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SOLUTIONS TO CHAPTER 13 

13.1 INTRODUCTION TO TEM WAVES 

13.1.1	 (a) From (13.1.3): 

aEz [ () (O)J aHaay = f3Re A cos f3y exp 3wt = Wat: 
(1) 

= f3IAI cosf3ycos(wt +~) 

where ~ is the phase angle of A. Integrating the above yields 

H. = LIAlcosf3ysin(wt +~) =	 -Re jLAcosf3ye;wt (2) 
w~·	 w~ 

Introducing (2) and the expression for E z into (13.1.2) gives 

- f32 IAI sin f3y sin(wt + ~) = -wflAI sin f3y sin(wt + ~) (3) 
w~ 

from which the dispersion relation follows f32 = W2~f. 

(b)	 From (13.1.13)


This gives, using (2),


(4) 

and thus 

A= _j w~/(o = -j/(o. ~_1_	 (5)
f3 cos f3b V-; cos f3b 

Using (2) we find 

-	 -R K'" cos f3y ;wtH• - e 0 cos",Qb e (6) 

and putting the value of A from (5) into the expression for Ez gives 

= -R oK f;~ sin f3y ;wtEz e 3 0 f cos", Qb e	 (7) 
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Solutions to Chapter 13 

13.1.2 (a) The standing wave 
H. = Re A sin {iyeiwt 

satisfies the boundary conditions of sero H. at y = O. From (13.1.2) 

aHa . t aE:I'-- ={iRe A cos {iye'W =E-- (1) 
ay at 

Integrating to find Ell' gives 

E:I' = -!!...Re jA cos {iyeiwt (2)
WE 

From (13.1.3) we find 

aE:I' = {i2 Re jAsin{iyeiwt = J.& aHa = wJ.&Re jA sin {iyeiwt (3) 
ay WE at 

and thus 
(i2 = W2 J.&E (4) 

(b) Turning to the boundary conditions, 

E:I'(-b, t) = Re ~deiwt /a (5) 

and thus from (2) 

-!!...Re jAcos{ibeiwt = Re ~deiwt /a (6)
WE 

and hence 
A- .WEVd _1__ . ~Vd_1_ (7)-3 (i a cos{ib -3yp. a cos{ib 

We find 

13.1.3 Using the identity 
(1) 

one finds from (13.1.17) 

l'liI
E:I' = "'!¥ 1 •-Rej.n.o -----;(e'''I- e-'''")e'Wiii 't 

Ecos{ib 23 
(2) 

= -Re !Ko ~[ei(wt-{JII) - e-i(wHfJlI)J/cos{ib
2 y; 

The exponentials in the brackets represent waves that retain constant amplitude 
when dy = ±idt exhibiting the (phase) velocities ±w/{i = ±1/..,fiii. 



13-3 Solutions to Chapter 13 

-L/ 
13.1.4	 (a) The EQS potential in a coax is a solution of Laplace's equation. The field 

with rotational symmetry is 

~= Aln­
r	

(I)
a 

satisfying ~ = 0 on outer conductor of radius a. The field is z-independent 
with a constant potential difference. The potential difference is 

Aln(b/a} =V	 (2) 

The field is 

E = -V~ =	 -i.. :rA1n(r/a} = -i.. ~ = i .. rln~/b} (3) 

(b)	 The field has cylindrical symmetry with field-lines parallel to ill>. The potential 
"\Ii' is 

(4) 

The H field is 

(5) 

Ampere's integral law gives 

!H.dS= f J·da=I	 (6) 

Since H is z independent, I = constant and at z = -I 

A 
--211"r = -211"A = I	 (7)

r 

Therefore 

(8) 

(c)	 The preceding analysis suggests that 

E=i.. V(z,t} (9a)
In(a/b}r 

and 

(9b) 

can be solutions of Maxwell's equations. To show this it is advantageous to 
separate the V operator into 

(10) 



Solutions to Chapter 13 13-4 

where 
T"7 • a 1. a 
vT = I r ­ + -1",­

ar r a</> 

is the transverse part of the operator. Then 

(ll) 

v X E = V T X E + i. X :zE (12) 

Now V T differentiates only rand </>. The EQS field, which is z independent, 
has VT X E = O. Hence we conclude that the same holds for the "Ansatz" 
(9). But i. X ir = i", and i. xi", = -ir . We obtain from Faraday's law 

1 !~V=_JL_l_a1 
In{a/b) r aa 21Tr at 

(13) 

The common r-dependence can be eliminated, and we find 

(14) 

where 
L = JLln{b/a) 

21T 
A similar reasoning applied to V X H and Ampere's law yields 

(15) 

• 1 a1. € av 
-Ir =Ir -

21Tr az In{b/a)r at 
-- (16) 

or 

with 

a1 = _cay 
az at 

c = 21T€ 
In{b/a) 

(17) 

(18) 

V 
13.1.5 (a) With the time dependence exp iwt, we get for the transmission line equations 

of (14) and (17) of Prob. 13.1.4 

dV 
dz 

= -iwLJ (I) 

where 

dJ A 

- = -iwCV
dz 

v = Re Veiwt 

(2) 



13-5 Solutions to Chapter 13 

and 
1 = Re ieiwt


Eliminating V from (1) and (2) one obtains


tPV . di 2- = -3wL- = -w LCV
A	 (3)

dz2 dz 

with the solutions 

(4) 

with 
fi =w";LC (5) 

We pick the solution 
v = Asinfiz (6) 

because the short forces V to be zero at z = O. From (1) we find 

i dV ifi
1

A =-- = -Acosfiz	 (7)
wL dz wL


and since 1 = Re 10 eiwt at z = -I,


wL

Acosfil = -i 1	 (8)

fi 0 

or 

A=-iVL/C~ (9)
cos PI 

where we used (5). We find for the current and voltage as functions of z and 
t: 

. t101(z, t) = Re -- cos pze'w	 (10)
cosfil 

V(z, t) = -Re iVL/C10 sin~z,eiwt (11) 
cOSfJ 

(b)	 At low frequencies cosfiz!::::! 1 for all -I < z < 0 and sinfiz !::::! fiz = w";LCz. 
Using (9) of the preceding problem, 

(12) 

For the E-field we find from the preceding problem and (11) above 

. R' L 1 iwt 
_. R . JJ 1 iwtz oeE -- -II' e3w In(a/b)r - -II' e 3w 211" z oe (13) 
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This gives the voltage at z = -I

Solutions to Chapter 13

(14)

The inductance is Ll because L, as defined here, is the inductance per unit
length. Thus we have shown that, in the limit oflow frequencies, the structure
behaves as a single-turn inductor.

(c) The H-field in the space between the conductors is the gradient of a potential
'Ii ex tP that is a solution of Laplace's equation. Thus,

10 • t
H=Re -i e'w

21fr .p

We obtain E from Faraday's law

V E paH R' 10 • iwt
X =--- = -p e:Jw-1.peat 21rr

(15)

(16)

c
I

f
--- -----.-_.-t--

z « 0) z=o

FllPlre SII.1.5

With the line integral along the contour C shown Fig. S13.1.5, we may find from
the integral form of Faraday's law

(17)

Integrals over the radial coordinate appear on both sides. Thus, comparing the
integrands we find

which is the same as (13).

E R jwp10 iwt
r=- e~ze (18)
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~ 
13.1.6	 (a) From the solutions (4) in Prob. 13.1.5 we pick the cospz dependence, because 

the magnetic field, proportional to 1, is zero at z = 0 according to (7) of the 
same problem. Indeed, if V = A cos pz, then 

j eW jP.
1

A 

= -- =	 --Asmpz (1)
wL dz wL 

Since 
Re[Acospzexpjwt]..=_1 = ReIVoexpjwt] (2) 

we find 

A=~ (3) 
cos Pi 

and 

1=-jyC/L V°/.llsinPz (4) 
cos~ 

Therefore, 

V(z, t) = Re [c:opl cospzexPjwt] (5) 

1(z, t) = -Re jyC/L V°/.l sin (3zeiwt (6) 
cos~l 

In(r/a) • V(z, t) 1 
E = V(z, t)VT In (a/b) = I"ln(a/b) r (7) 

where VT is the transverse gradient operator, 

• a . 1 a
V T	 = 1.. - +1",-­ar r a4J 

and we use the result of Prob. 13.1.4. In a similar vein 

(8) 

(b)	 At low frequencies, cos (3z !:::! I, sin (3z !:::! (3z and V(z, t) !:::! Re Vo exp jwt. Then, 
assuming Vo to be real, 

i.. 1	 ( ) 
E = In(a/b) r Vocoswt 

H = ;:r yC/L(3zVosinwt = i"'rln'(:/b)zVosinwt (10) 

(c)	 At low frequencies, using EQS directly 

i.. 1 
E = In(a/b) r Vocoswt (11) 
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namely the gradient of a Laplacian potential ex In(r/a). The H-field follows 
from 

aE
VXH=f­	 (12)at 

with 
A 

H = 14>-z	 (13) 
r 

introduced into (12) 

• a H I A II" 1V. .V x H	 = -II" az 4> = - 1"-;:- = -WE In(a/b) r oSlnwt 

and therefore 

A = In(:/b) Vosinwt	 (14) 

which gives the same result as (10). 

13.2	 TWO-DIMENSIONAL MODES BETWEEN PARALLEL­
PLATES 

13.2.1 We can write 

mr	 1 ( .n", .n'll" )cos-:r; = - exp3-:r;+exP-3-:r;
a 2 a a 

and 
• n'll" 1 ( .n", .n'll" )

Sln-:C= --; exp3-:r;-exp-3-:r;
a 23 a a 

Introducing these expressions into (13.2.19)-(13.2.20) we find four terms of the form 

'Q .n'll" '(Q n'll" )exp =f3fJnyexp =f3 -:r; = exp =f3 fJnY ± -:r; = exp -jk . r 
a	 a 

where 
k n'll". Q • 

= ±-Ix ±fJnl~ 
a 

and

r = Ix:r;+I~y


This proves the assertion that the solution consists of four waves of the stated 
nature. These waves are phased so as to yield :r;-dependences of the form cos n: :r; 
and sin nat!' :c to satisfy the boundary conditions. 
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13.2.2	 We can start with the solutions (13.2.19) and (13.2.20) shifting z so that 
, a 

:1;=:1;-­
2


Considering TM modes first we note that


n", .(n",z' n",)
Hz ex cos-z = cos --+­

a a 2 
n"':I;' n", . n"':I;' . n",

=cos--cos- -sm--sm­
a 2 a 2 

= { (-1)~~ cos (m::) n even 
(-1)-~- sin (,,~S) n odd 

We see that the modes with even n are even with respect to the symmetry plane 
of the guide, the modes with n-odd are odd. 

Next studying the TE-modes, 

. n", . (n",z') n", (n",z') .	 n",Ezexsm-z=sm -- cos-+cos -- sm­
a a 2 a 2 

= {(-1):'~1 sin~, n even 
(-1)-~- cos "~s n odd 

We find that Ez is even for n odd, odd for n even. 

(a) When z, = ±a/2 and the modes are odd, Hz = (_1)(,,-1)/2 sin "2ft , Ez = 
(-1)"/2 sin "2ft ; in the first case n is odd and Hz is an extremum at z' = ±a/2, 
and in the second case n is even and Ez is zero at both boundaries. 

(b) When	 z, = ±a/2 and the modes are even then Hz = (-I)"/2cos(;ft) and 
Ez = (_1)("-1)/2 cos ;'11' we see that both boundary conditions are in both 
cases, because n is odd in the first case and Hz is an extrenum, n is even in 
the second case, and Ez is zero. 

13.3	 TE AND TM STANDING WAVES BETWEEN PARALLEL

PLATES


(1)


13.3.1 



Solutions to Chapter 13 

where we have integrated by parts. Because dh.n/dz = 0 at z = 0 and z = a, the 
integral of the integrand containing the total derivative vanishes. 

Next take the complex conjugate of (13.3.1) applied to h.m multiply by 'h.n 
and integrate. The result is 

13-10 

(2) 

Subtraction of (1) and (2) gives 

Thus 
(G A. '" 10 h.mh.ndz = 0 

when p~ -=I p~ and orthogonality is proven. The steps involving 2.n are identical. 
The only difference is that 

l
a 

d ~("* de.n )zd e.m do z z


vanishes because 2:m vanishes at z = 0 and z = a.


13.3.2 (a) The charge in the bottom plate is 

q = l UI 1(a+A)/2 
EElIdzdz	 (1) 

o (a-A)/2 

Using (13.3.15) 

""' 4mrE f) 1 ;wt] 2wa ( )!!=.!.. n",~ q= Re	 [ LJ -------e -- -1 sm-- (2)3 
..=1 a fJn a sinfJnb n", 2a 
044 

l
where we have used the fact that


UI j(a+A)/2 mr wa [ mr a + f1 mr a - b. ]

sin (-z)dzdz = -- cos (---) - cos (---) 

o	 (a-A)/2 a n", a 2 a 2 

wa . n", . n",f1 
= 2-sm-sm-­

n", 2 2a 
_ 2wa ( 1).!!;.l . mrb. ---	- ~ sm-­

nll" 2a 
(3) 

Va = -Re iwqejwtR 

( 1) !!=.!. • n!tA. ] (4)
= -Re	 iw8EWRv L - 3 s~ 2a ejwt

[ fJn a sm fJn b 
n 
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When P",b = 1r we have a resonance. Now

P", = JW2~E _ (n;)2

The resonance frequency of the n-th mode occurs at

p",!a = J4w2~Ea2 - (n1r)2 = 1r
a

or
w..jiii.a = J(n2 + 1)~

2

13-11

(5)

(6)

(7)

(b)

(b) For n = 1 this is at 1r. The next mode resonates at V5f41r. Thus, in this
range, two resonances occur for which the response goes to infinity. Of course,
in this limit, losses have to be taken into account which will maintain the
response finite. The low frequency limit is when·

1r
w..jiii. <: n­

a

Then
R • R b n1r. h n1r bf'''' Slnf'''' -+ -- sm -

a a
and

_ R [. R"~ (-1)!!jl sin~ jwt]
Va - e 3w81rEW V L..J M sinh Mb e

'" G G

(c) From (13.3.13), when only one mode predominates,

H R [
4iWEfJ cos p",y n1r] jwt

.!:::! e -R-- . R bCos- e
f'",a sm f'", a

where n = 1 at wy'iifa = 1r and n = 2 at wy'iifa = V5f41r. To get a
finite answer, we need v/ sin p",b to remain finite as the resonance frequency
is approached.

13.3.3 (a) H. at x = 0 and x = a gives the surface currents in the bottom and top
electrodes. Because the voltage sources push currents into the structure in
opposite directions, the surface currents, and H., have to vanish at the sym­
metry plane.

The x-component of the E field can be found directly from (13.3.14), replac­
ing the sinp",y/sinp",b by cosp",y/cosP",b to take into account the changed
symmetry of the field

E R [ ~ 4v cosp",y n1r] ,·wi
II: = e L..J -- cos -x e

,,_1 a cos P",b a
odd

Because 8H./8y = iWEEs we find

H - R [~ 4jWEfJ sin P",y n1r J jwt
• - e L..J R R b cos "'J e

,,=1 f'",a cos f'''' a
"odd
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13.3.4 (a) The flux linkage>. is 
(1) 

and the voltage is 
dH. 

Va = IJA--;It	 (2) 

(b)	 From (13.3.13) we find that liI.1 is a maximum for :& = 0 and :& = a. 

(c)	 From the detailed expression (13.3.13), using (2) 

_ -R [~4W2IJEUA_1_ n1r X ] iwt 
Va - e	 L.J Q • Q bcos e 

"=1 IJn a sIn IJn a 
"odd 

(d)	 The loop should lie in the 11 - z plane. Then it links Hz that is tangential to 
the bottom plate. 

13.3.5	 The Ez field is derivable from a potential that is a square wave as shown in 
Fig. S13.3.5. We have 

(1) 

v 

-,,---:Or----'--­
x=o J \ x=a 

/I-II tl4-x=T X - 2 

FIKure SIS.S.1 

and using orthogonality, multiplication of both sides by sin n; :& and integration gies 

U4 
a • n1r av [ (n1r a + d n1r a - d)]12-An = V sIn -zdz =-- cos ---) - cos (-- ­
2 ~ a n1r a 2 a 2 

2 

av	 . (n1r) . (n1rd)= 2-SIn	 - SIn ­
n1r	 2 2a 

We find

4v. (n1r) . (n1rd)
An = -SIn - SIn ­
n1l' 2 2a 

We may adapt (13.3.13)-(13.3.15) for this case by replacing 4v/n1r by 

. (n1r)	 . n1rd
4v/ n1r SIn "2 sm 2a 
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~ 4jwdj • (n1r) . (n1r d) C08 fJnY n1r] iwtH• = Re [ L..J -- sm - sm - cos -z e 
.._1 fJn a 2 2a sin fJnb a 
odd 

~ 4v. (n1r) . (n1rd)sinfJnY n1r] iwtE :I: = Re L..J -- sm - sm -- cos -z e[ .._1	 a 2 2a sin fJnb a 
odd 

~ 4n1r . (n1r) . (n1rd) cos fJnY . n1r ] iwtE = Re L..J --sm - sm -- sm-z e 
y	 [ ..=1 a 2 2a sinfJnb a 

odd 

13.3.6	 In (13.3.5) we recognized that E. at Y = b must be the derivative of a po­
tential that is a square wave. This, of course, is equivalent to the statement that 
E. possesses two impulse functions. In a similar manner, H y can be considered the 
derivative of a flux function f: pHydz. Note the analogy between (13.3.19) and 
(13.3.14). We may, therefore, adapt the expansion of P13.3.5 to this problem, be­
cause the flux function of Example 13.3.2 is the same as the potential of example 
13.3.1. From (13.3.17)-(13.3.19): 

~ 4jAw. (n1r) . (n1rd) sinfJmY . m1r ] iwtE • = Re [ L..J ---sm - sm -- sm-z e 
m=l m1r 2 2a sin fJmb a 
odd 

~ 4fJm A . (n1r) . (n1rd)cos fJmY . m1r ] ,·wtH• = Re L..J -- sm - sm - sm -z e[ m=l pm1r 2 2a sin fJmb a 
odd 

~ 4A. (n1r) . (n1r d) sinfJmY m7l'] ,·wt1l = Re [ L..J --sm - sm - cos-z e 
y m=l pa 2 2a sinfJmb a 

odd 

13.4 RECTANGULAR WAVEGUIDE MODES 

13.4..1 The loop in the Y - z plane produces H-field lines along the z-direction. IT 
placed in the center of the waveguide, at z = a/2, these field lines have the same 
symmetry as those of the TEIO mode and thus excite this mode. The detection loop 
links these fields lines as well Of course, the position of tl.~ exciting loop must be 
displaced along Y by one quarter wavelength compared to the capacitive probe for 
maximum excitation. 
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13.4.2 The cutoff frequencies are given by 

The dominant mode has n = 0 and thus it has the (lowest) cutoff frequency 

:c Im=l,n=o = (;) 

The higher order modes have cutoff frequencies 

The cuttoff frequencies are in the ratio to that of the dominant mode: 

TEol 1.33 

TEll and TMll 1.66 

T~o 2.0 

T~l and TM~u 2.4 

13.4.3	 (a) TM-modes have all three E-field components. They approach the quasistatic 
fields of Ex. 5.10.1 which imposes the same boundary conditions as this exam­

ple. Hence the modes are TM. From (9) we find that ez oc -jle,/;: = ;;~~ 
.. ·Ie ~ ,,3al! S· ~ d ~ . h to;' tand e. oc -1 11 ". = "11 .' mce Gz an e. must van18 a y = ,e" mus 

behave as a cosine function of y, so that 2z and 2. are sine functions of y. 
Therefore, 

E = Re '""'(A+ e-:ilJm...1I + A- eilJm...") sin ~:z:sin ~ze·;wt" L.J L.J mn mn a w 
m n (1) 

= Re EE2A~ncosPmnysinm1r :z:sin~:z:sin~zeiwt 
a a w 

m n 

where 
(2) 

From (13.4.9): 

Ez = Re "'''' -jPmn(7) (A+ e-ilJm..." - A- eilJm...")L.J L.J W2uE _ .02 mn mn 
m n ,.. f'mn 

cos ~:z:sin ~zeiwt (3) 
a w 

_ R '"'" fJmn 7- 2A+ . R m1r. n1r iwt- e L.JL.J 2 R2 mnsmf'mnycos-:z:sm-ze 
m n W I"E - f'mn	 a w 
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and similarly,

R "" "" 13m",~ A+ . II • m7f n1l" jwtE.= eL..JL..J 2 112 2 m",smpm",ysm-zcos-ze
m '" W /Sf - Pm", a w

13-15

(4)

(b) At y = b, Es as a function of z must possess two equal and opposite unit
impulse functions of content v(t)/a to give the proper voltage drop at the
edges. The integral of Es , - f; Esdz must be a square wave function of
amplitude v. The same holds With regard to the integral of E. with respect
to z. In summary, Es and E. at y = b must be derivable from a potential
that is a two-dimensional square wave with the Fourier expansion (5.10.15)
(coIQ.pare 5.10.11):

00 00

4>(z,y) = Re L L
__ 1 ,,==1

modd ,,"odd

x=o

16v . m7f • n1l" ,·wt
--sm-zsm-ze
mn1l"2 a w

impulse
function

(5)

impulse
function

Thus, at y = b

­X

F1cure 913.4.3

x=a

Comparison with (3) gives

m1l"/( 2 2) . 16v m1l"2Am",13m",- W /Sf - 13m", sm13m",b = --2-
a mn1l" a

(7)

for m and n odd. This gives the quoted result. An analogous relation may be
obtained for E. which yields the same result.

(c) The amplitudes go to infinity when sin 13m",b = 0 or



or

13.4.4

13-16

(d)

Solutions to Chapter 13

wVjii.a = 1rJm2 + (:n)2 + (ip)2

We have already used the fact that the distribution of Es and E. in the Y= b
plane is the same as in the quasistatic case. The only difference lies in the
y-dependence which, for low frequencies gives the propagation constant

and is pure imaginary. The EQS solution according to (5.10.11) and (5.10.15)
IS

.". = Re ~ ~ 16& sinh kmny . m1r • n1r iwt
"Ii! L.J L.J --2 . hk b Sin -ZSIn -ze

m=l ..=1 mn1r sin mn a w
odd odd

and gives for Es :

E• -_ -Re ~ ~ 16& (m1r)sinhkmnY m1r. n1r iwt- L.J L.J -- - cos-zsm-ze
1 1

mn1r2 a sinh kmnb a wm. .
",odd odd

This is the same expre88ion as the EQS result.

z=w

a-tl
2

a+tl
2

w+~

2

w-~

2

___...l--_..L-_.L...-__-'-_

x=o
%=0

x =4/2 x=a

Flsure SIS.4.4.

The excitation produces a H,," It looks like TE-modes are going to satisfy all the
boundary conditions. H" must be zero at Y= 0 and thus from (25) of text

00 00

H" = Re L L(O~ne-ilfm.." + O';neilfm..") cos C:1r
z) cos C:: z)eiwt

m=On=O

= -Re L L 2iO~n sin PmnY cos (~z) cos (~z)eiwt
m=On=O a w

(1)

At Y= b we must represent the two dimensional square-wave in the z-direction and
in Fig. S13.4.4b in the z-direction as shown in Fig S13.4.4c.
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a-d
-2- z=o

w-d
-2-

z=w

x=o a/2 x=a

Figure SIS.4.4b

We have, setting
Figure SIS.4.4e

(2)

1
w14

", '" m1l" (n1r (P1l") (q1l" 1L-L-Amncos(-X)cos -z)cos -x cos -z)dxdz= --Apq(aw)
00 a w a w 4

w+oIil. A

1 2 i 2 p1l" q1l"=-Ho dz dxcos (-x) cos-z
J!!:A ..-I! a w

2 2

w±oIil. ~

1 2 12 p1l" q1l"+ Ho dz dxcos (-x) cos-z
.!!!=A A a w

2 2

H o [. (P1l" a) . (P1l" a- d)]= - (7) (~) sm 72 - sm 7-2-

[
. (q1l" W+ A) . (q1l" W- A)]sm --- -sm ---

w 2 w 2

Ho [. p1l" a+ d . p1l" a]
+ (7)(~) sm 7-2- - sm 72

[
. (q1l"w+A) . (q1l"w-A)sIn --- -sm ---

w 2 w 2

Ho [. (P1l" a)]
= - (7)(~) sm 72

. (P1I" a - d) . (P1l" a + d) . (P1l" a ]-sIn --- -sm --- +sm --)
a 2 a 2 a2

[
. q1l"w+A . q1l"W-A]sm----sm---

w 2 w 2

Ho [. (P1l") . (P1l") (P1l")] q1l". q1l"A=-( )("1r) 2sm - -2sm - cos -A 2cos-sm--
P!! .0.::.. 2 2 2a 2 2w

4 w

4Ho • (P1I") (q1l"). q1l"A [ P1I"]= - (p~)(~) sm "'2 COS "'2 sm 2w 1- cos 2a A

(3)
We find that P must be odd and q must be even for a finite amplitude to result.

A = Ho (-l)P-l(-l)f- l [l- cos p1I" A]
pq pq1l"2 2a (4)
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The case q = 0 must be handled separately. 

1 () H o [ • (P1f' a) . (P1f' a - d)]-A 0 aw = --- sm -- - sm --- w 
2 p (p~) a 2 a 2 

H 0 [ • P1f' ( a+ d) . (P1f' a)]+-- sm- -- -sm -- w (5)(7) a 2 a 2 

2wHo [ P1f'] . P1f' 
= - (p~) 1- cos 2a sm"2 

and thus 
Apo =	 Ho [1- cos P1f' .6](-1)P-l

P1f' 2a 

From (13.4.7) and (13.4.8), one finds 

'" '" 2;C;:;'nPmn (m:) . m1f' n1f' ;wt
Hz = Re LJLJ 2 p2 cospmnysm-xcos-ze (7) 

m n W JJ.€ - mn	 a w 

(8) 

with C;:;'n expressed in terms of the Amn's by (2) 

13.5	 DIELECTRIC WAVEGUIDES: OPTICAL FIBERS 

13.5.1 (a) To get an odd function of x for e", one uses the Ansatz 

Ae-a",(z-d) d<x<oo e - Asink",z -d < x < d (1)'" - { sink",d 
_Aea",(z+d) -00 < x <-d 

which has been adjusted so that e", is continuous at x = ±d. Since 

(2) 

and thus 
-azAe-a",(z-d)

k - _1_ k A cosk.. z (3)l/ - . z sink",d 
'WJJ. { -azAea",(z+d) 

kl/ and e", are continuous at x = d. The continuity of e", has already been 
established. From the continuity of hl/: 

(4) 
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The cutoffs are at k",d = (2n - 1H (see Fig. S13.5.1a).

I
I
I
I
I---1-. _

k",d (2n - 1)11"
211" k d --+ ----

'" 2

Figure SI3.6.la

(c) When according to 13.5.3

k",d = JW2IJ f i - k~ = (2n - 1)~

and w goes to infinity, then kll must approach w.,fiifi asymptotically.

(d) See Fig. S13.5.1h (Fig. 6.4 from Waves and Fields in Optoelectronics,
H. A. Haus, Prentice-Hall, 1984).

Asymptote ~ .. w \I~

1.00.5

2. -
T·wv~•••---

Asymptote tJ = (oJ ",;;t;

0.0

50

10.0

1....

Figure SI3.5.lb
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13.5.2 The antisymmetric mode comes in when 

Q", 'II" 
-=0 and k",d= ­
k", 2 

and from (13.5.8) 

or 

or

1 '11"/2 [E; c . ~ '11"/2


w = VJifid V(l- -:J = V7"dV -;; ";1- E/Ei


8 = 3 X 10 _1_ '11"/2 = 3.85 X 1010 
10-2 yI2.5. /1 - --L

V 2.5 

f = .!!!.... = 6.1 X 109 Hz 
211" 

13.5.3 (a) For TE modes 

Ae-a.,(",-d) x>d 
e - A cos k.,'" or A sin k a'" -d < x < d'" - { cos k.,d sin k.,d 

Aea.,(",+d) or - Aea.,(",+d) x< -d 

where we have allowed for symmetric and antisymmetric modes. Continuity 
of ellS has been assured on both boundaries. The magnetic field follows from 

h = _I_de", (2) 
y jwJ1. dx 

and thus 

_.!!.£ Ae-a.,(",-d) x>d 
~ 1 k"'· k
h =- -='A~ or -d < x < d (3)Y jw "'i cos k.,d

{ .!!.£Aea.,("'+d) or x< -d
'" 

Continuity of hy gives 
k", 

-
Q", 

= -tank",d (4a)
J1. J1.i 
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for even modes, and

for odd modes. Here

and thus, eliminating k",

as = J1c'tJ - W
2

1-'E

kIlO = JW2lJiEi - k~

13·21

(4b)

(5)

(6)

and

(7)

(b) Cutoff occurs when as/kIlO = 0 and ksd is fixed. We find that when IJi is
increased above 1-', W must be lowered.

(c) The constitutive law (a) for symmetric modes has the graphic solution of Fig.
13.5.2. The only change is the expression for as/kIlO but its ksd dependence
is qualitatively the samei as/ kIlO increases when IJi / I-' increases at constant
w. This means that the intersection point moves to greater ksd values. k~

increases directly with increasing 1Ji/I-' according to (6) and decreases with
increasing kIlO' The intersection point of ksd does not change as fast, in partic­
ular, at high frequencies it does not move at all. Hence, the direct dependence
on IJi predominates, k" goes up and A decreases.

13.5.4 (a) The fields are now

:.r:>d
-d <:.r: < d
:.r:< -d

(1)

where we have allowed for both symmetric and antisymmetric solutions. Cointi­
nuity of h. has been asured on both boundaries. Further,

Since
A 1 dha
e =---

" iWE d:.r:

(2)

(3)

(4)
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_!!a.Ae-a,.(.-d)
1

2 = --
E

" iw 
a1n _!..A 1l:.. or !..coa1l:•• 

E; aln1l:,.d (5)
{ E; coa1l:,.d 

~Aea,.(.+d) or _ !!a.Aea,.(.+d) 
E 

Continuity of 2" at z = ±d gives 

(6a) 

for even modes, and 

(6b) 

for odd modes. Further, 

(7) 

Thus 
(8) 

and 

(9) 

(b) The cutoff frequencies are determined by k.d = m~ and a. =o. From (9) 

or 




