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SOLUTIONS TO CHAPTER 13

13.1 INTRODUCTION TO TEM WAVES

18.1.1 (a) From (13.1.3):

3E,
dy

oH,
ot

= ARe|A cos(By) exp(jwt)] = p
= B|A|cos By cos(wt + ¢)

where ¢ is the phase angle of A. Integrating the above yields
H, = £—|A| cos Bysin(wt + ¢) = —Re jiA cos fye’“t
wp ' wp
Introducilllg (2) and the expression for E, into (13.1.2) gives
2
—5—“|A| sin Ay sin(wt + ¢) = —we|A|sin Py sin(wt + ¢)
from which the dispersion relation follows 2 = w?ue.
(b) From (13.1.13)
' H,(—b,t) = —Re K, e/t
This gives, using (2),

—Re ]'iA cos Bye’t = —Re K, e7¥t
wp

and thus

__.wa’,, . [ 1
A= TG csph ’K°\/:cosﬁb

H, = —Re kg%%':‘%%ejut

Using (2) we find

and putting the value of A from (5) into the expression for E, gives

E. =—Re jKO\/E sin fy eIvt
€ cos Bb

(1)

(2)

(3)

(4)

(5)

(6)

(7)



13.1.2

13.1.3

13-2 Solutions to Chapter 13

(a) The standing wave '
H, = Re Asin fye’**
satisfies the boundary conditions of sero H, at y = 0. From (13.1.2)

8H, ot _ OBs
= = 1
3y BRe A cos Bye Sy (1)
Integrating to find E, gives
E, = —f—eRe 7 A cos Byel“t (2)
From (13.1.3) we find
2 - -
9F: _ “—Re jAsin fye’*t = pﬂfi = wuRe 7 Asin fye** (3)
8y we at
and thus
B? = w?pe (4)
(b) Turning to the boundary conditions,
E.(—b,t) = Re Ve’ /a (5)
and thus from (2)
—;’H—eRe jAcos Bbe’*t = Re Vye/“t fa (6)
and hence R R
—gweYa 1 _ . feVa 1
A—Jﬂ acosﬂb—J\/:a cos Bb (")
We find ’
H, = Re j,[SL420PY jun
B a cos 8b
E, =Re ﬁf’."’_ﬂﬂea‘wf
a cosfb
Using the identity ) )
sinz = (¢7* — e77%) /25 (1)

one finds from (13.1.17)

1 1,. . ,
E,=—RejK ot = (p3By _ ,—3By\ Jut
* €J OV € cos Bb 27 ¢ ¢ )e

(2)
= —Re %Ko\/g[ci(wf-ﬁv) - c".f(ut+ﬁll)]/cos Bb

The exponentials in the brackets represent waves that retain constant amplitude
when dy = +4d¢ exhibiting the (phase) velocities +w/f = +1/ /.
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(a)

(b)

(<)

The EQS potential in a coax is a solution of Laplace’s equation. The field
with rotational symmetry is

r
P = Aln; (1)

satisfying ® = 0 on outer conductor of radius a. The field is z-independent
with a constant potential difference. The potential difference is

Aln(bja) =V (2)
The field is

A |4

3 LA
E=-Vd= —lrat‘“n(’/“) ="kT =1 rin(a/b) ©)

The field has cylindrical symmetry with field-lines parallel to is. The potential
U is

U= A¢ (4)
The H field is 13 4
H=—l¢;—%\1’= -—14,7 (5)

Ampere’s integral law gives

fH-ds:/J-da:I ©)

Since H is z independent, I = constant and at z = -]
—%2#7‘ =—21rA=1] (7)
Therefore
H=i, (8)
T Y 2xr

The preceding analysis suggests that

. V(zt)
B lalo)r )
and
n-;, 50 (9b)

can be solutions of Maxwell’s equations. To show this it is advantageous to
separate the V operator into

. 0
V=Vr+i, 92 (10)
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Solutions to Chapter 13

where s 1 8
=i + S 11
Vr =t ¥ e (11)

is the transverse part of the operator. Then

VxE=VTxE+i,xaiE (12)
V-4

Now Vr differentiates only r and ¢. The EQS field, which is z independent,
has V+ x E = 0. Hence we conclude that the same holds for the “Ansatz”

(9). But iy x i, = iy and iz X iy = —i,.. We obtain from Faraday’s law
1 13 1 a1
Y =y 13
In(a/b) r da Honr at (13)
The common r-dependence can be eliminated, and we find
8 aI
—V=-L— 14
Oz ot (14)
where In(b/a)
pln(b/a
= — 15
L o (15)
A similar reasoning applied to V x H and Ampére’s law yields
. 13 . e v
T 2mroz In(b/a)r 8t (16)
. al oV
3~ %% (17)
with
. 2me 18)
" In(b/a) (

With the time dependence exp jwt, we get for the transmission line equations
of (14) and (17) of Prob. 13.1.4

dv .
I o
o —jwCV (2)

where

V = Re Velvt
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(b)

and .
I = Re e’

Eliminating V from (1) and (2) one obtains

‘% = —ijg = —w?LCV (3)
with the solutions P
A cos fz
Vi { sin fz (4)

with

B =wVIC (5)

We pick the solution

V = Asin Bz (6)
because the short forces V' to be sero at z = 0. From (1) we find
P I AV 3B,
I—wL 1s —wLAcoﬂz (7)
and since I = Re I,e/“t at 2 = —I,
Acosfl= —j(—dEL—Io (8)

or

A= -3y L/Ccoﬁoﬂl (©)

where we used (5). We find for the current and voltage as functions of z and

)= g "
?(st) = —Re jVITCL o™ (11)

At low frequencies cos fz ~ 1 for all —! < z < 0 and sin fz ~ fz = wV/LC=.
Using (9) of the preceding problem,

I, .
I'I(z,t) = igRe 2—:’.6"“ (12)

For the E-field we find from the preceding problem and (11) above

LzI,elvt

E= —1,Re]wmg)—;

= —i Re jw :—”zIoe"'"‘ (13)
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This gives the voltage at z = —I
a )
/ E - i, dr = Re[jwLil, e’ (14)
b

The inductance is Ll because L, as defined here, is the inductance per unit
length. Thus we have shown that, in the limit of low frequencies, the structure
behaves as a single-turn inductor.

(c) The H-field in the space between the conductors is the gradient of a potential
¥ « ¢ that is a solution of Laplace’s equation. Thus,
H=Re —Io—i eiwt (15)
27r ®

We obtain E from Faraday’s law

__l‘aH___ -I_Oo Jwt
VxE= Tl pRe jw ey 19¢ (18)

z2(<0) z2=0

Figure S13.1.8
With the line integral along the contour C shown Fig. $13.1.5, we may find from
the integral form of Faraday’s law

dr
2rr

a a
/ E.dr = pRe {jwIe™**|2| f (17)
b b

Integrals over the radial coordinate appear on both sides. Thus, comparing the
integrands we find

ol
E, = —Re ‘Lug‘ﬁze’”' (18)

which is the same as (13).
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v/

13.1.8 (a) From the solutions (4) in Prob. 13.1.5 we pick the cos Sz dependence, because
the magnetic field, proportional to f, is zero at z = 0 according to (7) of the
same problem. Indeed, if V = Acos §z, then

jo I 4V _ 3B,
I= I = wLAsmﬂz (1)
Since
Re[A cos Bz exp jwt];=-; = Re[V, exp jwi] (2)
we find v
— (-]
A= cos fl (3)
and v
—_ o .
I= '“/C/Lcosﬂl sin Bz (4)
Therefore,
V(z,t) = Re [ Bl cos Bz exp ]wt] (5)

. Vo
I(z,t) = —Re ]\/C/Lco Bl

in(r/a) - V(z,t) 1
in(a/b) ~ Tin(a/b)r (M)

where Vr is the transverse gradient operator,

sin fze’* (6)

E=V(z,t)Vr

a 19
Vr = a + 1¢r EYS
and we use the result of Prob. 13.1.4. In a similar vein
I (z 3 t)
H= 8
2rr ( )

(b) At low frequencies, cos fz =~ 1,sin 8z =~ Bz and V(z,t) ~ Re V, exp jwt. Then,
assuming V, to be real,

ln(a/b) V coswt (9)
_ g o WE .
H= Py VC/LBzV,sinwt = iy TIn(a/b) 2V, sinwt (10)
(c) At low frequencies, using EQS directly
V coswt (11)

ln(a/b)
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namely the gradient of a Laplacian potential o In(r/a). The H-field follows

from oF
VxH= E-é-t— (12)
with 4
H = 14,72 (13)
introduced into (12)
2] A i

1
~Vosinwt

= —f - = -} = —we——o0
VxH Ir 3zH¢ i r weln(a/b) r

and therefore

A Vo sinwt (14)

- In(a/b)

which gives the same result as (10).

13.2 TWO-DIMENSIONAL MODES BETWEEN PARALLEL-

PLATES
13.2.1 We can write
cosﬂz— l(ex 'n—”-z+ex —'ﬂz)
a 2 PJ a P=J a
and
sin Mz— i(ex 'ﬂz—ex —'H-:c)
a 27 PJ a P—J a

Introducing these expressions into (13.2.19)-(13.2.20) we find four terms of the form
. T . nw
exp Fjhnyexp Fj—z = expFj(Pny + —z) =exp—jk -x

where nr
k= :t-a—ix * Bniy

and
r=iz+i,y

This proves the assertion that the solution consists of four waves of the stated

nature. These waves are phased so as to yield z-dependences of the form cos 2%z
and sin 2z to satisfy the boundary conditions.
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13.2.2 We can start with the solutions (13.2.19) and (13.2.20) shifting = so that
1=y 2
g=z-3

Considering TM modes first we note that

nrz’ nw
H, o:cos—z—cos( -
nwz’ nw ‘nrz’ . nw

= CO8 s ——

cos —2— — 8in 2

_ { (~1)"/2 cos (22£)  n even
(—1)"F sin (22%) nodd

We see that the modes with even n are even with respect to the symmetry plane
of the guide, the modes with n-odd are odd.
Next studying the TE-modes,

nrz'y . nx
sin —
2

nx
E, o:smTz—sm(——)cosT+cos(

(—1)"/ Zgin 812"y even
(—1)"7" cos s’ n odd
We find that E, is even for n odd, odd for n even.

(a) When g’ = :i:a/2 and the modes are odd, H, = (~1)(*~1)/2sin 2% E, =
(—1)"/? sin BF; in the first case n is odd and H, is an extremum at z’ = :I:a/2
and in the second case n is even and E, is zero at both boundaries.

(b) When 2’ = +a/2 and the modes are even then H, = (—1)"/2cos(%F) and

E, = (-1 )("'1)/ Zcos % we see that both boundary conditions are in both
cases, because n is odd in the first case and H, is an extrenum, n is even in
the second case, and E, is zero.

13.3 TE AND TM STANDING WAVES BETWEEN PARALLEL
PLATES

13.3.1 We multiply (13.3.1) by k%, and integrate over the interval from 0 to a.

~

/0 dz (k% d:lhz PR mhan) = / dz— (h,,,,d:;"
- fo dz(z;h:m)(zhm) (1)

a
+ pﬁ / hyphandz =10
0
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where we have integrated by parts. Because dh,,/dz = 0 at z = 0 and z = a, the
integral of the integrand containing the total derivative vanishes.

Next take the complex conjugate of (13.3.1) applied to ham multiply by h,,
and integrate. The result is

° ds d;
/o dzd —h; d_ pmf R handz (2)
Subtraction of (1) and (2) gives
a‘ ~
(7= #2) | Bimhamdz =0
0

Thus a
/ Bt humdz=0
0

when p2, # p2 and orthogonality is proven. The steps involving &,, are identical.
The only difference is that
z_( dim)
Cam gz

vanishes because &}, vanishes at z =0 and z = a.

138.3.2 (a) The charge in the bottom plate is

w p(atd)/2
= f / eEydzdz (1)
0 J(a—a)/2

Using (13.3.15)

()T a2 (2

q=TRe [ 4mre b} 1 ,w,] 2wa

a ,_B,Ta_sinﬂ b nw

n=1
odd

where we have used the fact that

w plat+d)/f2 _
/ / Sin (ﬂz)dzdz= —y—a[COS MG+A) — cos ﬂa A)]
( —A)/2 a nm a 2 a 2

n 2 2a
_ 2wa(_1)5_;_; in nr
nr

(3)

v, = —Re jwde? R

— _Re [jw8€w RO ( ;)a_ ss‘:; ﬂza e"“"] (4)

n
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(b)

(c)

(a)

(b)

When £,b = 7« we have a resonance. Now

B = \fune - (25)?

The resonance frequency of the n-th mode occurs at

ﬂn%a = \/4w?pea? — (nx)2 =« (5)

wy/pea =/(n? + 1)-"2I (6)

For n = 1 this is at 7. The next mode resonates at \/5/4x. Thus, in this
range, two resonances occur for which the response goes to infinity. Of course,
in this limit, losses have to be taken into account which will maintain the
response finite. The low frequency limit is when

or

wy/pe K n%
Then nr nr
Br sin fb — ——sinh —b
a a
and

T N~ (C) T sinngA
vo = Re []wSﬂ'GWRU; B ginh %) e (7

From (13.3.13), when only one mode predominates,

H, =~ Re ézw_wwcos il e
Bna sinf,b a

wheren=1a.tw,/a=1ra.ndn=2a.tw,/a=\/ 4x. To get a
finite answer, we need §/sin f,b to remain finite as the resonance frequency
is approached.

H, at £ = 0 and z = a gives the surface currents in the bottom and top
electrodes. Because the voltage sources push currents into the structure in
opposite directions, the surface currents, and H,, have to vanish at the sym-
metry plane.

The z-component of the E field can be found directly from (13.3.14), replac-
ing the sin f,y/ sin f,b by cos f,y/ cos fnb to take into account the changed
symmetry of the field

_4_vcosﬁ,,y L
= Re [Z cos " z]e

a cosf,b

n=l
odd

Because dH, /3y = jweE, we find

H, = Re f: 4jwed sin sin fny APnY o8 X .Id"'*
* Prna cosfnb a J
nodd
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13.83.4 (a) The flux linkage X is

A=uH,A (1)
and the voltage is iH
v, = pA % (2)

(b) From (13.3.13) we find that |H;| is a maximum for =0 and z = a.
(c) From the detailed expression (13.3.13), using (2)
o 4w ped " 1

&<  fPpa sinfpb
nodd

v, = -—Re[

nn .
cos —X] eJwt
a

(d) The loop should lie in the y — 2 plane. Then it links H, that is tangential to
the bottom plate.

13.8.5 The E, field is derivable from a potential that is a square wave as shown in
Fig. 513.3.5. We have

. mm

O(z) = Z,,: A, sin T (1)
v

] 1L

z=10 ) T=a
=21 z=1f

Figure S13.3.5

and using orthogonality, multiplication of both sides by sin 2%z and integration gies

ZA =v‘/l._;.-{sin-’ﬂ:l:d:l:——2 cos Ea+d)_ ﬂa'_d)
27" asd a = Tnm P cos (——
av . .nmy ., nxd
—2—sm(——)s _2:)
We find . ;
An-'—v-sin(ﬂ)s' (EL
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o0 .
4jwed | nxm, , ,nr  cosfPLy nx :
H, =Re [Z e sm(T) sin (Ed sinﬂ:b cos Tz] et

nel
odd

E;=Re Z——-sm nﬁ')sm(mrd)s_x_nﬂ_,.y sﬂz et

| £ sin S, b
odd
[ inr nxd, cos fny T |
Ey=Re-“=lT 1n( ) ( Smﬂnb n—-—zWGJt
odd
13.3.6 In (13.3.5) we recognized that E. at y = b must be the derivative of a po-

tential that is a square wave. This, of course, is equivalent to the statement that
E, possesses two impulse functions. In a similar manner, Hy can be considered the
derivative of a flux function [; uHydz. Note the analogy between (13.3.19) and
(13.3.14). We may, therefore, adapt the expansion of P13.3.5 to this problem, be-
cause the flux function of Example 13.3.2 is the same as the potential of example
13.3.1. From (13.3.17)-(13.3.19):

E,=Re [E 4JAw sin (mr)s (mrd —:::‘;m: mina—’rz]ejM

m=1
odd

H,=Re[z4‘f;w sin (%) im (27 )zf;gmgmgz]cw

m=1
odd

=R [ 35 2 in () in () 2Bt ] e

m=1
odd

13.4 RECTANGULAR WAVEGUIDE MODES

13.4.1 The loop in the y — z plane produces H-field lines along the z-direction. If
placed in the center of the waveguide, at z = a/2, these field lines have the same
symmetry as those of the TE;o mode and thus excite this mode. The detection loop
links these fields lines as well. Of course, the position of ti.e exciting loop must be
displaced along y by one quarter wavelength compared to the capacitive probe for
maximum excitation.
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13.4.2 The cutoff frequencies are given by
mm\a (nT\2
Ty (5
The dominant mode has n = 0 and thus it has the (lowest) cutoff frequency

w n
Tc m=1,n=0 = (—G-)

The higher order modes have cutoff frequencies

). .= Q)T Ta) = I/ maTP

The cuttoff frequencies are in the ratio to that of the dominant mode:

TEq: 1.33
TE11 and TMu 1.66
TEze 2.0

TE21 and TM21 2.4

13.4.83 (a) TM-modes have all three E-field components. They approach the quasistatic
fields of Ex. 5.10.1 which imposes the same boundary conditions as this exam-

ple. Hence the modes are TM. From (9) we find that &, « —jk, 3% = g;;%:-

2 .
and &, o —jky%ﬁ,”- = g—v%. Since &, and &, must vanish at y = 0, &, must
behave as a cosine function of y, so that é; and é, are sine functions of y.
Therefore,

-3 - 5 . mxr_ ., nw
Ey = Re Z z,,:(A:mc IBmny 4 A e7Pmn¥)gin —, - zsin Uze""' )
(1

mx nx nx
= Re E E 24}, cos By ysin — zsin —z sin —z¢?“*
a w
n

a
where
Bmn = Vwipe — (mn/a)? — (nx/w)? (2)
From (13.4.9):
= Re zz w:Z’:’l( ) (A+ —3Bmny _ A;,ncjp""”)
cos %r-z sin n—ze""' (3)

ﬂmn + . mn . nw Wt
=Re E Z w"’pe _ aﬂz ZAmn sin ﬂmny cos _a—x sin ‘;36‘1“’
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and similarly,

ﬂ : . mr nT .
= Re Z Z wzp:"l ‘:92 ZAIm sin ﬂmny sin Tzcos ;ze“" (4)

(b) At y = b, E, as a function of z must possess two equal and opposite unit
impulse functions of content v(t)/A to give the proper voltage drop at the
edges. The integral of E,, — | ¥ E.dz must be a square wave function of
amplitude v. The same holds with regard to the integral of E, with respect
to z. In summary, E, and E, at y = b must be derivable from a potential
that is a two-dimensional square wave with the Fourier expansion (5.10.15)
(compare 5.10.11):

169 nw
O(z Re sin —zsm —zetvt 5
(z,9) = Zj Z: — ” (5)
modd nodd
impulse
function
z=0
—_— r=a
impulse z
function

Figure S13.4.3
Thus, at y=1b

169 mr ., nmw .
E.(y=0)=—Re E E mmr2 —=) cos —zsin -;ze""‘ (6)
n=l
modd nodd

Comparison with (3) gives

169 mn

(7)

for m and n odd. This gives the quoted result. An analogous relation may be
obtained for E, which yields the same result.

M (w? 2 g =
2A,0Pmn " [(wpe — B2,,.) sin fnb = n? o

(c) The amplitudes go to infinity when sin f,,,b = 0 or

Vwipe — (mn/a)? — (nx/w)2b = pr
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or

wy/pea = 1r\/m2 + (%ﬂ)2 + (%F’)2

(d) We have already used the fact that the distribution of E; and E, in the y=1b
plane is the same as in the quasistatic case. The only difference lies in the
y-dependence which, for low frequencies gives the propagation constant

. [;mm\2  nmy2
ﬂmn - .7\/(—; + ( w )
and is pure imaginary. The EQS solution according to (5.10.11) and (5.10.15)

is
169 sinhknny . mn nNE it
®d = Re E E a3 stk Enb sm 2 zsm ” ze

m=1 a=1
odd odd

and gives for E,:

.= —Re Z Z 169 (rmr sinh Enny cos = . % 2 sin %}—ze""‘

mnx?® a smh kmnb

m=l na=l
modd nodd

This is the same expression as the EQS result.

13.44 Z2=w
i w+A
\\7 2
~- 4
\ / J w-4a
a—d atd 2
z , 2
=0 z=af2 r=a
2=0

Figure S13.4.4a

The excitation produces a H,,. It looks like TE-modes are going to satisfy all the
boundary conditions. Hy, must be zero at y = 0 and thus from (25) of text

Hy, =Re Z E(C’*‘ ~IBmn¥ 4 O 7PmnY) cos (—a:) cos (—.z)c”"t
m=0 n=0 (1)

= —Re Z Z 2;C}, sin Bmnycos (—a—z) cos (-'—E—z) eiwt

m=0n=0

At y = b we must represent the two dimensional square-wave in the z-direction and
in Fig. S13.4.4b in the z-direction as shown in Fig S13.4.4c.
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H
a—A ¢ z=0 Z=w
2
t t } -+
a+A w—A wtA
a 2 2
z=0 a/2 z=a
Figure S138.4.4b Figure S13.4.4¢
We have, setting
—25C} . 8in Branb = Amn (2)

.[)w /: E ZAmn cos (mz) cos (HZ) cos (M"‘) cos (ﬂz) dzdz = _%AN (av)

=-H, / dz/ dzcos( cos —z

+ Ho/ dz/ dzcos (—z) cos —z
- ng a w

-~y e ) - (2250
[in (5252 (228

(L)(L)[' CEERRTE

DT

2 il SV

@y )]

— 8in (%a d) —sin(pr%é) + sin pwa)]

2
[singzw_*-A sinﬂw_A]
w
-__H P7Y _ 2gin (P5) cos (2™ ar i, 974
( )(L)[Zsm( ) 2s1n( )cos(zaA)]2cos2sm 2w

4H,
(p )( ) sin (?) cos ( ) sin q;rwA [1 — cos x%A]
_ _ (3)
We find that p must be odd and ¢ must be even for a finite amplitude to result.
H, - 2_ pm
—_ 0 (_1\P-1(_ 11 — cos 2=
pq pq1r2( 1)P=(-1)2 [1 o8 o A] (4)
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The case ¢ = 0 must be handled separately.

-1- aw) = — Ll sin pr 2 — sin Ea_d w
3 Avolan) =~ sin (25) - sin (21 225)]

2
H, . prja+d . (pTa
+@[sm—a—( 2 )-—sm(;——ﬁ]w

= -——ZWHO 1 pT sin 2T
= ( 1) cos o 5
Pq

and thus
H, pr -1
o= —2[1— P2 Al(—1)P
Ap or [1— cos 52 A](-1)

From (13.4.7) and (13.4.8), one finds

2 . mm T
= Re ZZ Jw;;:eﬁ—r-nzz a ) €08 Brnysin —a—:c cos %ZCJwt

25C}, Bmn (25) mn nr .
= Re E 'E : il Jwt
" ue—ﬁz c08 Bnycos 2 z sin ” —ze

with C}  expressed in terms of the A,,,’s by (2)

13.5 DIELECTRIC WAVEGUIDES: OPTICAL FIBERS

13.5.1 (a) To get an odd function of z for €, one uses the Ansatz

Ae_‘“=(‘_d) d<z<oo
&, = A%ﬁ:‘—j —d<z<d
—Ae?:(2td) _ o< z<—d

which has been adjusted so that &, is continuous at £ = +d. Since

Jé, . e
oz = Jwkhy
and thus
1 [ —osde” "‘:(“ 9)
T coskzzx
hy = W k Annk d
Jub —aer‘“(""*'d)

(5)

(7)

(8)

(1)

(2)

(3)

;Ly and €, are continuous at z = d. The continuity of &, has already been

established. From the continuity of h,:

oz = —kgcot kyd

(4)



Solutions to Chapter 13 13-19

The cutoffs are at k.d = (2n — 1)5 (see Fig. $13.5.1a).
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Figure S138.5.1a
(c) When according to 13.5.3

ked = \/w?pe; — k2 = (2n — 1)%

and w goes to infinity, then k, must approach w,/u¢; asymptotically.

(d) See Fig. S13.5.1b (Fig. 6.4 from Waves and Fields in Optoelectronics,
H. A. Haus, Prentice-Hall, 1984).
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Figure S138.5.1b
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Solutions to Chapter 13

The antisymmetric mode comes in when

T o
Z_s =0  and kd=
and from (13.5.8)
w2 pe;d?
1-$)-1=0
\/ (kzd)? ( )
or
7/2
wy/ped = ( )
or
/2 eo € w2
VHEd / 1__ €& \/1—€/¢
_3x 108 /2 — 3.85 % 10°

(a)

102\/—,_\/1_%

f= = =6.1x10°Hz
2%
For TE modes
Ae—a,(z —d) z>d
€, = A%’:‘% or A% —-d<z<d
Aevz(z+d) or _ peas(ztd) 5o g

where we have allowed for symmetric and antisymmetric modes. Continuity
of &; has been assured on both boundaries. The magnetic field follows from

s 1 de
hy = ——2 2
Yy Jwp dz ( )
and thus
g‘~Ae‘"‘=("'d) z>d
il _ i &Asmk,z or kacosksx —d<z<d 3
Yy — jw i ““coskgd @i 8ink.d ( )
—“‘Ae‘“("""d) or —22fex:(=td) z< g
Continuity of h, gives
a k

—= = Ztank.d (4a)
B oM



13.6.4
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(b)
(c)

()

for even modes, and

o _ ks ikod (4b)
B i
for odd modes. Here
ag = \/k2 —wiue (5)
ks = \Jw?pie; — k2 ()

and thus, eliminating k,,

k2 = w?(p;e; — pe) — o

o, [wiped? _be
ks _\/ k2d32 [l_p,-e;] 1 Y

Cutoff occurs when a,/k; = 0 and k.d is fixed. We find that when u; is
increased above u, w must be lowered.

The constitutive law (a) for symmetric modes has the graphic solution of Fig.
13.5.2. The only change is the expression for a,/k. but its k,d dependence
is qualitatively the same; a./k, increases when pu;/u increases at constant
w. This means that the intersection point moves to greater k.,d values. kz
increases directly with increasing u;/p according to (6) and decreases with
increasing k.. The intersection point of k;d does not change as fast, in partic-
ular, at high frequencies it does not move at all. Hence, the direct dependence
on u; predominates, ky goes up and A decreases.

The fields are now’

Ac—ai(z—d) . x> d
hy={ Ak or Apfinkaz -d<z<d (1)
Aeds(m+d) o _ Aeas(ztd) g < 4

where we have allowed for both symmetric and antisymmetric solutions. Cointi-
nuity of h, has been asured on both boundaries. Further,

az =1/ k3 — wipe (2)
ke = \/wzu,-e.- — k2 (3)

_1 dh

jwe dz

Since

(4)

ey =
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. _g:Ae—a,(s—d)
fy= - | —BAtabe o ook (5
J E:Aeas(z+d) or — g:Aea.(:Hd)
Continuity of é, at z = +d gives
% ks ke (6a)
€ €
for even modes, and
2 _ ks cot k,d (b)
€ €5
for odd modes. Further,
K2 =a?+wipe=—k2 +wine (n
Thus
a2 = w?(uie; — pe) — k2 (8)
and
ar _ [wiped? _ e
ks \/ k3d? [t I‘iei] ! (©)

(b) The cutoff frequencies are determined by k;d = m% and a. = 0. From (9)

2 €:
wcl‘sfs‘:z[l_ L"G_] -1=0
(mg-) Hi€g

or .
my 1

= 2
We '_mé.'d Jl — F‘IL:'






