln+E2n)=-(E2. -E.) (9)
P00 =C"! 2 2 

3-9-2 Forces on a Polarized Medium 

(a) Force Density 
In a uniform electric field there is no force on a dipole 

because the force on each charge is equal in magnitude but 
opposite in direction, as in Figure 3-34a. However, if the 
dipole moment is not aligned with the field there is an align­
ing torque given by t = p x E. The torque per unit volume T 
on a polarized medium with N dipoles per unit volume is 
then 

T=Nt=NpXE=PXE (10) 
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(a) (b) 

Figure 3-34 (a) A torque is felt by a dipole if its moment is not aligned with the 
electric field. In a uniform electric field there is no net force on a dipole because the 
force on each charge is equal in magnitude but opposite in direction. (b) There is a net 
force on a dipole only in a nonuniform field. 

For a linear dielectric, this torque is zero because the 
polarization is induced by the field so that P and E are in the 
same direction. 

A net force can be applied to a dipole if the electric field is 
different on each end, as in Figure 3-34b: 

f = -q[E(r)-E(r+d)] (11) 

For point dipoles, the dipole spacing d is very small so that the 
electric field at r + d can be expanded in a Taylor series as 

E(r + d) -E(r) + d- aE(r) +d, a E(r) +d. aE(r) 
ax ay az 

= E(r)+(d - V)E(r) (12) 

Then the force on a point dipole is 

f = (qd - V)E(r)= (p - V)E(r) (13) 

If we have a distribution of such dipoles with number 
density N, the polarization force density is 

F= Nf= (Np - V)E = (P - V)E (14) 

Of course, if there is any free charge present we must also 
add the coulombic force density p1E. 

(b) Permanently Polarized Medium 
A permanently polarized material with polarization Poi, is 

free to slide between parallel plate electrodes, as is shown in 
Figure 3-35. 
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Figure 3-35 (a) A permanently polarized electret partially inserted into a capacitor 
has a force on it due to the Coulombic attraction between the dipole charges and the 
surface charge on the electrodes. The net force arises in the fringing field region as the 
end of the dipole further from the electrode edge feels a smaller electric field. 
Depending on the voltage magnitude and polarity, the electret can be pulled in or 
pushed out of the capacitor. (b) A linear dielectric is always attracted into a free space 
capacitor because of the net force on dipoles in the nonuniform field. The dipoles are 
now aligned with the electric field, no matter the voltage polarity. 

We only know the electric field in the interelectrode region 
and from Example 3-2 far away from the electrodes: 

V0E,(x = xo) = -, E,( -- L= o)= Po (15)
s EO 
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Unfortunately, neither of these regions contribute to the 
force because the electric field is uniform and (14) requires a 
field gradient for a force. The force arises in the fringing 
fields near the electrode edges where the field is nonuniform 
and, thus, exerts less of a force on the dipole end further 
from the electrode edges. At first glance it looks like we have a 
difficult problem because we do not know the fields where the 
force acts. However, because the electric field has zero curl, 

V EE= (16) 

the x component of the force density can be written as 

P,aEF. 
ay 

P, E, 
'Ox 
ax 

=-(PE,)-E, a (17) 
ax ,x 

The last term in (17) is zero because P, = Po is a constant. The 
total x directed force is then 

f= F.dx dy dz 

= .- J - (PE,)dx dy dz (18) 

We do the x integration first so that the y and z integrations 
are simple multiplications as the fields at the limits of the x 
integration are independent of y and z: 

Pisd 
f = PoEsd|I-o= Po Vod + (19) 6o 

There is a force pulling the electret between the electrodes 
even if the voltage were zero due to the field generated by the 
surface charge on the electrodes induced by the electret. This 
force is increased if the imposed electric field and polarization 
are in the same direction. If the voltage polarity is reversed, 
the force is negative and the electret is pushed out if the 
magnitude of the voltage exceeds Pos/so. 

(c) Linearly Polarized Medium 
The problem is different if the slab is polarized by the 

electric field, as the polarization will then be in the direction 
of the electric field and thus have x and y components in the 
fringing fields near the electrode edges where the force 
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arises, as in Figure 3-35b. The dipoles tend to line up as 
shown with the positive ends attracted towards the negative 
electrode and the negative dipole ends towards the positive 
electrode. Because the farther ends of the dipoles are in a 
slightly weaker field, there is a net force to the right tending 
to draw the dielectric into the capacitor. 

The force density of (14) is 

=. E. + , E. EY E 20F.= P +P,- -- O) E.- E,- (20)ax ay ax ay 

Because the electric field is curl free, as given in (16), the 
force density is further simplified to 

(E-EO) aE22) 
F.= - (E +E) (21)

2 ax 

The total force is obtained by integrating (21) over the 
volume of the dielectric: 

fx - EE E+)dx(j(E dy dz
7 

(e eo)sd (E 2+ 1 E ()- EO) V(2d 
2 - (22)2 (E! +E,)I,,-M-

where we knew that the fields were zero at x = -co and uni­
form at x = xo: 

E,(xo) = Vo/s, E.(xo)= 0 (23) 

The force is now independent of voltage polarity and always 
acts in the direction to pull the dielectric into the capacitor if 
6 >60. 

3-9-3 Forces on a Capacitor 

Consider a capacitor that has one part that can move in the 
x direction so that the capacitance depends on the coordinate 
x: 

q =C(x)v (24) 

The current is obtained by differentiating the charge with 
respect to time: 

.dq d dv dC(x)
= = d[C(x)v] = C(x) d-+ V di 

dv dC(x)dx (25) 
dt dx d( 
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Note that this relation has an extra term over the usual circuit 
formula, proportional to the speed of the moveable member, 
where we expanded the time derivative of the capacitance by 
the chain rule of differentiation. Of course, if the geometry is 
fixed and does not change with time (dx/dt = 0), then (25) 
reduces to the usual circuit expression. The last term is due to 
the electro-mechanical coupling. 

The power delivered to a time-dependent capacitance is 

d 
p=vi=v [C(x)v] (26)

dt 

which can be expanded to the form 

d 1 2 dC(x)
P = [DC(x)V ]+iv dt 

d 1 , dC(x) dx 
= [CQx)v I+tv (27)

di d dt 

where the last term is again obtained using the chain rule of 
differentiation. This expression can be put in the form 

dW dx 
P =-d+fx - (28)

di dt 

where we identify the power p delivered to the capacitor as 
going into increasing the energy storage W and mechanical 
power fdxldt in moving a part of the capacitor: 

W=C(x)V, 12 dC(x) (29) 
W=4Cx~v, f~4v2 dx 

Using (24), the stored energy and force can also be ex­
pressed in terms of the charge as 

1 q 2 1 q2 dC(x) 1 2d[LIC(x)]
W=--f.=- =g

2C(x)' 2 C2(x) dx dx 
(30) 

To illustrate the ease in using (29) or (30) to find the force, 
consider again the partially inserted dielectric in Figure 
3-35b. The capacitance when the dielectric extends a distance 
x into the electrodes is 

exd (1 -x)d (31)
C(x)-+so (1

S S 

so that the force on the dielectric given by (29) agrees with 
(22): 

1 2 dC(x) = ) Vod 
f.= 0 - = e-eo) s (32)

dx s 
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Note that we neglected the fringing field contributions to 
the capacitance in (31) even though they are the physical 
origin of the force. The results agree because this extra 
capacitance does not depend on the position x of the dielec­
tric when x is far from the electrode edges. 

This method can only be used for linear dielectric systems 
described by (24). It is not valid for the electret problem 
treated in Section 3-9-2b because the electrode charge is not 
linearly related to the voltage, being in part induced by the 
electret. 

EXAMPLE 3-4 FORCE ON A PARALLEL PLATE CAPACITOR 

Two parallel, perfectly conducting electrodes of area A 
and a distance x apart are shown in Figure 3-36. For each of 
the following two configurations, find the force on the upper 
electrode in the x direction when the system is constrained to 
constant voltage Vo or constant charge Qo. 

----------.- wArea A - ­

-~----------------------------------------- ­

Area A 

Figure 3-36 A parallel plate capacitor (a) immersed within a dielectric fluid or with 
(b) a free space region in series with a solid dielectric. 
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(a) Liquid Dielectric 
The electrodes are immersed within a liquid dielectric with 

permittivity e, as shown in Figure 3-36a. 

SOLUTION 

The capacitance of the system is 

C(x) = sAIx 

so that the force from (29) for constant voltage is 

1E V02 
f 12dC(x) 

dx 2 x
2 

The force being negative means that it is in the direction 
opposite to increasing x, in this case downward. The capacitor 
plates attract each other because they are oppositely charged 
and opposite charges attract. The force is independent of 
voltage polarity and gets infinitely large as the plate spacing 
approaches zero. The result is also valid for free space with 
e =eo. The presence of the dielectric increases the attractive 
force. 

If the electrodes are constrained to a constant charge Qo 
the force is then attractive but independent of x: 

d~L 1 lQ2 
dx C(x) 2EA 

For both these cases, the numerical value of the force is the 
same because Qo and Vo are related by the capacitance, but 
the functional dependence on x is different. The presence of 
a dielectric now decreases the force over that of free space. 

(b) Solid Dielectric 
A solid dielectric with permittivity e of thickness s is inserted 
between the electrodes with the remainder of space having 
permittivity eo, as shown in Figure 3-36b. 

SOLUTION 

The total capacitance for this configuration is given by the 
series combination of capacitance due to the dielectric block 
and the free space region: 

C(x)= eoA 
eOs +e(x -s) 
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The force on the upper electrode for constant voltage is 

I 2 d e2oAVo 
f. = i -C)- s1

dx 2[eos +e(x -s)] 

If the electrode just rests on the dielectric so that x = s, the 
force is 

62 A2O e AVo 
2sos 

This result differs from that of part (a) when x = s by the 
factor s,= e/eo because in this case moving the electrode even 
slightly off the dielectric leaves a free space region in between. 
In part (a) no free space gap develops as the liquid dielectric 
fills in the region, so that the dielectric is always in contact 
with the electrode. The total force on the electrode-dielectric 
interface is due to both free and polarization charge. 

With the electrodes constrained to constant charge, the 
force on the upper electrode is independent of position and 
also independent of the permittivity of the dielectric block: 

sd 1 1 Q2 
2Q 0dx C(x) 2 eoA 

3-10 ELECTROSTATIC GENERATORS 

3-10-1 Van de Graaff Generator 

In the 1930s, reliable means of generating high voltages 
were necessary to accelerate charged particles in atomic 
studies. In 1931, Van de Graaff developed an electrostatic 
generator where charge is sprayed onto an insulating moving 
belt that transports this charge onto a conducting dome, as 
illustrated in Figure 3-37a. If the dome was considered an 
isolated sphere of radius R, the capacitance is given as C = 
4reoR. The transported charge acts as a current source feed­
ing this capacitance, as in Figure 3-37b, so that the dome 
voltage builds up linearly with time: 

dv i
=C =>v=-t(1)

dt C 

This voltage increases until the breakdown strength of the 
surrounding atmosphere is reached, whereupon a spark dis­
charge occurs. In air, the electric field breakdown strength Eb 
is 3 X 106 V/m. The field near the dome varies as E,= VR/r2 , 
which is maximum at r= R, which implies a maximum voltage 
of Vmax= ER. For Vmax = 10 V, the radius of the sphere 
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Figure 3-37 (a) A Van de Graaff generator consists of a moving insulating belt that 
transports injected charge onto a conducting dome which can thus rise to very high 
voltages, easily in excess of a million volts. (b) A simple equivalent circuit consists of the 
convecting charge modeled as a current source charging the capacitance of the dome. 

must be R - }-mi so that the capacitance is C - 37 pf. With a 
charging current of one microampere, it takes t - 37 sec to 
reach this maximum voltage. 

3-10-2 Seff-Excited Electrostatic Induction Machines 

In the Van dc Graaff generator, an external voltage source 
is necessary to deposit charge on the belt. In the late 1700s, 
self-excited electrostatic induction machines were developed 
that did not require any external electrical source. To under­
stand how these devices work, we modify the Van dle Graaff 
generator configuration, as in Figure 3-38a, by putting 
conducting segments on the insulating belt. Rather than 
spraying charge, we place an electrode at voltage V with 
respect to the lower conducting pulley so that opposite 
polarity charge is induced on the moving segments. As the 
segments move off the pulley, they carry their charge with 
them. So far, this device is similar to the Van de Graaff 
generator using induced charge rather than sprayed charge 
and is described by the same equivalent circuit where the 
current source now depends on the capacitance Ci between 
the inducing electrode and the segmented electrodes, as in 
Figure 3-38b. 
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Figure 3-38 A modified Van de Graaff generator as an electrostatic induction 
machine. (a) Here charges are induced onto a segmented belt carrying insulated 
conductors as the belt passes near an electrode at voltage V. (b) Now the current source 
feeding the capacitor equivalent circuit depends on the capacitance C between the 
electrode and the belt. 

Now the early researchers cleverly placed another 
induction machine nearby as in Figure 3-39a. Rather than 
applying a voltage source, because one had not been invented 
yet, they electrically connected the dome of each machine to 
the inducer electrode of the other. The induced charge on 
one machine was proportional to the voltage on the other 
dome. Although no voltage is applied, any charge imbalance 
on an inducer electrode due to random noise or stray charge 
will induce an opposite charge on the moving segmented belt 
that carries this charge to the dome of which some appears on 
the other inducer electrode where the process is repeated 
with opposite polarity charge. The net effect is that the charge 
on the original inducer has been increased. 

More quantitatively, we use the pair of equivalent circuits in 
Figure 3-39b to obtain the coupled equations 

dv2 dv1-nCiv 1=C , - nCiV2= C-- (2)
dt dt 

where n is the number of segments per second passing 
through the dome. All voltages are referenced to the lower 
pulleys that are electrically connected together. Because these 
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Figure 3-39 (a) A pair of coupled self-excited electrostatic induction machines 
generate their own inducing voltage. (b) The system is described by two simple 
coupled circuits. 

are linear constant coefficient differential equations, the solu­
tions must be exponentials: 

vl=Y1 e", v2 =V2 e'i (3) 

Substituting these assumed solutions into (2) yields the 
following characteristic roots: 

nC.22=(nCj (4)
C C 

so that the general solution is 

vi =A, e(ci/c)t +A 2 e-(<CIC)9 
(5) 

V2= -A, e"(nC/C) +A 2 e-<(Rc.ic)c 

where A I and A 2 are determined from initial conditions. 
The negative root of (4) represents the uninteresting 

decaying solutions while the positive root has solutions that 
grow unbounded with time. This is why the machine is self-
excited. Any initial voltage perturbation, no matter how 
small, increases without bound until electrical breakdown is 
reached. Using representative values of n = 10, Ci= 2 pf, and 
C= 10 pf, we have that s = *2 so that the time constant for 
voltage build-up is about one-half second. 
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Figure 3-40 Other versions of self-excited electrostatic induction machines use (a) 
rotating conducting strips (Wimshurst machine) or (b) falling water droplets (Lord 
Kelvin's water dynamo). These devices are also described by the coupled equivalent 
circuits in Figure 3-39b. 

The early electrical scientists did not use a segmented belt 
but rather conducting disks embedded in an insulating wheel 
that could be turned by hand, as shown for the Wimshurst 
machine in Figure 3-40a. They used the exponentially grow­
ing voltage to charge up a capacitor called a Leyden jar 
(credited to scientists from Leyden, Holland), which was a 
glass bottle silvered on the inside and outside to form two 
electrodes with the glass as the dielectric. 

An analogous water drop dynamo was invented by Lord 
Kelvin (then Sir W. Thomson) in 1861, which replaced the 
rotating disks by falling water drops, as in Figure 3-40b. All 
these devices are described by the coupled equivalent circuits 
in Figure 3-39b. 

3-10-3 Self-Excited Three-Phase Alternating Voltages 

In 1967, Euerle* modified Kelvin's original dynamo by 
adding a third stream of water droplets so that three-phase 

* 	W C. Euerle, "A Novel Method of Generating PolyphasePower," M.S. Thesis, Massachusetts 
Institute of Technology, 1967. See also J. R. Melcher, Electric Fields and Moving Media, 
IEEE Trans. Education E-17 (1974), pp. 100-110, and thefilm by the same titleproduced 
for the NationalCommittee on ElectricalEngineeringFilmsby the EducationalDevelopment 
Center, 39 ChapelSt., Newton, Mass. 02160. 
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alternating voltages were generated. The analogous three-
phase Wimshurst machine is drawn in Figure 3-41a with 
equivalent circuits in Figure 3-41b. Proceeding as we did in (2) 
and (3), 

dvs
-nCiv,=C-, vi=Vie" 

dt 

-nCiV 2 = Cv5 V2 2 (6)
dt 

dv,
-nCiv 3 = C-, v 3 Vs e" 

equation (6) can be rewritten as 

nC Cs 01V 
0 nC Cs YF =O (7) 
Cs 0 nC Vi 

(a). 

- 1Ci v3 - n Ci v 2 - nC i v 3J 

(b) 

Figure 3-41 (a) Self-excited three-phase ac Wimshurst machine. (b) The coupled 
equivalent circuit is valid for any of the analogous machines discussed. 
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which requires that the determinant of the coefficients of Y1 , 
V2, and Vs be zero: 

(nC1)3 +(Cs)3 =0s= nC - 1)" 

r= 1,2,3 (8)
(nc')e x2r-l, 

C 
C 

S2, !-[ I :h -13 i 
2C 

where we realized that (- 1)1/3 has three roots in the complex 
plane. The first root is an exponentially decaying solution, but 
the other two are complex conjugates where the positive real 
part means exponential growth with time while the imaginary 
part gives the frequency of oscillation. We have a self-excited 
three-phase generator as each voltage for the unstable modes 
is 1200 apart in phase from the others: 

V2 V3 V, -(nCj ei2/3) (9 

VI V2 V3 Cs2 ,3 

Using our earlier typical values following (5), we see that the 
oscillation frequencies are very low, f=(1/21r)Im(s)= 
0.28 Hz. 

3-10-4 Self-Excited Multi-frequency Generators 

If we have N such generators, as in Figure 3-42, with the 
last one connected to the first one, the kth equivalent circuit 
yields 

-nCiV, = CsVk+1 (10) 

This is a linear constant coefficient difference equation. 
Analogously to the exponential time solutions in (3) valid for 
linear constant coefficient differential equations, solutions to 
(10) are of the form 

Vk=AAk (11) 

where the characteristic root A is found by substitution back 
into (10) to yield 

-nCiAAk =CsAA A = -nCi/Cs (12) 
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Figure 3-42 Multi-frequency, polyphase self-excited Wimshurst machine with 
equivalent circuit. 

Since the last generator is coupled to the first one, we must 
have that 

1
VN+1 = VI AN+ 

=>AN= I 

A =1I/N ej21rr/N r =1,2,3,..., N (13) 
where we realize that unity has N complex roots. 

The system natural frequencies are then obtained from 
(12) and (13) as 

s = C r=1, 2,...,N (14) 

We see that for N =2 and N= 3 we recover the results of (4) 
and (8). All the roots with a positive real part of s are unstable 
and the voltages spontaneously build up in time with oscil­
lation frequencies wo given by the imaginary part of s. 

0=I Im (s)l = Isin 2rr/N (15)
C 
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PROBLEMS 

Section 3-1 
1. A two-dimensional dipole is formed by two infinitely long 
parallel line charges of opposite polarity X a small distance di, 
apart. 

(r, o, z) 

r' V 

d 10 x 

(a) What is the potential at any coordinate (r, 46, z)? 
(b) What are the potential and electric field far from the 

dipole (r w d)? What is the dipole moment per unit length? 
(c) What is the equation of the field lines? 

2. Find the dipole moment for each of the following charge 
distributions: 

2 

L +X0d 

+ Ld 

L LL­

(a) (C) (d) (e) 

(a) Two uniform colinear opposite polarity line charges 
*Ao each a small distance L along the z axis. 

(b) Same as (a) with the line charge distribution as 

A(z)= Ao(1-z/L),
A-Ao(1+z/L), 

O<z<L 
-L<z<O 

(c) Two uniform opposite polarity line charges *Ao each 
of length L but at right angles. 

(d) Two parallel uniform opposite polarity line charges 
* Ao each of length L a distance di, apart. 
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(e) 	 A spherical shell with total uniformly distributed sur­
face charge Q on the upper half and - Q on the lower 
half. (Hint: i. = sin e cos 0 i. +sin 0 sin 4$i, +cos Oi,.) 

(f) 	 A spherical volume with total uniformly distributed 
volume charge of Q in the upper half and - Q on the 
lower half. (Hint: Integrate the results of (e).) 

3. The linear quadrapole consists of two superposed 
dipoles along the z axis. Find the potential and electric field 
for distances far away from the charges (r >d).a 

r, 	 r r 2 
-Qr 

d r2 1 1 - cos - ( 2(1)-3cos2O) 

Linear quadrapole 

4. Model an atom as a fixed positive nucleus of charge Q 
with a surrounding spherical negative electron cloud of 
nonuniform charge density: 

p= 	-po(1-rRo), r<RO 

(a) 	 If the atom is neutral, what is po? 
(b) An electric field is applied with local field EL, causing a 

slight shift d between the center of the spherical cloud and 
the positive nucleus. What is the equilibrium dipole spacing? 

(c) What is the approximate polarizability a if 
9eoEL.c(poRo) < 1? 

5. Two colinear dipoles with polarizability a are a distance a 
apart along the z axis. A uniform field Eoi. is applied. 

AEoi 
p acEte a 

(a) 	What is the total local field seen by each dipole? 
(b) Repeat (a) if we have an infinite array of dipoles with 

constant spacing a. (Hint: r: 1 ,/n
5 ~ 1.2.) 

(c) If we assume that we have one such dipole within each 
volume of a , what is the permittivity of the medium? 

6. A dipole is modeled as a point charge Q surrounded by a 
spherical cloud of electrons with radius RO. Then the local 
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field EL, differs from the applied field E by the field due to 
the dipole itself. Since Edi varies within the spherical cloud, 
we use the average field within the sphere. 

d 

(a) Using the center of the cloud as the origin, show that 
the dipole electric field within the cloud is 

- Qri, Q(ri.-di]) 
47reoRo +47rE[d+r2-2rd cos 

(b) Show that the average x and y field components are 
zero. (Hint: i, = sin 0 cos i. +sin 0 sin i, +cos 0i..) 

(c) What is the average z component of the field? 
(Hint: Change variables to u = r+d - 2rd cos 9 and 
remember (r -d) 2=Ir - d.)

(d) If we have one dipole within every volume of IIrR, 
how is the polarization P related to the applied field E? 

7. Assume that in the dipole model of Figure 3-5a the mass 
of the positive charge is so large that only the election cloud 
moves as a solid mass m. 

(a) The local electric field is E0 . What is the dipole spacing? 
(b) At t = 0, the local field is turned off (Eo = 0). What is the 

subsequent motion of the electron cloud? 
(c) What is the oscillation frequencg if Q has the charge 

and mass of an electron with Ro = 10-1 m? 
(d) In a real system there is always some damping that we 

take to be proportional to the velocity (fdapin, = - 0v). What 
is the equation of motion of the electron cloud for a sinusoi­
dal electric field Re(toe""')? 

(e) Writing the driven displacement of the dipole as 

d = Re(deW'). 

what is the complex polarizability d, where # = Qd = SEo? 
(f) What is the complex dielectric constant 6= , +jej of 

the system? (Hint: Define 4o = Q2 N/(meo).) 
(g) Such a dielectric is placed between parallel plate elec­

trodes. Show that the equivalent circuit is a series R, L, C 
shunted by a capacitor. What are C1, Cs, L, and R? 

(h) Consider the limit where the electron cloud has no 
mass (m = 0). With the frequency w as a parameter show that 



234 Polarizationand Conduction 

Reite ''rJ
 
Area A
 

C1 

Re We j <t'e 

C 2 L R 

(g) 
a plot of er versus as is a circle. Where is the center of the 
circle and what is its radius? Such a diagram is called a 
Cole-Cole plot. 

(i) What is the maximum value of ej and at what frequency 
does it occur? 

8. Two point charges of opposite sign Q are a distance L 
above and below the center of a grounded conducting sphere 
of radius R. 

ial 

R 

(a) What is the electric field everywhere along the z axis 
and in the 0 = vr/2 plane? (Hint: Use the method of images.) 

(b) We would like this problem to model the case of a 
conducting sphere in a uniform electric field by bringing the 
point charges Q out to infinity (L -+co). What must the ratio 
Q/L 2 be such that the field far from the sphere in the = r/2 
plane is EOi.? 

(c) In this limit, what is the electric field everywhere? 

9. A dipole with moment p is placed in a nonuniform electric 
field. 

(a) Show that the force on a dipole is 

f =(p- V)E 
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E(r + d) 

E(r) 
r 

-q 4'f21TP2T T
 

rda 

(a) (b), (c) 

(b) Find the force on dipole 1 due to dipole 2 when the two 
dipoles are colinear, or are adjacent a distance a apart. 

(c) Find the force on dipole 1 if it is the last dipole in an 
infinite array of identical colinear or adjacent dipoles with 
spacing a. (Hint: Y: 1/n = r4/90.) 

10. A point dipole with moment pi, is a distance D from the 
center of a grounded sphere of radius R.
4 (Hint: d<<D.)
 

R 

D -

4
d 

_q 
p qdi, 

(a) What is the induced dipole moment of the sphere? 
(b) What is the electric field everywhere along the z axis? 
(c) What is the force on the sphere? (Hint: See Problem 

9a.) 

Section 3-2 
11. Find the potential, electric field, and charge density dis­
tributions for each of the following charges placed within a 
medium of infinite extent, described by drift-diffusion 
conduction in the limit when the electrical potential is much 
less than the thermal voltage (qV/kT<( 1): 

(a) 
(b) 

(c) 

Sheet of surface charge or placed at x =0. 
Infinitely long line charge with uniform density A. 
(Hint: Bessel's equation results.) 
Conducting sphere of radius R carrying a total surface 
charge Q. 
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12. Two electrodes at potential Vo/2 located at x = I 
enclose a medium described by drift-diffusion conduction for 
two oppositely charged carriers, where qVo/kT< 1. 

(a) Find the approximate solutions of the potential, electric 
field, and charge density distributions. What is the charge 
polarity near each electrode? 

(b) What is the total charge per unit area within the volume 
of the medium and on each electrode? 

13. (a) Neglecting diffusion effects but including charge 
inertia and collisions, what is the time dependence of the 
velocity of charge carriers when an electric field Eoi, is 
instantaneously turned on at t =0? 

(b) After the charge carriers have reached their steady-
state velocity, the electric field is suddenly turned off. What is 
their resulting velocity? 

(c) This material is now placed between parallel plate elec­
trodes of area A and spacing s. A sinusoidal voltage is applied 
Re (Vo e "). What is the equivalent circuit? 

14. Parallel plate electrodes enclose a superconductor that 
only has free electrons with plasma frequency (o.p 

Re(ie I")
 
Area A
 

+ t 

Re(vei- t ) Spcndctor 

(a) What is the terminal current when a sinusoidal voltage 
is applied? 

(b) What is the equivalent circuit? 

15. A conducting ring of radius R is rotated at constant 
angular speed. The ring has Ohmic conductivity c- and cross 
sectional area A. A galvanometer is connected to the ends of 
the ring to indicate the passage of any charge. The connec­
tion is made by slip rings so that the rotation of the ring is 
unaffected by the galvanometer. The ring is instantly 
stopped, but the electrons within the ring continue to move a 
short time until their momentum is dissipated by collisions. 
For a particular electron of charge q and mass m conservation 
of momentum requires 

A(mv)=j Fdt 

where F= qE is the force on the electron. 
(a) For the Ohmic conductor, relate the electric field to the 

current in the wire. 
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Cross-sectional 
Area A 

R 

Galvanometer 

(b) When the ring is instantly stopped, what is the charge Q 
through the galvanometer? (Hint: Q = J i dt. This experi­
ment is described by R. C. Tolman and T. D. Stewart, Phys. Rev. 
8, No. 2 (1916), p. 9 7 .) 

(c) If the ring is an electron superconductor with plasma 
frequency w,, what is the resulting current in the loop when it 
stops? 

Section 3.3 
16. An electric field with magnitude El is incident upon the 
interface between two materials at angle 61 from the normal. 
For each of the following material properties find the magni­
tude and direction of the field E 2 in region 2. 

E2 

02 

E2, 02 

Ei, 01 6 
E1 

(a) Lossless dielectrics with respective permittivities E1 and 
E2. There is no interfacial surface charge. 

(b) Ohmic materials with respective conductivities o-1 and 
0-2 in the dc steady state. What is the free surface charge 
density of on the interface? 

(c) Lossy dielectrics (el, o-) and (E2, 0-2) with a sinusoidally 
varying electric field 

El = Re (f, ei"') 

What is the free surface charge density of on the interface? 

17. Find the electric, displacement, and polarization fields 
and the polarization charge everywhere for each of the 
following configurations: 
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Ei E0 E 60 

(a) 	 (C) 

(b) 

(a) 	 An infinitely long line charge A placed at the center of a 
dielectric cylinder of radius a and permittivity E. 

(b) 	 A sheet of surface charge or- placed at the center of a 
dielectric slab with permittivity e and thickness d. 

(c) 	 A uniformly charged dielectric sphere with permittivity 
e and radius R carrying a total free charge Q. 

18. Lorentz calculated the local field acting on a dipole due to 
a surrounding uniformly polarized medium stressed by a 
macroscopic field Eoi, by encircling the dipole with a small 
spherical free space cavity of radius R. 

RdO 

Eoix, Poi2 

(a) If the medium outside the cavity has polarization Poi., 
what is the surface polarization charge on the spherical inter­
face? (Hint: i. = i,. cos 0 - iq sin 0) 

(b) Break this surface polarization charge distribution into 
hoop line charge elements of thickness dG. What is the total 
charge on a particular shell at angle 9? 

(c) What is the electric field due to this shell at the center of 
the sphere where the dipole is? 

(d) By integrating over all shells, find the total electric field 
acting on the dipole.. This is called the Lorentz field. 
(Hint: Let u = cos 9). 

19. A line charge A within a medium of permittivity el is 
outside a dielectric cylinder of radius a and permittivity E2. 
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The line charge is parallel to the cylinder axis and a distance d 
from it. 

aE2 

*0 

b =a 2/d 

d 9) 

(a) Try using the method of images by placing a line 
charge A' at the center and another image A" within the 
cylinder at distance b=a2/d from the axis along the line 
joining the axis to the line charge. These image charges 
together with the original line charge will determine the elec­
tric field outside the cylinder. Put another line charge A"' at 
the position of the original line charge to determine the field 
within the cylinder. What values of A', A", and A' satisfy the 
boundary conditions? 

(b) Check your answers with that of Section 3-3-3 in the 
limit as the radius of the cylinder becomes large so that it 
looks like a plane. 

(c) What is the force per unit length on the line charge A? 
(d) .Repeat (a)-(c) when the line charge A is within the 

dielectric cylinder. 

20. A point charge q is a distance d above a planar boundary 
separating two Ohmic materials with respective conductivities 
(r, and 0-2. 

eq 

01 Gy d 

02 

(a) What steady-state boundary conditions must the elec­
tric field satisfy? 

(b) What image charge configuration will satisfy these 
boundary conditions? (Hint: See Section 3-3-3.) 

(c) What is the force on q? 

21. The polarization of an electret is measured by placing it 
between parallel plate electrodes that are shorted together. 

(a) What is the surface charge on the upper electrode? 
(b) The switch is then opened and the upper electrode is 

taken far away from the electret. What voltage is measured 
across the capacitor? 
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C 

22. A cylinder of radius a and height L as in Figure 3-14, 
has polarization 

Paz.
P= Poz 

L 

(a) 	What is the polarization charge distribution? 
(b) Find the electric and displacement fields everywhere 

along the z axis. (Hint: Use the results of Sections 2-3-5b 
and 2-3-5d.) 

23. Find the electric field everywhere for the following 
permanently polarized structures which do not support any 
free charge: 

1'
-

I 
E0 

olP60 P=P0 ir 
--P Li 

(a)	 (b) 

(a) 	 Sphere of radius R with polarization P = (Por/R)i,. 
(b) 	 Permanently polarized slab Poi, of thickness b placed 

between parallel plate electrodes in free space at poten­
tial difference Vo. 

24. Parallel plate electrodes enclose the series combination of 
an Ohmic conductor of thickness a with conductivity o- and a 
superconductor that only has free electrons with plasma 

I 

i	 Ca, 0 

Depth d 
i 
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frequency . What is the time dependence of the terminal 
current, the electric field in each region, and the surface 
charge at the interface separating the two conductors for each 
of the following terminal constraints: 

(a) 	 A step voltage Vo is applied at I= 0. For what values of 
wp, are the fields critically damped? 

(b) 	 A sinusoidal voltage v(t)= Vo cos wl has been applied 
for a long time. 

Section 3-4 
25. Find the series and parallel resistance between two 
materials with conductivities o, and 02 for each of the follow­
ing electrode geometries: 

a 02 

b 	 Me "E 

Depth d 	 Depth d 

(a) 

02 

a
R2 

R , 
R 0 

R 2 

(Depth I for (Depth I for 
cy4inder) cylinder) 

(b) and (c) 

(a) 	 Parallel plates. 
(b) 	 Coaxial cylinders. 
(c) 	 Concentric spheres. 

26. A pair of parallel plate electrodes at voltage difference Vo 
enclose an Ohmic material whose conductivity varies linearly 
from a, at the lower electrode to 02 at the upper electrode. 
The permittivity e of the material is a constant. 

S 

E, a(x) = + (02 - 1) - V0 

Depth d 

(a) 	 Find the fields and the resistance. 
(b) 	 What are the volume and surface charge distributions? 
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(c) What is the total volume charge in the system and how 
is it related to the surface charge on the electrodes? 

27. A wire of Ohmic conductivity a- and cross sectional area 
A is twisted into the various shapes shown. What is the resis­
tance R between the points A and B for each of the 
configurations? 

b .3 
BR 

B 

A
 
A
 

Section 3-5 
28. Two conducting cylinders of length I and differing radii 
R1 and R2 within an Ohmic medium with conductivity a- have 
their centers a distance d apart. What is the resistance 
between cylinders when they are adjacent and when the 
smaller one is inside the larger one? (Hint: See Section 
2-6-4c.) 

RI 

R2 

a> 

29. Find the series and parallel capacitance for each of the 
following geometries: 

(a) Parallel plate. 
(b) Coaxial cylinders. 
(c) Concentric spheres. 

< a , 1. < b 30 

b 

Depth d Depth d 

(a) 

.
 I 



Problems 243 

E2 

R2 Re of 

e2 R2 

(Depth I for cylinders)

(b), (c)
 

30. Two arbitrarily shaped electrodes are placed within a 
medium of constant permittivity e and Ohmic conductivity o-. 
When a dc voltage V is applied across the system, a current I 
flows. 

I 

(a) What is the current i(t) when a sinusoidal voltage 
Re (Vo ei'wt ) is applied? 

(b) What is the equivalent circuit of the system? 

31. Concentric cylindrical electrodes of length I with respec­
tive radii a and b enclose an Ohmic material whose permit­
tivity varies linearly with radius from e, at the inner cylinder 
to e2 at the outer. What is the capacitance? There is no volume 
charge in the dielectric. 

=1 +(62 - 61) ( a E 
ar 

b Depth I 

Section 3.6 
32. A lossy material with the permittivity eo of free space and 
conductivity o- partially fills the region between parallel plate 
electrodes at constant potential difference Vo and is initially 

t0
 
+V
 

Depth d 

x 
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uniformly charged with density po at t =0 with zero surface 
charge at x = b. What is the time dependence of the following: 

(a) the electric field in each region? (Hint: See Section 
3-3-5.) 

(b) 	 the surface charge at x = b? 
(c) 	 the force on the conducting material? 

33. An infinitely long cylinder of radius a,, permittivity e, 
and conductivity o- is nonuniformly charged at t =0: 

0<r<aoPf(t = 0)=por/ao,
t0, r>ao 

P(t)Nal\a 

e,0 

What is the time dependence of the electric field everywhere 
and the surface charge at r = aI? 

34. Concentric cylindrical electrodes enclose two different 
media in series. Find the electric field, current density, and 
surface charges everywhere for each of the following condi­
tions:R 

RR3 

Ei, 01 

Depth I 

(a) 	 at t =0+ right after a step voltage Vo is applied to the 
initially unexcited system; 

(b) 	 at t = 00 when the fields have reached their dc steady-
state values; 

(c) 	 during the in-between transient interval. (What is the 
time constant r?); 

(d) 	 a sinusoidal voltage Vo cos wt is applied and has been 
on a long time; 

(e) 	what is the equivalent circuit for this system? 

35. A fluid flow emanates radially from a point outlet with 
velocity distribution U,. = A/r2 . The fluid has Ohmic conduc­
tivity o- and permittivity e. An external source maintains the 

charge density po at r =0. What are the steady-state charge 
and electric field distributions throughout space? 
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+ VO­

36. Charge maintained at constant density po at x =0 is car­
ried away by a conducting fluid travelling at constant velocity 
Ui. and is collected at x = 1. 

6, U 

U Cross-sectional 
area A 

P ~ P0 

0 
(a) What are the field and charge distributions within the 

fluid if the electrodes are at potential difference VO? 
(b) What is the force on the fluid? 
(c) Repeat (a) and (b) if the voltage source is replaced by a 

load resistor RL. 

37. A dc voltage has been applied a long time to an open 
circuited resistive-capacitive structure so that the voltage and 
current have their steady-state distributions as given by (44). 
Find the resulting discharging transients for voltage and 
current if at t = 0 the terminals at z = 0 are suddenly: 

(a) open circuited. Hint: 

sinh a(z ­ 1) sin 
sI 

(b) Short circuited. Hint: 

=dz mir sinh al 

I [a2 + (mrr/L) 21 

cosh a(z - .)sin ((2n +1)7r 

21 

dz\ (2n + 1)-r cosh aL 

2l[a2+ [(2n+1)7r 2 

38. At t =0 a distributed resistive line as described in Section 
3-6-4 has a step dc voltage Vo applied at z =0. The other end 
at z = I is short circuited. 

(a) What are the steady-state voltage and current dis­
tributions? 

(b) What is the time dependence of the voltage and current 
during the transient interval? Hint: 

sinh a(z -1) sin (5) dz = - mir sinh at 

Ia2 + (mr/l)2] 
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39. A distributed resistive line is excited at z = 0 with a 
sinusoidal voltage source v(t) = Vo cos wt that has been on for 
a long time. The other end at z =I is either open or short 
circuited. 

(a) Using complex phasor notation of the form 

v(z, t) = Re (6(z)eiMi) 

find the sinusoidal steady-state voltage and current dis­
tributions for each termination. 

(b) What are the complex natural frequencies of the 
system? 

(c) How much time average power is delivered by the 
source? 

40. A lossy dielectric with permittivity e and Ohmic conduc­
tivity a, is placed between coaxial cylindrical electrodes with 
large Ohmic conductivity o,, and length 1. 

What is the series resistance per unit length 2R of the 
electrodes, and the capacitance C and conductance G per 
unit length of the dielectric? 

Depth I 

Section 3.7 
41. Two parallel plate electrodes of spacing I enclosing a 
dielectric with permittivity e are stressed by a step voltage at 
t =0. Positive charge is then injected at t =0 from the lower 
electrode with mobility A and travels towards the opposite 
electrode. 

x 

VO 

P=0 $ A(a) 
*s(t) 

i(t) =J(t)A 

p/*0 E=0 

Area A 

0 
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(a) Using the charge conservation equation 
3-2-1, show that the governing equation is 

of Section 

E aE 
- + pE -
at ax 

J(t) 
E 

where J(t) is the current per unit electrode area through the 
terminal wires. This current does not depend on x. 

(b) By integrating (a) between the electrodes, relate the 
current J(t) solely to the voltage and the electric field at the 
two electrodes. 

(c) For space charge limited conditions (E(x = 0) = 0), find 
the time dependence of the electric field at the other elec­
trode E(x = 1, t) before the charge front reaches it. 
(Hint: With constant voltage, J(t) from (b) only depends on 
E(x = 1, t). Using (a) at x = I with no charge, aE/8x = 0, we have 
a single differential equation in E(x = 1, t).) 

(d) What is the electric field acting on the charge front? 
(Hint: There is no charge ahead of the front.) 

(e) What is the position of the front s(t) as a function of 
time? 

(f) At what time does the front reach the other electrode? 
(g) What are the steady-state distribution of potential, 

electric field, and charge density? What is the steady-state 
current density J(t -­>0)? 

(h) Repeat (g) for nonspace charge limited conditions 
when the emitter electric field E(x = 0) = EO is nonzero. 

42. In a coaxial cylindrical geometry of length L, the inner 
electrode at r = Ri is a source of positive ions with mobility /p 
in the dielectric medium. The inner cylinder is at a dc voltage 
Vo with respect to the outer cylinder. 

E, (r = )= E 

RO 

R i _-=- O 

Depth L 

(a) The electric field at the emitter electrode is given as 
Er(r= Rj) = Ej. If a current I flows, what are the steady-state 
electric field and space charge distributions? 

(b) What is the dc current I in terms of the voltage under 
space charge limited conditions (Ei = 0)? Hint: 

[r2 - RY2] 12 
fdr 

2_ 1/ 
= [r- Ri ]-

Ri 
Ri Cos~-­
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(c) For what value of E is the electric field constant 
between electrodes? What is the resulting current? 

(d) Repeat (a)-(b) for concentric spherical electrodes. 

Section 3.8 
43. (a) How much work does it take to bring a point dipole 
from infinity to a position where the electric field is E? 

A+ 

d 

r + d V(r), E(r) =-VV 

(a) 

4UfPiP 

(d) 

(b) (C) 

(b) A crystal consists of an infinitely long string of dipoles a 
constant distance s apart. What is the binding energy of the 
crystal? (Hint: Y- 11/n -1.2.) 

(c) Repeat (b) if the dipole moments alternate in sign. 
(Hint: X_..1(-1)"/n5 = -0.90.) 

(d) Repeat (b) and (c) if the dipole moments are perpendic­
ular to the line of dipoles for identical or alternating polarity 
dipoles. 

44. What is the energy stored in the field of a point dipole 
with moment p outside an encircling concentric sphere with 
molecular radius R? Hint: 

= - cos3 e2 0 sin Oecos 
f 3 

f sin3 0 dO = -- cos 0 (sin2 0 + 2) 

45. A spherical droplet of radius R carrying a total charge Q 
on its surface is broken up into N identical smaller droplets. 

(a) What is the radius of each droplet and how much 
charge does it carry? 

(b) Assuming the droplets are very far apart and do not 
interact, how much electrostatic energy is stored? 
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(c) Because of their surface tension the droplets also have a 
constant surface energy per unit area ws. What is the total 
energy (electrostatic plus surface) in the system? 

(d) How much work was required to form the droplets and 
to separate them to infinite spacing. 

(e) What value of N minimizes this work? Evaluate for a 
water droplet with original radius of 1 mm and charge of 10-6 
coul. (For water w, 0.072 joule/ 2 

46. Two coaxial cylinders of radii a and b carry uniformly 
distributed charge either on their surfaces or throughout the 
volume. Find the energy stored per unit length in the z 
direction for each of the following charge distributions that 
have a total charge of zero: 

(a) 	 Surface charge on each cylinder with o-a2 ra = -ob27Tb. 
(b) 	 Inner cylinder with volume charge Pa and outer cylin­

der with surface-charge 0
b where O27rb= -Pa7ra 2 

(c) 	 Inner cylinder with volume charge Pa with the region 
between cylinders having volume charge Pb where 

2 2par = - pOF (b2 -a ) 

47. 	 Find the binding energy in the following atomic models: 

Q 	 + + 
R 2 

(a) 	 (b) 

(a) 	 A point charge Q surrounded by a uniformly dis­
tributed surface charge - Q of radius R. 

(b) 	 A uniformly distributed volume charge Q within a 
sphere of radius R, surrounded on the outside by a 
uniformly distributed surface charge - Q at radius R2 . 

48. A capacitor C is charged to a voltage Vo. At t = 0 another 
initially uncharged capacitor of equal capacitance C is 

Switch closes at t = 0 Resistance of 
R connecting wires 

C C 

v (t 0) = V0	 T 2(t =0) =0 
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connected across the charged capacitor through some lossy 
wires having an Ohmic conductivity a-, cross-sectional area A, 
and. total length 1. 

(a) What is the initial energy stored in the system? 
(b) What is the circuit current i and voltages vi and v 2 

across each capacitor as a function of time? 
(c) What is the total energy stored in the system in the dc 

steady state and how does it compare with (a)? 
(d) How much energy has been dissipated in the wire 

resistance and how does it compare with (a)? 
(e) How do the answers of (b)-(d) change if the system is 

lossless so that o = co? How is the power dissipated? 
(f) If the wires are superconducting Section 3-2-5d 

showed that the current density is related to the electric field 
as 

at 

where the plasma frequency w, is a constant. What is the 
equivalent circuit of the system? 

(g) What is the time dependence of the current now? 
(h) How much energy is stored in each element as a 

function of time? 
(i) At any time t what is the total circuit energy and how 

does it compare with (a)? 

q + 

d 

_-
p= qd 

E 
Section 3.9 
49. A permanently polarized dipole with moment p is at an 
angle 6 to a uniform electric field E. 

(a) What is the torque T on the dipole? 
(b) How much incremental work dW is necessary to turn 

the dipole by a small angle dG? What is the total work 
required to move the dipole from 6 =0 to any value of 6? 
(Hint: dW= TdO.) 

(c) In general, thermal agitation causes the dipoles to be 
distributed over all angles of 6. Boltzmann statistics tell us that 
the number density of dipoles having energy W are 

n = no e-WAT 

where no is a constant. If the total number of dipoles within a 
sphere of radius R is N, what is no? (Hint: Let u= 
(pE/T) cos 6.) 

(d) Consider a shell of dipoles within the range of 6 to 
6+d6. What is the magnitude and direction of the net 
polarization due to this shell? 

I 
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(e) What is the total polarization integrated over 0? This is 
known as the Langevin equation. (Hint: j ue" du = (u - 1)e".) 

(f) Even with a large field of E 106 v/m with a dipole 
composed of one proton and electron a distance of 
10 A (l04 m) apart, show that at room temperature the 
quantity (pE/kT) is much less than unity and expand the 
results of (e). (Hint: It will be necessary to expand (e) up to 
third order in (pE/kT). 

(g) In this limit what is the orientational polarizability? 

50. A pair of parallel plate electrodes a distance s apart at a 
voltage difference Vo is dipped into a dielectric fluid of 
permittivity e. The fluid has a mass density pm and gravity 
acts downward. How high does the liquid rise between the 
plates? 

+V 0 

Eo Depth d 

51. Parallel plate electrodes at voltage difference VO enclose 
an elastic dielectric with permittivity e. The electric force of 
attraction between the electrodes is balanced by the elastic 
force of the dielectric. 

(a) When the electrode spacing is d what is the free surface 
charge density on the upper electrode? 

V0 
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(b) What is the electric force per unit area that the elec­
trode exerts on the dielectric interface? 

(c) The elastic restoring force per unit area is given by the 
relation 

d 
FA=Y in-

do 

where Y is the modulus of elasticity and do is the unstressed 
(Vo=0) thickness of the dielectric. Write a transcendental 
expression for the equilibrium thickness of the dielectric. 

(d) What is the minimum equilibrium dielectric thickness 
and at what voltage does it occur? If a larger voltage is applied 
there is no equilibrium and the dielectric fractures as the 
electric stress overcomes the elastic restoring force. This is 
called the theory of electromechanical breakdown. [See 
K. H. Stark and C. G. Garton, Electric Strength of Irradiated 
Polythene, Nature 176 (1955) 1225-26.] 

52. An electret with permanent polarization Poi, and thick­
ness d partially fills a free space capacitor. There is .nosurface 
charge on the electret free space interface. 

Area A
AA

seol 
d V,1- 1 11 PO+ V_0 

(a) What are the electric fields in each region? 
(b) What is the force on the upper electrode? 

53. A uniform distribution of free charge with density po is 
between parallel plate electrodes at potential difference Vo. 

Area A 

(a) What is the energy stored in the system? 
(b) Compare the capacitance to that when po =0. 
(c) What is the total force on each electrode and on the 

volume charge distribution? 
(d) What is the total force on the system? 

54. Coaxial cylindrical electrodes at voltage difference Vo are 
partially filled with a polarized material. Find the force on this 
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material if it is 
(a) permanently polarized as Poir; 
(b) linearly polarized with permittivity e. 

~-~~ VO7-­

55. The upper electrode of a pair at constant potential 
difference VO is free to slide in the x direction. What is the x 
component of the force on the upper electrode? 

T+ 

Depth d 

56. A capacitor has a moveable part that can rotate through 
the angle 0 so that the capacitance C(O) depends on 0. 

(a) What is the torque on the moveable part? 
(b) An electrostatic voltmeter consists of N+1 fixed pie-

shaped 	electrodes at the same potential interspersed with N 
6plates mounted on a shaft that is free to rotate for - < 0< 

0. What is the capacitance as a function of 0? 
(c) A voltage v is applied. What is the electric torque on the 

shaft? 
(d) A torsional spring exerts a restoring torque on the shaft 

T,= -K(0-0 ) 

where K is the spring constant and 0, is the equilibrium 
position of the shaft at zero voltage. What is the equilibrium 
position of the shaft when the voltage v is applied? If a 
sinusoidal voltage is applied, what is the time average angular 
deflection <6>? 

(e) The torsional spring is removed so that the shaft is 
free to continuously rotate. Fringing field effects cause the 
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0 N rotor plates 

I I­

(N + 1) stator plates 

2 C(0) C(O) = (CM + Cm n)(6) = 2eoNR (00 -- )
s 
+ (Cmax - Cmin)cos20
 

C(0) Cma. 

Cnnin 

0 0 
- 0 0 b 0 it 2w 

(e) 

(b) 

capacitance to vary smoothly between minimum and maxi­
mum values of a dc value plus a single sinusoidal spatial term 

C(6) = 1[C..+ Cmin] +1[Cm..- Cmin] cos 20 

A sinusoidal voltage Vo cos wt is applied. What is the instan­
taneous torque on the shaft? 

(f) If the shaft is rotating at constant angular speed w. so 
that 

= w,.t + 8 

where 8 is the angle of the shaft at t =0, under what condi­
tions is the torque in (e) a constant? Hint: 

I.sin 26 coss ot = i sin 26(1 +cos 2awt) 
= i sin'26 +- [sin (2(wt + ))-sin (2(wt - 6))] 

(g) A time average torque To is required of the shaft. What 
is the torque angle 8? 

(h) What is the maximum torque that can be delivered? 
This is called the pull-out torque. At what angle 8 does this 
occur? 

Section 3-10 
57. The belt of a Van de Graaff generator has width w and 
moves with speed U carrying a surface charge oy up to the 
spherical dome of radius R. 
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(a) What is the time dependence of the dome voltage? 
(b) Assuming that the electric potential varies linearly 

between the charging point and the dome, how much power 
as a function of time is required for the motor to rotate the 
belt? 

R 

+ 

+ 

+U 
Belt thickness 

t >RL 

+ 

+ 
U 

Belt width w 

0 

T 
58. A Van de Graaff generator has a lossy belt with Ohmic 
conductivity o- traveling at constant speed U. The charging 
point at z = 0 maintains a constant volume charge density po 
on the belt at z = 0. The dome is loaded by a resistor RL to 
ground. 

(a) Assuming only one-dimensional variations with z, what 
are the steady-state volume charge, electric field, and current 
density distributions on the belt? 

(b) What is the steady-state dome voltage? 

59. A pair of coupled electrostatic induction machines have 
their inducer electrodes connected through a load resistor RL. 
In addition, each electrode has a leakage resistance R to 
ground. 

(a) For what values of n, the number of conductors per 
second passing the collector, will the machine self-excite? 
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I 
RL 

+ '+ 

-UCiV 2 C R V2 41. R c -Ce 

(b) If n=10, Ci = 2 pf, and C 10 pf with RL = R, what is 
the minimum value of R for self-excitation? 

(c) If we have three such coupled machines, what is the 
condition for self-excitation and what are the oscillation 
frequencies if RL = 00? 

(d) Repeat (c) for N such coupled machines with RL = CO. 
The last machine is connected to the first. 
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